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Abstract. We construct a Hamiltonian formalism for general Zakharov-Shabat
equations (zero curvature equations with rational dependence on a parameter)
as well as their constants of motion, and prove that the latter are in involution.
The field-theoretical (multi-time) Hamiltonian formalism is used.

Introduction

As soon as the complete integrability of the KdV equation was discovered it was
also found that this equation was a Hamiltonian system. Later on Hamiltonian
structures were suggested for all hierarchies of integrable equations: for generalized
KdV, for KP,AKNS etc. However this was not done for the most general
scheme for obtaining integrable systems given by Zakharov and Shabat. They
considered a zero curvature equation with a rational dependence on a spectral
parameter.

Here we construct a Hamiltonian structure for these equations. We have a
typical case when a field-theoretical (or multi-time) formalism is natural since both
independent variables are equal by right and there is no reason to prefer one of
them to the other as a time variable in which the system evolves. It is enough to
know a Lagrangian, and then all the elements of the formalism are recovered
automatically. Our construction of the Lagrangian generalizes that given by
Zakharov and Mikhailov [8] for the case of simple poles.

The Lagrange-Hamiltonian field-theoretical formalism is well-known. However,
the specific form we use fits very well to integrable systems under consideration.
It has a formal-algebraic character and admits easy calculations. Briefly it was
described in a lecture [11] (an earlier sketch in [4]). A complete description is
in [3].
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1. Equations

Let us consider the zero-curvature equations (see [1])

Uη-Vξ = ίU9Vl (1)

where U and V are matrix meromorphic functions of a variable z:

t/* = Σ f*,(* - **r~ '. n = Σ M* - **r r~ '• (2)
r=0 r = 0

The equations must hold identically with respect to z, the poles ak and bk are
constant. Some of ak may coincide with some of b^ without loss of generality we
can assume that in this case they have the same subscripts, i.e. ak Φ bl if k Φ I. The
resulting equations for {Uh, Vk] are called Zakharov-Shabat equations.

It is easy to see that in order to prove that Eq. 1 holds it suffices to verify that
the principal parts of the left-hand side and of the right-hand side coincide in all
the poles and that the limits of the left-hand side and of the right-hand side when
z -* oo are equal, i.e.

U0η-Voξ = lU0,V0l (3)

The latter equation implies the existence of a matrix ί such that

t/0 = r% v0 = rHη. (4)

An elementary computation shows that the number of equations is less by 1 than
the number of unknown matrices, i.e. one of the matrices can be chosen freely.
Moreover even after this choice there remains freedom of choice of a number of
diagonal matrices (like in a matrix equation [A, X~\ = 0 where X is unknown: in
the basis where A is diagonal X may be an arbitrary diagonal matrix), a detailed
analysis of a special case see in [2], see also below. Equation 1 can be written as

[3€+l/,3,+ F]=σ, dξ = d/dξ, δη = d/dη, (5)

which implies that this equation admits gauge transformations

d+U = g(d+U)g-1,

1 -gHg-*. (6)

With the aid of this transformation one can e.g. destroy matrices l/0 and V0 letting
g = t~ x (see Eq. 4). After that the number of equations will be equal to the number
of unknown matrices (the freedom in diagonal matrices remains). However, we
will not do this transformation yet.

We do not specify here how many diagonal matrices stay free (this will become
clear later). Actually, the scheme of our reasoning will be as follows: Eq. 1 will be
equivalent not to one but to a set of Hamiltonian systems, each of them corresponds
to a choice of undetermined diagonal matrices. Each solution of Eq. 1 is a solution
of one and only one of these Hamiltonian systems.
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2. Dressing and Undressing

Let us fix a pole ak. The rational function 17 (z) can be expanded into a Taylor
Πk

series in a neighborhood of this pole: U(z)= £ Ukjr(z — ak)~r~l\ for r^O the
— oo

coefficients I7tff are the same as defined above, those for r ̂  0 can be expressed
as differential polynomials in elements of all the matrices Uitf9 O g r g n , . The
differential algebra of all such polynomials is denoted as jtfυ (correspondingly, s4v

for the matrix V, and s/ for the algebra of differential polynomials in elements of
both the matrices).

Proposition 2.1. There exists a gauge transformation

dξ+U = g(dξ + A)g-ι (7)

where g and A are formal series in z — ak:

g = Σgr(z - ak)
r

9 A=f Ar(z - akΓ
r~ \

and elements of matrices gr and Ar belong to $#υ, such that all the matrices A are
diagonal

(This time, in contrast with Eq. 6, matrices g depend on z.) Equation 7 should be
understood as an equality of formal series.

