
Communications in
Commun. Math. Phys. 131, 125-155 (1990) Mathematical

Physics
© Springer-Verlag 1990

Quantum Group Structure in the Fock Space
Resolutions of sl(n) Representations

Peter Bouwknegt1*, Jim McCarthy2** and Krzysztof Pilch3

1 Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
2 Department of Physics, Brandeis University, Waltham, MA 02254, USA
3 Department of Physics, University of Southern California, Los Angeles, CA 90089-0484, USA

Abstract. We describe a complex of Wakimoto-type Fock space modules for
the affine Kac-Moody algebra sl(ή). The intertwining operators that build the
complex are obtained from contour integrals of so-called screening operators.
We show that a quantum group structure underlies the algebra of screening
operators. This observation greatly facilitates the explicit determination of
the intertwiners. We conjecture that the complex provides a resolution of an
irreducible highest weight module in terms of Fock spaces.

1. Introduction

There are basically two procedures for constructing the correlation functions of a
given conformal field theory on a general Riemann surface. The first consists of
solving a set of differential equations arising from the symmetry structure of the
theory. This method has proved to be useful in a number of cases, but progress
seems to be limited due to the complicated nature of the differential equations
involved. The second procedure, that originates in "the old string days," is purely
algebraic in origin and involves the explicit computation of the correlation functions
by "sewing" fundamental three point functions. The latter procedure, however,
seems only feasible for free field theories.

It has been known for some time that many (even non-free) two dimensional
conformal field theories admit a free field realization, albeit their Hubert space is
only a subspace of the total Fock space of these free fields. For the minimal models
of the Virasoro algebra [BPZ] this so-called Feigin-Fuchs realization ("Coulomb
gas") was used elegantly in [DF1,DF2] to compute the correlation functions on
a sphere. Generalization to higher genus surfaces, by sewing, requires a procedure
for projecting out irreducible representations from this Fock space. It was realized
recently that this projection can be achieved by taking alternating sums over an
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infinite set of such Fock spaces [Fe]. The reason is that these Fock spaces, together
with the group invariant mappings between them (the so-called intertwiners,
which were computed in [TKl,FeFu]) form a complex whose cohomology is
nonvanishing at one point only, where it is exactly the irreducible representation.
In other words, there exists a resolution of the irreducible Virasoro modules
in terms of Fock spaces. The resolution was used for computing torus cor-
relation functions in [Fe] and subsequently applied to higher genus surfaces in
[FLMS1, BaGo, FS2, FLMS2].

Another important class of conformal field theories are the WZNW-models
[WZ,Wil,No], whose symmetry algebra is an affine Kac-Moody algebra. To
apply similar techniques for these WZNW-theories one first requires a free field
realization. That such a free field realization might also exist for affine Kac-Moody
algebras (for general values of the central charge!) can be anticipated from the
Weyl-Kac character formula of an irreducible integrable highest weight module
LΛ (see, e.g. [Ka])

c h L Λ ( z , τ ) = Σ ( - l ) l ( w )

weW

p2πiτh(w*Λ)p2πi(w*Λ,z)

(1.1)FT U\—e

2ninτY ΓΊ n_e2πinτe2πi(a,z)\ί^_e2πi(n-l)τe-2πi(a,z)\\ '

n ̂  1 aeΔ +

where h(Λ) = (A, A + 2p)/2(k + h v ) and zeh, (For an explanation of the various
symbols we refer to the end of the introduction and Appendix 2).

The right-hand side of (1.1) may be recognized as the alternating sum of traces
over Fock spaces F w + Λ of a set of bosonic /fy-fields, one for every positive root α
of g, and a set of rank g scalar fields φ\ where g is the underlying finite dimensional
Lie algebra, i.e.

chL / t(z, τ) = Σ ( - 1)I(W) ΊrFwJe2™L°e2«i{z>H)). (1.2)
weW

From the expression of h(Λ), and the requirement that one obtains the correct
central charge and the correct isospin for the /fy-system, one may already guess that

T(z)= -±:dφ(zydφ(z):-i<xoP'd
2φ- Σ :βΛ(z)df(z):9

aeΔ+

(1-3)
ff'(z)= Σ «i:β°(z)y*(zy. + -dφί(z),

aeΔ+ 0to

where αg = (lfc + Λ v Γ 1 .
This consideration would apply to an arbitrary affine Kac-Moody algebra g,

in particular no distinction has to be made between simply- or non-simply laced.
The problem is to show that the formulae (1.3) extend to a realization of the
complete Kac-Moody algebra. For sl(2)k such a realization was discovered by
Wakimoto [Wa] and reads

e(z) = β(z\ h(z) = 2:y(z)β(z): + ^2(k + 2)idφ(z\

f(z) = -:y(z)y(z)β(z):- J2{k + 2)y{z)idφ{z) - kdγ(z). (1.4)
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This realization bears a close resemblance to the following well-known realization
of the finite dimensional Lie algebra 5/(2) in terms of differential operators on the
space of polynomials of a single complex variable z

e = f, h=-2z^- + 2j, f=-z2~ + 2jz. (1.5)
dz dz dz

In fact (1.5) is exactly the zero mode piece of (1.4). It is also well-known that
realizations of the type (1.5) arise from the (right) group action on a suitable flag
manifold, and it is this observation that, in principle, makes the extension to general
Lie algebras straightforward [FeFrl].

To apply this free field realization to the computation of correlation functions
one needs to find a resolution of the irreducible module in terms of the Fock space
modules. The intertwining operators in this complex will be built from so-called
screening operators. The screening operators already arise in the study of the
realizations of finite dimensional Lie algebras in terms of differential operators as
in (1.5). There they have a natural geometric origin as generators of the (left) group
action on the flag manifold: they satisfy the Lie algebra of the positive root
generators of g. In addition, the intertwining operators are in 1-1 correspondence
with the singular vectors in a Verma module of g.

The main results of this paper can be summarized as the following general-
izations of these statements to the case of the affine Kac-Moody algebra g. The
screening operators satisfy the identities of the positive root part of the quantum
group tfίq(g) (within suitably chosen contour integrals). Moreover, given a singular
vector in a quantum group Verma module we can build an intertwining operator.
We conjecture that the converse statement is also true.

The paper is organized as follows: In Sect. 2 we will discuss the Verma module,
Fock space module and the corresponding resolutions for a simple finite-
dimensional Lie algebra with particular emphasis on sl(n). We do this mainly to
establish notations. None of the results in this section are new, we merely present
those issues, which, in our opinion are necessary to appreciate the discussion in
the affine case.

Section 3 deals with Fock space modules for affine Lie algebras and contains
the main results of this paper. The presentation closely follows the finite-
dimensional analogue of Sect. 2. We will briefly discuss the affine counterpart of
the BGG-resolution. Next, we explain how to obtain a Fock space module for an
affine Kac-Moody algebra, and give explicit formulae for sl(n). Screening operators
are introduced and it is shown that they satisfy quantum group identities.
The exact correspondence between intertwiners of Fock space modules and
representations of quantum groups is revealed and used to make the complex
explicit for s/(3).

Section 4 contains a discussion of the results and comparison to related work.
The results of this paper were announced in [BMP1].

