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Abstract. We study the N-extended super-Kaé—Moody algebras, i.e. extensions
of the Lie algebra of the loop group over the super-circle Ay. The extensions
are characterized by 2-cocycles which are computed in terms of the cyclic
cohomology of the Grassmann algebra with N generators. The graded algebra
of super-derivations compatible with each extension is determined. The cases
N =1,2,3 are examined in detail and their relation with the Ademollo et al.
superconformal algebras is discussed. We examine the possibility of defining
new superconformal algebras which, for N > 1, generalize the N =1 Ramond-

Neveu—Schwarz algebra.
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1. Introduction

Supersymmetries in physics have brought the study of graded commutative algebras
and graded Lie algebras to the forefront of the arena of theoretical physics in the
last 10 years and have also triggered a revival of their interest in pure mathematics.
Infinite dimensional Lie algebras and in particular Kac—-Moody algebras have also
shown their usefulness in quantum field theory, in particular in the realm of two
dimensional models and in string theory. The study of supersymmetric string
theories leads therefore to the introduction of infinite dimensional superalgebras
(from now on, we will use mostly the adjective “super” rather than the traditional
“Z,-graded” qualifier used by most mathematicians). As it is usually the case in
physics, “matter-fields” take their values in a representation space of an algebra
(or of a group). What happens here is that most interesting representations happen
to be projective representations (they transform correctly only up to a phase); this
means that they are genuine representations of a central extension of the algebra.
This situation was already recognized in the early days of quantum field theory
(presence of Schwinger terms) and has been illustrated many times under different
names since. For example, it is well known that central extensions of loop algebras
are described by a so-called “central charge,” the result being a Kaé-Moody
algebra, and it is also known that the algebra of derivations of such an algebra
can itself be central extended to obtain the so-called Virasoro algebra. When one
incorporates supersymmetries, i.e. Grassmann generators into the game, one could
expect a similar situation. However, several new phenomena appear.

First, the number of independent “central charges” that one can add is no
longer equal to one as was the case previously and this number also depends upon
the number of Grassmann generators. In other words, if we start with a given loop
algebra and supersymmetrize it by adding N Grassmann generators, it will still
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be possible to construct several inequivalent graded Lie algebras (super-Kac-Moody
algebras), each one characterized by the choice of a different central charge.
Technically, such a “central charge” is described by the choice of a non-trivial
cocycle and the space of these cocycles is a linear space; the inequivalent extensions
can therefore be described by choosing a basis in the space of these cocycles. In
the first part of this article, we will describe this procedure in detail and relate
these cocycles to the cyclic cohomology (see Sect. 2) of the “super-circle” (this
denotes the tensor product of the Grassmann algebra with N generators times the
(commutative) algebra of functions on the circle). As a by-product — or a necessary
tool — we will also describe the Hochschild and cyclic cohomologies of these two
algebras. A result of independent interest will be the explicit expression of a basis
for the cyclic one-cocycles of a Grassmann algebra using the Berezin integral. We
will study explicitly the case N = 1,2 and 3 and we will also give general formulae
for an arbitrary N.

Another phenomenon, which is a new feature of the supersymmetric case
appears when one studies derivations of functions on the super-circle (the analogue
of the algebra of vector fields of the circle). Indeed, an algebra of derivations for
a central extension of a loop algebra has to be compatible — of course — with the
cocycle defining the extension. This, in turns, is equivalent to selecting a subalgebra
of all (super)derivations of superfunctions of the super-circle itself. This procedure
has already been followed in [1] where a particular central extension in the case
N =1 was investigated. Actually, this case corresponds to the usual N=1
superconformal algebra. We will devote the second part of the present article to
the study of the above mentioned compatibility equations and more generally to
the study of (graded) derivations on the central extensions on the super-circle. The
particular cases N =1 and N =2 will be treated explicitly (see Sect. 3).

A class of algebras of particular interest in superstring theories are the so-called
“superconformal” (or Ademollo et al.) algebras [2]. In the same way the N =1
superconformal (or Ramond—Neveu—-Schwarz (RNS)) algebra can be defined as
the particular algebra of super-derivations corresponding to a central extension
on the N =1 super-circle, one may wonder whether the other members of the
family of the superconformal algebras of [2] can be characterized in the same
way. We will see in Sect. 4 that this is not the case; in particular we will show that
there is no non-trivial cocycle compatible with the N = 2 superconformal algebra
from the N =2 super-circle. We will propose new types of extended algebras,
associated with super-Ka¢—Moody ones and generalizing the N = 1 RNS algebra.

2. Central Extensions of the Loop Algebras with /N Supersymmetries

The organization of this section is the following. We start by recalling the definition
of loop algebras and super-loop algebras. Then we show in Sect. 2.1.2 how central
extensions of these Lie algebras (i.e. Kac—~Moody and super-Kac-Moody algebras)
are determined by Lie algebra cocycles (or graded Lie Algebra cocycles) of degree
two which, in turns, are fully determined by cyclic cocycles of degree one on the
algebra C(S') of smooth functions on the circle (or on the super-circle). We
recast these results in the general framework of “Non-Commutative Geometry™:
Paragraph 2.1.3 may be skipped in the first reading. In Sect. 2.1.4, we recall the
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description of cyclic cocycles of degree one on C(S') and we describe explicitly in
Sects. 2.1.5 and 2.1.6 cyclic cocycles of degree one on the Grassmann algebra Gy
with N generators. Finally, we show how the results of the above sections allow
us to compute easily the cyclic cocycles of degree one on the super-circle
Ay =C(S")® Gy (Sect. 2.1.7).

In Sect. 2.2, we gather explicit results concerning cyclic cocycles for Ay in the
case N=1,2,3.

2.1. General Discussion

2.1.1. Loop Algebras and Super Loop Algebras. A loop algebra L(Lie G) can be
defined as the space of loops in a Lie algebra Lie (G) with the commutator

[ n1(p)=[&(p).n(p)], & nmeL(LieG), peS'. )]

This Lie algebra can be identified with the Lie algebra Lie (LG) of the loop group
LG, itself defined [3,4] as the group of smooth maps from S! into a finite-
dimensional Lie group G. As a particular case, we can take G = U(l), then
Lie (G) = R and the loop algebra L(Lie G) can be identified with the space of periodic
functions. This algebra is also the commutative algebra of smooth functions on
the circle S?; it will be denoted’ by C(S') and will play an important role in the
following discussion. Elements of L(Lie G) can be written as linear combinations
of elements of the kind X“(e)T,, where X“e) is a function on the circle, i.e. an
element of C(S*) and { T, } denotes a basis in the Lie algebra Lie (G): [T, T,] = /5, T.
In this paper, we are mostly interested in the supersymmetric case. In particular,
we will replace the circle (or better the commutative algebra C(S')) by the
super-circle A4y which is the (non-commutative) algebra C(S')® Gy, where Gy is
the Grassmann algebra with N generators. More generally, to any loop algebra
K we can associate a super-loop algebra K, by allowing the functions X“(e) to
belong to the super-circle Ay rather than to the commutative algebra C(S?).

2.1.2. Kaé-Moody and Super Kacé—Moody Algebras. Katc—Moody algebras are
central extensions of loop algebras. At the level of Lie algebras, a central extension
of such a loop algebra can be written as Lie (LG) = Lie (LG) @ R with the Lie bracket

L&), (1, )] =([&n] (&, m) ¢meLie(LG), a,feR, @

where w(&, ) is a Lie algebra cocycle. Such an object has to be antisymmetric (this
comes from the anticommutativity of the Lie bracket) and has to satisfy the
following cocycle condition (coming from the fact that the new Lie bracket has to
satisfy the Jacobi identity):

o([&n],0) + o([n, (], &) + o([{,€],n) =0, &7, {eLie(LG). ©)

One then proves [4] that such a cocycle for G compact is necessarily of the kind?

(&, n) =5— 'I 7(5(0, on(®)>. @)
[t]=1

! The functions will be taken infinitely differentiable
% With ¢ = " all functions are periodic in ¢ with period 2
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From now on, we will use the notation d, for td, = td/dt. All the cocycles, and thus
all central extensions of Lie (LG) are therefore completely determined by the choice
of a symmetric invariant form ¢, ) in Lie(G) (it has to be proportional to the
Killing form when G is simple).

This result can be proved in (at least) two ways. The first one [4] consists
in making a Fourier expansion of the periodic functions &(¢) and #(t) and in showing
that the above expression for w is the only possible one compatible with the cocycle
condition. Another proof goes along the following lines. One first notices that what
really matters is the algebra C(S') of smooth functions on the circle S*. Indeed the
algebra of n x n matrices with elements in C(S') is the tensor product M,(C) ® C(S?)
(M,(C) denoting the algebra of n x n matrices on C). So, a 2-form w on this
algebra is fully determined as soon as we know its value on elements of the kind
m® x with meM,(C) and xeC(S?). Let therefore w, be an antisymmetric 2-form
on the commutative algebra C(S!), then w = Trace® w, is an antisymmetric
2-form on the algebra M, (C)® C(S'). More precisely, w(m,® x,, m; ® x,) =
Trace (mom;)w(xq,x,). We will explain this construction in more details in
Sect. 2.1.3. Moreover, if w, satisfy the following condition:

w(xy,z) + o yz,x) + o zx,y) =0, x,y,zeC(S?), )

then, o will be a Lie algebra cocycle i.e. will satisfy the condition recalled previously.
Such a 2-form w, on C(S') is called a cyclic cocycle [5] of degree one on the algebra
C(S!) and the above relation between cyclic cocycles and Lie algebra cocycles is
a particular case of a general result [6]. We will give more details in what follows
on cyclic cohomology but for the moment, it is enough to state the fact that the
generator in degree one® of cyclic cohomology for the algebra C(S') is precisely
given by

ofe ) =5 | Lxwd ©
IT |1| =1 t
It is easy to check that the two properties characterizing a cyclic cocycle are indeed
verified (the antisymmetry comes from the integration by part, taking the periodicity
into account). The final result about Lie algebra cocycles on the loop algebras
then follows.
In order to generalize these ideas to the Z,-graded case, we first notice that if
A is a graded commutative algebra (such as the Grassmann algebra), one can
define the following product in M, (4)= M, (C)® A:

[mo ® ag, my ® a,] = [mo, m1@aoa, = mem; @ aga, — (—1***1mym, ® a,a,
=(my®ao)(m, ®a;) —(— l)aaoaa’(m1 ®a;)(my® ay),

where da denotes the intrinsic Z,-grading of the element ae A. It is easy to check
that M,(A) satisfies the graded Jacobi identity and is therefore a graded Lie algebra.
The rest of the discussion is similar to the previous case: in order to characterize
the central extension of super-loop algebras (i.e. super-Kac—Moody algebras), we
have to classify the solutions of the equation determining the cocycles. This, in
turn, boils down to determine the cyclic cocycles of degree one on the super-circle.

