The Holonomy of the Determinant of Cohomology of an Algebraic Bundle

H. Gillet ${ }^{1}$ and C. Soulé ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Illinois at Chicago, Box 4348, Chicago, I160680, USA
${ }^{2}$ I.H.E.S., 35, Route de Chartres, F-91440 Bures-sur-Yvette, France

Abstract

The purpose of this note is to remark that Theorem 3.7 in [1], when combined with the work of Bismut and Freed [2], leads, in the algebraic case, to an improvement of both results concerning the holonomy of determinant line bundles.

So let $f: X \rightarrow Y$ be a smooth proper map between projective complex manifolds. Choose a metric h on the relative tangent space $T_{X / Y}$ and a smooth complement $T^{H} X$ to $T_{X / Y}$ in $T X$. We assume that $\left(f, T^{H} X, h\right)$ is a Kähler fibration in the sense of [3], i.e. there exists a closed (1,1) form ω on X for which $T_{X / Y}$ and $T^{H} X$ are orthogonal, and ω restricts to the $(1,1)$ form associated to h on $T_{X / Y}$.

Let E be an algebraic vector bundle on X, endowed with a smooth Hermitian metric h_{E}. The (algebraic) determinant line bundle

$$
\lambda(E)=\operatorname{det} R f_{*}(E)
$$

may then be equipped with its Quillen metric [3], whose associated connection we denote by ∇_{Q}.

Given a smooth loop

$$
\gamma: S^{1} \rightarrow Y
$$

we want to compute the holonomy of ∇_{Q} along γ. By pulling back f along γ we get a commutative diagram of real manifolds,

with $T M \cong \tilde{\gamma}^{*}\left(T_{X / Y}\right) \oplus f_{\gamma}^{*}\left(T S^{1}\right)$ (because of the choice of $\left.T^{H} X\right)$. Endow $T M$ with the orthonormal direct sum of $\tilde{\gamma}^{*}(h)$ with the metric on $T S^{1}$ giving norm one to $\frac{d}{d t}$ and invariant by rotation. Let D be the Dirac operator acting on the sections of
$E \otimes F \otimes \xi^{-1}$ on M, where F is the (locally defined) bundle of spinors and ξ a square root of $\operatorname{det}\left(T_{X / Y}^{*}(0,1)\right.$. Denote by $\eta(0)$ the η-invariant of D, by $h(D)$ the dimension of the kernel of D, and by χ the Euler characteristic of E on any fiber of f on $\gamma\left(S^{1}\right)$.

Theorem. The holonomy $\mu(\gamma)$ of ∇_{Q} around γ is

$$
\mu(\gamma)=(-1)^{\chi} \exp (2 \pi i(\eta(0)+h(D)) / 2) \in S^{1}
$$

To prove this theorem, for every real number $\varepsilon>0$, we define D^{ε} as D above, except that $\frac{d}{d t}$ has norm ε^{-1} (so $D=D^{1}$). If $\eta^{\varepsilon}(0)$ is the êta invariant of D^{ε}, and $\bar{\eta}^{\varepsilon}(0)$ $=\left(\eta^{\varepsilon}(0)+\operatorname{dim}\left(D^{\varepsilon}\right) / 2\right)$, we know from [2] that

$$
\lim _{\varepsilon \rightarrow 0}(-1)^{\chi} \exp \left(2 \pi i \bar{\eta}^{\varepsilon}(0)\right)=\mu(\gamma)
$$

On the other hand, the proof of Theorem 3.7 in [1] shows that, for any $\varepsilon>0$,

$$
\mu(\gamma) \equiv \exp \left(2 \pi i \bar{\eta}^{\varepsilon}(0)\right)
$$

is $S^{1} \otimes \mathbb{Q}$. Since we know from [2] that $\bar{\eta}^{\varepsilon}(0)$ is a continuous function of ε, the number $\exp \left(2 \pi i \bar{\eta}^{\varepsilon}(0)\right) \in S^{1}$ depends continuously on ε. It is constant modulo roots of unity, therefore it is constant. We conclude that

$$
\mu(\gamma)=\lim _{\varepsilon \rightarrow 0}(-1)^{\chi} \exp \left(2 \pi i \bar{\eta}^{\varepsilon}(0)\right)=(-1)^{\chi} \exp \left(2 \pi i \bar{\eta}^{\varepsilon}(0)\right)
$$

for all ε, in particular for $\varepsilon=1$. In other words, the adiabatic limit of [2] is stationary under our hypotheses.

References

1. Gillet, H., Soulé, C.: Arithmetic Chow groups and differential characters. In: Algebraic K-theory: connections with geometry and topology. Jardine, J.F., Snaith, V.P. (eds.), pp. 30-68. Dordrecht: Kluwer Academic 1989
2. Bismut, J.-M., Freed, D.-S.: The analysis of elliptic families. II. Dirac operators, êta invariants and the holonomy theorem. Commun. Math. Phys. 107, 103-163 (1986)
3. Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles.

I-III. Commun. Math. Phys. 115, 49-78, 78-126, 301-351 (1988)

Communicated by A. Jaffe