Proof. We perform this gauge transformation in two steps. At first, reduce the
matrix Uktnk to a diagonal form (assuming a generic case):

Uk,n* = 9QAnk9Q *
and let

~ ~ ~
Now 17 = X Ur(z — ak)~r~ *, where Unk = Ank is a diagonal matrix. Then we must

— oo

solve the equation

i.e. gξ + Ug — gA = 0. Substituting the series in z — ak one obtains a sequence of
equations:

= 0,

Put 0o = /, and let the diagonals of all gk, k> 0 be zero. Taking the diagonal part
of the second equation one can find Ank_γ while the off-diagonal part determines
#! from an equation of the form [Λιk»0ι] = •••• In a generic case, when all the
diagonal elements of Ank are distinct, this equation determines uniquely off diagonal
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elements of gλ. All the other matrices 4ιk-2»02» can be determined in succession.
Finally, we put g = ggQ. Π

Corollary. Matrices g and h = g~l satisfy the equations

-hξ + hU-Ah = Q, (8)

which hold as equalities for the formal series in z — ak. (The second equation can be
easily derived from the first.)

Proposition 2.2. Letting

with the same g as in Proposition 2Λ we obtain

B=^Br(z-akΓ
f-\ if bk*ak, and B= J Br(z-akΓ^ if ** = *>*,

— oo — oo

where all the Br are diagonal. Moreover,

Aη-Bξ = 0. (9)

Proof. We have

Aη-Bξ = ίA,B].

For coefficients in (z — ak)~r~l this yields

In this equality Bt with the smallest number is Br-1 _W k in the term [>4Πk, Br-ί _nj.
If it is already proved that all Bt with t > r - 1 - nk are diagonal then the off-diagonal
part of this commutator vanishes which proves that Br,l,Hk is also diagonal.
Taking the diagonal part of the equation one obtains that Aη — Bξ = 0. Π

Corollary 1. Another pair of equations

gη+Vg-gB = Q,

-hη + hV-Bh = Q (10)

holds.

The operators dξ + 17, dη + V are called "dressed", and dξ + A, dη + B "undressed."
It is clear that we could write expansions in poles bk as well.

Corollary 2. Matrices Uk, see (2), can be represented as

where the subscript _ means the principal part in the expansion at the point ak. (In
this formula g can be understood as a nk-jet: only terms with (z — ak)

r with r^nk are
involved.) Ifbk + ak, then (A_\ = 0. Ifbk = ak, then Vk = (gB-.g'1)-. and

(A_)η-(B.)ξ = 0. (11)
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Remark. The equality (11) is the only condition imposed on matrices A. and B-.
Therefore we have min (nk, mk) + 1 diagonal matrices (in the case ak = bk) depending
on both the variables ξ and η which can be freely chosen. This is the "diagonal"
freedom we spoke of above.

3. Resolvents

Let

ι = gCg-1,
where C is a constant diagonal matrix, g the same as above, R is defined as a
formal series in powers of z - ak. R is called a resolvent in the pole ak.

Proposition 3.1. Resolvents satisfy two equations

Λ« = [Λ,tΓJ and K, = [*,n (12)

by virtue of Eq. 1.

(Equation 1 is nothing else but a compatibility condition for these two equations.)
Proof is evident if these equations are written in the form [dξ +U,R] = 0,
[dη + V9 R] = 0 and Eq. 7 is taken into account. Q

Proposition 3.2. The following variational relations hold:

where dξ( ) and dη( ) are derivatives of 1 -forms in variations δU,δV and their
derivatives.

Corollary.

δ tτR(Uzdξ + V2dη) = dz tr R(δU Λdξ + δV* dη) + d( ), (13)

where d( ) is an exact differential of a 1 -form in variations δU,δV and their derivatives.

Proof of the Proposition. Let us take the variation δ of Eq. 8:

δgξ + Uδg + δUg - δgA - gδA = 0,

- δhξ + δhU + hδU - Aδh - δAh = 0, (14)

and let us differentiate Eq. 8 with respect to z:

9ξ,z + Vgz + Uzg - g2A + gA2 = 0,

- hξt2 + hzU + hUz - Ahz - Azh = 0. (15)

Multiplying the first of Eqs. 14 by ChZ9 the second by gzC9 adding them and taking
trace, then transforming them using integration by parts:

tτ(δgξChz - gzCδhξ) = dξ tτ(δgChz - gzCδh) + tr ( - δgChZfξ + gZίξCδh),

and substituting hZtξ and gZtξ from Eq. 15 we obtain

tr δR Uz = tr Rzδ U-trδA C(hzg + hgz) + tr CAz(hδg + δhg) + dξ( ).
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Terms with A vanish since % = /. Adding tτRδUz to both the sides we get the
required identity. The second equation can be proved in a similar way. Π

4. Constants of Motion (First Integrals)

Let
F = trR(U2dξ+V2dη). (16)

Proposition 4.1. The relation dF = 0 holds by virtue of Eq. 1.