3 Notice that a cyclic cocycle of degree p is a function of p + 1 arguments
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In the non-supersymmetric case, there exists only one solution that we mentioned
previously. However, in the supersymmetric case, there are many independent
solutions (this comes from the fact that the cyclic cohomology of Grassmann
algebras is in a sense “richer” than the cyclic cohomology of the algebra C(S')).
In the supersymmetric case, the super Lie bracket is no longer anticommutative
but still satisfies the equation:

[&n]=—(=1""[n,¢]. ™

Also the super-Jacobi identity reads:

(= DLE [6 1]+ (= )**[C, [0, 1] + (= ™ [0, [£, (T = 0. )

Consequently, the cocycle w determining the extension is no longer antisymmetric
but graded antisymmetric and has to satisfy a Z,-graded version of the cocycle
condition. These two equations read:

(& n) = —(—1)*"w(n, &) ©
and

(= 1)*"a(&, [5,n]) + (= D™ (C, [n,E1) + (= )™ w(n, [£,(1) =0.  (10)

In order to discuss these equations, one has to use the relation between the
cohomology of (super)Lie algebras and the (Z,-graded) cyclic cohomology of the
non-commutative (but associative) algebra 4y = C(S!)® Gy, i.e. the super-circle.
A cyclic cocycle of degree one @ on the super-circle has to satisfy the following
conditions:

oY, X)= — (- 1) 0(X, V), (11)
— DX, YZ)+ D(XY,Z) +(—1)2X+Mp(ZX, Y)=0, 12

where X, Y,ZeAy. We will discuss the solution of these equations in Sect. 2.1.7.

2.1.3. Cyclic Cohomology of Associative Algebras and Cohomology of Lie Algebras.
We already gave the definition of cyclic cocycles of degree one in the previous
paragraph and we will not need more for our purpose. However, it may be
interesting to recast our present problem in the more general framework of
“Non-Commutative Geometry.” We will first define Hochschild cohomology and
cyclic cohomology for associative algebras and then make the link with the
cohomology of algebras of matrices.

Let 4 be an associative algebra (not necessarily commutative) which we will
take Z, graded. Then, complex (or real) valued n-linear forms on A are particularly
interesting objects to consider. A Hochschild cochain of degree n is defined as a
multilinear form @(ay, ay,...,a,) of degree n + 1.* We define the following operator
b from cochains of degree n to cochains of degree n + 1:

[(bP](ag,...,a, 0,4 1) = Zo(— 1)/®@(ag,...,a;8;41,..., 0,4 1)
=

+(—1)"+1(—1)8"“¢(a,,+lao,al,...,an), (13)

* Actually, there are several kinds of Hochschild complexes depending upon the choice of a
module for 4. Here, the module is the dual of the algebra itself
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where ¢, , =0da,,, Z 0a;. It is not too difficult to show that b? = 0. This operator

b is called the Z Z-graded Hochschild coboundary operator and the corresponding
cohomology, Z,-graded Hochschild cohomology: Hochschild cocycles @ are such
that b® = 0, Hochschild coboundaries ¥ are such that ¥ = b® for some @. The
space of Hochschild cocycles of degree n modulo Hochschild coboundaries is the
Hochschild cohomology group of degree n.

The cyclicity operator 4 is defined as follows:?

[A@](ao, ay5-- ., a,) = (= 1) (= 1) P(ay, ao, ..., Ay ). (14)

The multilinear form @ is called cyclic whenever A@ = @. It can be shown [5] that
if @ is cyclic, so is b®. Therefore it is tempting to consider the subcomplex of
Hochschild cochains built out of cyclic cochains. One defines therefore the space
of cyclic cocycles (i.e. Hochschild cocycles which are cyclic) and the space of cyclic
coboundaries (they are of the kind b@® for some cyclic cochain @). The quotient
of cyclic cocycles of degree n modulo cyclic coboundaries defines the cyclic
cohomology group of degree n. The theory of cyclic cohomology has been
introduced and developed in [5]; the Z,-graded case has been particularly studied
in [7]; for a general review, see [8].

Given an algebra A, it becomes possible to consider matrices with elements in
A (such an algebra M,(A) is obtained by taking the tensor product of A with the
algebra of n x n matrices over the complex numbers). As we saw in Sect. 2.1.2, in
the case where A is (graded)commutative, it is possible to define a (graded)Lie
bracket on M,(A4). Cohomology for Lie algebras of matrices is well known and we
will not recall the definitions here (see for instance [9]). The main idea is that it
is possible to relate the cohomology of Lie algebras to the cyclic cohomology of
A itself. Notice first that, by linearity, a Lie algebra cocycle will be defined as soon
as we know its definition on elementary matrices (which are of the kind M}®aq,
where aeA and where the only non-zero entry of M is 1 in position (i,j)). The
result (due to [6]) is the following. Let @ be a cyclic cocycle on 4, that we suppose
commutative; in order to get a multilinear form on M,(C)® A4, one composes it
with the trace operator. The object that we obtain is then “cyclically antisymmetric”
but not fully antisymmetric. Therefore, in order to get a multilinear antisymmetric
form on the Lie algebra, we have to fully antisymmetrize it:

w(my®a,,...,m,® a,) = Ant(Trace (mqy---m,)P(aq, ..., a,)). (15)

The result w is a Lie algebra cocycle.®

In the case where we start from a graded commutative algebra rather than a
commutative one, and from a super Lie algebra rather than a Lie algebra, the
results are analogous.

In the present situation, we are only interested in Lie algebra cocycles of degree
two — since they determine central extensions — for a Lie algebra of matrices whose
elements are functions on the super-circle. We have therefore to determine cyclic

5 The notation 1 differs by a sign from the one introduced in [5]

¢ More precisely, cyclic cohomology coincides with the (primitive part of the) cohomology of
the Lie algebra of matrices
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cocycles of degree one on the algebra Ay = C(S')® Gy. Notice that for cyclic
cocycles of degree one, we do not have to antisymmetrize, since, at this order,
cyclic antisymmetry coincides with full antisymmetry.

2.14. Hochschild and Cyclic Cohomology of the Algebra of Functions on the
circle. As already stated in Sect 2.1.1, it is rather straightforward to check the
following results.

1. The cyclic cohomology group of degree zero coincides with the Hochschild
cohomology group in the same dimension and with the space of distributions on
the circle S*.

2. Cyclic and Hochschild cohomology groups also coincide in degree one
(cf. Egs. (11) and (12)) and all the cocycles are of the kind a®, where a is an arbitrary
constant and @ = w,(x, y) is given by formula (6).”

2.1.5. Hochschild and C yclic Cohomology of Grassmann Algebras Gy with
N=1,2,3. Before studying the cocycles on the super-circle, it is necessary to study
those on Grassmann algebras. To our knowledge, these cyclic cocycles have not
been explicitly computed in the mathematical literature, only [10] determines the
dimension of the cohomology groups of degree k (but ref. [10] does not give their
explicit expression). We will therefore discuss quite explicitly the cases N =1,2
and 3 before considering the general case.

¢ Cyclic cocycles of degree 0 and 1 on G,

G, is generated by 1 and 0 with 6% = 0. According to the previous discussion,
cyclic cocycles of degree zero are generated by the two elements 3; and $, with

3, (1)=1, 3,0)=0, 941)=0, I40)=1. (16)

Cyclic cocycles of degree one on G, have to satisfy the two following conditions
(already given previously):

oY, X)=(—1)"*"p(X,Y)
and
— (X, YZ) + p(X Y, Z) + (— 1)+ Mp(ZX, Y) =0,

where X, Y, ZeG,. The last equation gives in fact 23 equations since X, Y, Z have
to be chosen in the set {1,60}. The solution of this system leads to the following
result. There is only one cyclic cocycle of degree one in G;. We will denote it by
@. It is characterized by the equations

@0,0)=1, ¢6,1)=¢(1,0)=¢(1,1)=0. 17

It is possible to write the previous cocycle by using a Berezin integral. Let X, YeG,,

7 The general result for the algebra C(.#) of smooth functions on a smooth manifold .# is the
following [5]: The Hochschild cohomology group of degree k is canonically isomorphic with the
space of de Rham currents (i.e. distributional forms) of dimension k on .# and the cyclic
cohomology group of degree k is cannonically isomorphic to the direct sum Ker0®H,_,®
H,_,@® -, where Kerd is the space of closed k-dimensional currents and where H, denotes the
usual de Rham homology of .#
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then o(X, Y)=_[X%Yd0. Indeed, if we set X = X1 + X,0 and Y=Y,1 + Y,0,
then (X, Y)=X,7Y,.
e Cyclic cocycles of degree 0 and 1 on G,

G, is generated by 1,0! and 6% with (§')*=0, (0*)?>=0 and 6'6> = —6%6".
According to the previous discussion, cyclic cocycles of degree zero are generated
by the four elements 9, 9g:, g2, Ig192. These one-forms are dual to the basis
{1,0%,0%,0'6}. Notice that 9,, 3g:4. are even cocycles whereas 341, 4. are odd.

Cyclic cocycles of degree one are still determined by the two equations given
previously; however, the second equation gives in fact 4°> =64 equations since
X,Y,Z have to be chosen in the set {1,0%,6% 6'0%}. This time, one finds five
independent cyclic cocycles (which can be taken as generators). The generators
will be denoted by ¢,, @,, 93, ¢4, 95 and are explicitly given as follows (the first
three are even and the last two are odd): @,(6%,0") = 1, ¢,(0%,0%) =1, ,(6*,0%) =
(P3(02, 01) = la 9"4(01, 0102) = - (p4(61023 01) = 1’ (PS(BZ’ 9102) = - (Ps(glez’ 02) =1
In the above, we only gave those non-trivial relations which are not a direct
consequence of linearity or of elementary rules of calculation in G,, like for instance
04(0%,010%)= — ,(0',0%0"). All other p,(X, Y) are zero (for instance ¢,(6*, 6%)=0).

