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Abstract. We consider two-dimensional assemblies of particles governed by
hamiltonians depending on the area and the perimeter of their convex hull.
Provided the hamiltonian is quadratically homogeneous in the coordinates,
we find an exact formula for the free energy. Phase transitions resulting
from the competition between area and perimeter can easily be produced
and explicitly dealt with. We illustrate those features by a simple example
undergoing a second-order transition.

1. Introduction

The competition between the area and the perimeter constitutes, as attested, e.g.
by Queen Dido’s problem or isoperimetric and Bonnesen inequalities [1,2], one
of the central themes in the development of two-dimensional geometry. To be able
to exploit this competition in statistical mechanics, we have to find a way to:

i) generate an ensemble of shapes together with an a priori distribution maximizing
the entropy
ii) assign an energy to each individual shape.

In two recent publications [3, 4], we have started a systematic investigation of
the statistical mechanical behaviour of a two-dimensional assembly of particles,
whose interaction potential depends on the convex hull spanned by the particles
only. One can think of this approach as an attempt to derive from a purely
microscopic basis the distribution function of a fluctuating container in a pressure
ensemble. Put in another way, such models seek to describe a drop in equilibrium
with a mechanical reservoir in terms of its 2N ~ 10?3 microscopic degrees of
freedom. As done in [3,4], we concentrate on interactions of global geometric
type only, the two-body interactions between the particles being discarded.

Our approach differs from mainstream statistical mechanical treatment of
interfaces (see e.g. [5-9] and references therein) where macroscopic interfaces
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resulting from local interactions between particles are geometrically characterised
(e.g. Wulff construction), whereas we describe in this paper sharp boundaries
generated by particles submitted to global interactions. Pressure ensembles
constitute here the relevant physical context, and the probabilistic set-up is fairly
close to situations encountered in Integral Geometry (see e.g. [10-12] and
references therein).

To be more specific, we denote by K(xy)=conv{x,,...,xy} the convex hull
spanned by the particles {x,,...,xy} =xyeR?", and by H(K) the (N-body)
hamiltonian. The free energy of the system

M QN HYNY M)

g[H] = lim gy[H]= lim
N- N-wo N

should be interpreted as a Gibbs free energy. The partition function

On[H]= | dxyo(x,)exp(—BH(K(xy))) )]

R2N

is to be evaluated with one particle held fixed, to prevent divergence resulting
from the translational invariance. In [4], we considered the model

|0K |?
4n

where | K| and | 0K | are respectively the area and the perimeter of K(xy); we showed
the corresponding free energy to satisfy:

H(2, W)= AK|+p ; )

— 00 foru<0 or/and AL —pu

TIn(BA+ Br) otherwise @)

glH, (4 W] = {

In this paper, we exploit the competition between area | K| and the perimeter |0K |
of the droplet K by dealing with the whole class of hamiltonians H(|K|, |0K|).
We impose however the restriction that the average area | K| should behave in the
thermodynamic limit as an extensive quantity. Provided the later exists, a sufficient
condition for this to be the case is [3] the hamiltonian H(|K|, |0K|) to be positive
homogeneous of degree 2 in the coordinates {xy}, or equivalently:

|0K|?
4n|K|

Clearly, n = 1, small values of 5 corresponding to approximately circular drops,
with n = 1iff K is a circle. Our result is the following:

H(|K|,|0K|)=h(n)|K|, with n:= )

Proposition. Let g[H] be the free energy per particle in the thermodynamic limit
corresponding to the hamiltonian (5), where h(n) is a continuous function of n. Define
y:= min h(n). Then:

nz1

— 0 if lim h(y) < oo or/and y =<0
n— o

g[H]= . (6)
kTIn(By) otherwise
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2. The Proof
2.1 Lower Bound for g[H]

Suppose first llm h(n) < 0. h(n) is then bounded above and H(K) < c|K|. But the

area term alone is not sufficient to prevent the evaporation of the drop and
g[H] = — o0, as given by (4). Suppose now lim h() = oo, and define h(n) as the
n—

convex envelope (or closure) of h(y) for ne[l, ). Let the minimum of h(n) be
attained at 7, (were there many minimizers present, 7, should be chosen as the
greatest one). Assume h(y) is differentiable in a neighborhood of 5. By convexity:

hin) 2 h(no + &) + K (1 + &)1 — 1o —¢), (7)
where ¢ is a small positive quantity. Then the hamiltonian (5) satisfies:

pl 2
e

H(IKI, 10K ) 2 {h(no + &) — (o + &)’ (110 + &) } | K| + F (1o + &)

The quantity #'(y + ¢) plays.the role of the u in (4) and is by construction strictly
positive. As far as h(n,) > 0, one can choose ¢ small enough for the corresponding
A to satisfy 4 > — u. We then get from (4):

g[H) Z kTIn(B{h(no + &) + (1 — o — R (n +¢)}). ©®)

Performing now the limit ¢—0, and taking into account H(no) =0 as well as
h(no) = h(no) = y achieves the proof. Were h(n) not differentiable around 5 =5,, it
would nevertheless as a convex function possess a left and a right derivative, so
that by rounding off the corner the above reasoning remains applicable. [J

2.2 Upper Bound for g[H]

The equilibrium total free energy minimises the free energy functional:

Gy= mfinfdzCNf(zCN){H(K) +xx] + kTIn(N!f(xy))} (10)

submitted to the conditions:
fxn) 20, (11)
fdxyf(xy)=1. (12)