Throughout the paper we will use the following notations (see e.g. [Ka]):
g a complex simple Lie algebra
h its Cartan subalgebra with dual h*
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the universal enveloping algebra functor
g = n _ © h φ n + a Cartan (triangular) decomposition
b+ = n+ © h the two Borel subalgebras
G,H,N + ,B+ denote the corresponding groups
/ the rank of g
eh hh fh i = 1,..., i a system of Cartan generators
Δ± system of positive/negative roots
M = Z-Δ + is the root lattice of g
W the Weyl group of g
ra reflection in the root α ε ^ + ,r j reflection in a simple root αf

(,) bilinear form on h or h*, sometimes also denoted by
<,> dual pairing between h and h*
p the element of h* such that <p,Λf> = 1, Vί
w*λ = w(λ + p) — p for weFMeh*
Z + = {0,1,2,...}
h v is the dual Coxeter number of g
P,P+ set of integral, and integral dominant weights, respectively.

In Sect. 3 we will distinguish between quantities of the afϊϊne Kac-Moody algebra
g and its underlying finite-dimensional Lie algebra g by putting hats on the former.
Additional notations in Sect. 3 are (see also Appendix 2 for some additional
notation concerning the affine Weyl group):

P{k\ P{+} integral, and dominant integral weights of level k
Δτc set of real roots.

2. Resolutions for Finite-Dimensional Lie Algebras

2.1 BGG Resolution of a Verma Module. In this section we will describe the
Bernstein-GeΓfand-GeΓfand resolution of an irreducible highest weight module
LΛ in terms of Verma modules. Recall that a Verma module MΛ with highest
weight Δ is defined as the induced module MΛ= ^(g)®^ ( b + ) C Λ , where CΛ is the
1-dimensional b+-module, with character determined by Δeh*, i.e. MΛ=<%(g)vΛ,
where vΛ is a (highest weight) vector such that n+-vΛ = 0, h-vΛ= (Δ,h}vΛfoτ heh.
In general, a Verma module is not irreducible. To describe the irreducible subspace
in terms of a cohomology complex we need the concept of an intertwining
operator.

Definition 2.1. Let V and W be g-modules. An intertwining operator Q:V->W is
a homomorphism V-+W commuting with the g-action on V and W {and hence
with the action of ^(g)). The set of such intertwining operators is denoted as

It is clear that for (2eHom^(g)(K, W) both K e r β and I m β are invariant
subspaces of V and W, respectively.

The set of all intertwining operators between Verma modules was determined
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in [Ve,BGGl]. Let us describe the result relevant for the complex of an integral
dominant weight ΛeP + .

Recall that the Weyl group W of g is the (finite) group generated by the
reflections rf in the simple roots αf of g. Every element we W can thus be written
in the form w = rh -rin, and the length l{w) of w is defined as the minimal number
of reflections ri required. Denote W{k) = {we\V\l(w) = fc}. A shifted action of W on
Λeh* is defined by w*Λ = w(A + p) — p.

For w1,w2eW we write w1*-w2 if wx =raw2 for some cceΔ + , and /(w1) =
/(vv2) + 1. A partial ordering (Bruhat ordering) on W is defined bv: w<w' if and
only if there exists wl9...9wkeW such that w<-wι<-w2< <-wk<-wr. We
have

Proposition 2.2. [BGG1] ΛeP+,w9w'eW, then

Moreover, for w =̂  W9 every such intertwiner is a multiple of the canonical embedding

A singular (or primitive) vector in a Verma module MΛ is a vector v such that
n+ ι> = 0. Every Verma submodule of MA is generated by a singular vector.
Consequently the above proposition shows that the singular vectors in a Verma
module MΛ,AeP+, are in 1-1 correspondence with elements of the Weyl group
and moreover gives a complete description of the embedding pattern of the
submodules generated by these singular vectors.

Using these embeddings one may give a description of the irreducible submodule
LΛ of ΛfΛ, the so-called Bernstein-GeFfand-GeΓfand resolution, as follows

Theorem 2.3. [BGG2] Let LΛ be an irreducible finite dimensional g-module with
highest weight A, and MΛ the Verma module with highest weight A. There exists a
complex of g-modules:

d(0) d(l) d(2) d(s)

where s = dimn + = \Δ+\9 and

The cohomology of this complex is concentrated in the "zeroth" dimension

Λ if i = 0

lmdii+1) [0 otherwise.

The key observation in this construction is that for wx,w2eW such that
l(wί) = l(w2) + 2 the number of elements weW such that wι +-w<^w2 is equal to
either zero or two. In the last case the quadruple (w^ w3, w4, vv2) is called a square.
To each arrow w<r-wf one can now assign a sign s(w, w') = ± 1, such that for every
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square

in the complex, the product of signs equals — 1. This can be done consistently
througout the complex. One now defines for wιeWii\w2eW(i~1\

w1,w2)ίVVlίVV2 if w1^w2

(0 otherwise,

and d{i) = ®d^uW2. The signs ensure that d{i)d(i+1) = 0.

Remark. One usually summarizes both statements of Theorem 2.3 by saying that
the sequence

is exact. We have chosen the "unconventional" formulation above to be able to
treat the afϊine case in complete analogy.

2.2 Fock Space Realization of sl(ή). In this section we will describe a realization
of a simple finite-dimensional Lie algebra in terms of linear differential operators
on a certain space of holomorphic functions. The type of realization is known
under a wide variety of names, depending on the context, such as the Bargmann
realization, coherent state realization [Pe], multiplier realization [Ko2], etc. For
many purposes it is sufficient to restrict the function space to polynomials, in which
case one can interpret the module as the Fock space of a (finite) set of harmonic
oscillators. This will be a convenient description when generalizing these kind of
modules to affine Kac-Moody algebras. So, henceforth, we will refer to these
modules as "Fock space modules." Our -main purpose in the rest of this chapter
will be to describe a resolution of an irreducible highest weight module in terms
of these Fock space modules, along the lines of the BGG-resolution described in
Sect. 2.1.

Let Y be a Schubert cell of maximal dimension in the flag manifold B_\G
(where g ~ bg for bsB_). We will denote by z both a point in Y and its coordinates.
Denote by RΛ the space of holomorphic sections of a line bundle over Y determined
by a character χΛ:B_ ->C*. We will henceforth implicitly identify these sections
with functions in C^iG) satisfying the relation f{bg) = χΛ(b)f{g), VbeB_, MgeG.
The group G acts as a transformation group on Y by right multiplication. This
induces a representation σΛ of g on RA in terms of linear differential operators.
Explicitly,

(2.1)

where £:g->diffr and /zΛ:g^C°°(7). They are obtained as follows [Ko2]. Let
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feCx(Y), then

131

d

'dt r = 0

and

where zeY, and /I* eg' (the dual of g) is defined by

>y> = <

ί = 0

One may identify Y ~ JV+, thus we have as many coordinates za as the number of
positive roots asΔ + . As remarked before, we may also restrict the realization of
g to the "Fock space" FΛ= Pol(zα).

For reasons that will become clear in Sect. 3 it is convenient to encode A in
terms of another set of operators p1 and q* with commutation relations

To this end we identify FΛ with Pol (zα) (x
space obtained from the "vacuum vector"

Λ, where C Λ is the one-dimensional
, satisfying

where Λι denotes the components of A with respect to some orthonormal basis in
h*. The realization on Pol (zα)®CΛ is given by replacing A^p1 in (2.1). Due to
the identity

we can identify \A} = eiΛ'q\0). So the translation operator eiΛq "connects" all
Fock spaces with different A, hence we will refer to this realization as the "universal
representation." By slight abuse of notation, we will denote the image of xeg in
this universal realization simply by x.

