
Communications in
Commun. Math. Phys. 132, 499-517 (1990) Mathematical

Physics
© Springer-Verlag 1990

Multiple Forced Oscillations for the TV-Pendulum Equation

Gabriella Tarantello*
Department of Mathematics, University of California, Berkeley, California 94720, USA

Abstract. We consider the periodically forced ΛΓ-pendulum equation. Forced
oscillations are obtained, and their multiplicity is studied in terms of the mean
value of the forcing term.

Introduction
N

Let niiJi be positive constants, ί=l , . . . , JV, and set Λ / / = £ mf, j= l , . . . ,Λf. If
θ = (Θl9 . . . , ΘN), ζ = (ξl9..., UeRN> then the Lagrangian ''=''

,t)=l- Σ Mmax^ )/;^
^ί j=l j = l j = l

(g = constant of gravitation)

corresponds to the mechanical system of N coplanar penduli with masses mfc,
length lk subject to the forcing terms fk = fk(t\ k = 1, . . . , N. (Here θk is the angle
of the fc-pendulum with the vertical.) As is well known, the corresponding
equations of motion are:

d dy d<£~— (0,0,ί)-— (0,0,0 = 0, j = ι,...,N. (o.i)

Assuming the forcing terms are T-periodic (i.e. fk(t + T) = fk(t) Vί eR V f c = 1, . . . , N)
we are interested in finding T-periodic solutions for (0.1).

Notice that this problem admits a natural ZN symmetry, in the sense that if
θ = 0(ί) is a T-periodic solution for (0.1) so is θ(t) + 2πk VfceZN. Therefore we shall
call distinct the solutions of (0.1) whose difference does not belong to 2πZN:= {2πk
V/ceZN}. As pointed out by many authors (e.g. [5,3, 1]), if the forcing terms fk

T
have zero mean value (i.e. J fk = 0, fe = 1, . . . , N) then this symmetry is preserved

by the variational principle associated to (0.1). Namely, T-periodic solutions of
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(0.1) correspond to critical points of a suitable functional (bounded from below)
well defined in the Hubert manifold M = TN x £, where TN is the N-dimensional
torus and

Hence by means of the Ljusternik-Schnirelman theory, the rich topology of
T

M guarantees that problem (0.1) with J/ f c = 0 admits at least N + 1 (=1 +cup

length TN) Γ-periodic solutions (see [4] and [5]).
In addition, if all the Γ-periodic solutions of (0.1) are "nondegenerate," then

by Morse theory one obtains the existence of at least 2N ( = sum of Betti numbers
of TN) of them (see e.g. [2]).

However, Fournier-Willem [3] for the double pendulum and subsequently
Chang-Long-Zehnder [1] for the N-pendulum have pointed out that if reasonable
conditions are satisfied by the data then it is always possible to guarantee 2N

distinct T-periodic solutions for (0.1).
The purpose of this note is to give an appropriate extension of this result to

the case of forcing terms whose mean value is not necessarily equal to zero. This
new situation appears much more delicate since Eqs. (0.1) impose strong restrictions
on these mean values. In fact, summing up Eqs. (0.1) and integrating in [0, Γ] one
easily sees that a necessary condition for (0.1) to have a T-periodic solution is that
there exists τfce[0, 2π), k = 1, . . . , N, such that

(0.2)
k=l

In particular, the sum of the mean values of the fks cannot be arbitrarily large.
Here we shall treat the case where only one of the forcing terms, say fN, is not

restricted to have mean value zero. Thus given fj =//(ί) Γ-periodic functions with

J fj = 0,y = 1, . . . , N and ceR; after performing explicit calculations in (0.1), we are

led to the following problem:

fc=l
Mklkljcos(θk-θj)θk

θk)θkθJ- Mklkl}sm(θk-θj)θkθj
k=l k=j+ί

and

^-(MN12

NΘN + Y MNlNlk cos (ΘN - ΘM + Y MNlNlk sin (ΘN - θk)θkθj
αt\ k=ι ] k=ι

+ gMNlN sin ΘN = fN(t) + c; 0(0) = 0(Γ); 0(0) = Θ(T).

Notice that the variational principle associated to (l)c with c ̂ 0 gives rise to an
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unbounded functional multivalued in M = TN x E (unlike the case c = 0). So
Ljusternick-Schnirelman type arguments as employed in [5, 1 and 3] cannot be
applied any longer.