It is possible to write the previous cocycles of degree one by using a Berezin
integral. Let X, YeG,, and write X = X, + X0 + X,6% + X,,60'6* (same thing
for Y). One gets (using the obvious notation d; = 8/06'):

0:1(X,Y)=X, Y, = [ X[6%0,]Yd6"d6?,

02X, Y)=X,Y, = — [ X[6',]Yd6" d6?,

03X, Y)=X,Y, + X, Y, = [ X[— 03, + 626,]Yd0" d6?,

04X, Y)= X, Y1, — X, ¥, = [ X[ — 8, +2620,0,1Yd6" d6?,
0s(X,Y)=X,Y,, — X, Y, = [X[— 8, — 2020,0,]Y d6" d6>. (18)

The reader can easily check that the previous one-cocycles are independent and
non-trivial, ie. they are not cyclic coboundaries, by computing explicitly the
coboundaries b 9, with Ie{1,0,6%,0"0%}, i.e. writing [b$,](X, Y) = $,(X Y). Notice
that the last two cocycles involve differential operators of degree two in the
Grassmann algebra; however, by introducing the grading of X and Y, we will see
that they can be written in terms of differential operators of degree one only. The
previous cocycles can be written as follows:

@(X,Y)=(—1)"*"[[6%0,Y]X d6' d6?,

@2(X,Y)= —(— 1) [[6'3, Y] X d6" d6?,
@3(X,Y)=(—1)"*"[[(— 60, + 6%3,) Y]X d6' d6>,

@a(X,Y)= — (= 1) [[0,Y]X df"d0?,

@s(X,Y)= — (= 1) [[8,Y]X d6" d6>. (19)

One can remark that the Z,-grading of ¢ is given by the Z,-grading of the
differential operator which defines it.

e Cyclic cocycles of degree 0 and 1 on G,
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For G,, we can choose the basis {1, 0,62, 6% 6'6% 6%6% 6°0*,0*0%0°}. Again,
cyclic cocycles of degree zero are generated by the dual basis (this space has now
dimension 23 = 8). These elements will be denoted as follows:

191, 1991, "902’ '993, 199192, '99293, \99391, 9919203.

Cyclic cocycles of degree one have to satisfy the cyclicity condition (82 = 64
equations) and the Hochschild condition (8% = 512 equations). One finds that this
vector space has dimension 17 and is generated by the following cocycles (the first
nine — that we will denote by ¢; — are even and the last eight — that we will denote
by y; — are odd). They are explicitly given as follows (i.. they are non-vanishing
only on the following arguments):

01(0%,6") = 0,(6%,0) = 9,(6°,6%) = 1,

94(01,6%) = 04(6,0") = 95(0%,6°) = (6%, 6°) = (6%, 0") = 96", 6°) = 1,
©,(0%,0'6%60%) = ¢,(6'6%0%,6") = ¢,(0162,0%°0") = — ,(036',60'0%) =1,
05(0%,010%0%) = 0g(00203,6%) = — 0g(6162 0%60%) = 04(0263,0'02) =1,
0o(6°,01620%) = (01 626°,0%) = — 9(6°0",626) = ,(626°,6°0") = 1,

A 0192) == ‘pl(elez, o) =1,

Va(0%,0°0") = — y,(6°6,6") = 1,

V(0% 020%) = — (626, 6%) = 1,

2 plp2y _ 192 g2y _

Ya(0%,070%) = — ¢, (6°6%,0%) =1,

¥s(0°,0°0") = —y5(6°0',6°) =1,

¥6(6°,070%) = — y6(6%6°,6°) = 1. (20)
The last two, ¥, and Y4 have to be independent and should vanish as follows

—Y(0%,0263) + (062, 0%) + ¥ (6%60*,6%) =0.
As in the previous case, it is easy to rewrite the cocycles of degree one by using
a Berezin integral. Let X,YeG; and write the following decomposition on
the Grassmann variables X = X+ X,0' + X,6% + X0 + X,,0'6%> + X,,60%0° +
X;,0%0' + X,,3,0'626° (and the same thing for Y). One obtains therefore
0 (X, Y)=X,Y, = —(— )™ [[626°0, Y]X d6" d6* d6?,
?2(X,Y)=X,Y, = —(— )™ [[6%6'0,Y]X d6" d6?d0?,
03X, Y) =X, Y, = —(— 1) [[6'6%0,Y] X d0'd6d6>,
P X, )=X,Y,+ X, Y, = —(— ) [[(6°6'0, — 6°6%0,) Y]X d6" d6*d6>,
Ps(X,Y)=X,Ys+ X3 Y, = —(— )™ [[(0'0%0, — 6'6°0,) Y1 X d6' d6*d6?>,
06X, Y)=X,Y, + X, Y, = —(— ) [[(626°0, — 620'0,) Y]X d0' d62db>,
01X, Y) =X Yip3+ X123 Y1 + X1, Y3 — X3, Yy, = —(— 1)™"[[0, Y1X d6" d6*d6>,
@s(X,Y) =X, Y123+ X123 Y2+ X553 Y1, — X3 Va3 = —(— )™ [[0, Y] X dO" d6*d6°,
Po(X, Y) = X3Y 23+ X123 Y3+ X3 Y31 — X3, Yoy = —(— D™ [[0; Y] X d6" d6?d6°,
Yi(X,Y)=X,Y,,— X,,Y, = —(—1)*°"[[0%0, Y] X d0'd6?d6>,
Vo(X,Y) =X, Y3, — X5, Y, = — (= )™ [[620, Y] X dO' d6*d6>,
Ys(X,Y)=X,Y,3— X,5Y, = —(— 1) [[0'0,Y]X d0'd6 d6>,
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VaX, Y) =X, Y, — X1, Yo = — (= )™ [[6%0, Y] X d6" 46> d6>,
Us(X,Y)=X,;Y3, — X5, Yy = —(— )™ [[6%0, Y] X d6" d6d6°,
Ye(X,Y)=X;Y,3— X3 Y= —(— 1) [[0'0,Y]X d6" d6>d6>. (1)

For the last two cocycles, one can write them as two independent combinations of
the form

— (=1 ([(n,0'0, + 1,020, +156°3;) Y]1X d6" d6*do?

with n, + 1, + 13 = 0. This example shows that, as soon as N > 2, it is not possible
to canonically associated a basis of one-cocycles to a given basis in Gy.

2.1.6 Cyclic Cocycles on Gy. General Results

o Cyclic cocycles of degree 0 on Gy

Cyclic cocycles of degree 0 are one-forms on G that have to satisfy the
conditions b3=0 and 13= 9. At this order the second condition gives nothing
and the first is trivially satisfied because b3(X, Y)= XY —(— 1)’*?"YX =0, since
the algebra is graded commutative. One can therefore always identify the space
of cyclic cocycles of degree zero (and the group of cyclic cohomology of degree 0)
with the dual of Gy. It is therefore of dimension 2V. A general cyclic cocyle of
degree zero takes the form 2,(X) = [d¥0P(6)X, P being a polynomial in 6.

e Cyclic cocyles of degree 1 on Gy

Although the cyclic cohomology of Grassmann algebras has not been deter-
mined explicitly, the dimensionality of the groups of cyclic cohomology H%(Gy)
has been calculated [7] (thanks to a Kiinneth-like formula that we will discuss
later). The results are the following. For p = 0, the dimension is 2" — this, we already
know since the space of zero cocyles coincides with the vector space of one forms
on Gy. For any p, the “Z,-graded dimension” d is the coefficient of t? in
the expansion of P(t)=[2""'(1 +¢&)— (1 — )"1/L(1 + )(1 — H)¥] where ¢ is a Z,
generator®. Actually, one can write d as d =d, + d e, where d, (respectively d,) is
the number of even (respectively odd) cyclic cocycles of degree p. The total number
of cyclic cocycles of degree p is therefore d,=d,+d,. For N=2 and p=1 the
reader can check that d =3 + 2¢ (i.e. three even generators and two odd for the
one-cocycles), in accordance with the previous explicit results. An analogous
situation holds for N = 3, where one gets d =9 + 8¢ one-cocycles. The number of
independent one-cocycles grows rapidly with N; it is easy to show that one gets
(N =1)2""! + 1 even one-cocycles and (N — 1)2¥ ! odd one-cocycles. Altogether,
d=(N—1)2"+1,(d=25+24e~49 for N =4).

We have seen that for N = 1,2 and 3, the cyclic cocycles of degree one may be
expressed as Berezin integrals w,(X,Y)=(—1)*"[[2Y]Xd"0, where 2 is a
differential operator of degree one in the Grassmann algebra. This result can be
extended for general N as follows. We first take a bilinear form w,, from Gy x Gy

8 Actually, for p even one has to add 1 to d (see Sect. 2.1.7)
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in R, w,(X, Y)=(—1)"**" [[2Y]X d"6. We may assume that 2 = Z P,(0)d;, where

P(0) is a polynomial in the Grassmann variables 0. Integratmg by parts
(taking care of graded commutation XY =(— 1)™*?"YX) leads to the following
expression:

WX, Y)=(—1)'""*" 0, (X, Y) - [ X(div* 2) Y "0,

where the graded divergence is defined by®
X N N
divi 9 = Z 6,Pf" = Z a,'P,'+ - a,'Pi_- (22)
i=1 i=1

Requiring the graded antisymmetry (Eq. (9)) implies:
divi 9 =0. (23)

The cocycle condition is then trivially satisfied thanks to the divergence equation:
0o(XY,Z)+ wo(YZ, X) + wy(ZX,Y) = Z [0.(P¥XYZ)d"6 =0.

Therefore, w,(X, Y) is a cyclic cocycle on Gy provided the differential operator &
is graded divergenceless: div? 2 = 0.

o Non-triviality and linear independence of the cyclic cocycles on Gy

One has to verify that w,, is not a trivial one-cocycle, i.e. a coboundary b£2p,
where 2, is a zero-cocycle:

Qp(X) = [dVOP(6)X

P being a polynomial in . The coboundaries are of the form [b2,](X,Y)=
Qp([X, Y]). As we have a graded commutative algebra, one has [X,Y]=0VX,Y.
Therefore the coboundaries vanish identically. Since 2 # 0, we conclude that w,,
is not trivial.

On the other hand, the differential operator 2 depends on N2V coefficients.
The cocycle condition div? 9 =0, projected on each product of 0 variables leads
to 2¥ — 1 non-coupled (and thus independent) equations of constraints (there are
exactly 2V — 1 equations since the 6 ---6" element cannot appear in div? 2, due
to the action of the derivatives 9;). One obtains in this way N2¥ — (2N — 1) =
(N —1)2¥ + 1 independent divergenceless differential operators 2.

Since each of these operators leads to a non-trivial one-cocycle, and that we
have (N — 1)2" + 1 independent divergenceless differential operators 2, one obtains
(N —1)2¥ + 1 independent non-trivial cyclic one-cocycle on Gy. As we know this
is exactly the number of independent non-trivial cyclic one-cocycle on Gy, we
deduce that we have all the non-trivial one-cocycles. Thus, every non-trivial cyclic

° For any super-function P given by P* 4+ P~, where 9P* =0 and 0P~ = 1, one defines the star
super-function by P* = P* — P~
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one-cocycle on Gy has the form
N
0y (X,Y)=Y (- D) [[P0,Y1Xd 0 =(—1)"*"[[2Y]X d"6 (24)
i=1

with div! 2 =0.

Remark that if 2 and 2’ are differential operators defining cyclic cocycles,
[2,2'] is such that div? [2, '] = D(div? D') — (— 1)’?°? @' (div? D) =0, s0 [2,D']
also defines a cyclic cocycle. The set of derivations 2 such that div? 9 =0 is a Lie
subalgebra of the algebra of differential operators of degree one in the Grassmann
variables.