Proof. Using Eq. 1 and Proposition 3.1 we have

dF = tτ((RηUz + RUZtη)dη *dξ + (Rξ Vz + RVz,ξ)dξ Λ dη)

= tr ( - [K, K] 17, - RUZtη + IR, (/] Vz + *nt<)<« Λ dη

/,, K]

Corollary. Expanding F into a formal series:

we get dFr = 0 by virtue of Eq. L

Definition. A constant of motion (first integral) of a partial differential equation
Q = 0 (the independent variables are ξl9 ξ2, . . . , ξn) is a form

/ = Σ(- IfVltfl A - Λ dξk Λ - Λ dξm,
k

(two such forms being identified if they coincide by virtue of the equation Q = 0
or if they differ by an exact differential d( )), such that

by virtue of the equation 6 = 0. (If one of the variables ξt is a time variable, e.g.
ξ1 = ί, and others are spatial variables then the condition means that for any
domain V

where f = (/2). ..,/„),

i.e. /! is a conservative quantity and f is a flux.)
Thus, Fr are constants of motion, and F is their generator.

5. Lagrangian of General Zakharov-Shabat Equations

Here and below we use a field-theoretical Lagrange-Hamiltonian formalism
(see [11]).

The suggested construction for a Lagrangian generalizes a formula given by
Zakharov and Mikhailov [8], where a case of simple poles was considered. As we
have seen in Sect. 2 the operator dξ+U can be undressed in a neighborhood of
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any pole ak:

Here we will be interested only in principal parts of 17 and A at the point αfc, i.e.
"k «k

I/* = Σ Vktr(z-ak)~r~l, and Ak = YjAktr(z — ak)~r~1'9gk may be considered as a

finite sum gk = £ gkr(z — ak)
r, i.e. as a nΛ-jet. In other words

).. (17)

Similarly, at the points bk

Vk = (hkBkhk-i)_. (18)

(Attention! The letter h has here another meaning than in Sect. 2 where it was g~ *.)
If bk = ak then hk = gk (one should take max (nk, wfc)-jet), see Proposition 2.2.

Now let Ak s be arbitrary functions of ξ, Bfc r arbitrary functions of η iϊ ak^ bk,
and in the case when αfc = bk let Ak>r and £fc>r be arbitrary functions of ξ and η
submitted to the condition AkjFtη — Bkrξ = 0, k^min(mk,nk). Let C/0 = ί~1^,
VQ = t~ltη and let ̂  and /zfc be nk and mfc-jets at ak and ί?fc. If αλ = bk then 0fc = hk.
These ^ffc, Λfc and t will be variables with respect to which a Lagrangian is variated.
Let

X = tr I resΛk ft ^δ, + K0)^Λ - § resfck/ιλ- H^ + U0)hkBk

+ Σ Σ res^ίftΛft-^.ίMΛ"1)
fc=l/=l

be the Lagrangian. (Recall [11] that, speaking more precisely, this is not a
Lagrangian but an action; it is understood up to exact differentials d( ).)

Remarks on the definition of the Lagrangian
1. One can consider the operators dη and dξ whether acting on Ak and Bk or not:

additional terms cancel out according to the above remark.
2. In the double sum there are no terms with ak = bk, the residues of these terms

vanish.
3. This formula seems to be asymmetric: the double sum contains residues at ak

but not at bk. Actually instead of resαk one can write - res^ since if a meromorphic
function has only two poles ak and bk and f(z) = O(z~2) when z-> oo then

-resfck/(z). (20)

We shall use this transformation many times.

Proposition 5.1. The υαriαtionαl relation

= tr Σ resflk[C/k, dη + V^δgkgk * + resbk[^ + I/, K

N2
resαk[^Λ+ ̂ ] +Σresbk[^+ l/o, Fk] t - ί dξ Λ ̂  -

1
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holds where

i N2

resakUkdξ Λ δgk-gk

l + £resftk Vkdη Λ <JAfc Afc

 x

i i

lres«k l/*# +Σres*fc Vkdη] A r Mi j. (21)
1 1 / J

(Taking the variation we considered matrices {gk},{Ίk}, and ί (recall l/0 = t~1tξ9

V0=t~1tη) as independent variables.)

