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Multiple Forced Oscillations for the N-Pendulum Equation

Gabriella Tarantello*
Department of Mathematics, University of California, Berkeley, California 94720, USA

Abstract. We consider the periodically forced N-pendulum equation. Forced
oscillations are obtained, and their multiplicity is studied in terms of the mean
value of the forcing term.

Introduction

N
Let m;,l; be positive constants, i=1,...,N, and set M;=3Y m, j=1,...,N. If
0=(0,,...,0y), E=(&4,...,Ex)eRN, then the Lagrangian =7

N N N
Z0,5)= _ Zx M panii,j liljcos (6; — 0,)E:E + g 'Zx M;l;cos0; + Z‘ f11)8;
i,j= i= j=

(g = constant of gravitation)

N =

corresponds to the mechanical system of N coplanar penduli with masses m,
length [, subject to the forcing terms f, = f,(t), k=1,...,N. (Here 0, is the angle
of the k-pendulum with the vertical) As is well known, the corresponding
equations of motion are:

dos¥ 0z . .

@ a(:j(@,t.‘),t) aej(@,@,t)—o, j=1,...,N. 0.1)
Assuming the forcing terms are T-periodic (i.e. f,(t + T) = fi(t) VteRVk =1,...,N)
we are interested in finding T-periodic solutions for (0.1).

Notice that this problem admits a natural Z" symmetry, in the sense that if
0= 6(t) is a T-periodic solution for (0.1) so is 6(¢) + 2nk VkeZN. Therefore we shall
call distinct the solutions of (0.1) whose difference does not belong to 2nZ":= {2nk
VkeZM}. As pointed out by many authors (e.g. [5,3,1]), if the forcing terms f,

T

have zero mean value (ie. | f, =0, k=1,...,N) then this symmetry is preserved
0
by the variational principle associated to (0.1). Namely, T-periodic solutions of
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(0.1) correspond to critical points of a suitable functional (bounded from below)
well defined in the Hilbert manifold M = TV x E, where TV is the N-dimensional
torus and

E= {0=(91,...,0N):0keH1([0, T]), 6,(0)=06,(T) and jr()k =0, k= 1,...,N}.
0

Hence by means of the Ljusternik—Schnirelman theory, the rich topology of
T

M guarantees that problem (0.1) with | f, =0 admits at least N+ 1 (=1 + cup
[

length TN) T-periodic solutions (see [4] and [5]).

In addition, if all the T-periodic solutions of (0.1) are “nondegenerate,” then
by Morse theory one obtains the existence of at least 2" (= sum of Betti numbers
of T¥) of them (see e.g. [2]).

However, Fournier—Willem [3] for the double pendulum and subsequently
Chang-Long-Zehnder [ 1] for the N-pendulum have pointed out that if reasonable
conditions are satisfied by the data then it is always possible to guarantee 2¥
distinct T-periodic solutions for (0.1).

The purpose of this note is to give an appropriate extension of this result to
the case of forcing terms whose mean value is not necessarily equal to zero. This
new situation appears much more delicate since Egs. (0.1) impose strong restrictions
on these mean values. In fact, summing up Eqgs. (0.1) and integrating in [0, T] one
easily sees that a necessary condition for (0.1) to have a T-periodic solution is that
there exists 7,€[0,2n),k=1,..., N, such that

N 1 T N
Z —_ “- fk(t)dt = g Z Mklk Sin tk’ (0.2)
=1T o K=1
In particular, the sum of the mean values of the f,’s cannot be arbitrarily large.
Here we shall treat the case where only one of the forcing terms, say f, is not
restricted to have mean value zero. Thus given f; = f;(t) T-periodic functions with

T
[ f;=0,j=1,...,N and ceR; after performing explicit calculations in (0.1), we are
(1]

led to the following problem:

B S . N .
i(Mjlf 0;+ Z M;l;l, cos(0; — 6,)0, + Z Ml l;cos (6, — oj)ok)
k=1

dt k=jF1

il - N . x
+JZ Mlljlksin(e,-—gk)o,ﬁj— Z Mkl,‘lJSln(Bk—Ol)ekol
k=1 k=j+1
(1.
and
d . N-1 . N-1 ) ..
E(MNIIZVON_F Z MNlleCOS(oN—aN)9k>+ z MNlleSIH(eN—Hk)BkBJ
k=1 k=1

+gMylysinby = fy(t) +¢; 0(0)=0(T); 6(0)=6(T).

Notice that the variational principle associated to (1), with ¢ # 0 gives rise to an
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unbounded functional multivalued in M = TV x E (unlike the case ¢=0). So
Ljusternick—Schnirelman type arguments as employed in [5, 1 and 3] cannot be
applied any longer.

Our approach instead consists in reducing (1), to a finite-dimensional variational
problem. More precisely, we shall see how to obtain solutions for (1), once we
obtain critical points of a smooth function of the type:

GBy,-.-,0n)=9(b,,...,04) + cOy 0.3)

with g(0 + 2nk) = g(6) VkeZ™.