In general, the cocycle w, may have non-zero values on any couples (X, Y)
whatever the Z,-grading of X and Y. It is interesting to know under which condition
a cocycle w,, vanishes. The cases where w, =0 for 0X # dY is of particular interest.
Actually, since the integration over the 0’s selects only the 6 ---60¥ component in
(2Y)X, one obtains the following result (which is easy to check by choosing specific
values for X and Y): the cocycle w,, vanishes on couples (X, Y) such that 0X #3Y
(respectively 0X = 0Y) if and only if the differential operator 2 has the same
grading 02 as the parity of N (respectively of N + 1).

2.1.7 The Cyclic Cohomology of the Super-Circle

We now want to determine the cyclic cocycles of degree one on the super-circle,
ie. on the algebra Ay = C(S')® Gy. Rather than trying to solve directly the
equations of cyclicity and of vanishing of b® in this case, it is easier to use the
knowledge that we have already on the pieces Gy and C(S?) along with a theorem
which allows us to compute the cyclic cohomology of the algebra 4 ® B as soon
as we know those of 4 and of B. Such a theorem is proven in [10,11].

According to [12], the Hochschild cohomology of a product is given by the
following relation: H*(A ® B) = H*(A)® H*(B).!° The formula giving the cyclic
cohomology groups H%(A ® B) is slightly more involved [7]. The first result that
we need (and which is rather easy to prove, cf. [5,8]) is that the cyclic cohomology
of the algebra of complex numbers H3(C) is 0 if p is odd and equal to C if p is
even. One can indeed prove that it is generated in degree two by the following
form a(1,1, 1) = 2in. Moreover, it is possible to show [5] that for any algebra A4,
H*(A) is a module over H¥*(C); indeed there is an operation (called “the operation
S of Connes”) sending H%(A4) to H5*?(A), and this action is fully characterized by
the action of the generator o. In order to prove the relevant formula, one has to
assume that the algebra B is such that H*(B) can be written as

H}(B)=H3(C)@U*®V*, (25)
where U* = (P U?” is a finite dimensional vector space and where V* is a trivial

20
module for tl’;e action of the operation S, i.e. S =0 on V*. The only thing that we
need here is that this property is indeed satisfied for the algebra B = G,. Indeed,
one can show that H¥(Gy) = H¥(C)® W*. The (graded) Poincaré polynomial of

10 The notation H* denotes the collection of H”



14 R. Coquereaux, L. Frappat, E. Ragoucy and P. Sorba

the vector space W* is actually the quantity P(¢) that we introduced at the end of
Sect. 2.1.6. For instance, in the case of G,, we had W°=C and W! = C so that
H,=C®C and H;=C. In the case of G,, we had Wy=C®C@®C and
W, =(C®CPC)D(CPC). More generally, Gy has the required property, with
U°=C,U'=0fori>0and V*= W* For such an algebra B one proves that
WA®B)= +(—B [H(AQU@ H(A)® VI]. (26)
pTq=n
Notice that the second term involves Hochschild cohomology. In the present case,
there are two substantial simplifications. The first comes from the fact that for a
Grassmann algebra U? =0 as soon as p = 1. Let us assume that A = C *(.#), where
A is some finite dimensional smooth manifold. For one-cocyles, the formula reads

HY(Co(M)®Gy) = Af(M)@W*' + H{(C(M)RC + A(M@W®, (27)

where A, denotes the space of all currents of degree zero on . (distributions), A,
denotes the space of currents of degree one on .4 and H }(C*(#)) coincides with
the space of closed currents of degree one on .#.'! The next simplification comes
from taking .# = S*; then the current of degree one correspond to the distributions
on the circle and the closed currents to the constants.

From our separate study of the cyclic cohomology of the circle and of
Grassmann algebras, we conclude that, in the case of the super-circle, H}(A4y) is
spanned by the following three kinds of cocycles:

d = (N — 1)2¥ + 1 cocycles of the kind a(f) ® ¢;, where the «;’s denote arbitrary
functions on the circle (actually distributions) and the ¢;’s are cyclic cocycles of
degree one on Gy — which have the same Z,-grading as the cocycles of Gy. The
first class of cocycles corresponds to the first term of the general “Kiinneth-like”
formula (27).

One cocycle of the kind a;0,® 3,, where a, is a arbitrary constant, w, is the
usual cyclic cocycle on the circle and 9, is the cocycle of degree zero on Gy, defined
as the one form vanishing on all the generators of G but the unit. Notice that
this cocycle is even. This second class of cocycles (containing only one element)
corresponds to the second term of the general formula.!?

Finally, we obtain 2¥ — 1 cocycles of the kind a,(t)w.® 9,, where a,(t) are
arbitrary distributions, w, is the usual cocycle on C(S*) and 9, are cyclic cocycles
of degree zero on Gy — the special cocycle k =1 has already been singled out. It
is clear that 2V~ 'among those cocycles are odd and the others (2¥ ~! — 1) are even.
This last class of cocycles corresponds to the last term of the general formula.

Altogether, we find that the cyclic cocycles of degree one on the super-circle
Ay span a vector space of dimension N2¥ + 1. They depend upon N2V arbitrary
distributions and one constant.

Now, one wishes to associate to each cocycle a first order differential operator

11 Here we make use of the result given in the footnote 7 of Sect. 2.1.4

12 The particular cocycle of degree zero on Gy, called 9, in Sect. 2.1.5 is actually rather special.
Indeed, by repeated action of the operator S, it leads to a hierarchy of non-trivial cyclic cocycles
of degree 2n. Repeated action of S (stabilisation) on the other zero cocycles lead to cocycles that
are cohomologically trivial. This is discussed in [13] along with several elementary properties
of Grassmann algebras
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A PS N ~
D =Qo(t,0%,---,0M)0,+ Y, Qft,6%,---,0")0; (let us recall that the notation 9,
i=1

means 0, = td,) in such a way the cocycle reads!3
w;(X,Y)=(— 1) | [QY]x?dNe. (28)
AN

That seems to be a natural attempt in regard to the case C*(S))® ¥ (i.e.
Kac—Moody algebras) and Gy, considered before. The graded antisymmetry of the
cocycle (28) again implies

. . N
div'9=0,0o+ Y. 8,0¥=0 (29)
i=1

and insures the cocycle condition to be satisfied. The non triviality of such a cocycle
comes from the vanishing of the one-cyclic coboundaries on a graded commutative
algebra (see Sect. 2.1.6).

In order to prove that each cocycle can be represented by (28) with condition
(29), we just have to check that the linear vector space generated by the operators
2 has the same dimension as H1(C*(S')® Gy). The most general differential
operator is written with the help of (N + 1)2" distributions on S!. The divergenceless
equation leads to 2" constraint equations on these distributions. From the vanishing
of the 6-highest degree term, we deduce that the coefficient of 6!---6% in
Qo(t,6%,---,0") is a constant. The remaining 2" — 1 (non-coupled) equations involve
the (N + 1)2¥ — 1 other distributions, and we are left with N2V independent
distributions, in accordance with the Kiinneth formula (27).

In the following, we will concentrate our attention to regular distributions
associated to functions on S*.

2.2 Explicit Results

For the convenience of the reader, and because we will need them later, we gather
the results for N=1,2 and 3.

e The case N=1

According to the results of section 2.1.7, the most general one-cocycles are
linear combinations of ;0. ® 9,,a,0.® 95 and a ® @, where a, is a constant, g,
and o are functions of t and w (X, Y) is given by (6). We find it more convenient
to express the results in terms of Berezin integrals and use the characterization of
cyclic cocycles by the graded divergenceless differential operators described
previously (we shall continue to adopt this attitude in the following). An arbitrary
differential operator of order one on 4; can be written as:

D =ay0, + a,00, + 0y + 600,. (30)

Operators characterizing cyclic cocycles have to satisfy a divergence equation (29)

dt dt
'3 We use the symbol | Td()‘ --do" for | P Berezin integral over 6 ...
AN 1t]=1
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which implies that d,a, = ¢ and d,a, = 0. This is of course in accordance with the
results of Sect. 2.1.7. The N = 1 cocycle takes the form

1 ~ -~ ~
Dy _ (X, Y)=(—1)‘”‘"Yﬁ | [(aoa,+a106,+889+(6,a0)069)Y]X?d9 (31)
Ay

which depends on one constant a, and two functions a, and ¢ of ¢.
o The case N=2
The most general differential operator of order one of 4, is:
9D = ag0, + a,,0" 020, + Y (a;0'0, + €0, + 1,0'0%0) + Y. 0,;60'0;. (32)
7 ij

The divergence equation implies
é\xao =011+ 03, 5:‘11 =4z, 5:‘12 = — Ay, 5:‘112 =0. (33)
Therefore the N =2 one-cocycle has the following form:
1 o ~ A ~
Dy_,(X,Y)=(— l)amﬁ [(aoa, +a,,0'6%0, + 0,a,0'0%0, — 0,a,0'0%8,
A2
A . dt
+ Y (a;6'0,+ €0) + Y, aijo'a,.> Y]XTdGl do?, (34)
i ij
where a,, is a constant and the other coefficients are functions of ¢.
e The case N=3

The most general differential operator of order one of A4; is:
D = a0, + 0,230 020°0, + Y. (a,6'0, + £:0, + 4,6 6°6°0,)

+Y 0,00+ Y ( b,0'00,+ Y wmkofofam). (35)
ij m

cyclic(i,j,k)

The notation cyclic(i,j, k) means that we sum over cyclic permutations of 1,2, 3.
The divergenceless condition leads to the following constraints on the co-
efficients:

-~ 3 -~ ~ -~
0,a0 = Zl Omm> Oibi=4i, 0,a153=0, Wy — Wy = 0y, (36)

where i,j, k is a cyclic permutation of (1,2, 3).
One obtains therefore for the N =3 one-cocycle:

Dy—3(X, Y)=(—1)"" % ] [(“ogt +a,230"020°6,+ ) (a,0'0, + £,0,+ 0,b,0"6%6°0))
Az i

+Y0,;00,+ Y (5867, + 2w,,,,,ef(afa,,,))Y]x‘-itfdoldoi’-doi
ij cyclic(i, j,k) m
37

where a,,; is a constant and the other coefficients are functions of ¢.
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3. Algebras of Super-Derivations (The General Framework)

3.1. General Discussion

3.1.1. Derivations and Super-Derivations. Let Der (4,) be the algebra of vector fields
on the circle, it is also the algebra of derivations of A, = C(S*). In the case N #0,
we will call Der(A4y) the algebra of graded derivations of Ay = C(S')® Gy. It is
clear that Der(A4y) is generated by derivations of the type & = V'0, + V*0,, where
0,=0/0t and 0, =0/00% This notation can be condensed as ¥ = V'd,, where
1€{0,1,2,..., N} and where we set V' = V°, 9, = 0,,. The quantities V' are, of course,
functions on the super-circle, V! = V!(t,0) = Vi(r)6’, where Je{1,...,2"} and 67
is a monomial element of Gy. Therefore V(¢) is a rectangular matrix of dimension
2¥(N + 1) whose elements are functions of teS*. Notice that for an arbitrary algebra
A, the algebra of its derivations Der 4 is usually not a module over A4 (i.e. if ae4
and 6eDer(A4), then a xJ is usually not in Der(A4)). However, when A is
commutative of graded-commutative (as here), it is so. Indeed, Der (4) is a module
of dimension N + 1 over Ay (and of dimension 2¥(N + 1) over C(S)).