Let us now make the aforementioned realization somewhat more explicit in
the case of sl(n). The following theorem gives the expressions for the simple root
generators in the Chevalley basis, which we recall is defined by the following
commutators

(2.2)
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and Chevalley-Serre relations

( a d ^ - ^ e ^ O , (ad/,)1-«% = <>, (2.3)

where ai} is the Cartan matrix of g.

Proposition 2.4. The following expressions define a realization, with highest weight
Λ, of sl{n) on the space of polynomials in zip 1 ̂  i < j^n,

() + ΣΣ ZaΆ
ύi-l OZ ji+l

_d y _d_

γ . _1

+ Σ

Σ_ - — z'β+1 dzji + 1

(2.4)

Proof For G = SL(n, C) we have the following Gauss decomposition (see, e.g.
[BaRa] Exercise 11.6.1)

9 =

(,(()

i

sj{*>
with

l

where

and

Γl - pi
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Thus, for instance, for g = etei we have

1 ..

zg =

'-Ίn

SO

δ •+ r. zHJ—\m
j i + l

The other expressions are proved similarly. Π

Let xa, a = 1,..., dim g be an orthonormal basis of g. Let C2 = £ xflxfl denote
the (second order) Casimir element of g. We have

Proposition 2.5. Let σΛ:g->End(FΛ) be as in (2.ί), then

or equivalently, in the universal representation

23 Screening and Intertwining Operators on Fock Spaces. In the previous section
we have described the so-called Fock space realization of a finite-dimensional
simple Lie algebra. It is clear that this representation is not irreducible, and
moreover, not even completely reducible. We would like to characterize the
subspace of FΛ corresponding to the irreducible module LΛ of highest weight A.
Normally one would try to characterize LΛ as a subspace of a module selected by
certain eigenvalues of the Casimir operators of g. This procedure does not specify
LΛ in this case (comp., Proposition 2.5). To make progress we need the slightly
more general concept of an intertwining operator. In this section we will explain
how to obtain all intertwining operators between Fock spaces, and show that they
completely characterize the irreducible space LΛ.

Recall that in the previous section the Fock space representation was obtained
from the right action of G on the coset space B_\G. Though the left action of G
on Z?_\G is not an isometry it turns out that the left action of N+ on B_\G
still contains interesting information.

Define for every xen+ a vector field p(x) on Y by

(p(x)f)(z) = -f(e~txz) (2.5)
ί = 0

where /eC°°(Y). We have the following
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Lemma 2.6. [Ko2] p:n+-»difΓY defines a representation of n + . Moreover, p
extends to an isomorphism between ^ (n + ) and the set of all differential operators on
Y which are invariant under the action of n+.

It is clear, however, that p(x) does not commute with the whole algebra g in
general. In fact one easily shows that Vxeh, Vye^(n+) we have

for instance

[σΛ(hi)9p(ejn = aijP(ej). (2.6)

At this point one may investigate the subset of < (̂n + ) that gives rise to the so-called
quasi-invariant differential operators on FΛ [Ko2]. We find it more convenient
to think of these in terms of intertwining operators (see, e.g. [KV]). To this end
we can rewrite (2.6) as

In other words, we may think of p(x) as a map ^"^Λ-degx
Once more it is convenient to return to the universal representation. Let us

define

With a little hindsight we will call these the "screening operator" of g. We have

Lemma 2.7.

Recall that we are using the same notations for xeg and its image in the
universal representation, and that <,> denotes the dual pairing between h and h*,
e.g. within angle brackets ht always denote the abstract element in h.

The following lemma provides us with an important class of intertwining
operators:

Lemma 2.8. Let ΛeP such that m = (A,hiyeZ + 9 then [x,(s,Γ + 1 ] = 0 , Vxeg, i.e.

Proof We have to prove that [/ ι,(s ι)
m + 1] = 0 on FΛ. Using Lemma 2.7 we find

for veFΛ,

because £ (m-2j) = 0. •

As we will show later the set of all (si)
mi + ί,mi = <yl,/it >, does not exhaust the

set of all intertwiners. For the purpose of characterizing the irreducible subspace
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LΛ of highest weight A within FΛ they are however sufficient, as the following
theorem shows:

Proposition 2.9. [Ze] Let ΛeP+. Define mi = (kA9hi}eZ + 9 i = l , . . . , / . Let

Proof. It is clear that V is an invariant subspace of FΛ. Using a convenient choice
of coordinates it is easy to show that V is finite-dimensional (see, e.g. [Ze]), hence
by WeyΓs theorem V is completely reducible. However, as one easily verifies, vΛ

is the only highest weight vector of V, which implies V ̂  LΛ. •

Remark. Though this will not be explored further in this paper, there is an obvious
relation with the Borel-Weil theorem (see, e.g. [Bo,Kol]), which states that LΛ

is isomorphic with those sections which are holomorphic over the entire flag
manifold £_\G. Recall the Bruhat decomposition B.\G= (J Cw (Y=Cid) in

weW

terms of Schubert cells Cw, labelled by elements of the Weyl group W. One can
prove that ρ{ei)

m+i-v = 0 if and only if v can be extended holomorphically over

c t fuc r,
Notice that, at this point, the structure of the Fock space obtained so far is

strikingly similar to that of the Verma module. In fact, in the finite dimensional
case, this similarity can be pushed further.

Theorem 2.10. [Ko2] For AeP let MΛ be the Verma module with highest weight
A, and vΛ its highest weight vector. We define a map y:(MΛ)(λ)-»Hom(FΛ,FΛ_Λ) by

Here MΛ= @(MΛ){λ)9 where (MΛ)(λ) = {veMΛ\h-v = (A- λ9h}v} denotes the

weight space decomposition ofMΛ. (Notice that though the expression for the vector
fii'" fin VΛ ι s n o t unique, the map y is properly defined because f and et generate
isomorphic algebras.) γ is an isomorphism between the set of all singular vectors in
(MΛ)(λ)andUomm(FΛ,FΛ.λ).

Proof We have

ίei,fiι 'fiJ'vΛ= Σ fir fij-i

hifij+ι'"fin'
vΛ

ι >-β J )/« 1 / I / Λ, PΛ, (2-7)

where a } = aiij+1 + — I - aiin, and Λ denotes omission.
Similarly, on FΛ, we have

[/i,V sίn]= Σ e-^KΛ^-αX-v V (2.8)
jlij = i

Now observe that the right-hand side of (2.7) vanishes if and only if the right-hand
side of (2.8) vanishes. Using the fact that every element in Homng)(FΛ,FΛ_λ) can
be written in the form p{eu --ein) (see Lemma 2.6), the theorem is proved. •

In the next section we will show how this set of intertwining operators allows
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us to formulate a resolution of the Fock space module completely analogous to
the BGG-resolution described in Sect. 2.1.

Finally, for sl{n) the explicit form of the screening operators can easily be
determined from their definition (2.5). In the notations of Proposition 2.4 we have:

Given these expressions, it is straightforward to verify the commutation relations
of Lemma 2.7 explicitly.