Our approach instead consists in reducing (l)c to a finite-dimensional variational
problem. More precisely, we shall see how to obtain solutions for (l)c once we
obtain critical points of a smooth function of the type:

Ge(θl9...9θN) = g(θl9...9θN) + cθN (0.3)

with 0(0 + 2πfc) = g(θ) V/ceZ*.
Thus by exploiting the special structure of g, roughly speaking, we shall

prove that if H/JI^ is not too large (see condition (f)ί below) (fc=l,. . . ,N),
then there exists Γ* > 0 such that for every 0 < T < Γ* there exist constants
άγ ^ ^ d2N- 1 < 0 < D2N- 1 ̂  ^ D! with the following property:

i) ifce(dj,Dj) for some; = l,...,2Λ f~1N>(l) c admits at least 2j distinct solutions;
ii) iϊc = dj= •• =dj+r-l9 1 ̂ j + r<^2N~1 and for 7 > 1, c> £/,_!*=>(!),. admits at
least 2(j — 1) + r distinct solutions;
iii) if c = DJ= ••• = /);+,.-! and for; > 1, c < D^ N>(l)c admits at least 2(j - 1) + r
distinct solutions.

Such restrictions on c were expected by (0.2).
In conclusion, we point out that the problem of finding critical points for

functions of the type (0.3) is interesting by itself. Various interesting phenomena
were observed in [6]. For example, despite the fact that g always admits at least
N + 1 critical points, it may still happen that g(θί9...,θN) + cθN has no critical
points for every c φ 0. We refer to [6] for concrete examples and further discussions.

1. Statement of the Result

Given θ = (θ1,...,θN)eRΛΓ, set aiJ(θ) = liljMmaκ(iJ)cos(θi-θj\ ίj= 1,...,N. Thus
A = A(θ) = (<iitj(θ))i,j= ι,...,jv defines a symmetric positive definite N x N matrix, and
for 0,£eRN, feR we have:

3>(θ,ξ9t) = ±A(θ)ξ'ξ + g X MjljCQ*θj+f(t) θ9
7=1

where f(i) = (fι(t\ . . . ,fn(t)) and denotes the usual scalar product in RN.
Let λ0 > 0 be the ellipticity constant for A(θ\ i.e

Introduce

fo
[Mj max lk 2^j^N'

0 j = N

max Mklk l g ^N-1'

and denote with II II „ the L°° norm. We obtain
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Theorem 1. Let f(t) = (/Ί(ί), - - »/#(*) be a continuous T-perίodic function with

(f)ι

There exists Γ*>0 (depending on mi9lhfi9 i= 1,...,N) siicA ί/zαί ι/0< T< T*,
di ^ -•• ^d2N-ι <Q<D2N-ι g ••• g D j wif/i the following property:

i) ϊ/ce(rf7 ,D7 )N>(l)c admits at least 2j distinct solutions;
ii) ifc = dj= - = dj+r-ι and for j> 1, odj-iN^il),. admits aί /easί 2(;- 1) + r
distinct solutions;
iii) ifc = Dj = ~ = Dj+r-ί and for j > 1, c < />,._ t =>(l)c arfmiίs aί kasί 2(; - 1) + r
distinct solutions.

To be precise we shall obtain a slightly more general version of Theorem 1 (see
Theorem 2) where the assumption 0 < T < T* is replaced by more general condition
involving mk,lk9fk and T(see (T)i9(T)2 and (T)3). From those conditions T* can
be explicitly estimated. Similar conditions were introduced in [1 and 3].

In fact, when c = 0, our result reduces to those obtained in [1 and 3], with the
difference that while we require (f)1? our mt and ίf are basically unrestricted unlike
in [1 and 3].

2. Variational Formulation in 1R"

Define the Hubert space:

H = {θ = (Θ19 . . . , ΘN): θjeH^lQ, Γ]); 0, (0) = 0,.(Γ), j = 1, . . . , N}

equipped with the scalar product

o

If θεH and 1 ̂  p g oo denote by

1/PN /T

l |β||p= Σ llβ* l i p with \\θk\\p= J |
*=1 \0

T

Given f(t) = (/ ί̂), . . . ,/jv(0) with J / = 0 and ceR define the functional IC:H

°
as follows

Straightforward calculations show that for every seN, Ic is s-time Frechet
differentiable. Furthermore, critical points of Ic are solutions for (l)c and vice versa.
Notice that if c ̂  0, Ic is unbounded in H and