We will now build central extensions of super-loop algebras and examine what
are the derivations compatible with a given extension.

3.1.2. The Compatibility Equation. If w is a Lie algebra cocycle on the super-loop
algebra Ky, one can build a central extension (cf. Eq. (2)) Ky,=Ky®R xe,
where e is a new (central) generator and with a new Lie product, [X, Y], ., =
[X, Y] + (X, Y) x e. It is clear that not any (graded) derivation of K, will be
a graded derivation of K .. Such a graded derivation .# should satisfy the property

L(X, YN =[£X, Y]+ (- )™ [X, 2Y], (38)

where 0. is zero if it is a true derivation and one if it is an antiderivation. From
the above definition of [, ],,.., it is clear that .# will be a derivation if

o(ZX,Y)+ (= 1)*u(X,£Y)=0 forany X,YeK,. (39)

As described in Sect. 2, Ky is obtained from Ay by tensorization by matrices; in
the same way, the Lie algebra cocycle w can be gotten from a cyclic cocycle @ on the
super-circle Ay. In order to remove unnecessary complications, we can work with
Ay rather than Ky: determining the Lie algebra of super-derivations of Ky,
compatible with a given Lie algebra cocycle w amounts to determining the
super-derivations £ of Ay compatible with a cyclic cocycle @ of Ay, i.e. it amounts
to selecting a subalgebra Dery(Ay) of Der(A4y) characterized by the .# such that

O(LX,Y)+(—1)*?D(X,#Y)=0 forany X,YeA,. (40)

. 1 - dt ~
If we write @(X,Y) as (—l)axayﬁj(QY)X Td"ﬁ, where & is a differential
A

operator of first order (we saw that it is always possible), the previous equation
simply reads (using @(X, LY)=(—)"**®“+@(#Y, X) and integrating by part)

[Z, 2]+ (div? £)2 =0, 41)

where 9 and 9 are related by 9 = t@ and the definition of div? given in (24) is
now extended to the N + 1 variables ¢,6,...,0" of Ay.
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Notice that if @ is associated to a distribution, this equation has to be
understood in the sense of the distribution, i.e. applied to any test functions X and Y:

1 . dt
im j' ([Z,2] + (div? =Z’)@)Y]X—t—dNG =0 forany X,YeA,.
AN
A derivation ¥ which satisfies such an equation will be called a derivation
compatible with the cyclic cocycle @ (given by the differential operator 2) or
2-compatible.
This formula suggests a few comments. First, using the relation

divi[ &, £'] = L(div* L)) — (— 1) 2'(divs £)

the compatibility equation for some ¥ and some ¥’ implies the compatibility
equation for [Z, Z']:

Qv[Z, L N2 +[[£,Z],2]=0.

In other words, the subset of 2-compatible super-derivations £ is a graded Lie
subalgebra of the graded Lie algebra of super-derivations. Secondly, since
div! 9 =0, the differential operator 2 defining the cocycle w,, is itself a 2-
compatible super-derivation if 2 is even (whilst if 2 is odd [2, 2] represents an
anticommutator which does not vanish necessarily). Finally, we notice that the
compatibility equation represents actually two sets of equations since we demand
the super-derivation V to be of definite Z,-grading.

Thus, for a given cocycle @ — a given differential operator 2 —, the previous
compatibility equation selects a sub-algebra Derg(A4y) of the algebra of all
derivations. This sub-algebra is the algebra of derivations of the extension Ay, 4.
Notice that these algebras Dery(Ay) are also graded Lie algebras and could
themselves possess non-trivial extensions: we do not study here these possible
extensions of these algebras of derivations.

3.1.3. A Problem of Stratification. An arbitrary cocycle of Ay is a priori a linear
combination of (N — 1)2¥ + 1 + 2V generators, with coefficients which are either
constants or functions on the circle (cf. the previous section). Therefore, the solution
of the compatibility equations (for given N) will a priori depend upon the constants
(or the functions) entering the expression of the cocycle. It is already clear that the
structure of the algebra Der,(4,) will depend on the vanishing or not of these
coefficients. We shall say that two cocycles @, and @, are in the same stratum if
they lead to the same (or isomorphic) subalgebras Derg, (4y). The problem consists
of determining all the strata in the vector space of cocycles along with the partial
ordered set of subalgebras corresponding to these different strata. We will solve
the case N =1 and give partial results on N =2, 3.

3.2. Study of the Case N=1,N=2, N=3

3.2.1. The Case with One Grassmann Generator. As usual, for any function f(z)
defined on the circle S*, one introduces its Fourier modes by the expression
f@® =Y, fut~™ The super-algebra K, built from a simple Lie algebra &~ with

meZ
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generators T,, where a=1,...,dimX# will be spanned by T7(t,0)= T,t™ and
Om(t,0) = T,t™0, where meZ, satisfying the commutation relations:
(T2 T]=faTe™,
(T3, 05]=fo, @7,
{07,031 =0. (42)

The super-Kac—Moody algebra obtained from the N = 1 cocycle given by (31) has
the following non-trivial commutation relations:

[TZ, 3] =f¢csz::n+"+alm5m+n,06ab’
[T:zn, @:] = fzb@:‘"+” + a0m+n6ab’ (43)
{@:1"’ g} = _8m+n5ab’

where we used the mode expansion of &(t) and ay(t).
The most general even super-derivation is

geven = A(t)at + D(t)gao (44)
and the most general odd super-derivation is
&L oga = C(1)00, + B(t)0,. 45)

The compatibility equations have the form
(0,.a0)A —aoD =0,
d(eA)—2eD =0,
(0.a0)B — ao(0,B) =0, 46)
eC+a,B=0,

which lead to different super-derivation algebras according to the vanishing or not
of the one-cocycle coefficients. One obtains explicitly: *4

e Der(A4,,a,) s
a
The solutions of the compatibility equations are D = == A and B = ca,, where ¢

ao
is a complex constant, and therefore the super-derivation algebra is given by

0
&= A( 8, + %0&0) + C08, + cagd, @7
0
where ¢ is a complex constant. o.a
Taking for the super-derivations a basis L,= —t"*19, —%t"* 100,, C,=
1 (1]

—1t"*100, and B = a,0, (assuming of course that a, does not vanish for any ¢, |t| = 1),
ao

14 The notation Der(4,,¢;,¢5,--., f1, f2,---), Where c; are constants and f; functions of ¢, means
that we choose a cocycle @ of the kind (31) with all coefficients set to zero except those explicitly
written. Note that the functions f; are not allowed to vanish on the circle $*. The corresponding
super-Kac—Moody algebra is given by Eq. (43), the non-vanishing central extension terms being
those where c; and f; appear
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we find the following commutation relations:

[L",L"'] =(n_m)L"+"' {Cmcm} =0 [LnaB]=O
(L,,C,l=(n—m)C,sn {CnB}=—

e Der(A;,a,)
The solution is now B =0 and one has
¥ = A0, + D0, + CO0,. 49)

Taking for the super-derivations a basis L, = —t"*1d,, C, = t"* 100, and D, = t"00,,
we find the following commutation relations:

[Lm Lm] = (n - m)Ln+m’ [Lm Cm] = (n - m)cn+m’

(48)

[LmDm]z —mDn+m’ [DnaDm]___O’
[Dm Cm] = Cn+m’ {Cm Cm} = 0 (50)
e Der(A4,,¢)

1
The solutions are given by D = E;@,(eA) and C =0. One obtains

¥ = A0, + ,(sA)069+ Bd,. (51)

The commutation relations between the generators L(A) = A0, + 6,(3A)009 and
G(B) = ¢B0, are

[L(A1)a L(Az)] = L(A161A2 - AZatAl)
[L(4,), G(B,)] = G(Ala(Bl) —%6(8/11)),

{G(B,),G(B,)} =0. (52
n+1

In the case where ¢ is a constant function, taking L,= —t"*10, — t"00, and

G, =1t"0,, Eq. (52) leads to the relations:

1
[Lm Lm] = (n - m)Ln+ma [Lm Gm] = <n —; - m)Gn+m’ {Gm Gm} = 0'

o Der(4,,ay,a,)
s . 0 .
One has for the compatibility equations B=0 and D = %0 4. One obtains the

o
super-derivation algebra

3’=A<6 +0 ea,,)+cea (53)

The commutation relations are those of the super-derivation algebra Der (A4, a,)
restricted to the generators L, and C,.

o Der(A,,a,,¢)
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The solutions are D———a,(sA) and B= —2-C. Thus the super-derivation
algebra is 4

1 €
However, a redefinition of the § parameter leads to the following expression:
L =A0,+ 21—85,(3A)069 + C(00, — €0,). (54)
This super-derivation algebra is actually the N =1 super-Virasoro conformal

algebra (also called Neveu- Schwarz—Ramond algebra) [1]. The commutation

relations between the generators L(A) = A0, + (6 (eA4))00, and G(C) = C(00, — 0,)
are the following:

[L(A,), (A;)] = L(A,0,A, — A,0,A,),
[L(A,),G(C,)] = G<A10,C1 —C0A, + %6(&%1)),
{G(C),G(Cr)} = L(—2C,C)). (55)
Taking &(f) = t>*~! with x =0 (Ramond sector) or 1/2 (Neveu—Schwarz sector),
L,=—t""1'0,— gt"é?a, and G, =t""(60, — t**~19,), Eq. (55) leads to the relations:
(L, Ly = (m—n)Ly 4,

[Lm, Gr] = (m _;2K - r)Gm+r’ (56)

{Gn Gs} = 2Lr+s
with m,neZ and, r,seZ + k.
o Der(4,,ay,¢)

3 0
The solutions are given by 4 =, Z—O, B=c,a,, C=0and D=c, aos—'ao. (The

function &(t) is assumed not to vanish on the circle.) The super-derivation algebra
is generated by

aoa,ao

£ = c1 6 + ¢,a00p + ¢4 00,, (57

where ¢, c, are complex constants.

e Der(A,,ay,a4,¢)
2

. . a a ayo,a
The solutions are given by 4 =c, —, B=c,a,, C= —Band D =c¢, ~2.
3 €

(The function &(t) is assumed not to vanish the circle.) The super-derivation algebra
is generated by

aoa,ao

F=c,%0 +cafa,— %60 00 58
=6, G 200‘;:4‘ 9 (58)

where c,,c, are complex constants.
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It might be worth to study in some detail among super-derivation algebras
those which contain the Virasoro algebra. We note in particular that the algebras
Der(A;,a,) and Der(A,,a,) admit an anticommuting conformal spin 2 generator
C,.- The determination of the unitary representations of some of these algebras
may be also interesting: since the upper limit for the discrete series of the unitary
minimal models of the Virasoro algebra ¢ = 1 is pushed up in the case of the RNS
algebra to the value ¢ =3/2, one can expect a similar situation with these new
algebras. In this last case, the possibility to associate to such an algebra a
super-Ka¢—-Moody one through a semi-direct sum and would then be particularly
useful (for example for a coset construction).