Thus by exploiting the special structure of g, roughly speaking, we shall
prove that if || fi ||, is not too large (see condition (f), below) (k=1,...,N),
then there exists T* >0 such that for every 0 < T < T* there exist constants
di <+ =dyn-1 <0< Dyn-1 £ --- £ D, with the following property:

i) if ce(d;, D;) for some j=1,...,2" " =>(1), admits at least 2j distinct solutions;

i) fc=d;j=--=d;,,_,1<j+r<2N""andforj> 1, c¢>d;_ (1), admits at
least 2(j — 1) + r distinct solutions;
iii) ifc=D;=---=D;,,_;andforj>1,c < D;_, (1), admits at least 2(j — 1) + r

distinct solutions. W

Such restrictions on ¢ were expected by (0.2).

In conclusion, we point out that the problem of finding critical points for
functions of the type (0.3) is interesting by itself. Various interesting phenomena
were observed in [6]. For example, despite the fact that g always admits at least
N + 1 critical points, it may still happen that g(8,,...,0y) + c8y has no critical
points for every ¢ # 0. We refer to [6] for concrete examples and further discussions.

1. Statement of the Result

GiVCl‘l 0 = (91, ey ON)E]RN, set a,,j(e) = lilemax(i,j) CcOSs (0,- - 01), i,j = 1, ceny N. ThuS
A= A(0)=(a;;(0));=1,... ndefines a symmetric positive definite N x N matrix, and
for 0,£eRY, teR we have:

N
LO,E)=FA0)E+g Y M;l;cos6;+f(1) 6,
j=1
where f(t) = (f(¢),..., f,(t)) and - denotes the usual scalar product in R".
Let 14 > 0 be the ellipticity constant for A(0), i.e
AOE-EZ 401E17 V& 0eRN.

Introduce

v = 0 j=1 )
MT\M; max I, 2<j<N’
12k<j~1
oo 0 j=N . Ve=max {V, 1, V2 },
#2271 max M, 1<jSN-1

j+1SkEN

and denote with | ||, the L® norm. We obtain
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Theorem 1. Let f(t) = (f(2),-..,f\(t) be a continuous T-periodic function with
AoM ul
el Vk=1,...,N<nf||m:=zluf,'nw).
i=

T
f =0;
There exists T* >0 (depending on myl,, f;, i=1,...,N) such that if 0<T< T*,
then 3d, £ --- <dyn-1 <0< Dyn-1 £ --- £ D, with the following property:

Vi

i) if ce(d;, D;)=>(1), admits at least 2j distinct solutions;

i) ifc=dj=--=dj,,_, and for j> 1, c>d;_; = (1), admits at least 2(j— 1) +r
distinct solutions; ’
iii) ifc=D;=--=Dj,,_, and for j > 1, c < D;_, =(1). admits at least 2(j — 1) +r

distinct solutions. B

To be precise we shall obtain a slightly more general version of Theorem 1 (see
Theorem 2) where the assumption 0 < T < T*is replaced by more general condition
involving my, I, f, and T (see (T),(T), and (T);). From those conditions T* can
be explicitly estimated. Similar conditions were introduced in [1 and 3].

In fact, when ¢ =0, our result reduces to those obtained in [1 and 3], with the
difference that while we require (f),, our m; and J; are basically unrestricted unlike
in [1 and 3].

2. Variational Formulation in RY
Define the Hilbert space:
H={0=(0,,...,05):0,cH([0,T]); 0;(000=0,(T), j=1,...,N}

equipped with the scalar product
T, . T
6, ¢) =£0~¢ +£0-¢, 6, peH.
If e H and 1 £ p £ 0 denote by

N . T i/p
Ilellp=k;n9kll,, with IIOkII,=<£l9kI"> .

T
Given f(t) = (f,(t),..., fa(t)) with | f =0 and ceR define the functional I,:H -»R
as follows 0

lT T N T T
Ic((9)=§£A(l9)9'l9+g£j;l Mjljcos(9j+£f~0+ c£0~.

Straightforward calculations show that for every selN, I is s-time Frechét
differentiable. Furthermore, critical points of I, are solutions for (1), and vice versa.
Notice that if ¢ #0, I, is unbounded in H and

10 + 2nk) = 1(60) + 2nkycT
VOeH and k= (k,,...,ky)eZ". Hence I, is multivalued in M = TV x E.
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For every a = (ay,...,0y)eN define:
1T
A¢= 9=(91,...,0N)GH25;£01~=0£‘,- .

Notice that I, is bounded from below in A,. We have
Lemma 2.1. For every acRY there exists 0, A, such that
1,(8,) = inf I4(6). 2.1)
OeA,
Furthermore 1.(0,)=1,(0,) + cToy = i{r‘lf 1,(6).
Proof. Obvious modifications of the arguments given in [1 and 3] show that I,

satisfies the Palais—Smale (PS) condition in A,. The conclusion then follows by
standard arguments. (See Lemata 1.1 and 1.2 of [6].) W

Set
N
p=1Y liv; A= max ljy; M= max |;M;
=1 15jSN 1SjSN
and
V= lmaxN(gMjlj + 1 fillo) 2.2)
sjs

The purpose of the next lemma is to derive estimates for 6, uniformly in a.
Lemma 2.2. For every acR" and 6, satisfying (2.1), we have:

i) 116,11, < AT*? with A = (VN/Aom);
ii) (16,1l < Td(T) with d(T) = (N/Ao)(I| f |l + TA(pAT + gM));
iii) |0, 1l < (N/ALI f Il + T*(pd*(T) + gAM + 1A%)].