V0£/f and k = ( k ί 9 . . . , kN)εZN. Hence Ic is multivalued in M = TN x E.
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For every α = (α l9...,α^eN define:

1 ? Λ

Notice that Ic is bounded from below in AΛ. We have

Lemma 2.1. For every αeRN there exists θΛeΛΛ such that

/0(θα)=inf/0(0). (2.1)
ee\

Furthermore IC(ΘΛ) = /0(0α) + cTαN = inf /c(θ).
\

Proof. Obvious modifications of the arguments given in [1 and 3] show that /0

satisfies the Palais-Smale (PS) condition in Λa. The conclusion then follows by
standard arguments. (See Lemata 1.1 and 1.2 of [6].)

Set

N

P = Σ hvj> λ = max hvρ M = max ljMj
7=1 lϊJ^N IZjϊN

and

v = max (gMjlj+ \\fj\\J. (2.2)

The purpose of the next lemma is to derive estimates for θx uniformly in α.

Lemma 2.2. For every αelR* and θx satisfying (2.1)x we have:

i) || 0α || 2 <A T3'2 with A = (vN/λ0π);
ii) || θx || β g Γt/(Γ) w/ίfc d(T) = (ΛΓ/Λ0)( ||/ 1| „ + TA(pAT + gM));

"0 II θx || <„ g (Λf/λo)[ || / IL + T2(pd2(T) + gAM

Proof. Set ΘΛ = (&[, . . . , θf,) and θ? = θ*k + αfc with f ΘJ = 0, k = 1, . . . , N. We have:

0Γ £ M / COS α, + cTaN = /c(α) ̂  /c(0α). (2.3)
j=ι

If 0" = 0 Vy'= l , . . . ,yv then (/) is certainly valid. Assume 0" ̂ 0 for some 7, from
(2.3) we have:

Σ / J Af(cos(^-hα J )-cosα j )4 Σ f
j = l 0 j = 1 0

^o Σ l l^ l l 2 -^ Σ W^Hi- Σ II Λ II
^ J = l ./=! J = l

Thus\\θ,\\2<(NV/λ0π)T3'2.
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In order to obtain (i) and (ii) notice that θa satisfies:

j-l N

k j+ 1

j l j j sin (θj - ΘQOiή - Mklklj sin (0? - 0J)0?0? + gMjlj sin βj

v*^W-fiW- Σ W*'j8in(flί-βJ)βίβί

Thus dropping the superscript α and denoting by (A(θ)θ)j the/h component of the
vector A(Θ)S we obtain:

si
k=j+l

\ T T j - i
ij *ιn Vj — —g] Mjlj sin θj H— J £

J 0 Ok=l

-if Σ MJJjsinφ.-θjAθj .^Wjit).
I O f c = j + l

Set w(ί) = w^ί), .., wN(ί); so A(ΘΛ)ΘΛ = w. Hence

'k/k/jsinίβfc-β^-j-/^)

MjlkljSm(θj-θk)θkθj

and therefore

So

w, L s
N Γ

k = j + l 0

-f 'Σ M,/,/, f ι
fc=ι o

Σk=j+ι

Since

1 Γ

sin ^(ί) - — J sin θj(s)ds

we conclude

I»;1SV,,|;

JV

i Σ
Λ = / + l

1 ϊ

Vίe[0,n

\\όk2

\\fi\\
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IIM^

fc=l

So by (i) we obtain

N N NT

and therefore

\\θΛ\\*^\\θ

To obtain (iii) we argue similarly, since

and

N

°° ~~ J* = ι

ijij^θj^ + Wji^ + ijVj^

^ ljVjT2d2(T) + TT II θj I I 2 ( M j l j g + Λ/, v, ) + || /;1|„ (by (i) and (ii)).

Thus:

Set

where A! = max //v^.

A crucial result in our approach is given by

Proposition 2.1. Assume c(T) > 0. For every αeRN there exists a unique θaeΛa

satisfying (2.1)Λ. Furthermore the map α->0α is analytic and

θΛ+2πk = ΘΛ + 2πk VfceZN.