3.2.2. The Case with Two Grassmann Generators. The most general even super-
derivation is

L even = A0, + B0'0%0,+ Y W,;6'0; 59
i
and the most general odd super-derivation is
godd = ZLieia’ + Ciai + Dielgzai. (60)

The compatibility equations N = 2 read (the indices i,j run from 1 to 2):
(0ag)A — ag(Wy1 + W3,) =0,
&B—(0a,)A—a W, +a,W,, =0,
&,B+(0a))A—a,W,, +a,W,,=0,

2
5:(0'ijA) - aoatVVij + Z (ij Wim— Oim Wi — 0; Wom) =0,
m=1
2
at(giA) - Z (81' Wmm +&p Wmi) = 05
m=1

2
Y. (emLpn+a,C,) =0,
m=1
a;,Ci+agD;—0yLy +0,;L, =0,
2
aoatci - Z O'micm = 0,
m=1

o[¢,Ly)+a,0,C, + C,0,a, —,D, —e,D, =0,
0.(e,L,) + a,0,C, — C,0,a, + 2¢,D, =0,
0(e,Ly) +a,0,C, — C,0,a, —2¢,D, =0,
0.(e;,Ly) + a,0,C, + C,0,a, + €,D, + ¢, D, =0. (61)

Since the cocycle N =2 contains 9 independent coefficients, the vanishing of some
of these coefficients leads to 2° =512 different algebras, many of them being
isomorphic. This gives an estimate of the large number of inequivalent strata.
Although we have not performed a detailed analysis of all these cases, it is not too
difficult to convince oneself that none of these algebras of super-derivations contains
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the N = 2 superconformal algebra that will be defined in (80). Indeed, when inserting
the explicit expression for the generators of the N =2 superconformal algebra in
terms of super-derivations (cf. Eq. (80)) into the compatibility equations (61), one
finds that the only solution is given by the zero cocycle: 2 =0.

3.2.3. The Case with Three Grassmann Generators. The most general even super-
derivation is

L even = A0, +ZK,-9192033,~ +ZH,~}~9i5j + Y Do, (62)
i ij

cyclic(i, j,k)

and the most general odd super-derivation is

Loss=BO'00°0,+ Y (CHO, + Ed)+ Y Y W00, (63)

cyclic(i,j,k) m

where z denotes a sum over the cyclic permutations of (1,2, 3).
cyclic(i,j,k)
The compatibility equations N =3 read (the indices i,j runs from 1 to 3 in
Eqgs. (64.3) to (64.7), and the indices i,j, k are circular permutations of (1,2,3) in

Egs. (64.8) to (64.12), whilst / =1,2,3 in the three last equations:
(0ag)A — aog(Hyy + Hyp + H33) =0,

3
Z (amEm + Emcm) =0,
m=1

3 3
(abi)A'_aOKi_ Z bmHmi+ Z GmiDm=0,
m=1

3
at(aiA) - Z (siHmm + 8mI-Imi) = Oa
1

m=

3
Z (amWim + 0C,) + ay53E; + 6B =0,
m=1
3
aoatEi - Z amiEm =0,
m=1
3
at(aijA) - aoatHij + Z (Uijim — OimHpj— ainmm) =0,
m=1
(5ak)A + SiDj - EjD,- - ak(Hii + H“) + ain,' + aijj = 0,
3
0wy A) + 0,(e,D;) — g K; — &K, — ajatHkl + akatHjl - Z (wijmi + wimHmj) =0,
m=1
3
(0ao)Cy + ao(W;;— W;) +b,E;, — b,E; — Y, 6imCn=0,
m=1
(0,6,C;) + a;,0E; + e Wy — e; Wy — g Wy; + e W) + 0 E, — oy E; = 0,
3
0404C;—03C) — ag0,W;; — b,0,E; + E;dby+ Y (0,Wip + 0, Wy) =0. (64)
m=1

These equations lead to 2'7 = 131072 different algebras, many of them being
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isomorphic. We will see in the next section that none of them contains the N =3
Ademollo et al. algebra, while only one contains the N = 2 Ademollo et al. algebra.

4. Superconformal Algebras and Algebras of Super-Derivations.
Discussion and open Problems

In string theory, the supersymmetric extension (N = 1) of the Virasoro algebra is
known as the Ramond—Neveu—-Schwarz (or RNS) algebra. A natural generalization
to extended supersymmetries (N > 1) has been proposed by Ademollo et al. [2] a
long time ago. The Virasoro algebra can be seen as the derivation algebra of the
circle compatible with a Ka¢—Moody algebra. In the same way, the RNS algebra
can be seen as a derivation algebra of the super-circle A, compatible with a
non-trivial cocycle associated with a super-Kac—Moody algebra constructed from
A, [1]. The situation changes drastically for N =2: as we have seen by direct
computation, there is no non-trivial cocycle compatible with the N =2 super-
conformal algebra. We will show below that this result holds for any N. However,
it might seem reasonable, as for N =0 and N = 1, and in the spirit of considering
Kac-Moody algebras as ancestors of the super-Virasoro algebras, to associate for
N > 1 super-derivation algebras on extended super-circles with super-Kaé—Moody
algebras corresponding to non-trivial cocycles.

We will start this section by a rapid survey on the Ademollo et al. super-
conformal algebras (or ASC algebras), recalling the definitions and pointing out
an interesting property which will be used in the study of the compatibility equation.
Then in the light of this property, we present a construction of the N =2 ASC
algebra. Finally we suggest two approaches leading to the construction of
super-derivation algebras based on super-Kac-Moody algebras and generalizing
the N =1 super-Virasoro algebra.

Note that our attempt to better understand the ASC algebras and to obtain a
systematic classification of N-extended superconformal algebras is far from being
the only one. At this point, it is worth mentioning, among different works, the
recent approach of [14] based on supersymmetric ¢ models on group manifolds,
and the classification of [15] related to an underlying Clifford algebra structure
in superconformal algebras.

4.1. The Ademollo et al. Algebras

4.1.1. Generalities. In the light of the RNS algebra, Ademollo et al. were able to
combine in a consistent way conformal transformations with extended super-
symmetric ones. These transformations can be reformulated as follows. In the
N-extended superspace parameterized by the complex coordinates (t,6%,...,6",
£,6%,...,0") with the metric §;; on the Grassmannian coordinates, we define as
usual the covariant derivatives according to:

D,=0'0,+9, with {D,D}=25,5, and ais%, (65)
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and consider the super-analytic transformations
(t,0%,...,0N (5 8%,...,0% (66)
which satisfy for all i,j=1,...,N
S, . _ 0
D;t=D;0'=0 with D;=60;+0; and a;zﬁ (67)
(i.e. we restrict our attention to the t, 8%, ..., 6~ sector). Under such a transformation,
the (super)covariant derivatives transform as:
D;=(D;6")D; + (D;i — §'D,%)3,. (68)
Then the Ademollo et al. transformations can be seen as a super-analytic
transformation satisfying

i.e. the D;’s transform homogeneously as

At fixed N, the ASC algebra contains 2" sets of generators, and among them can
be recognized an SO(N) Kac-Moody algebra. As examples, for N=0, we
recover the Virasoro algebra generated by the L, (meZ) and for N = 1, the RNS
algebra generated by the L, (meZ) and the fermionic generators G,, (meZ or
meZ + %), while for N = 2 an SO(2) Kaé—Moody algebra shows up. We also note
the existence at order N of the finite simple superalgebra OSp(N|2) generated
in the Neveu—Schwarz sector by Ly, oG, (i=1,...,N) and the T§= —Ti=
{G' 2, G’ 1,,}. Denoting by £ = ud, + £'D; the generators associated to an infinite-
simal transformation given by Eq. (66), where u=u(t,0%,...,0")and &= &(t,60",...,0%)
are super-functions, we deduce

[#,D]=D;—D,. (71)

Now the condition (70) implies that, at the infinitesimal level, % acts linearly on
the D;’s as

[£,D]=A/D; (72)

with (see footnote 9 for the definition of the star)
¢&=3Du* and Al=D*=-iDDu (i=1,...,N) (73)
It is worthwhile to emphasize that the constraints (72), with A/ to be determined,

appear as a set of necessary and sufficient conditions for determining the ASC algebras.

4.1.2. The Ademollo et al. Algebras as Super-Derivation Algebras. We will determine
in this section whether the N-ASC algebra may be viewed as a super-derivation
algebra Der4(Ay) compatible with some cocycle @. When looking at the defining
relations (73) of the ASC algebras and (43) of the super-derivation algebras, it is
tempting to connect these two approaches. Let us write these two relations:
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with & = ud, + 3(Du*)D;
[Z, 9] = —(div ¥)2 super-derivation algebras.

One could think a priori that the N-ASC algebra is compatible with N cocycles,
each being a covariant derivative D;. However, we will see that it is not the case.
Actually, any cocycle 2 can be decomposed on the basis {0,,D,...,Dy} as

N
D =a,(t,0)0, + Z o,(t, 0)D;
i=1

N
with d,oo + Y, D;a¥ =0 (cf. Sect. 2.1.7).
i=1

The relation (43) leads then to two sets of equations, corresponding to the
coefficient of 0, and D; respectively:

1 N
ud, 00 — (O,u)otg — B k;; (Diu*)(Dyag) = — (1 — N/2)(0,u)at,
N
u0,0; — 3(0,D;u* o — % k; ((Deu*)(Dyo;) + (D Diu)oy) = — (1 — N/2)(Q,u)o;.  (74)

In order to have the N-ASC algebra as a 9-compatible algebra, these equations
have to be satisfied for any super-function u. Takingu=1andu=6(i=1,...,N),
one is led to

a'ao = 6,0(,- = 0, Dkao = DkOt,- = 0 Vi, k. (75)
Then u =t imposes «, =0 and (N — 1)a; =0 Vi.
Thus, for the cocycle 2 to be non-zero, one must have N = 1. In this case, the

cocycle 2 is given by the covariant derivative D, which is just the case found in
Sect. 3.2.1 and in [1].

Therefore, the N-ASC algebras are super-derivation algebras compatible with
some non-trivial cocycle 2 if and only if N = 1.