~ T ~
Proof. Set 0,=(65,...,0%) and 6; = 0 + «, with [0;=0, k=1,...,N. We have:
0
N
gT Y Mjlicosa;+ cTay=I0) 2 1(6,). (2.3
=1

If 677 =0Vj=1,...,N then (i) is certainly valid. Assume 67;‘ #0 for some j, from
(2.3) we have:

T . N T ~ NT o
02-[A0)0,6,+g Y I;M;[(cos(6+a;)—cosa;)+ Zuj)f,-(?j-‘
0 =1 0 i=

N —

1 N . N ~ N ~
>§lo 26512 —g Y LMN050, — Y I fill 1051,
Jj=1 j=1 j=1

: Ao 4 T3/2
= uoa,nz(ﬁue,nz—%v).

Thus [|6,, < (Nv/Aom) T2
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In order to obtain (i) and (ii) notice that 6, satisfies:

+

d A . N .
E(M,~l}0§+k§1Mjlkljcos(ij—H:)Gﬁ+ Z Mklkljcos(Oi—Ojf)Oz)

k=j+1

izl .. N . .

k=j+1

N 3 .
=f;0+—= j[ZM iLsin (6% — 62)0265— Y Mklkljsin(():—e;)ogeg]

k=j+1
+—'gj‘Mjl}Sin07, j=l,...,N.

Thus droppmg the superscript a and denoting by (A(6)6); ; the j** component of the
vector A(6)f we obtain:

.o ‘ . . N . .
(A(ea)ea).’ = — kgl Mjljlk sSin (01 - Qk)ef + Z Mklklj sin (0)‘ - 01)0;% + f](t)

k=j+1

. 1 T . Tj-1 . ..

o'——.-q

N . .
k=j+

Set w(t) = w,(1),..., wN(t); so A(6,)8, = w. Hence
b0)= A~ 10 ™),

and therefore

. N
”9a||1§g”W||1-
So

j—1 T | N T | T . 1T .
k= k=]+1 1] 0 0

T N T . .
+Ifl+ Z M;L §|9k|I9 I+ Z+1Mklkljb(|9k1|9jl-

=J

Since
sin 0;(t) — jsm@ (s)ds <j|cos0 ||0 |<f||0 I, Vte[O0,T],

we conclude

izl N . . j-1
I W; = lej,1 kZ'1 [| 6 ”% + lj"j,z Z (| 6 ”% + ljvj,l I 0j ”2<kZ1 [| 6 ”2)

k=j+1

. N . .
SR P R A P A A PR AP

k=j+1
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( z 1613 + 116,11, Zl uéknz)+gM,~l,-ﬁn 0l + Tl £l
*k

%II

N . .
sz,vj<k;l neknz> + Ml /TI6il2 + T Sl
So by (i) we obtain
6, l|1=1 Z w ,Ill_ (Hfm+AT(pAT+gM))—Td(T)

and therefore

16,1l < 16,11, < Td(T).

To obtain (iii) we argue similarly, since

. N N
< w [ W,
”0”00 = )bo ” ”oo lojgl ” 1”00

and
N . .
1wl S Lv; X 1012 + M1 /T 1612 + nfjnmw,v,sz 16,116
=
N . . . 1y .
<1v; 3 162 + ML/ T, + 1 £l + vl "f”Z(F ) ||0k||2)
k=i k=i
<1y T2T) + /T 6;1,(M;l;g + Alv) + | f;ll. (by () and (ii)).
Thus:
o N
19l < 2=LIS o + T*(pd*(T) + gAM +24%)]. W
0
Set
L[ 9M 1 AT?
oA ==2-T [4 5+ 4 AN — (\/3+—12 ,
where 4; = max ljvjyl.
15jsN

A crucial result in our approach is given by

Proposition 2.1. Assume c¢(T)>0. For every acRY there exists a unique 0,eA,
satisfying (2.1),. Furthermore the map o — 0, is analytic and

0yt 20 =0, + 21k VkeZN.
We shall start with the following

. T
Lemma 2.3. For every e H with (0> < AT*? and veH with [v=0 we have
0

(IO, v) Z o(T) 1913 24
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Proof. Given 0=(0,,...,0y), v=(v,..., vy) and w=(w,...,wy)eH, straight-

forward calculations give:
T . T N j-1 . .
IO = _[ A0)0-v — f Y Y M;llsin(0;— 60;)(v; — v;)60,6;
~ &

N j-1 . TXN
; ; il;l;cos (6, — 0)(0 +ﬁi0j)—g£j;Mjljsin0jvj

Oty ohﬁﬂ

T
+[fo+c|oy, (2.5)
0
and
T T N j-1
(IZ(G)U,W):IA(G)&'W—I Z Z M;l;l;sin(6; — 6;)
0 0j=2i=1
Lw; — Wj)(éiéj + djéi) +(v; — vj)(wiéj + Wjéi)]
T N j—1
Sy ’Z M, 1,1;c0s (6; — 6,)6:6,(w; — w,)(v: — v))
0j=2i=
T N
—g[ Y, Mjlcos 0;v;w; = (I5(O), w). (2.6)
0j=1
Therefore:

(1;'(9)v,v)=f,4(0)o-z>— ff f M ;l;1;sin (6, — 0,)(v; — v;)(5,0; + ,0,)
0j=2i=1

N j—1 L. T N
Z Z Mjljl,-cos((},-—Oj)0i0j(v,-—vj)2—gg .Zl M;l;cos 0;v7
< & =

O'—-.'"!