We shall start with the following

r
Lemma 2.3. For every θeH with \\θ\\2 ^AT3/2 and veH with \v = 0 we have

(Γe(β)v9Ό)^c(T}\\v\\l (2.4)



506 G. Tarantello

Proof. Given θ = (θi,...,9N), v = (υ^..., VN) and w = (w1,...,wN)e/f, straight-
forward calculations give:

j = 2 i = l

Σ JΣMJlilicos(θi-θjWiύ; + ύJj)-β] Σ
j = 2 i = l 0.7=1

+ {/ » + φN, (2.5)

and

(/;(0K W) = ]A(θ)v w-] Σ 'Σ M^sin^-β,.)
0 O y = 2 i = l

• [(W; - Wj)(0|fy + Vjθi) + (», - υjHvV fl; + W

- f Σ Σ MjUiCOsφt-θλJ L~ι Z-i jv i v v l )'
0 j = 2 i = l

T N

~~0f Σ MjljCθsθjVjWj = (lQ(θ)υ9w). (2.6)

Therefore:

T T N j-l

0 0 j =2 i =ί J J l J l J l J J

~ } Σ 'Σ MM cos (θt - βtfflfa - vj)2 -9ΪΣ
0 j=2i=l 0 j = l

^^o Σ II^IH- Σ ϊ A f y / ^ C I I ^ - ^ l l o o ί l l ί i l l z l l β j
j = l j=2i=ί

\\vj\\l

Since || θ \\2 ^ ̂ T3/2 and f v = 0 we obtain:

2

l l i -.Σ .Σ Mjiji^r^vt IL + i

2A Γ3/2( || 0| |

Lemma 2.4. Assume c(T) > 0. Let 0*1' + α, 0<2> + αe/lα sαίί's/>:

/'(6»(ί) + αXfl*1' - θ(2)) = 0, i = 1, 2,
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and

Proof. For τe[0,l] set 0t = τ0(1) + (l -τ)0(2) + αe/tα and v = θ(1)-θ(2\ Thus

Jt; = 0 and ||0τ||2 ̂  AT3'2 Vτe[0,l]. Define /(τ) = lc(θτ\ τe[0,l]. Since /'(0) =

//(1) = 0 there exists τ0e(0,l) such that 0 = f"(τ0) = (Γ(θτo)v, v)^c(T) \\v\\2 by
Lemma 2.3. By assumption c(T) > 0; consequently v = 0.

Proof of Proposition 2.1. The uniqueness of ΘΛ is an immediate consequence of
T

Lemmata 2.2 and 2.4 since V t e/f with J t; = 0 we have Γ(θΛ)v = 0. Consider the map
o

with

T

where we recall E = { θeH: J θ = I
o

Obviously F defines an analytic map between the given spaces. Now for αeRN,
let ΘΛ = θ% + α be the unique element of Λα satisfying (2.1)α. We have:

and for every t;e£,

—

Hence by Lemma 2.3 and a standard application of the Fredholm alternative (from
(2.6) Γ(θ) is self-adjoint) we conclude that (dF/dθ)(a,θ°) defines an isomorphism
from E into E. So if we denote

X \*i-βj\
2<P

2

j-i J
by the implicit function theorem we have that for every α0eRΛ there exists ε > 0
and an analytic map σ:£ε(α0)->£ satisfying:

and

0 = F(α, σ(α)) = /'(α + σ(α)) - 1 J /'(α + σ(α)) VαeBε(α0).

In addition, since || ΘΛQ \\2 <AT312 for ε > 0 small we may assume || σ(α) ||2 ̂
for all αe#ε(α0). Hence by Lemma 2.4 we conclude σ(α) = θ° .
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Set

So g defines an analytic map and g(u + 2πfc) = 0(α) VkeZN, VaeRN. Since

with βj f = (0, 0, . . . , 1, 0, . . . , 0)eRN; it is readily verified that ΘΛ is a critical point for

7th component

Ic if and only if α is a critical point for the function:

Thus ΘΛ is a solution for (l)c if and only if (3Gc/dα,)(α) = 0 V; = 1, . . . , N.
As already observed in general, the fact that g always admits at least N + 1

critical points may have no influence on the number of critical points for Gc even
for small c (see [6]).

What comes to help in our situation is the particular structure of g(a) = I0(θa),
as we shall see in the next section.

3. A Generalized Version of Theorem 1

First of all, let us introduce the following notations:

L = max /,, cl = min A2\—= vklk + (N- 2)ML ),

= m i n g l k V k + (N-2)ML (3.1)
2 /

and

e(T) = d2(T) + pd2(T) + gAM + λA2.