4.1.3. The N =2 Case. Let usillustrate the above property (73) in the N = 2 case.
We set

&L =ud,+ D, + E2D, (76)
and impose the conditions (72) for i = 1, 2. Then we deduce the following relations:
fi = %Diu*, A{ = — %DID‘,“. (77)
Using the decomposition u = u, + 2u;0' + 2u, ,6' 0%, we find the generators of the
N =2 ASC algebra:
L(uo) = uo0, + 3(0,u0)(0' 0, + 6%0,),
Gy(uy)=uy(6'0,— 0,) + (0,u,)0"60,,
Gy(uz) = uy(0%0, — 0,) — (0,u,)0"6%9,,
T(u;5) = u;,(670, — 6" 0,). (78)
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The commutation relations between these generators can be written as

[L(uo), L(vo)] = L(ug0,vo — voOsutg),  [L(tto), T(v12)] = T(ug0,v1,),
[L(uo), G'(v:)] = G'(ug0,v; — 30:0,u0), [T(uy15), G'(v)] = G (uy,0)),
{G'(u;), G'(v;)} = 6V L(— 2u;v;) + €9 T(u;0,0; — v;0,u;). (79
Taking L,= —t"*10, +n+ ! t"(0'0, + 6%0,), Gl =t"(6'0,—d,)+rt"~16'60%,, G} =
t'(02%0,— 0,) —rt"” 1619262 and T, = t"(6%0, — 0'9,), Eq. (78) leads to the relations:
[Lm, Ln] = (m - n)Lm +n> [Tm’ G:‘] = 8ijG{n+r’
[Lm9 Tn] = - nTm+m {G:-3 G‘;} = 25ier +s + (r - s)sijTr+s3 (80)
[Lm’ G:] = (m/z - r)G§n+r,
¢ being the antisymmetric tensor of order 2. Here, one has m,neZ and r,seZ
(Ramond sector) or r,seZ + % (Neveu-Schwarz sector).

The N =2 two-dimensional superspace is a reducible representation of super-
symmetry, which can be split into two parts, using the notion of U(1)-chirality.
Defining D and D as D =00, + 23, and D = 60, + 20;, which 6 = 0" + i*> and
§=0"'—if? (note that 8 has nothing to do with the §”s defined in Sect. 4.1, a
chiral (or antichiral) superfield @(t, 0, 6?) satisfies D@ =0 (or D@ = 0).

Owing to Eq. (72) we will see that the N =2 ASC algebra is naturally related
to this chirality. The 4 matrix defined in Eq. (77) can be decomposed for any N

as A= —1(@u)ly+ A, with 1, being the N x N identity matrix and 4 an
antisymmetric matrix. For N =2, we have

1 0\ 1 0 1
(6u)< 1) §D1D2u<_1 0> (81)

which, after diagonalisation, leads to
[#,D] = —{0,u—iD,D,u)D = — XDDu)D,
[#,D]= —4(,u+iD,D,u)D = — X(DDu)D. (82)
One easily deduces that (anti)chirality is preserved under the action of an %
generator:
D®=0=%DP=0 and D®=0=>LDd=0. (83)

Note that this last property can be viewed as a definition of the N = 2 ASC algebra.

We already mentioned in Sect. 3.2. that there is no cocycle of a super-Kac-
Moody algebra associated with a derivation algebra containing the N =2 ASC
algebra. Even more, one can check that there is no chiral (antichiral) super-Ka¢—
Moody algebra with a non-trivial cocycle whose derivation algebra contains the
above algebra.

4.2. New Kinds of Superconformal Algebras?

As already mentioned in this paper, the Virasoro and the RNS algebras which are
of particular physical interest are naturally related to (super)Kac—Moody algebras.
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At this point, it is tempting to try new kinds of N > 1 superconformal algebras
which would be algebras of super-derivations of some super-Kac—-Moody ones.
Hereafter, we will adopt two possible attitudes. First we will look for N+ 1
super-derivation algebras containing as a subalgebra the N ASC algebra.
Then in a completely different framework, we will propose a recurrent class of
cocycles 9y, with 9, being associated with the RNS algebra and @y, , easily
deduced from 2, and such that the corresponding derivation algebras are included
into one another: Der, (4y) = Derg,, (Ay+1)-

4.2.1. Embedding of the N-ASC Algebra in Der(Ay, ). Considering a super-loop

algebra on Ay , ;, we determine the possible cocycles w,, such that the 2-compatible

super-derivation algebra contains the N-ASC algebra. The calculation is quite

similar (although a little more tedious) to the previous one done in Sect. 4.1.2. Up

to a rotation in the space of the 6 variables, one can assume that the N-ASC

algebra is described in terms of the N first variables 6!,...,0". We demand 2 to
1

N+
be such that [£,2]= —(div* £)2 with D =040, + ) oD; and £ =ud,+
i=1

N
Y. (Du*)D,, where aq,a,6C*(Ay+,) and ueC*(Ay). One obtains
a=1

N N+1 N-2
udto — QU)o + Y, G(Du*)D,a0 — (Du*)ok) + Y, (Dyu*)oit = — ()%,
a=1 K=1

N+1 -2

1 1 N
uat“a - _(0tDau* )OC(*; +5 Z (DkDau*)ak = (0tu)aaa
2 2= 2
1 X N-2
udyoy .y + > Zl (Dw)D oy 4 4 =T(a:“)“1v+ 1 (84)

Demanding these equations to be satisfied for any super-function u (in order to
have the N-ASC algebra), we obtain, taking u=1,6°¢ with a=1,...,N and
j=1...,N+1

0,0(0 = 0, Daao = 0,
N+1 N
0,0;=0, Dy, =0, 6" oy, = 7 % (85)

(N—z)aN+l=03 (N'—l)aa:O’

These equations lead to the following results. The N-ASC algebra is embedded
in a super-derivation algebra Der(Ay ,,) compatible with some non-trivial cocycle
Difand onlyif N=1or N=2.

In the case of N =1, the cocycle is given by 2 =(c, + c,0%)(0'6, + d,) =
(co + ¢,0%)Dy, where ¢, and c, are complex constants. This leads to three different
super-derivation algebras.

In the case of N =2, there is only one (divergenceless) solution given by the
cocycle & = c;0,, where c; is a complex constant.

These algebras are displayed in the appendix.
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4.2.2. A Very Particular Chain of Cocycles and Their Corresponding Algebras. In
this paragraph, we look for a chain of super-derivation algebras, each of them
being compatible with a non-trivial cocycle, the N* order algebra being included
into the (N + 1)'* order one, and such that for N = 1, one recovers the RNS algebra.

When one looks at the super-derivations algebras Der 4(A4,) containing the
RNS algebra, two one-cocycles are singled out: 2, =D, and 2, =6?D,. The
generalization of these cocycles is very easy: 9y =D, and Py =6"-.-0>D,. We
will study the two chains of super-derivation algebras, compatible with these two
chains of cocycles.

o super-derivation algebra Der, (4y)

N
The super-derivation % =wd, + ), ¥;D; satisfies the compatibility equation
[¥¢,D,]= —(div* £)D,. One has =!

N N
[Z¢,D;]1=QR2Y¥,—D,w*)0,— Z (D,¥Y¥)D; and divV¥ =0w+ Z D, ¥k
i=1 i=1
Therefore one obtains
N
2¥, —D;w*=0 and DI‘I’,’:‘=51k<6,w— Z Di‘I’,?") (k=1,...,N). (86)
i=1

Thus the super-derivation £ has to satisfy
2¥, — D w*=0,
D, ¥Y¥=0 (n>1),
N
Y D,¥r=0. (87)
n=2

Notice that the second equation implies that 0, ¥, = 0 (for n # 1), i.e. the functions
¥, are constant in ¢ for n # 1. We will call these generators “discrete generators.”

. . n+1 .
They commute with the Virasoro generators L, = —t"*!1 ———¢"0'9, obtained
g 2
for w= —t"*1. Altogether this algebra contains N2V~! + 1 generators among

which (N —2)2V~1 + 1 “discrete” ones.
o super-derivation algebra Der,, (4y)
A similar computation for the compatibility equation leads to the equations
¥, —D;w*)o"-..6* =0,
D (P*6%.-.02)=0 (n>1),

N
Y. D(ProN---6%)=0. (88)
n=2
The last two equations are equivalent to the relations ¥? = ¥} =0 (with n> 1)

N
where ¥, is decomposed as ¥,(t,0) = Po(1) + Y. P()o*+ ---.
k=1

This algebra contains 2V + 2N(2V~! — 1) generators. If we don’t worry about
the discrete generators of Der,, (4y), we see that the defining relation 2¥, —D;w=0
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for Dery, (Ay) is stronger than the one of Derg, (Ay). So we conclude that, up to
the discrete generators, one has the inclusion

Der, (Ay) = Derg, (Ay).

From the relations (73) and (74), one also has the embeddings (including the discrete
generators)

Derp, (Ay) = Derp, (Ay+ 1),
Derng (Ay) < Derg ., (Ax+1)-

Notice that the algebras Derj, (4,) and Derg, (4,) have been given in Sect. 4.2.1
(for the commutation relations of these algebras, see the appendix).

5. Conclusion

In this paper, a classification of the possible central extensions for super-loop
algebras defined on the super-circle Ay, where N is the number of generators of
the corresponding Grassmann algebra, has been achieved. A general method for
determining the super-derivation algebra compatible with each super-Kac-Moody
algebra has also been obtained, and made explicit in the cases N =1,2,3.

Surprisingly enough, the usual superconformal algebras for N> 1 cannot
be associated to super-Kac-Moody companions, contrarily to the case N =0
(Virasoro algebra) and N =1 (RNS algebra). Such a result led us to investigate for
N> 1 new types of extended superconformal algebras which contain the RNS
algebra.

One can expect that some of these (super-Kac-Moody compatible) super-
derivation algebras which contain the Virasoro algebra, are well adapted to describe
interesting two-dimensional conformal field theories. A study of these unitary
representations is therefore necessary. The simplest examples to consider are, as
already suggested at the end of Sect. 3.2.1, some of the algebras associated to the
N =1 case. The property of such extended conformal algebras to be enlarged to
a semi-direct sum by adjunction of a super affine algebra might be exploited. In
particular new kinds of Wess—Zumino—Witten models [16] might be considered,
generalizing the N = 1 case treated in ref. [17].

Appendix

In this appendix, we will make explicit the commutation relations of some
remarkable super-derivation algebras used in Sect. 4.2.