-

j—1

N . .
lv I1Z- ; ;Mjl,-l.-[llv.-—U,-Ilw(llﬁillzllﬂ,-llz+Ilﬁjllzlloellz)

an

=1
J

. . M
+ lo;— o115 116:11.11011 .1 —gM _Zl llo;l13.
&
. T
Since |0, < AT*? and [v =0 we obtain:
o

2
HOE (ﬁ—g"f )nﬁn% 5 S MLLLAPT (oo + 1.7

+2AT%*(Jlv;]l o + 101l )N 6112 + 155112)]

A MT? AZT“ AT? <
=(ﬁ°—g )n o3 - ( \/3>JZZIZ(|IU||2+||U||2)2

. Ao gM AT? .
(N_T2[4 5+ 4, ANN — 1)(-\/~3+T)]>”v”% u

Lemma 2.4. Assume c(T)> 0. Let 0V + a, 62 + ac A, satisfy:
(09 + ) (00 — 6@) =0, i=1,2,
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and
169, < AT?, i=1,2.
Then 61 = 6@,
Proof. For 1€[0,1] set 6, =100+ (1 —1)0® + aeA, and v=6"Y — 6, Thus
fv=0 and 6,1, < AT*? Vze[0,1]. Define f(x) = 1.(6,), ve[0, 1]. Since f'(0)=

0
f'(1)=0 there exists 7o€(0,1) such that 0= (o) =(I"(6,)v,v) 2 (T) 5]} by
Lemma 2.3. By assumption ¢(T) > 0; consequently v=0. W

Proof of Proposition 2.1. The uniqueness of 6, is an immediate consequence of
T
Lemmata 2.2 and 2.4 since Vve H with v =0 we have I'(6,)v = 0. Consider the map
V]
F:R"x E-E

with

1T
F(a, 6) = I(0 + a)—?ZI{)(O-f- a),
0

T
where we recall E = {QEH: fo6= 0}.
0

Obviously F defines an analytic map between the given spaces. Now for aeR¥,
let , = 6° + « be the unique element of A, satisfying (2.1),. We have:
F(a, 02) =0,

and for every veE,
oF Y
w(a, po=1"(0 + av.

Hence by Lemma 2.3 and a standard application of the Fredholm alternative (from
(2.6) 1"(0) is self-adjoint) we conclude that (0F/d6)(a, 6°) defines an isomorphism
from E into E. So if we denote

Bp(a)= {ﬁ=(ﬂl"'-aBN)EIRN: _;1 |ai_ﬂj|2 <p2}a

by the implicit function theorem we have that for every o,€IR" there exists ¢ >0
and an analytic map o: B(a,) — E satisfying:

O.(aO) = an
and

0 = F(a, o(a)) = I'(x + o()) — %E I'(a+ o(2)) VaeB/ o).

In addition, since ||6,, ||, < AT*? for ¢ >0 small we may assume ||6(a)]|, < AT>?
for all e B,(a,). Hence by Lemma 2.4 we conclude o(2)=62. W
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Set
g(@)=Io(6,), aeR".
So g defines an analytic map and g(« + 2nk) = g(o) VkeZ¥, VacR”. Since
1(0,) = I )ey, . .., I(0,)en)
with ;=(0,0,...,1,0,...,0)eR"; it is readily verified that 6, is a critical point for

Jjt® component
I, if and only if « is a critical point for the function:

Gc(a) = Ic(ga) = g(a) + CTaN'

Thus 6, is a solution for (1), if and only if (0G./0a;)(®) =0V j=1,...,N.

As already observed in general, the fact that g always admits at least N + 1
critical points may have no influence on the number of critical points for G, even
for small c (see [6]).

What comes to help in our situation is the particular structure of g(x) = I(6,),
as we shall see in the next section.

3. A Generalized Version of Theorem 1

First of all, let us introduce the following notations:

1
L= max [, ¢;= min Az(—vklk+(N—2)ML>,

j=1,..N 12ksN-1 ﬁ

-1
c,= min g——* (—1——lkvk+(N—2)ML) (3.1)

/2

and
e(T) = d*(T) + pd*(T) 4+ gAM + 1A%,

Set (@) = I(0,)e;, j=1,...,N. Notice: #(a) = I5(0)e; Vj=1,...,N — 1. The main
ingredient in the proof of Theorem 1 is the following:

Proposition 3.1. Let f = f(t)eR" be a continuous T-periodic function such that

te_ AoM,
®: [1=0 Iflo<g7g " k=1...N.
If T satisfies
(M) o(T)>0 and T2<‘/_—3——;t;
24
M, N
(1), T2e(T) <% — 2| fll. Vk=1,...,N;
Vi Ao
A 2 ¢(T)ey(cy— T?)
2 L7 cl)ale,—17)
(M T(1+2\ﬁT) <D
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Then for every j=1,...,N — 1 there exists 2/ analytic maps y,:R" "7 >R/ with the
following properties:

(@) Y@ 15---s0n) =Pl g + 27k 4,0 0y + 27ky) Vksel,.s=j+ L...,N.
(i1) V(yk(ajﬂ, N Oy gsee,Oy) =0 V(ajﬂ,...,a,v)e]R"“’, k=1,...,27 and
r_l a.]