Set .̂(α) = Γc(θx)ep j=l,...,N. Notice: 5"/α) = /'0(fl)βj V; = 1,...,N - 1. The main
ingredient in the proof of Theorem 1 is the following:

Proposition 3.1. Let / = /(ί)eRiy be a continuous T-periodic function such that

(f)ι J/ = 0, \\f\\x<9^~, k=l,...,N.
o ^v*

// T satisfies

(T)! c(Γ)>0 and T2<^f;

(T)2 TΓ2-,™ ^M, N

(T)s Γ2(l+—.TM<
A2^2(N-1) '
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Then for every j = 1, . . . , N — 1 there exists 2j analytic maps yk:JSLN~j->Ήίj with the
following properties:

(i) yk(α, + !, . . . , αN) = γk(aj+ ί + 2πkj+l9. . . , αN + 2πfcN) VfcseZ, s = j + 1, . . . , N.
(n) Ser(γk(uJ+l9...9xN\ΛJ+l9...9aN) = 0 V(aJ+l9...9κN)eKN-J

9 k=l9...92
J and

(iii) Range yk n Range yfc + 2πZj = 0 if k φ h, where Range γh + 2πZj = {y + 2πfc:
ye Range yΛ and keZJ}.

Define

To obtain Proposition 3.1 we need some preliminary results. We shall start
with the following:

Lemma 3.1. Under the assumptions of Proposition 3.1, if for some k = 1, . . . , N — 1,
α = (QLI , . . . , OLN) satisfies

(a) αke[ - π, π), <9^(α) = 0 and bk(a) ̂  0; ί/ien afce( - π/4, π/4), or
(b) aΛe[0, 2π), ̂ λ(a) = 0 and bk(a) ̂  0,

. Using (2.5) we have:

*
0 = <n(α) = J Σ M,/,/,. sin (0? - ΘQΘfόί - M,/,/, sin (flj - βj)^

0 i=l 0 j = fc+l

- gMklk ] sin 0J = - J j ^M k sin 0J - £ M fc/£ J 0f 0ϊ(sin 0f cos flj - cos θf sin flj)

-h X Mjlj J βjβjίsin β? cos θ*k - sin 0? cos 0J)
j = k + l 0

+ Σ Af^
j = k + l

= -/k JsinβJ
o [_

where

*χ M k/ί Off cos 0J + ̂  (0J sin 0J)1

-h L M

Similarly by (2.6) and analogous computations we obtain:
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Claim, ψftt) ^ 0 for all ίeR.

Using the estimate of Lemma 2.2 we have:

^ gMk - *Σ Mfc/χ || ffj || « || flj || β + II ίj II i 4- 1| flj ||J

- Σ
/=*+

Σ ll^l |
j=l

^ gMk - v J£ || / 1| „ + T2(d2(T) + pd2(T) + gAM + λΛ2)\ > 0

by assumption (T)2. Now if £fk(&) = 0 ̂  fcfc(α), then

J sin (θ -f αk)ιAί = 0 ̂  J cos (ffj + αfc)ιK, (3.2)
0 0

where 0£ = 0£ + αfc and }0ί = 0. Furthermore, by Lemma 2.2 and (T)1} we have

II 0? II oo < π/4 Arguing by contradiction, assume for example that αk ̂  π/4. So by
(3.2) necessarily αλ > π — π/4 = |π, which in turn gives 0J(f) ̂  π/2 for all ί. But since
^£>0, the second inequality in (3.2) requires α k >fπ — π/4>π contradicting
αfce[ — π, π). A similar argument shows that αfc > — π/4. Analogously, if we assume

= 0 ̂  bfc(α) and αfce[0, 2π), then from

gίcos(^ + αfc)^ and ||θίl|00<j,
o ^

one easily gets αfce(|π,|π).

Lemma 3.2. Under the assumptions of Proposition 3. 7, ί/ybr some 1 ̂ r ^N we have:
^ 0 ( ̂  0) wiί/i lg; s ^N-l and s= l,...9r, then

J Σ ^βjβ, Σ τjΛ. ^ ΓCl(c2 - Γ2) Σ τ2 ^ - Tct(c2 - Γ2) Σ τ2

s=l s=l / s=l \ s=l

Proof. First of all notice that if

o
τ

inα f c f
0
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then for αk + π/2 + hπ, heZ, we have
τ ( τ T ^ \

W°0 = - '* J cos (0* + α*)^* = - M cos α* J cos θk\l/k - sin α* J sin θlφl
0 \ 0 0 /

cosα kδ

Thus if fr(α)^0, by Lemma 3.1 we have αk + 2π/ιe(|π,fπ) for some heZ, which
implies:

2 2bk(*) ̂  - J ̂ ί(ί)Λ ^j(gMk - vkA
2 T2). (3.3)

Similarly, if frfc(α) ̂  0, then αk 4- 2πΛe( — π/4, π/4) for some heZ and

MαJ^-^feM.-v^^2). (3.4)

Next observe that if p > k by (2.6) we get:

\dW*)ep9ek)\ = \Mplplk]cos(θ*k - θ*p)θ*pθ*k\ ^ MplplkA
2T\

Thus if bjs((x) ^ 0 = ̂ s(α), s = 1, . . . , r, using (3.3) we obtain:

M Σ tΛeΛ, Σ τΛeA

Σ -9ljMjs - T2~ljsvjs + A*ML(r
2

s = l

2and T 2 <c 2 by (T)3.
Similarly in case bjs(ot) rg 0 = ̂ s(α), 5 = 1,..., r, by (3.4) we conclude:

r r
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s<p

= j , j s - j s
-V/2

Lemma 3.3. Under the assumptions of Proposition 3.7, ί/ v = (vl9...9υN)eH and
oceJfLN satisfy:

(i) K = 0;

(ii) <9̂  (α) = 0 and bj(ά) ^ 0 whenever J y; / 0. Then (/" (0αK v) ̂  0 and equality occurs
if and only if v = 0. °

r
Proo/. If j ϋ/ = 0 for all j = 1, . . . , Λf, the claim follows by Lemma 2.3. Hence assume

that there exists ;1,...,;re{l,...,ΛΓ- 1} such that ]vk^Qok = js for some
T r

s = 1, . . . , r. Write v = v + e, where J tf = 0 and e = J] τΛeΛ for some τ, se]R.
0 s=l

For every fc = 1, . . . , N and αeRN we have:

7=1

2 2

Thus using Lemmata 2.3 and 3.2 we conclude

Σ tA(W.)^eJ + (
s= 1

2 x / 3 / \ s = ι

Since by (T)3,

we get that the right-hand side (3.5) is non-negative and vanishes if and only if
i5 = 0and τΛ = 0 for all s = l,...,r.

Lemma 3.4. Under the assumptions of Proposition 3.1, letv = (vlt..., vN)eH,
and k e {1,..., N} satisfy:
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(i) &fo) = Qforallj=l9...9k-l.

(ii) J vk = 1, (/?(0>, *,.) = 0 for all j = 1, . . . , fe - 1 and (re(θΛ)υ9 ek) = (Γe(θe)υ9 v).

We have:

if (re(θΛ)v9 v) ̂  0 ( ̂  0), then 6t(«) < 0 ( > 0)

r
Proo/. If fcj(α) ̂  0 whenever j vj ^ 0 then by Lemmata 3. 1 and 3.3 we have fc/α) > 0

for all such /s and (/" (θΛ)υ, v)>Q since v Φ 0. Hence assume there exists p ̂  1 and
iί< < ipe{ !,...,&} such that b,.(α)<0 if and only if 7 = is for some s= l,...,p.

T P
Write v = v + e, where t; = (#ι, -.,#„) satisfies J vis = Q, s= l,...,p and β= £ τ^e^
for some τ/seR. ° s=1

It is enough to show that:

if ip^k-l then (/?(θ>, ι;) > 0 and

if ip = fe then (/?(θ>, ι;) < 0.

r
Assume ip ̂  /c - 1, then v / 0 since f ίfc = 1 and

s = l

since by (ii), (/?(0>, eίs) = 0 for all s= l,...,p and (/;(β.)ί, ύ) > 0 ̂  (/;(βje, e) by
Lemmata 3.3 and 3.2. If ip = fc, then τ; = 1 and

= (/;(β.)ί, ΰ) + 2(Γe(θΛ)Ό, ek) - (re(θu)e, e)

which gives

- (Ic(θΛ)v9 v)=- (re(θβ)υ9 ek) = (rc(θΛ)ϋ, ύ) - (Γc(θβ)e, e)>Q.

We are finally ready to give the

Proof of Proposition 3.1. We shall use an induction procedure.