2.4 Fock Space Resolution. In the previous section we have seen that there exists
a 1-1 correspondence between the singular vectors in (MΛ)(λ) and the invariant
homomorphisms (intertwiners) F Λ -»F Λ _ Λ . From the results of Sect. 2.1 we know
that for ΛeP+ the singular vectors vw are in 1-1 correspondence with the elements
w in the Weyl group, and occur for the weights A — λ — w*Λ. Moreover, vw>εMwtΛ

if and only if w'=^ w, i.e. for ΛeP+9

Let us denote such a homomorphism by βWsVV'. Completely analogous to Theorem
2.3 we can build a complex by combining the various intertwiners Qww>.

Theorem 2.11. [Ke] There exists a complex of Fock modules

where s = \Δ+\ and

• vjy ι
 W*Λ-

weWW

As usual we define the cohomology of the complex by H\d) = Ker d{i)/lm d(i υ . We
have

0 otherwise

Clearly, for i = 0 this is the content of Proposition 2.9. The statement for i Φ 0
follows essentially from the fact that every Qww> is onto.

Let us make this more explicit for 5/(3). Apart from the intertwiners provided
by Lemma 2.8 there exist intertwiners corresponding to the Weyl group element
w = r1r2r1. They ensure that each square in the Fock space resolution, as shown
in Fig. 1, is commutative. In practice their derivation is a simple matter of
rearranging screening operators using classical identities (which the reader may find
as the q -• 1 limit of the identities in Lemma A.I);
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/ \

\ /

Fig. 1. Fock space resolution for s/(3)

where /, = (Λ + p, αf) and

m\n\

3. Resolutions for Affine Kac-Moody Algebras

3.1 BGG Resolution for an Affine Kac-Moody Algebra. For completeness we
describe the BGG-resolution for an affine Kac-Moody algebra g. Though the
proof is more delicate, the outcome is remarkably similar to that in the finite-
dimensional case, so we will make this exposition very brief.

The Weyl group is now infinite, but the notion of length and Bruhat ordering
goes through as in the finite-dimensional case. Again, we have for an integral
dominant weight ΛeP+ that Hom^ ( έ ) (M W / i J M w ί φ / t ) is nonvanishing if and only if
w =̂  w', and in that case the intertwiner is a multiple of the canonical embedding.
We have the following resolution of an irreducible integrable highest weight module
LΛ in terms of Verma modules

Theorem 3.1. [GL, RCW] Let ΛeP+. There exists a complex of Verma modules

where

The cohomology of this complex is given by

[0 otherwise'

where LΛ is the irreducible module with highest weight A.

The main difference with the finite-dimensional stituation is that now the
resolution is infinite in one direction ("one-sided resolution"), due to the fact that
the affine Weyl group is infinite. The resolution of LΛ in terms of Fock spaces that
we are going to discuss differs in two important aspects. First, the resolution is
infinite in both directions ("two-sided resolution") and furthermore each term in
the resolution will be an infinite sum over Fock space modules.

3.2 Fock Space Realization of sl(n)k. In this section we present a Fock space
realization of^the affine Kac-Moody algebra sl(ή) that generalizes Wakimoto's
realization of s/(2) which we discussed in the introduction. Observe that we may
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interpret the coordinates zV} and derivatives d/dzy of Sect. 2.2 as the zero modes
of a set of first order bosonic /?y-fields of conformal dimension 1 and 0, respectively;

βiJω = Σ ft*-*'1* yij(z) = Σ y^Λ
πeZ πeZ

/(z)/?» = δuj^ +-, (I~(y)),

i.e. γ$ ~ — zy', β'ά ~ (d/dztj). The pairs {p', q'} can be considered as the zero modes
of a set of n — 1 scalar fields φ\z),

4

φi(z)φ\w)=-δijlog(z-w)+.~.

The modes /?„,... satisfy the commutation relations of free oscillators

n^ tf9q*] = -iδ".

(We borrow techniques from 2-dimensional conformal field theory, where the
commutation relations are encoded in so-called operator product expansions (see,
e.g. [FMS,Gi] for an explanation of these techniques). The -f ••• stands for terms
which are regular in the limit z -> w.)

Let us denote the Lie algebra of oscillators by a. The algebra a admits a Cartan
decomposition a = a _ © a o ® a + , where a _ is spanned by oscillators /?„, an for n < 0
and γn9 n g 0, a 0 is spanned by the p* and finally a+ by /?„, n ^ 0 and γn, an, n > 0.

In principle one might try to obtain a realization by interpreting the components
βm yn>

 an partly as coordinates and partly as derivatives on some suitably chosen
infinite dimensional flag manifold. We will follow a more pedestrian approach in
that we straightforwardly "affinize" the realization (2.4) such that the zero mode
part of the acquired realization agrees with (2.4), and the currents have conformal
dimension 1. This obviously leads to some arbitrariness in terms of the form
(y''' ydy) which have vanishing zero mode. This arbitrariness is fixed by requiring
the correct central charge term in the operator product expansion of the currents.

Let us define for A eh* the Fock space module FΛ= ^(a)|/l>, where \Λ} is a
vector satisfying a + \Λ} = 0, p'|/l> = OCQΛ^Λ}. We obtain

Proposition 3.2. OnFΛwe have an sl(n) realization with highest weight Λ — (Λ, k\ by

J ^

+ Σ yvp+u-f^ί Σ yίJβiJ- Σ y i + 1 ¥ + 1

ht(z) = v{a.i-idφ) + 2:γii+1βii+ u.- Y :{yJiβJί-yJi+1βJi+1):

+ Σ :(yiJβiJ-
j^i + 2
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where v2 = k + n, and :•••: denotes normal ordering. (We have suppressed the
z-dependence on the right-hand side of the equations!) As usual, we have identified
the modes of x(z) with x®tn in Lg = g ® C [ ί , ί " 1 ] .

It is straightforward to check that these currents satisfy the correct operator
product expansions corresponding to (2.2). Proving the analogue of (2.3) can
explicitly be done in the lower rank cases, but the general proof seems, as in the
finite-dimensional case, only feasible by geometric means [FeFrl].

As already remarked, the realization for s/(2) was discovered by Wakimoto
[Wa]. For general sΐ(n) the realization was first discovered by Feigin and Frenkel
[FeFrl], and has since then been rediscovered several times (see, [Za2,GMMOS,
BeOo] for s/(3), and [BMP2,ItKa] for sΐ(n), and [GMMOS] for an interesting
derivation of these realizations directly from the path-integral formulation of the
WZNW-model).

To be able to use the above free field realization to compute conformal blocks
of the associated WZNW-conformal field theory, we need to verify that the
Sugawara stress energy tensor equals the stress energy tensor of the free fields /?, y
and φ, as announced in the introduction. This is the content of the next proposition.

Proposition 3.3. Let xa denote an orthonormal basis of sl(n). We have

= -±dφ(z) dφ(z):-«0p id2φ(z)-

where OCQ 2 = k + hv = k + n. The modes of T(z) = £ Lnz~n~2 generate a Virasoro

algebra of central charge

We omit the proof, which is based on a comparison with the finite dimensional
result (Proposition 2.5) for its zero mode piece, and an explicit determination of
the terms that are consistent with the requirements that T(z) is a g singlet, and
that every current xa(z) has conformal dimension 1.