We recall that if K is a loop-algebra with generators T, (meZ), con-
structed from a simple Lie algebra #” with generators T, (a = 1,...,dim "), one can
associate a super-loop algebra K with the generators T™ = T,t™, (@) = T,t™6',
(@) = T,t"0'¢",... (@' V)" = T,tm'.--0". In the case N =2, the non-trivial
commutation relations of the super-loop algebra take the explicit following form:

(T2, To]=faTe™", [TZ.(@)] = fa(@),
(T2, (@)1= fu(@2)T, {(O');,(0%)} = fu(@2)r ™. (A.1)
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For a super-derivation algebra, we will take for each independent generator ¢(t)d;,
where 9, is a linear combination of 9, and d,, a basis ¢, =t"%~19,, where the
conformal weight d, of the generator ¢(t)0; is defined through the action of the
Virasoro generator L,, on it, i.e. [L,, ¢,,] = (n(dy — 1) —m)@, ;.

e super-derivation algebra Der,(4,) with 2 = a,60%(0'0, + d,)

The super-Kat—Moody algebra obtained from this one-cocycle has the
following non-trivial commutation relations:

(T2, Ty = foTe™" — ;M0 1,000 (T2 (@)1= fa(@),
(T3 (0] = fu(@')r™, {0 (0%} = fa(@12)r .
{(@1):"(@ 1);;} = a25m+n,05ab’ (A2)

The super-derivations compatible with & are (after a redefinition of some
generators)

P even = A0, +4(0A4)(0* 0, + 6%0,) + T6?d, + W6%0, + BO'6%4,,
Poga= G600, — 0,) + (0G*)6' 6%0,
+ G%60%0,— (0G*)6'6%0, + D*6'0%0, + D?6'0%0,, (A.3)
and a basis of generators is given by

n+1
2

T,=t"0%0, and W,=1t"0%0,,

B, =t"0'6%¢,,

Gl ="+ 112910, — 9,) + (n + 1)i"~ 120" 620,

G2 ="+ 12029, — (n + L)~ 1/291020

Dl =1""129'923, and D2=1""12'6%0,. (A4)

L,=—t""19,— t"(6'0, + 6%0,),

The conformal weights are given by d, =3 for D}, and D2,d, =1 for T,,,W,,B,,
dy =3 for G,, and G}, and of course d, =2 for L,,.
The non-trivial commutation relations between the generators are

W, Tl =T, ms (Wo, Dp] =Dy,

[W,,Gnl= —nD7,p, [(W,,G.1= G+ 1Dy

(Wo Bul =By, [B.,Gnl =G+ nDpsm,

[T, Dpzn] = - Drll+m9 [T, Grln] = G3+ms

{GjaGrl;l}=2Ln+m’ {G'}’Grzn}=(m_n)Tn+ma

{Gr&aDrln}= _Tn+m+Bn+m9 {GiaDan}= —Waims

{G2.Dn} =By im (A5)

Note that the generators L,, G} and T, form a subalgebra of Der,(4,) which is a
contraction of the N =2 ASC algebra. If we start from the algebra (80) and define

PN

the generators L, = L,, G! = G}, G2 = ¢G2, T, = ¢T,, and compute the commutation
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relations between these generators at the limit ¢ — 0, one finds
[L,, Tw]=—mT,\ and [L, GL]1=(n2-m)Gi.,,
[7,,6,1=G2rp and [T,,G21=0,
{61,y =2Ly4n and {G},G1}=0,
{GY, G2 =(n—m)T, s, (A.6)
which has to be compared with Egs. (A.5).
e super-derivation algebra Der,, (4,) with @ = a(0'9, + 0,)

The super-Kac-Moody algebra obtained from this one-cocycle has the
following non-trivial commutation relations:

(T2, T31=faTe™", [T (@)1= fa(@1) ™,
[T:" (@12);;] = ffzb(@lz):‘"+”a [T'ana (@2): = f:b(@Z);n‘Fn + maoém+n,05ab’
(@), (@)1= a00m+nodm, (O, (O} = fop(@2) . (A7)

The super-derivations compatible with 9 are

&P ven = A0, +1(04)0'0, — TH*(0* 0, — 0,),

P oga=G*(0'0,— 0,) + G*60%0, — 1(0G*)6' 670, + ko,. A.8)
A basis of generators is given by

n+1
2

L,=—t"*'9,— t"9'o,,

Tn = - tn+1/202(016t - a1)a
Gl=1"+12(019,— 3,) and G,%=t"+1023,—1;’—1t"010201,
c=10,. (A9)

The conformal weights are d, =3 for G}, and T,,,d, =2 for G3.
The non-trivial communication relations are given by

[T, Grln] = 2G3+m>
{G:a Grln} = 2Ln+m9 {G;,Grzn} = (%_ n>Tn+ma

[Tm C] = Gr}9 {G,%,C} = Ln' (AIO)

Notice that the generators T, and G2 do not obey to a “conformal spin-static
theorem,” i.e. T, (respectively G2) is even (bosonic) with a half-integer conformal
spin (respectively odd (fermionic) with an integer conformal spin). In this respect,
they behave like conformal ghost fields, and the ¢ generator plays the role of the
BRST charge.

e super-derivation algebra Der,(4,) with 2 = a,0%(6*0, + 9,) + ao(6* 0, + 0,)

The super-Kaé-Moody algebra obtained from this one-cocycle has the
following non-trivial commutation relations:
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[Tm Tn] f Tm+" - a2m6m+n,05ab’ {(@1):1"9 (@1);} - a25m+n Oéab’

(T2, (@)1= fop(@ 12T, {(OV (@2} = fa(@'2)*™,
(T2 (@] =fou(@')*", [(©@'*)},(@");] = a¢0m +n,00ap
(T2, (@)1= fan(@*)7*" + MaoBy s ,000- (A.11)

The super-derivations are
P oven = A0, +1(04)0* 0, — TH*(6'0,— 0,),
Poga=G*(0'0,— 8,) + G*6%0, — 1(0G*)0' 6%0,. (A.12)
This algebra is a subalgebra of the previous one, where the discrete generator c is
set to zero.
o super-derivation algebra Der,, (4;) with 2 = a0,
The super-Kac-Moody algebra obtained from this one-cocycle has the
following non-trivial commutation relations:
(T2, T31=fau o, (O (@%)]= fau(@123)*n,
(T2 (O] = fa(@) ™", (@) (0] = fu(@' )™,
[T7,(@Y)] = fo (@Y™, L@ (O*)] = fi(@123)rtn,
[T2,(0'2*)] = fo(@' )", (@), (O%*)] = — a30m+n00m
{(@2, (@)} = fa (@), {(O@);,(0' )} = — a30m 400w (A13)
The super-derivations are
P even = A0, +3(0A4)(00, + 6%0,) + B(6*0; — 610, — 620,)
+ H'0'0; + H*6%0, + U(0*9, — 0%0,) + T(6'0, — 6%0,)
+ S(6'0, + 620,) + K6'0%0, + 10K6'6%6°0,,
Loaa= G600, — 0,) + (0G")6'6%0, + G*(6%0, — 0,) — (0G*)0 620,
+ W1(026%0, + 20 0%0,) + W2(0'0%0, — 20 620,) + DO 620,
+ E'0, + E?0, + E®0,. (A.14)
A basis of generators is given by

n+

L= —t"*10,— 22— (0'd, + 620,),

B, =t"(6%0, — ela1 — 6%3,),
Hl=1""12019, and H2?=""122,,
U,="0"0, — 0%3,), T,=1"(0'3,—020,), S,=1"(6d,+ 0%d,),

K, =t"0'6%0, +gt"_ 19192639,

Gl =t"*12(018,— 8,) + (n + 41"~ 1126162,

G2 =1"+112(029, — 8,) — (n + L)t" 112601629,

Wi =1""12(02030, +2010%9,) and W2 =1""12(0'930, — 20'0%3,),
D,=t""10'623,,

El=n+123, E2=*123, E3="3,. (A.15)
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The conformal weights are d, =0 for D,,,d, =% for W}, W2, H} and HZ,d, =1
for T,,U,, S, By, Ky, E®,d, =3 for G}, G2, Ep, E2.
The non-trivial commutation relations between the generators are

[T Sn]l=2U,4m, [T, Unl=—28,+m
[UnSn]=2T, s [By, Knl= —2K, 4 m:
[Terln]“—‘ _H3+ma [Tn’Hr%t]=Hl}+m9

(S, Hul=H2 o, [Sw Hal=Hysm,
(U, Hpl = Hyy UnH1=—Hiim
[B,,Hpl=—2H, s (B, Hy]= —2H:,

[T Gnl =Gy, [TwGal= —Gaim
[T Wal=Wi,n, (T, Wil=—Wiim

[T, Erln] =- E3+m, [T, Erzn] = E;+m,

[Ss Gml =Gy s [5. Gal= G m

[Sm ern] = Wrz:+ma [Sm Wrzn] = W;+m:

[SwEnl= —El, . (S5 En]l= —Eqim
[UmGrln] =Gr1|+m+2E;1.+m, [Umszn] = '—G3+m‘2E3+m,
WU Wol=—Wiim WnWal=Wiim

(Un Enl= — Eqsm, (UnEZ1=E}im

[BmGrln]: _G;+m_nwr%+m, [BmGrzn]= _G§+m‘nw;+m,
[B., ern] =- erl+m, [B., Wyzn] == Wr%+m’

[By En]=Eqims [B., En]=Eiim

[BmE?n] == E3+m3 [BwDpl= —3Dpsm,
[KnGal = — [Kp ER] = Gim+ Ed o5 Whem,

[Kn 621 = = [Kp B3] = = Glon— Eyn—5 Whe,

[H:’ Grln] = sij(n + m)Dn+m + 5ijE3+ms [Hr;:’ Wrzn] = 3Dn+m,

[H:’ ern] = - 3Dn+m’ [KmEr::n] = (m _;>Dn+m,
[H:aEpln] = [Hp?’ Er%n] = _E3+m
{G:, Grln} = {Gr%> G'Z;} = 2Ln+m’ {Gg,szn} = (n - m)Tn+m,
n—m n+m n—m
{G:sErln}= _Ln+m_TUn+m, {Gs’Erln}= P Tn+m_—2_'sn+m’
{G:’Er%n} = _n-;an+m _n;mSn+m’ {GS’E;} = _Ln+m +n—;ﬁUn+m’
{G:’ESI} =me{+m, {G,?,Es,} =mH3+"I’

{G:’Dm}=H3+m, {Grzl’Dm}= _H:+"l’
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{G'{9Wvlvl}=Tn+m_Sn+m+2Kn+m’ {Gr2l9ern}=Un+m_Bn+m,

{G:’ Wr%l} =—Upim— Buim {Gr::, Wrzn} = —Tim—Snim— 2Ky s m»
{Erll’ern}: —Tysm~t Snitms {Er%’errl}=Un+m+Bn+ma
{E;aWrzn}= _Un+m+Bn+m: {Er%a Wrzn}=Tn+m+Sn+ms
{E3,Wo}=—Hlim, {Ex, Wa}=Hyim,

{Ez, Dy} =HZ\p, {EZ, D} = Hys e (A.16)
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