Step 1 (j = 1). In this step we shall construct two analytic maps γ1,y2:RΛ r~1 -»R
satisfying (i)-(iϋ). More precisely, we shall obtain the following

Claim. For every (α2,...,αN)eRN~1 there exist unique y+ =7" l"(α2,...,αJV)e[ — π,π)
and γ ~ = y " (α2, . . . , αN)e[0, 2π) such that
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and
0(y^α2,...,αN) = min0(y,α2,...,αN).

y

(Recall g(a) = I0(ΘΛ)). Furthermore, the map (α2,..., α^) -> y * (α2,..., αN) is analytic,
y±(α2 -f 2π/c2,...,αN + 2πfcN) = y±(α2,...,αN) for all /c7eZ, j = 2,...,N and

Range y + n Range y ~ + 2πZ = 0.

So the conclusion will follow by taking yι(α2,...,αN) = y' f(α2,...,αN) and

Proof of Claim. We shall start by showing that if

1N satisfies α? e [0,2π), -— (α0) = 0 g —y (α0),

then α?e(fπ,fπ) and necessarily (d20/dα2)(α0) > 0. To see this, notice that

and

„ .dθ

Letting v = dθJdoLί\Λ=ao we have that υ satisfies the assumptions of Lemma 3.4
with fc = l. So the conclusion easily follows with the help of Lemma 3.1.
A similar argument shows that if α?e[ — π,π), (^/5α1)(α0) = 0^(δ2^/δαf)(α0)
then α?e( — π/4,π/4) and (d2g/dvL\)(u) < 0. These two facts readily imply that
if y0e[0,2π) and (dgr/δαjfto,α2,...,αN) = 0 ̂  (52^/5α?)(70,α2,...,αN), then neces-
sarily 7o = 7~(α2). )αN). Similarly if y0e[-π,π), (^/5α1)(70,α2,...,αN) = 0^
(β2gf/5α?)(70, α2,..., α^), then y0 = 7 + (*2> »%)• Thus 7±(α2,..., α^) is unique.

Let (^...^eR*-1 be fixed. Set yί =y±(α2,...,α£) and αo1 =(yί,αg,...,αS)e
RN. By the previous observations we know that yQ e( — π/4, π/4), yo e(|π,|π) and
(d2g/dal )(αo ) < 0 < (d2g/d(x.l)((x.Q ). Furthermore, (δgf/δαjία^) = 0, so by the implicit
function theorem, there exist ε > 0 and analytic curves:

^~:Be(α5,...,α^)->[0,2π),

satisfying

and

32gt
J(ι/' (α2,...,αΛ,),α2)...,αw)

for all (α2,...,αΛ,)eBe(α^,...,α^). Thus necessarily, ψ±(a.2,...,ιxN) = γ±(oι2,...,oίN),
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y+(α2,...,α jV)e(-π/4,π/4) and γ (α2,...,αjv)e(|π,|π). This concludes the proof of
Step 1.

Step 2 (jN=>7 + l). Assume that for l ^ j r g N —2 we have 2j analytic maps
yk:R

N-J'-»R/ satisfying (i)-(iii). Set ̂ (αJ+1,...,αΛ,) = ̂ (α7.+ 1,...,αΛr),αJ+1,...,αΛr).
Hence gk is analytic and 2π-periodic in each variable for all k = 1,..., 2j. Analogous
to the previous step we are done once we obtain the following:

Claim. For every α j + 2» )%eRN~0+1) there exist unique yfc

+(αJ +2,...,αΛί)6[ —π,π)
and yk (α, + 2 , . . ., αN)e[0,2π) satisfying

yk(<Xj+2> - - ,«N), «; + 2» > %) = max Λ(7> αj+2, - - > <%)

and

(α;+2> > α*λ α,.+2,..., UN) = min 0fc(y, α7 +2,..., α^).

Furthermore the map (ocj+ 2,..., a#) -* γ ± (OLJ+ 2,..., OLN) is analytic, yk (ocj+ 2 +
2πkN) = y±(α7 + 2 , . . . , αN) and

Range yfc

+ n Range yk~ + 2πZ = 0 for all fc = 1,..., 2j.

Indeed, to conclude will be enough to take ffc:R
N~°'+1)-*RJ'+1 with

;fc(7k+ (αj + 2> ' » αΛr)» «j+ 2> > αJvX 7k" (αj + 2 > > a^))

if 1 ^ fc ̂  2j

if 2j<k^2j+ί

In fact, since yk satisfies (i)-(iii) for all k — 1,..., 2J, it is easily verified that yk defines
an analytic map and satisfies (i)-(iii) for all k = 1,..., 2j+1.