The proof can be performed by a simple calculation. Π

Corollary 1. The variational equations δ& /δgk = Q9δ&/δhk = Q, and δ&/δt = Q
have the form: for any k
a) Ifak*bk

[ί7k,d,+ r|_=0, [δ ζ+l7,KJ_=0, (22)

where ίne subscripts minus denote principal parts at corresponding points ak and bk.
b) Ifak = bk(thengk = hk)

[I7fc,0,+ n-+[δ<+l/,n]-=0, (23)

one more equation

resβfc[t/t, 5, + F0] + 1 res^C^ + £/0, KJ = 0. (24)

This system is equivalent to Eq. 1.

Proof. First of all it is clear that Eq. 24 follows from the two preceding equations
and gives nothing new. Equations 22, 23 express the equality for principal parts
of the expansions of Eq. 1 in all the poles. Now the difference between the left-hand
and right-hand sides of the equation is an entire function and zero in z = oo, i.e.
vanishes. Π

Remark. Nothing will change if we variate also the variables Ak and Bk as
independent. It is easy to check that in this case two more equations, 0M + Vgk = 0
and - hktξ + Uhk = 0 will appear if ak ̂  bk, and an equation 0M - gktξ + Vgk + Uhk = 0
if ak = bk. Taking into account Eqs. 17, 18 we obtain (applying the transformation
20) Uk^ = [I7fc, K] and - Vk,ξ = [17, Kk] if ak φ bk and the sum of these equations
otherwise, i.e. we obtain the same equations as before.

Corollary 2. The symplectic form of Eq. I is ω = δω(1\ where ώ(1) is given by
Eq. 27, i.e.

resak(δUk Λ dξ Λ δgkgk

 1 - Ukdξ Λ δgk-gk * Λ δgkgk

 A )

N2

Σresbk(<5Kk Λ dη Λ δhk-hk

 1 - Vkdη Λ δhk-hk * Λ δhk-hk

 x)
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/NI N2 \
+ Σ resell/* Λ dξ + Σ resftk(5l/fc Λ <fy Λ t

V 1 1 /

+ Σres^ώ? A r Mi Λ r M i - (25)

. See [11]. Q

Proposition 5.2. The Hamiltonian of Eq. 1 is

* = -tr Σ Σ res** *
fc=l/=l

Froo/. Direct calculation according to the formula connecting the Lagrangian and
Hamiltonian:

JT = - X + dξ Λ ϊ(^)ω(1) + <fy Λ J(a,)ω(1)

(see [11]). Recall from [11] that we use two types of differentials: variations, δf,
and d f = d f / d ξ dξ + df/dη-dη. Correspondingly, there are two types of vector
fields, defined by their inner products with forms. Firstly, dξ and dη, with i(dξ)dξ = 1,
the result of substitution of this vector field into other forms being zero etc. Secondly,
dξ and dη with i(dξ)δf = df/dξ, otherwise zero. Π

Formula 26 is remarkably simple.

6. Symmetries Related to Constants of Motion, Eq. 16

Let us take a resolvent R in a pole ako. A generator of first integrals F =
trR(Uzdξ+Vzdη) was constructed whose expansion F = YlFp(z-ako)

p yields
infinitely many first integrals. To every Fp a vector field corresponds having the
form

Here we use a notation: if a is a matrix then d/da is a matrix with entries:
(d/da)ij = d/daji. The last formula admits also a simpler representation:

Σ Σie^βtf JL+ Σ Σre8κΛp-^ + Σy«o « 1 (27)
k=κi) og\ fc=i(i) <"$ (0 °t J

where ̂ ' = £(&(* - «*)r, 3/5^ = Σ d/dg^r(z - a*)-''1, «? = Σ«&(* - «*)r etc.
0 r = 0 0

Proposition 6.1. Γλe vector field ξp- ^ corresponding to Fp_ ^ is given by Eq. 27 with

lCi2-**)'''1*],^-**/, r = 0, (28)
r = 0
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where the subscript p denotes the coefficient in (z — akQ)p in the expansion in powers
of (z - ako).