3.3 Screening and Intertwining Operators. By analogy with the finite-dimensional
case (Eq. (2.9)) we define for sϊ[n) the following screening operators:

si(z) = ei:e-i«>to'+>:(z)9 (3.2)

where

(V λ (3.3)

These operators are primary fields of conformal dimension 1 with respect to the
stress energy tensor of Proposition 3.3. The only nontrivial operator product
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expansion with the group currents is given by

A V(j^). ( 3 4 )

where

φ) = - v2:e-iao{ai>φ):(z). (3.5)

Contrary to the finite-dimensional case these screening operators do not generate
the algebra ίi+, due to the nonlocality of s^z) with respect to Sj(w) for au Φ 0. We
will see later that this property is replaced by an equally powerful property.

We will now show how to build intertwining operators on Fock modules as
appropriate contour integrals over products of screening operators.

Define the set J as the vector space generated by all operators of the form

lsir 'SiJ = $dzι- dznsiι(z1). 'Sin(zn), ije{l9...,/}, (3.6)
r

where the contour Γ is taken as in Fig. 2, i.e. all contours taken counterclockwise
from 1 to 1 and nested according to \zγ \ > ••• > \zn\ for zt φ 1. The integral is defined
by analytic continuation from a parameter region 0 < zn < ••• < z1 on the real axis,
where the integrand is taken to be real.

Let v EFΛ. Using the Campbell-Baker-Hausdorff formula we can write more
explicitly

"*,}*"• Π ^ ' ^

-:β-fa°β'- * Γ l ) . β-|a[o«ι. **-.):e l l(z1).. β f i i(z l i) i7, (3.7)

where φ{z) = φ(z)\p=0 and ef(z) is defined in (3.3). Expressions for [s^ s^]
involving normal ordered products of /fy-fields are easily written down using Wick's
theorem. However, as they do not play a role for the monodromy properties of
the integrand, we will not give them explicitly.

To analyze properties of [ s , , - ^ ] it is convenient to rewrite them into
"elementary integrals" with a specific ordering of the variables on the unit circle;
i.e. we define the operators

/, , . . . ,„= J dZι...dzn
0<argzi < <argzr,<2π

(3.8)

Fig. 2. Integration contour Γ
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So we have for example

= I12 + q-1I21, if α 1 2 = - l , (3.9)

where

9 = exp(πiαg) = e x p ( Γ ϊ ί - \ (3.10)

Conventionally one might take for the contour Γ an element of the homology

group H^{Jί, <?) of the manifold M = C*M\ (J {zt = Zj} with coefficients in a local

system Sf defined by the multivalued integrand in (3.7) [DM, TK, FeFu]. The reader
should then note that our choice of Γ in (3.6) is not always in H^{J(, Sf\ However,
the intertwiners we build involve a linear combination of operators [s f l •• 5fn], with
permutations of indices, such that the resulting contour is in H^(Jt>£f\

Proposition 3.4. Within the contour-integrals Γ, i.e. in the "words" [s^ s^],
the s^s satisfy the defining identities of the quantum group %q(n+)9 where
q = exp (πi/(k + n)) = exp (πiαo),

SiSj - SjSt = 0, if aυ = 0,

s^Sj -(q + q'1 )sisjsi + SjS^ = 0, if ai} = - 1. (3.11)

Proof. For atJ = 0 the statement is trivial, because then the operators s^z) and
Sj(w) commute. To prove the statement for au= — 1 we write [s f l -~sinj in terms
of elementary integrals (3.8), and consider the various terms with different orderings.
Suppose for notational simplicity that the three operators occur in the first three
entries of [•••], i.e. we want to show

j - (q + q~1)sisjsi + s/s^-sj = 0. (3.12)

Consider the overall coefficient of the term IUj.... Suppose this term occurs with
coefficient (1 + q2)s/(q) in [ s ^ S ], where stfeZ[q,q~l~\ is some polynomial
(the factor (1 + q2) which is taken out, comes from interchanging ίΊ*-*^). Then it
will occur with coefficients q~ι{\ + q2)srf{q) and q~2{\ + q2)^(q) in [ s ^ Sf ] and
[s^Si ], respectively. So clearly the total coefficient for (3.12) vanishes. The
coefficient of IjU... works similarly. For the term 7^-... the respective coefficients
are q~x{\ + q2)@{q\2@{q) and g " 1 ^ + q2)@{q\ so that again the total coefficient
in (3.12) vanishes. This completes all different cases, hence the proposition is
proved. •

Proposition 3.5. We have the following commutator

j

(3.13)

where
«j = «H,+ , + "• + *«. ( 3 1 4 )
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and

ξ = aUι + + aUj_ x + aiij+ ί + + aiin.

Proof. By (3.4) we have

1-s,J]= Σ

The evaluation of the integral at arg z} = 2π acquires a phase factor from pulling
Zj around 0, zj+19..., zn. The term s, (l) can be written in front of the expression at
the expense of an additional phase factor qbj, where bJ = aiiι + —!-%,_ ! , from
pulling Zj across z 1 , . . . ,z 7 _ 1 . Now notice that ξ = cij + bj is independent of j , so
the proposition is proved. Π

Let us review briefly the definition of the quantum group ^q(g) [Ji,Drl,Dr2].
Suppose g is a finite-dimensional Lie algebra with Cartan matrix ai} of rank ί. Fix
positive integers dt such that d^ = dfi}i. Fix a complex number q such that q2di Φ 1
(1 ^ i ^ / ) . Introduce ^-numbers, ^-factorials and ̂ -binomials as in Appendix 1.
Then, Wq(g) is the associative C-algebra with generators e^f^kf1^ ( l ^ i ^ Z )
(fc, ~ qhi\ and relations (we use the conventions of [Lu2])

i = kt kι=

k — k~

Π-Λ Ί

L κ Δqdι

(3.15)
< = 0

This algebra is endowed with a co-multiplication, co-unit and antipode which
makes it into a Hopf algebra. We refrain from giving their definitions as we will
not need them here.

We now describe the definition of the "quantum Verma module" Mq

Λ [Lul].
We define Mq

Λ=<%q(g)vΛ, where vΛ is a (highest weight) vector satisfying,

The space M\ has an (overcomplete) basis consisting of monomials fi^- fi^v^
and is a tfίq(g) module under the action

<Λ,hiy-diaj __ -

~* fh'~?ii'~finΌA>

(3.16)

mΣ_. q

di-
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where a} is defined in (3.14). This module is integrable for ΛeP+ and reduces to
the conventional Verma module for g in the limit g->l, i.e. is a deformation of
MΛ [Lul]. The module has a weight space decomposition

where

Using the aforementioned description of the quantum Verma module we find the
following immediate consequence of Proposition 3.5.

Theorem 3.6. There exists a map from the set of simgular (i.e. primitive) vectors in
{M\)(λ) to elements in Hom^(έ) (FΛ, FA- λ) n J. The map is given by

Proof. Combining Proposition 3.5 with the aforementioned description of the
quantum Verma module M\ we see that the action of/f(z) on J> (by commutation)
is, up to an overall nonzero operator, the same as the action of et on M\. This
proves the theorem, exactly as in the finite-dimensional situation of Theorem 2.10.

D
The converse would follow from Proposition 3.5, if it could be proven that the

operators [s f l -§1. sinj do not conspire to cancel in such a way that the right-hand
side of (3.13) vanishes "accidently." We are not able to evaluate these contour
integrals in general. Further we do not have an argument which selects precisely
which of the fundamental integrals of (3.8) are independent. However, by analogy
with the finite dimensional case it is reasonable to expect that the converse to
Theorem 3.6 is true.