Proof of the Claim. As before we see that if (aj+1,...,o$)eRN~ j satisfies

α,°+ 1 e[0, 2π), (α?+ 1, . . . , αj) = 0 ̂

then αy°+ 1 eg π, |π) and (d2gjdtf+ , )(α7°+ 1 , . . . , α° ) > 0. Indeed, set α0 = (yfc(α?+ !,..., α )̂,
; by (ii) we have ^r(α0) = 0 for all r =!,...,; and for yfc =

Set
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T
We have: J vj+ ^ = 1, ̂ r(α0) - 0 for all r = 1,..., j + 1 and

(/"(0β>, ej+l) = -^j±- (α°+!,..., o#) = (Γ(0α>, u) ̂  0.

So Lemma 3.4 applies to v and α0 with k = j + 1 and together with Lemma 3.1
gives α°+1 e(f π, f π) and

Similarly we see that if aj+ ^ e[ — π, π),

then QLJ+l€( — π/4,π/4) and (β2gι/δα^1)(α j+1,...,αN)<0. These two facts readily
give uniqueness for y k

±(α /+ 1,...,αΛ r) for all (α j+1,...,αN)elRN~7'. More precisely if
ye[0,2π),

^ / ^ Λ ̂  ^2#* /- - (y, α,. + !,..., αN) = 0 ̂  v-2— (y, α^ + !,...,

'

then y = yfc~(αJ+2J »αjv); and if ye[-π,π),
xs

then y = yk

+ (aj+2,..., αN).
As for the previous step, these observations together with the implicit function

theorem (applied to dgk/daj+l near each (y±(αy+ 2,...,α J V),αj+ 2,...,α J V)eR J V~ 0
yields the conclusions.

By means of Proposition 3.1 we obtain the following stronger version of
Theorem 1.

Theorem 2. Iff and T satisfy the assumptions of Proposition 3J, then the conclusion
of Theorem 1 holds.

Proof. Proposition 3.1 with j = N — 1 gives 2N~1 analytic curves y^R-^R^"1,
k = 1,..., 2N~ * with the properties:

(1) ^r(yk(τ), τ) = 0 for all τeR; r = 1,..., N - 1 and k = 1,..., 2N~J

(2) yk(τ + 2πp) = yk(τ) for all τ,pεZ and k = \,...,2N~1'9
(3) if k Φ h then Range yk n Range yh + 2πZN~1 = 0.

Set σk(τ) = (yfc(τ),τ)eRN and define the 2π-periodic analytic function /ιfc:R->R by

1

Since
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we have that ΘΛ is a critical point for Ic (i.e. a solution for (l)c) if and only if there
exists ke{l9...92

N~ί} and τeR such that α = σfc(τ) and hk(τ) = c. Set dk = minhk
^ ^ x τ

and Dk = max hk. It is easy to check that hk(π/4) < 0 < /ιfc(|π), so dk < 0 < Dk for all

k= 19...92
N~1. Therefore if ce(dk,Dk) by the 2π-periodicity of hk we obtain

τ*,ι / τfcί2e[0,2π) with Λk(τ*,i) = c, i = 1,2.

More generally, if ce f) (dk.9Dk.) for some p ̂  1, then there exist τkj l φ τkj 2e

[0,2π) with the property hkj(τkjι) = c, i= 1,2 and 7= !,...,/?. From property (3)
above we know that for ^ r, σfcj.(τkj J ̂  σfcr(τkr J -f 2πk for all Z*, i, 5=1,2. So we
obtain 2p distinct solutions for (l)c in this situation.

Let iί9...9i2N-ι and iΊ,. .,1*2^-1 permutations of {l,...^^"1} such that

Set dk = dik and Dk = Dfk9k=l9...92
N~l. If cε(dj9Dj) for j=l9...92

N~1

9 then
ce(dk,Dk) for every k=l9...9j. Therefore by the previous observations it is easy
to obtain 2j distinct solutions for (l)c in this case.

If c = dj= ••• =dj+r-1 with l g r ^ 2 j v ~ 1 — j our argument readily gives r
distinct solutions for (l)c. Furthermore, if j^2 then ce(rfJ _1,0)c=(ί/J._1,Z)7 _ 1 )
from which we obtain another 2(j — 1) additional solutions. The case
c = Dj= - = Dj+r_i, 1 ̂ r ^ 2 N ~ * — j follows similarly.

Now Theorem 1 is an easy consequence of Theorem 2, since the conditions
(T)!,...,(T)3 are surely satisfied as TV->0.
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