(iii) Range yeNRangey, + 2nZ! = & if k # h, where Rangey, + 2nZ’ = {y + 2nk:
yeRangey, and keZ’}.

Define
bj(a) = (It,:’(ga)eja ej) = ( S(Oa)ep ej)
aeR”, j=1,...,N
To obtain Proposition 3.1 we need some preliminary results. We shall start
with the following:

Lemma 3.1. Under the assumptions of Proposition 3.1, if for some k=1,...,N — 1,
oa=(ay,...,0y) satisfies

(@) axel — m,n), F(2) =0 and by(a) < 0; then a,e( — n/4,7/4), or
(b) 0.€[0,2m), % (x) =0 and b,(x) =0, then o, e(3n,3m).

Proof. Using (2.5) we have:

Tk T N .
0=F)=] Z M, 1, ];sin (62 — 62)620% — ( Z L sin (05 — 6%)076¢
0i 0 j=k+1
T k—1 T .
—gM,stmO“- —Ik[ngk sin02— Y M,J; [ 6262(sin 6% cos 6% — cos 67 sin 63)
0 i 0

i=1

N T
+ Y Ml [ 626%sin 6% cos 63 — sin 6% cos 6%)
ji=k+1 0
N T
+ Y Ml | 626%sin 0% cos 6% — sin 6% cos 6)
=%+ 0
T

= —1, [sin 9“[ng+ Z M, 16262 cos 6% + —(sm 026%))

0
N 3
+ Y Ml < 0° ﬁcos()‘}+E(0§‘sin9}‘)>:|= —l,‘gsin(?w:,

j=k+1

where
k-1 .. d .
i) =gM+ Y Mklj[ejf ﬁcose‘}+z(0‘}sm9§)]
i=1

N - d .
+ Y Mjl,-[O‘; icos07+d—t(0§sin0;)].

j=k+1

Similarly by (2.6) and analogous computations we obtain:

T
bi(@) = (I (B.)ew. &) = — i g cos 05y
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Claim. y¢(t) =0 for all teR.

Using the estimate of Lemma 2.2 we have:

k_l . 3 . ..
¥i(0) 2 gM,, ~j;l M (1051 1621 + 105115 + 1165 11.0)

N . I3 . X3
— Y M0 01656 + 110512 + 11621 ,,)
j=k+1
N . . . .o
2gM, —v, Zl(llejfllaoll@illm+ 16512 + 116511 )
i=

J*k
N . 2 N . . .e
; ng - vk(( 'Zl " 07 "oo) + ‘21 " 0:”00) = ng - vk( ” oa "30 + " oa ”co)
Jj= j=
N 242 2 2
ZgM, —v, /1—||f||o0 + T*(d*(T) + pd*(T) + gAM + AA4%) | >0
0
by assumption (T),. Now if F(a) =0 = b,(«), then
T R T R
{ sin (B + )y = 0 2 [ cos (6 + o)y, (32)
0 0

~ T ~
where 05 = 0; + «, and [ 6 = 0. Furthermore, by Lemma 2.2 and (T),, we have

0%, < /4. Arguing b§ contradiction assume for example that o, = /4. So by
(3.2) necessarily a, > m — n/4 = 3x, which in turn gives 0;‘,‘(t) > n/2 for all t. But since
Y¢>0, the second inequality in (3.2) requires &, >3n — /4 > contradicting
o€[ — m, 7). A similar argument shows that o, > — /4. Analogously, if we assume
Fi(@) =0 < b () and o, €[0, 2w), then from

T T -
Jsin(@-+ Wi =0 [oos @ +a¥i and 107l < z

one easily gets a,e(3n,3n). W

Lemma 3.2. Under the assumptions of Proposition 3.1, if for some 1 <r £ N we have:
S 0)=0,b; ()20 (=0) with 1S jSN—1lands=1,...,r, then

(I”(G Z Tj,€j. Z 1€ 1;) 2 Tcy(c,— T?) ; 2 <§ —Tcey(c, — T?) Zl t})

Proof. First of all notice that if

T ~

= ~lk<cosakj51n0k¢k+s1nakjcos0 z//k), ISkEN-1,
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then for a, # /2 + hn, heZ, we have

T N T ~ T ~
bw)=—1 [ cos(Of + )5 = — l,‘<cos o | cos 05z —sinay [ sin Bzd/:)
0 0 (V]

= jcosH

cosoy b
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Thus if b(«) 20, by Lemma 3.1 we have «, + 2nhe(3n,3n) for some heZ, which

implies:
by() = \/. j vidt = \/, gM,, — v A2T?).
Similarly, if b,(x) £ 0, then a, + 2rnhe(— n/4, n/4) for some heZ and
bl £ - ﬁ‘\/—g(gM,, — v, A2T?).
Next observe that if p > k by (2.6) we get:
[UI2(0,)ep e)| = IMLL chos 05— 0“)0“0"| <M, ILAT?.