The problems here are linked to the discussion below (3.10). We expect that
Hom^ ( έ )(FΛ, FΛ>) c J, if we make an assumption that all intertwiners can be built
from screening operators as in (3.6), by taking Γ a contour in H^Jt,^). But the
dimension of this homology group can be larger than dim,/ [FeFu]. Of course
not all independent contours in H^(Jt,6f) give rise to a different operator of the
form (3.6); for instance, permutations of variables corresponding to the same simple
root do not change the operator (up to a phase). However, to clarify this issue we
need to know which of the fundamental integrals are independent.

Let us make a final remark on the choice of contour Γ, as opposed to the
"conventional" choice of contour Γ' [Fe] of Fig. 3, i.e. z 2,...,zπ are integrated
over nested contours from z1 to zx and finally z1 is integrated over the unit circle.

Fig. 3. Integration contour Γ'
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The most important virtue of the contour Γ' is that those expressions evidently
commute with the algebra, provided the last contour is "closed." For expressions
containing only one type of screening operators s^z) one easily shows that the two
operators are proportional, i.e.

\ί\-qln\
$dz1- dznsi(z1) -si(zn) = - Γ I J dz^
r n \ ι — q j r'

In general, however, this is not true for operator containing several types of
screening operators. It proves to be useful to work with the contours Γ because
it treats the variables zί9..., zn on equal footing, so that the quantum group relations
(3.11) apply to all entries of [s t l s f j . A drawback is that the intertwining property
is somewhat harder to prove. We believe that in the end the intertwining operators
can all be rewritten in terms of contours Γ'. This we explicitly verified in some
nontrivial examples, but we have not 'proved it in general.

3.4 The Fock Space Resolution. So far the discussion has been completely general.
In particular, no restrictions have been put on the highest weight Λ9 and its level
k. To describe the complex of intertwiners we have to distinguish several cases
however. For kφQ, i.e. q is not a root of unity, the quantum Verma module Mq

Λ

has the same singular vector structure as MΛ [Ro], in which case the complex
is exactly the same as in the finite-dimensional case, discussed in Sect. 2. For fceQ
we have qM = 1 for some MeN. In this case the module M\ contains additional
singular vectors. We will restrict the discussion below to highest weights Λ€P(+\
fceZ+, because they appear to be the most relevant in physical applications [GeWi].
The general case keQn {k > — ή] does not seem to be essentially more difficult.

For k = — n however, the φ-field decouples, and we are left with a realization
in terms of jSy-fields only. This "degenerated" realization can be used to verify the
validity of the Kac-Kazhdan conjecture [KaKa] for the character formula of
highest weight modules at the critical level (i.e. k = - ή) [FeFr2].

From now on let ΛeP(l\ keZ+. We recall that every weW can uniquely be
written as taw for some weW and some oceM. Here ta is a translation operator
(see, [Ka] and Appendix 2).

The following lemma provides us with a basic set of intertwiners

Lemma 3.7. Let weίV. Write w = taw for some αeM, weW. Define for a given simple

root (Xi,i= 1,...,/

f / = (w(Λ + p\ a;), W = tartw if (w(Λ + p), αf) > 0

[/ = (fc + n) + (w(yl + p),αlλ W = ta.Λir^ if (w(Λ + p\αf) < 0

(note that in both cases 0<l<k + n since ΛeP^). Then (fi)ι'Vw.Λ is a singular
vector in Mq

w,Λ, i.e. Qww, = l{Si)ι}eUomnί)(F^Λ,Fw^Λ).

Proof. The proof of singularity of the vector is by straightforward calculation. We
will present the proof in the case (w(Λ + p),αf) < 0. The other case is similar, and
in fact the singular vector in this case is just a ^-deformation of the singular vector
present for q = 1. By (3.16) we have

eAfγ.Ό^A=δ -1— X {q^Λ,ai)-2m _ q-^
q — q o^m^ι-i
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Now (w*Λ, αf) = (/ — 1) — (k + n), so the summation gives

l-l
y / l-l-(k + n)-2m _ „ - ( / - l) + (k + n) + 2m\

;

For a single simple root αf the intertwining operators of Lemma 3.7 form a
"grid" of 5/(2) complexes:

Lemma 3.8. Let αf foe α simple root, and w = taweW. Define

(V = ίαrtw, w" = ία_α.w ι/ (w(/l + p\ 0Lt) > 0

Proof. We have βw, w»6w W' = [(si)fc+π]» which vanishes due to the phase factor in
(3.9). •

The two previous lemmas completely describe the situation for s/(2). The
resulting complex is depicted in Fig. 4 (see also [FeFr2, BF]). In general, the
intertwiners corresponding to the simple root directions do not exhaust the set of
all intertwiners. In fact, we expect intertwiners for every positive root direction.
Unfortunately, not much is known about the structure (i.e. singular vectors,
composition series) of a quantum Verma module. For s/(3) however we can exhibit
additional intertwiners which allow the formulation of a complex, by explicit
"reshuffling" of the screening operators using the lemma's in the appendix.

So, let α3 = α 1 + α 2 be the third root of 5/(3), and define Zf = (Λ + p, α,),
Tt = (k + 3) — lhi = 1,2,3. We use the notation Q\i] for an intertwiner QWtW>e
H o m ^ έ ) ( F w ^ , F ^ Λ ) which is such that w*Λ — w'*Λ = lθLimodCδJ= 1,2,3. The
reason for this notation is that since q2{k + 3) = 1 there is a "periodicity" property
Mq

t^Λ ^ M\mA, for all αeM, which implies that throughout the (infinite) complex
only a finite number of different β{f)'s are needed. The operator Q\i] that acts on
Ft ^*Λ is completely determined by WE W.

Theorem 3.9. Let w = taweW. Then we have, in addition to the intertwiners of
Lemma 3.7, the following intertwiners 2 w , w ' e H o m ^ ( F w Λ , F W ^ Λ ), depending on

WGW

(i)

(ϋ)

Λ7, _ ,. λ )(3) _

•• FΓQ*Λ •• F Λ • F Γ i * Λ

Fig. 4. Fock space resolution for s/(2)
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(iii)

f Σ q
0&JSI3

where s3 = — s2sι + q~1sιs2,S3 = — sίs2 + q~1s2sί, and

bq(m,n;j) =

This results in a diagram of Fock space modules FW,Λ and mappings between them,
part of which is depicted in Fig. 5. The diagram is invariant under Λ->Λ + {k + 3)α
for aeM, and contains three types of hexagons (Fig. 6 (a),(b), and (c)) in which the
following relations are satisfied:
(a)

(b)

(c)

Proo/. The proof is a straightforward application of Lemma A.I and Lemma A.2
in the appendix. •

As discussed in Appendix 2, there is a "modified length" Ί defined on W so
that all the intertwiners βw,W ' of JLemma 3.7 and Theorem 3.9 are such that
T(w') = ί(w) + 1. In particular, for s/(3), we find that W = wri for Q\*\ (i = 1,2) and

— X — X — X —
/ (c) \ / (c) \ / (c) \ / (c) \

X - X * X •" X
\ / (b) \ / (6) \ / M \ /

— X — X — X —
/ (σ) \ / [a) \ / (σ) \ / ίa) \

X — X — X — X
\ / (c) \ / (c) \ / (d \ /

— X — X — X —
/ ib) \ / \b) \ / (b) \ / [b\ \

Fig. 5. Fock space resolution for s/(3). The fundamental hexagons are those of Fig. 6 (a), (b) and (c)
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2 1 3

y "7 N: v 2 ̂  ^ ί ^
2 X 2 . X . . X .