We have replaced here the J-function in (2) by an external harmonic- field of
strength x(N), where x¥(N)— oo in the thermodynamic limit. Consider now M,
a convex body containing the origin, and py(x), a normalised distribution function
centered at the origin. We choose the trial function:

f(xN) {pN(Xl)lMl W=D lfo, xNEM

3
otherwise (13)

Then, provided the second moment of py(x) decreases faster than x(N) !, the free
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energy per particle satisfies:

gn[H] = CH(IK],|0K]|) )y — kTIn (%—I) —kT+O(N™Y), (14)

where <...)», denotes the average with respect to the uniform distribution of N
particles in M. We have at this stage to distinguish between the shape and the
size of M. Introduce for that purpose a body of area unity M, containing the

origin such that M is the image of M, by a dilatation of factor \/5, ie.
|[M|=s|M,|=s. Beside the area constraint, we require the perimeter of M, to
satisfy |0M|? = 4nn,, where 7, is as before the minimizer of h(). Defining K,(xy)
as the body obtained from K(xy) by the inverse dilatation s~ '/2, we get the result
that the average area and perimeter of K, tend in the thermodynamic limit to the
area and perimeter of M. More precisely, as shown by Rényi and Sulanke [13]:

<|K0(’_‘N)|>MO=|M0|_O(N_zls), (15)
10K o(xn) 1D aro = 10Mo| — O(N ~273), (16)

The observable # in (5) is of course dilatation invariant. From the continuity of
hin | K| and |0K|, we finally get:

1
Jim M<H(IKI,|6K|)>M=h('10)- (17)

It remains to optimize (14) with respect to s =|M|. This leads to h(y,)s = NkT,
and the proof is achieved. []

3. Comments

It appears from the above proof that the whole statistical weight becomes
concentrated into the configurations K(x ) satisfying | 0K |?/4n|K| = n,. This large
deviation property is reminiscent of similar behaviours encountered in mean field
theories. However, it has here to be emphasised that Proposition (6) constitutes
an exact statement characterizing the full N-body problem, and results from the
conjunction of two (rather fortunate) circumstances: the first is that while the area
and the square of the perimeter play a dissimilar role in (3), (the later term only
insuring a thermodynamic behaviour), both terms contribute nevertheless in the
same way provided the thermodynamic limit exists. The second reason is the
appearance of area contributions in both the energy and entropy part of the free
energy functional (14).

The constraint n(K) = 7, is clearly satisfied by a non-countable set of shapes,
as far as n, > 1, and it would be desirable to characterise among those shapes
which ones are actually realised with a non-zero probability. Unfortunately,
answering such a question would necessitate finer techniques than available at the
present time.

The homogeneity property of the hamiltonian (5) makes the temperature
dependence of the thermodynamic quantities trivial; in particular, the average
energy is always { H) = NkT. The phase transitions announced in the title refer
therefore to qualitative changes occurring when some parameters 2, possibly
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contained in h(y; ) and acting as external fields, are varied. The very generality
of the result (6) makes any specific choice of a function h(y; #) appear somewhat
arbitrary; for any type of transition and associated critical exponents can be
produced by a suitable choice of h(n; ). We shall nevertheless illustrate below
our theory by a simple model undergoing a second-order phase transition.

4. An Example

Let us consider the model:

|aK|2< (4n|K|>P>
H(u,e,p) = 1+ , 0. 18
(we,p)=p n € 0K 2 w> (18)

This model, whose study has actually been the starting point of the present paper,
represents a simple variant of (3), where the perimeter term insuring the thermo-
dynamic behaviour is modulated by a shape factor controlling the tendency for
the drop to be circular; one can imagine that, for ¢ or/and p large enough, the
energy will dominate the entropy and force non-circular configurations to be
produced. As we will see in a short while, this is indeed the case. Our model fits
into the general class (5), with

h(n; 1, &, p) = pln + e(n)* ~ 7). (19)

We get from (6) the following result, whose derivation we leave to the reader as
an exercise:

— forp=0, e<—1 or p=<0, ¢<0

. , (20)
kTIn(Bur(e,p)) otherwise

g[H] ={

where

1+¢ fore(p—1)<1 (Phase A)

21
ePp(p — 1)WP =1 otherwise (Phase B) @

o]

The corresponding phase diagram is drawn in Fig. 1. The high symmetry phase

N
kT . (The dashed line
u(l +e)
corresponds to model (3).) In the low symmetry phase B we find non-circular
I6K|2_p—1NkT

4n P

A consists in circular drops (n,=1) of area |K|=

(no = (e(p — 1))'/7) shapes of perimeter

_, 10K ?
(no) an

A suitable order parameter is for instance 6 =1—17, (e, p). It satisfies by
construction é =0 in phase A, whereas in phase B it behaves near the transition
line e(p — 1) =1 as é(p) = (p — p.)/(p.(p. — 1)) for ¢ fixed and as d(¢) = (¢ — &.)/(e, + 1)
for p fixed.

One easily verifies the partial derivatives g, and g, to be both continuous across
the transition line, whereas the susceptibilities g,,, g,, and g,, undergo a finite

and area |K|=
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Phase B

Phase A

m

-1 0

/ Fig. 1. Phase diagram of (18)

jump, that is to say the system exhibits a second-order phase transition with unity
critical exponents.
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