Thus if b; (1) 20= %, (x), s=1,...,r, using (3.3) we obtain:

(12’(0(1) le Tjs ejs’ s=21 Tjsejs)

-

= Z AJACIRS Z TJsTJp(I”(g‘l)er e;,)

v

%lﬂ

[

s=

Y t2l.(gM;, — vjsAsz)-—ZAzMLTapsZ 5175,
s<p

v

T

s

M-

1 A?
) (ﬁgljijs - T2<7.2‘ljsvj's + AZML(r - 1)))‘[};5
2¢;T(c,—T? Zl 2

and T? < ¢, by (T),.

Similarly in case b; (2) £ 0= (a), s=1,...,r, by (3.4) we conclude:

<1 (6, s; Tj,€j s; T ejs>

=< sZ1 b; ()2 +2A*MLT? . pz= . |7l 7;
b<p

(3.3)

34
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II/\

L(gM;, — v, A*T2)t2 — 24°MLT?® Y |r,.sur,pp>
=1

( \/' Js s Js
s,p
s<p
r
S —Tey(c,— T?) 21 7. M
s=

Lemma 3.3. Under the assumptions of Proposition 3.1, if v=(v,,...,05)€H and
aeRY satisfy:

(i) j oy=0;

(ii) 9’ (@) =0and b (oz) = 0 whenever _[ v; #0. Then (I7(6,)v, v) = 0 and equality occurs
if and only if v=

Proof. If j v;=0forall j=1,..., N, the claim follows by Lemma 2.3. Hence assume
V]
that there exists ji,..., j,€{l,.. — 1} such that fuk #0<k = j; for some

s=1,...,r. Write v =0 + e, where jv—O and e= Z 1;,¢;, for some 7; eRR.

For every k=1,...,N and ae]R" we have:

N . . . .
IIZ(0)0, e)| = vily ,; LB 1206 ll2 + 110512115l 2 + 1051 16kl (1185110 + 185l )]
Jj#k

S AT (6], + AT (N = D18]l.)

AZTZ
évklkAT3/2(1+ )“')“2
2\/5

Thus using Lemmata 2.3 and 3.2 we conclude

(I (0,)v, v) = (I:(6,)0, 6) + 2 Z 7, (0,)0,¢;) + (I (6,)e, €)
s=1

2c(T)|I5)3 —2/1AT3’2<1 + A2T2)< i |t; |)||13||
= 2 2\/3 =4 Js 2

¢, T(c, r
+T_—( Z | ,s> . (3.5)

Since by (T)s,

dMerle, =T /12A2T2(1 + A2T2>2,
N-1 2\/§
we get that the right-hand side (3.5) is non-negative and vanishes if and only if
#=0and 7, =0foralls=1,...,r.. W

Lemma 3.4. Under the assumptions of Proposition 3.1, let v = (v,,...,vy)eH, aeRY
and ke{l,...,N} satisfy:
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(i) Fia)=0forallj=1,....k—1.
T

(i) [o,=1,I/@6)v,e)=0 forallj=1,...,k—1 and (I.(0,)v, e,) = (I.(6,)v, v).
0

We have:
if (I7(0,)v,0) <0 (=0), then b(a) <0 (>0)
and (I7(0,)v,v) <0 (> 0).
T
Proof. If bj(x) = 0 whenever [ v; # 0 then by Lemmata 3.1 and 3.3 we have b (@) >0
0

for all such j’s and (I (6,)v, v) > 0 since v # 0. Hence assume there exists p = 1 and
iy <. <i,e{l,...,k} such that b(x) <0 if and only if j =i for some s=1,...,p.
T

)4
Write v =6 + e, where 6 = (0,,...,0,) satisfies j 0,=0,s=1,...,pand e= Z 7,8,
for some 7; eR. 0 s=1
It is enough to show that:

if i,<k—1 then (I;(6,)v,v)>0 and
if i,=k then (I7(6,)v,v)<O.

T
Assume i, <k — 1, then 6 # 0 since | #, =1 and
0
P
(I20,)v,0) = (I{(0,)0,0) + 2 Y. 7, (I{(8,), ;) + (I7(8,)e, e)
s=1

—(0)8,0)+2 3 1, (I(0,)0,e,) — (I1(6,)e, )
s=1

= (L85, 8) — (I:(6,)e, &) > O,
since by (ii), (I{(0,)v,e;,)=0 for all s=1,...,p and (I{(6,)0,0) > 0= (I/(6,)e, e) by
Lemmata 3.3 and 3.2. If i, =k, then 7; =1 and
P
(I2(6.)v, €) = (I(0:)8,8) + 2 3, 7,(I(0,)v, €,,) — (IZ(6a)e, )
s=1

=(I(8.)9,0) + 2(I{(B)v, &) — (I1(8,)e, €)
which gives
—(I(6,)v,v) = — (I{(6,)v,¢,) = (I/(0,)0,6) — (I{(6,)e,e) >0. W
We are finally ready to give the
Proof of Proposition 3.1. We shall use an induction procedure.