"\ 3 / ^\ -2 / \? T V
_U _i. _£.

Fig. 6. Fundamental hexagons. The mappings stand for

/ ρ ( 1 ), \ ρ ( 2 ) , -><2(3)

and the labellings i and Γgive /, and Th respectively, e.g. —> stands for Qff

w' = wr0 for Q[a). This also provides an easy procedure for reconstructing the
Weyl group elements w for the Fock spaces F w t Λ in Fig. 5 in terms of simple
reflections by walking along the edges of the hexagons starting from the middle
Fock space FΛ [FeFr2].

Let us emphasize once again that we have not proved that the intertwiners of
Theorem 3.9 exhaust the set of all intertwiners. Two ingredients are lacking: First,
we would have to show that all intertwiners are of the form (3.6), and secondly
we lack a complete understanding of the quantum Verma module M\. Nevertheless,
we believe that the set we have found is complete (i.e. for s/(3)). Furthermore we
should note that the relations (a), (b) and (c) in Theorem 3.9 ensure that the solutions
β ( 3 ) are well-defined and nonvanishing. Thus our explicit results for s/(3) circumvent
the remarks after Theorem 3.6. Moreover, they suffice to build the required
complex, as the following theorem shows

Theorem 3.10. Let W(i) = {weί^|Γ(w) = ί}. For every ΛeP+ we have a complex of
s/(3) Fock space modules

j(-3) Λ-2) Λ-\) .(0) ,(1)

. . . +t Λ >r Λ >r Λ

 y^Λ *"•»

where

weW{%)

Proof We define d(i):Fiι2-+F{i

Λ

+1) by its matrix elements d^UW2,\

Let d®uW2 = 0 if there does not occur an intertwiner QWuW2 in Fig. 5. Otherwise,
put di£uW2 = s(wuw2)QWuW2, where a possible choice of signs s(wί9w2)= ± 1 is
given in Fig. 7. (Note that for (— \)h+3 = 1 the signs can be taken such that they
differ only for different types of hexagons. For ( - l ) f c + 3 = - 1 the "periodicity
length" of signs is increased by a factor of two). The nilpotency property d(i+1)d(i) = 0
follows from the identities in Theorem 3.9. •

A

For sl(ή) the lemmas of the appendix again give additional intertwiners.
Moreover, for general q, intertwiners will exist for every ^-analogue of a singular
vector present in the q = 1 case. These intertwiners give a diagram that is
a (fundamental) n!-gon in (n — l)-dimensional space. We conjecture that the
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1

V -1 ^
1 X 1

1 X 1

-ε

X

X <«

Fig. 7. Signss(w 1 ,w 2 ) for a fundamental cell. We have put ε = ( - l)fc + 3 , ξ, = ( - I)1*, ί = 1,2

additional intertwiners that exist for q a root of unity are such that the resulting
diagram gives a tiling of (n — l)-dimensional space in terms of this fundamental
tt!-gon. In particular we conjecture that Theorem 3.10 holds similarly for sl(ή).

Finally, we conjecture that the complex described in Theorem 3.10 provides a
(two-sided) resolution of the irreducible highest weight module LΛ in terms of
Fock space modules F^A9 i.e.

Conjecture 3.11.

\LA for ί = 0

otherwise.

For 5/(2) a proof has been given in [FeFr2, BF]. As we have indicated the
structure simplifies drastically in this case. The two main simplifications are that
the complex of Theorem 3.10 becomes "1-dimensional" since \W(k)\ = 1, Vfc, and
secondly it is relatively easy to determine the complete "Fock space embedding
pattern" by means of the Jantzen filtration [Ja].

As a final remark observe that since (— l)l(w) = (— l)/(vv) the validity of the
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Conjecture 3.11 would provide one more proof of the Weyl-Kac character
formula (1.1).

4. Discussion and Outlook

In this paper we have shown that a quantum group underlies the^structure of the
intertwining operators between various Fock space modules of sl(n). For s/(3) we
explicitly computed the intertwining operators needed to build a complex of Fock
spaces.

To make progress for general sl(n) we obviously need a better understanding
of the quantum group Verma module. That the results can be extended to other
Lie algebras is obvious, though the actual computations might be tedious. Clearly,
we would like a proof of the conjecture that the cohomology of the complex is
concentrated in the "zeroth dimension," where it is exactly the irreducible module.
Given its validity the (higher genus) conformal blocks for WZNW-models can be
computed in the same spirit as for the minimal models [Fe,FLMSl,BaGo,FS2,
FLMS2], using the screened vertex operators introduced in [BMP1].

It is well-known that two-dimensional rational conformal field theory seems
to be a generalization of ordinary group theory, and it has been emphasized that
its structure in fact resembles that of a quantum group (see, e.g. [MS, AGS, TK2,
Sm, Wi2, MR]). The correspondence, however, was (to our knowledge) shown only
indirectly by either the explicit computation of the braiding and fusion matrices
[TK2,FS1,FFK] which are argued to correspond to the quantum group 6;-
symbols [MS, AGS], comparison of modular properties [AGS, Sm], or its relation
to 3-dimensional topological field theories (braids/knot invariants) [Wi2].

The quantum group structure revealed in this paper is more fundamental in
the sense that part of the quantum group relations are uncovered, and furthermore
the relation to representation theory of the quantum group is pointed out. We
believe that these observations will ultimately lead to a full understanding of, in
particular, the monodromy properties of conformal blocks.

Though we restricted the discussion in this paper to affine Kac-Moody algebras,
the generalization to the so-called TT-algebras [Zal,FLl,FL2,BBSSl,BBSS2] is
straightforward. For instance, the ^(g)-algebra corresponding to a simply-laced
Lie algebra g of rank ί possesses a realization in terms of ί scalar fields φ[ with
background charge α op and screening operators

sf =exp(iα ± α i •(/>), i= 1,...,/,

where α ± = ^(α0 + yjal + 4), and α0 is related to the central charge of the Virasoro
algebra by c = ί- \2<xl\ρ\2. The sets {sf

+} and {sf} will satisfy the identities
of the quantum group <%q(n±)9 with however different values of q, namely
q±= exp(π*α±). For the description of the complex we only need one set, say {sf

+}.
In fact, the complex for the ^(g)-algebra will have exactly the same structure as
the corresponding one for the affine algebra g.

Though the sets {s*} and {sf} do not combine into a realization of Wq(g),
because of the different g-values for s*, it might be possible to broaden the definition
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of a quantum group. Obviously the enlarged structure will not have a classical
limit as one cannot take the limit of both q+ and g_ to 1 at the same time.

Again, one might anticipate that the occurrence of the quantum group Wq(n + )
are reflected in the properties of the conformal blocks (see, e.g. [FZ2, Bi2, Bi3] for
the computation of conformal blocks on the sphere and their braiding properties
in the case of the ^Γ(s/(π))-algebra).