Proof. The equality

<5FP_ !=*(£,_> + < / ( ) (29)

should be verified (see [11]). Equations Uk = (gkAkgk

1),9 Vk = (hkBkhk

1)_,
U0 = Γltξ, V0 = Γltn imply

δVk = lδgk'gϊ\Vkl-9 δU0 = t-lδtξ-Γ*δtUθ9

δvk = iδhk'h;\vki-, δvQ = rlδtη-t-iδtv0. (30)
According to Eq. 13:

δF = dz tτR(δU Λ dξ + δV Λ dη) + d( )

Using integration by parts we can replace Rt~lδtξ by Rt~1tξt~
1δt — Rξt~

1δt =
RU0t~

1δt — [jR, U}t~lδt and perform a similar transformation for Rt~1δtη (chang-
ing the term d( )). We get

. (31)

The right-hand side should be understood in the following sense. All the expressions
U>Qk'9kl> ^fc]- etc are rational functions of z, they can be expanded into series
in (z — ako); R is such a series by definition, hence the right-hand side is such a series,
too. We find the coefficient in (z - ako)

p~l,

δFp-l=p πsakQ(z-akQΓp-lHR{~ } + d( ), (32)

where in the braces there is the same expression as in the preceding formula. This
must coincide with (i(ξ)ω)p-l where the vector field is given by Eqs. 27 and 28,
and the symplectic form by formula 25. We find

i(ξ)δUk = i(ί)[$fc ΛΛ l/J. = [ow Λ 17 J_, i(ξ)δVk = [J^1, Ή_,

and taking into account that γ = 0 we obtain

i(ξ)ω = tr JΣ re^([5fe Λ- >, 17 J + [r 'Λ, t/

-1, Vd + [t-^t, FJ^A'1 A Λf . (33)
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Expressions 28 should be substituted into this formula, and after that one has to
prove that the result coincides with Eq. 32. To this end both equations, Eq. 33
and Eq. 32, will be transformed since Eq. 33 involves residues at all the points
αfc, 6fc, and Eq. 32 at one point ako and it is difficult to compare them. We transform
them using Eq. 20. Let us take the term with dξ of the right-hand side of Eq. 32:

p. tr resαko(z - akoΓ
p~ lR{.δgk-gk

 1 + Γ lδt, l/J _ Λ dξ.

Let k φ fc0. Then in this formula R can be replaced by the segment of the infinite

series: R(p) = £jRr(z - akj '. We consider this polynomial on the whole complex
o

plane z. Then the above term can be transformed to

-1 + ί- 1(5ί,C/ f c]_Λdξ. (34)

The term with dη transforms similarly.
If k = k0 then the corresponding term is

p trres^z-αJ-'-^ + n* + \)\δg^g^ + Γ*δt, C/*J- Λ dξ. (35)

If, in addition to this, bko = ako then the formula will contain one more term:

p trresflko(z - akoΓ
p~ lR(p + nk + \)[δgkQ-g^ + r Mi, Fko]_ Λ dη.

Now let us transform Eq. 33 taking into account Eq. 28. If k Φ k0 then

[(z-α,)-'-1/?],

= resako (z - αj-"- '[(z - akΓ'~ 1K] = resfl)co(z - βj-'- lR(p)(z - akΓ'- l

where the subscript r denotes here the coefficient in the expansion in the powers
of (z - ak) (and not of (z — αto)). Then Eq. 28 becomes

where the right-hand side is understood as an expansion in the point ak. Substituting
this into Eq. 33 we obtain a term

which coincides with the expression 34. In the same way we discuss the term with dη.
If k = fc0 then Eq. 28 yields the term

α*00*~o1=P Σ «P+r+ι(z-αJr = P[Λ(p + «Jt + l)(z-αJ-p-1] + .
r = 0

Substituting this into Eq. 33 we obtain exactly the term 35. The same occurs with
the term containing dη. Π

7. Involutiveness of the Constants of Motion

Proposition 7.1. The Poisson bracket of two first integrals generated by F (Eq. 16)
is zero.
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Proof. For any two vector fields with y = 0 we have

NI "k

N2 mk

+ Σ r j Σ

Let vector field ξl correspond to a resolvent R(1) in the point akί and ξ2 to resolvent
K(2) in ak2. (If a pole αfc2 is replaced by a pole fek2 the proof will stay the same.)
It is sufficient to consider the generators K(1)(z1) and K(2)(z2) and to prove that

the expression

(where R(1) = R(1)(z1),R(2) = R(2)(^2)> and dots mean a similar expression with dη)
is an exact differential. Using the formula

we obtain

Ukt, Γ Γ7 Ί \- /?<!> ίι*ί /?<2> ι
L 'fe-^J

= tΓίJl^Λ^ + R(

ξ

2)R(1))dξ + - = tr δ^

= d( ). D
Remarks. 1. Construction of solutions of Eq. 1 is studied in [9]. 2. The idea to
apply the field-theoretical formalism to integrable systems was also used by
Shadwick [10].
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