Step 1 (j=1). In this step we shall construct two analytic maps y,,y,:R" "1 >R
satisfying (i)—(iii). More precisely, we shall obtain the following

Claim. For every (a,,...,oy)€RY ! there exist unique y* = y*(a,,...,05)e[ — 7, )
and y~ =y~ (a,,...,0y)€[0,2n) such that

g, 0, o) =max g(y, ay,. .., ay)
7



514 G. Tarantello

and
gy~ ay,...,ay) =ming(y, ay,...,ay)
b4

(Recall g(a) = I4(6,)). Furthermore, the map («5,...,ay) = y*(a,,...,ay) is analytic,
Y@y + 271ks, . oy + 21ky) = Y2 (ay, ..., ay) for all k;€Z, j=2,...,N and
Rangey* nRangey™ + 2nZ = (.

So the conclusion will follow by taking y,(x,,...,0x)=79%(x3,...,y) and
P20, an) =77 (g, ..., 0y).
Proof of Claim. We shall start by showing that if

2
ao=(a),...,a9)eRY satisfies ale[0,2n), %(ao) =0 ga_g(%)’
1 1

then afe(3n,3n) and necessarily (629/6a2)(a0) > 0. To see this, notice that

dg , o _
0= St = L0 5E| = L) = #1(a0)
and
00 d%g a0,
(6. )— 79 — ” .
(ko] e)-Tteo- (o0l 2 )

Letting v = 00,/0a, |,-,, we have that v satisfies the assumptions of Lemma 3.4
with k=1. So the conclusion easily follows with the help of Lemma 3.1.
A similar argument shows that if afe[ —n, =), (9g/0a;)(eo)= 0= (0%g/0a?)(ato)
then ofe(—n/4,n/4) and (8°g/da?)(x) <0. These two facts readily imply that
if y0€[0,2n) and (8g/00;)(Yg>%2,- .., 0y) = 0 < (0%g/00?)(7g, %3, ..., %y), then neces-
sarily yo=7"(a3,...,0y). Similarly if yoe[—m,m), (6g/6a1)(y0, 0yy...sty) =02
(0%9/002) (g %25 - - ., 0y), then yo =y* (a3, ..., ay). Thus y*(a,,...,ay) is unique.

Let (a3,...,a%)eRN ! be fixed. Set & =y*(a3,...,a3) and oF = (y5,a3,...,0%)e
R™. By the previous observations we know that y§ e(— n/4,n/4), y5 €(3n,3n) and
(0%g/00?)(ag ) < 0 < (92g/0a?)(g ). Furthermore, (0g/da, )(x3 ) = 0, so by the implicit
function theorem, there exist ¢ >0 and analytic curves:

Y B (aS,...,a%) > [—m,7)
Y :B(aS,...,a9%)—[0,2n),

satisfying
(.0 oy_.+ 909 4 —
l// (aZ,“-saN)_yO’ ﬁ(ll’ (aZa“-’aN)aaZr“aaN)"O
1
and
d%g d%g

W(l//"(az,...,ocN),ozz,...,ocN)<0<@(l//'(a2,...,ozN),ocz,...,aN)
1

for all (a,...,ay)eB,(a3,...,a%). Thus necessarily, Y *(a,,...,oy) = y%(as,...,ay),
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y*(ay,...,ay)e(—n/4,7/4) and y~(ay,...,oay)e(3n, 37). This concludes the proof of
Step 1.

Step 2 (jE=>j+1). Assume that for 1 <j< N —2 we have 2/ analytic maps
7RV />R satisfying (i)—(iii). Set G4 1505 0n) = GO0 15+ - aN),ij+ 1re+ 0 ON)-
Hence g, is analytic and 2n-periodic in each variable for all k = 1,...,2’. Analogous
to the previous step we are done once we obtain the following:

Claim. For every o;. ,,...,aneRN"U*D there exist unique v () ,,...,oay)e[ — m,m)
and y; (%4 2,...,0y)€[0, 27) satisfying

gk()’l:r(“ﬁz, s 0), Xjt 250t ,ay) = ms’-x gy, Ojt2see- ,0y)

and
gk()’k_(“jn’ s 0y), Ujy2sennsOy) = myin k(1> %jg 250, 0y).
Furthermore the map (j,,...,ay) =>P5(tj42,...,0y) is analytic, yF(oj4,+
2nk; s 5. .. 0y + 21ky) =y * (4 2,...,0ty) and
Rangey, nRangey, +2nZ = forall k=1,...,2.
Indeed, to conclude will be enough to take §:IR¥"U*V 5 R/*! with

())k(y:(aj+2"-',aN)’aj+2a"',aN)$Y:(aj+2"~~,aN))
if 15k<g2)
(yk—zi(yk——Zi(aj+2"'~’aN)’“j+2""’aN)’yk——zf(“j+2a""aN))'
if 2<k<2i*t