Another application of the type of free field realization discussed in this paper
is that, in principle, free field realizations can be obtained for arbitrary coset models
G/H (for one approach see [GMM]). The procedure is to bosonize the /fy-system
(see, [FMS]) and to "rotate" the scalar fields such that the H-piece can be factorized
out. This program has been worked out in detail for the Fateev-Zamolodchikov
parafermion algebra [FZ1] and their generalizations [Ge] in [Nel,Ne2,Bil,
DQ,GMM,ItKa], and for the closely related N = 2 superconformal algebra
CDQ.lt].

Appendix 1

In this appendix we collect some notations and lemmas which are used throughout
the paper. Let qeC be such that q2 φ 1. We use the following definitions from
g-number analysis:

ΓmΊ [m],!

known as the ^-number, ^-factorial and g-binomial, respectively. The following
lemma proves to be useful for the explicit determination of the intertwiners

Lemma A.I. [Lu3] Consider the associative algebra with two generators A,B and
defining relations

A2B-{q + q~ ι)ABA + BA2 = 0,

AB2 - (q + q~ X)BAB + B2A = 0.

Define C= -AB + q~ιBA, then

(i)
AC = qCA9 qBC = CB;

(ϋ)
Rk A1

ai+(k-Mi-J\ Λ

= V a

[*],! [/],! OS S&MW) q V ~ JV W ίk ~ JV

(iii)
AkBk+ιA' = BιAk+'Bk;

(iv)
Γm RJ Λm Rm~J

[m]f! ohm ' q UV im\\ίm - j \ \
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Proof, (i) is proved by straightforward calculation, (ii) and (iv) are proved by
induction, and (iii) follows from (ii). •

In the limit g->l these identities reduce to those of /12-
Su':>algebras of Lie

algebras (see, e.g. [Ve]).
If in addition q is a root of unity, then there are additional relations.

Lemma A.2. Let A, B and C be as in Lemma A.I. Let qM = — 1, and define k = M — k
for 0 < fc < M, then for 0 < / < k < M we have

(i)

(ϋ)

Proof First prove the identity for / = 1 by induction to fc, then prove the identity
by induction to /. Π

Appendix 2

In this appendix we summarize some facts about the Weyl group of an (untwisted)
affine Kac-Moody algebra (see, e.g. [Ka] for more details) and introduce the
concept of the modified length of a Weyl group element.

The affine Kac-Moody algebra g can be obtained as the (unique) central
extension of Lg = g © C [ ί , ί ~ 1 ] . We will introduce an additional element d
(derivation) defined by d(x ® tn) = n(x ® tn) for xeg. The Cartan subalgebra of g is
then given by h = h © Cc © Cd and its dual by ίi* = h* © CΛ0 © Cδ, where Λo and
δ are dual to c and d, respectively. The bilinear form (,) on h* is defined by the
bilinear form on h* and the additional relations (Λ0,δ)= 1, (Λo,Λo) = (δ,δ) = 0.
We will denote an element λeh* either by λ or by its components (λ,k,n) in
h*φCΛ 0®C<5. For modules with a highest weight A we always choose A

( Λ -
such that n = 0. We have a root space decomposition g = I (J) g& I © h, where

\άeΔ /

eΔ\ and g,,̂  =The system of positive roots is given by Δ+ = {nδ,n>0}u{nδ + α,n^0,αeZi+}u
{nδ — oc,n>O9oteΔ+}. Every positive root can be written as positive integral
combination of simple roots ά0 = δ — θ, OL{-, = αf, i = 1,..., /, where θ is the highest
root of g and αt , i = 1,... J are the simple roots of g.

The Weyl group W of g is the group generated by the reflections rh i = 0,..., ί
in the simple roots άi9 i.e. rtλ = λ — (2(λ9 άf)/(άf, άi))άi.for /leh*, and leaves the bilinear
form (,) invariant.

Every Weyl group element weW can uniquely be written as w = taw for some
oceM,weW9 where the "translation operator" is defined as

λeh,
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i.e. in terms of the decomposition h* = h* © CΛ0 © Cδ,

ta(λ, K n) = (λ + feα, K n - ((λ, α) + ife|α|2)).

In particular we have tθ = rδ_θrθ and tMa) = wt^'1, we W. The length of an element
weW is defined as the minimal number / that is required to write w in terms of
reflections w = r ί l r ί l,ί/ e{0,...,/}. One can show that /(w) = | Φ J , where the
(finite) set Φw is defined by Φw = Δ+nw(Δ_). We have the following basic lemma
which follows directly from [GL, Proposition 2.2].

Lemma A.3. Let weW and *e{0,...,*f}. Then

wccό -Φw=> Φwn = Φw u {wαj, l(wr{) = l(w) + 1,

wccieΦw^>Φw = ΦW Γ ju{ - wαj, /(wr. ) = /(w) - 1.

In particular it follows (by induction) that if w = rh rin is a reduced expression
for w then Φ w = {α i l ,r ί l α i 2 , . . . ,r i l . . .r ί n _ 1 α i n }.

To describe the Fock space complex we have to introduce the concept of the
modified length T(w) of a Weyl group element w. Let thereto Δ+fΓe = Δ'+ KJΔ"+ with

A'+ = {ά = nδ + α,

and define for all we W'

Φ'w = Δ!+ n w(i_), Φ ; = 4 ; n w(4_), Φ w = Φ'w u Φ^.

Definition A.4. For every weW we define the modified length ί(w) by

and let W(i) denote the subset of W of elements of modified length i. (Note that,
contrary to the subsets W{i) cz W, the subsets W(i) a W, the subsets W(i) consist of an
infinite number of elements (except for g = sl{2)).)

Lemma A.5. Let w = tβweW9 and oceΔ + .
(i) If w~1oc = α, for some ί = 1,...,/, then tβrΛw = wr( and T(wri) = T(w) 4-1.
(ii) // w - 1 α = —θ(θ the highest root o/g), then tβt_araw = wr0 andT(wr0) = T(w) + 1.

Proof.
(i) For all simple roots αk,fc = 0,...,/ we have rawock = wα fc-(wαk,α)α = wock-
aki(x = w(αk — αwα, ) = wrfαk so raw = wr^ Now, wαt = î vvaf = ί^a = a — (a, β)<5. For
(a, j?) > 0 we have wαfG — 4+ so that Φw = ΦWΓ. u {- wαj, for (α, β) ̂  0 we have

wαjεϋV so that Φwr. = Φ w u {wαj. In both cases /(w^) = Γ(w) + 1.
(ii) We have ί-αrαvv = t_awrθ = VPi_^-ire = wίβrβ = wr0. The statement that Γ(wro) =
ί(w) + 1 is proved similarly as in (i). •
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discussions. In particular we would like to thank E. Frenkel for discussions and explanations of his
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Note added. In the course of writing we received several papers by Feigin and Frenkel [FeFr3, FeFr4]
in which Conjecture 3.11 is proved by geometrical methods. Though their method is elegant it has two
important drawbacks compared to our approach. Firstly, it does not give explicit formulae for the
intertwining operators which are needed if one ultimately wants to apply these techniques to compute
(higher genus) correlation functions. Secondly, the method, as presented, only works for the integrable
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highest weight modules while treating rational fc-values would be essentially the same in our approach.

One may hope that the two approaches combine to give an even better understanding of the various

issues involved.
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where the embedding structure of singular vectors for <%q{sl(2)) is worked out; V. K. Dobrev, Trieste
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