?k(“ﬁz’ ceOy) =

In fact, since y, satisfies (i)—(iii) for all k = 1,..., 2/, it is easily verified that §, defines
an analytic map and satisfies (i)—(iii) for all k=1,...,2/*1,

Proof of the Claim. As before we see that if (o), ,,...,ay)eR" 7 satisfies

0%gu
(a?-i-l"“’ag):()éaaz (a})+13'-~’a2’),
j+1

0g;
aO‘j+ 1

a})+ 1 € [09 27[)’

then of, ; e@n,37) and (0%g,/00}+ )00+ - .., o) >0. Indeed, set oy = (y(af+ 1, - -, AR )
@ y,...,af)eRY; by (i) we have ,(a)=0 for all r=1,...,j and for y,=
P15+ 5 Vi jhs

0gy
0= i Lseees
FE (%41 ay)
i 30 M, a6
~ 10 T P00, 1,y 08) + £t
( ao)(p;l aap a=aoaaj+l(aj+l9 aN)‘*iaaj*-l a=ao>
=I’(0¢0)ej+1 =<7j+1(0(0).
Set
L Oy o 0y 9% 00,
V= rammmnd (* XSS TR 4 .
le aaj+1 Ak N)a pla=ao aaj+1 a=ag
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T
We have: [v;,, =1, #(ao)=0forallr=1,...,j+1 and
0

n 62
(I Oug)0. €501 = 52 (01 11--,98) = ('O, 0) 2.
j+1
So Lemma 3.4 applies to v and o, with k= j+ 1 and together with Lemma 3.1
gives a?,  €(3n,3n) and
0%g,

=5 (%4 q,...,08)>0.
0ofyy

Similarly we see that if a;, €[ — 7, 7),

gy 0%g,
m(ajﬂ,...,a,v)=Og£?—:(otjﬂ,...,a~),

then o, ,e(—n/4,7/4) and (0%g/0a}, )@y, .., ay) <O. These two facts readily
give uniqueness for yF (@, y,...,ay) for all (@), y,...,ay)eRY % More precisely if
v€[0,2n),

0gi 0%g,

V('y’aj+la""aN)=O§F(y’aj+la'--aaN),
j+1 i+ 1

then y =y, (¢4 2,...,2y); and if ye[ — n, m),
gy 29,
Py O g 2p e ON) =0 = (9,0 4 25+ -+ 5 ),
aaj+1(y j+2 N) 50(1?“(}) j+2 N)

then y =y (@4 2,..., o).

As for the previous step, these observations together with the implicit function
theorem (applied to dg,/00;,, near each (y*(oj44,...,0n), %4 2,...,0y)ERN )
yields the conclusions. H

By means of Proposition 3.1 we obtain the following stronger version of
Theorem 1.

Theorem 2. Iffand T satisfy the assumptions of Proposition 3.1, then the conclusion
of Theorem 1 holds.

Proof. Proposition 3.1 with j= N —1 gives 2V~! analytic curves y,:R >RV,
k=1,...,2%! with the properties:

(1) £(y(x),7)=0for all teR; r=1,...,.N—1and k=1,...,27 " 1;
(2) 7:(t + 27p) = y,(7) for all 1,peZ and k=1,...,28 "1,
(3) if k # h then Rangey, nRangey, + 2nZ" ! = (.

Set 6,(7) = (y,(t), 1)eR" and define the 2n-periodic analytic function h,:IR > IR by

1,
hy(t) = T O(eak(t))eN'
Since

1
c—h(t)= ?yn](ak(f)),
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we have that 6, is a critical point for I, (i.e. a solution for (1),) if and only if there
exists ke{l1,...,2Y7 !} and teR such that a = g,(r) and h,(t) =c. Set d, = minh,

and D, = max h,. It is easy to check that h,(n/4) <0 < h,(3n), so d, <0 < D, for all

k=1,...,2%" 1. Therefore if ce(ﬁk,ﬁk) by the 2n-periodicity of h, we obtain

More generally, if ce ﬂ (dk ,Dk ) for some p 2 1, then there exist 7, #1 ,€

[0,2n) with the property h,, (t,)=c, i=1,2and j=1,...,p. From property (3)
above we know that for j #r, akj(r,‘”) # 0y, (y,,) + 2nk for all Z", i,s =1,2. So we
obtain 2p distinct solutions for (1), in this situation.

Let iy,...,i;v-1 and iy,...,i5~-1 permutations of {1,...,2¥ 71} such that

d,<--<d,, <0<D, <. <D;.

11_

Set d,=d, and Dk—D, Jk=1,...,2¥" 1 If ce(d;,D;) for j=1,...,2"", then
ce(dy, D,) for every k=1,...,j. Therefore by the previous observations it is easy
to obtain 2j distinct soluuons for (1), in this case.

If c=dj=-=d;,,_, with 1<r<2""!'—j our argument readily gives r
distinct solutions for (1),. Furthermore, if j=2 then ce(d;-,,0)=(d;-,,D;-,)
from which we obtain another 2(j—1) additional solutions. The case
c=D;=--=D;,_;,1<r<2¥"'— jfollows similarly. W

Now Theorem 1 is an easy consequence of Theorem 2, since the conditions
(T)4,...,(T); are surely satisfied as T+—0.
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