Ising Model on the Generalized Bruhat-Tits Tree

Yu. M. Zinoviev
Steklov Mathematical Institute, GSP-1, SU-117333 Moscow, USSR

Abstract

The partition function and the correlation functions of the Ising model on the generalized Bruhat-Tits tree are calculated. We computed also the averages of these correlation functions when the corresponding vertices are attached to the boundary of the generalized Bruhat-Tits tree.

1. Introduction

The Ising model on the Cayley tree turns out to be very interesting [1,2]. The Cayley tree T is manifestly determined to be a connected infinite graph with no loops, each vertex of T being connected with exactly $p+1$ nearest neighbour vertices by links. If p is a prime number, the Cayley tree is called the Bruhat-Tits tree. The branch B_{z} is defined to be a connected subtree with the only boundary vertex z of the graph $T \backslash B_{z}$ in the interior of T. By definition the branch contains no cycles. Let us introduce the generalized Bruhat-Tits tree F_{g}. It consists of a finite connected graph F_{g}^{R} with g independent loops, which is called a reduced graph, the branches $B_{x}, x \in F_{g}^{R}$, and each vertex is connected by links with exactly $p+1$ nearest neighbours (for every link, two endpoints of which are identified with a vertex, we include the vertex itself twice into the number of its nearest neighbours). If the vertex $x \in F_{g}^{R}$ has only one nearest neighbour $y \in F_{g}^{R}, x \neq y$, then p branches B_{x} and the link $[x, y]$ form the branch B_{y}. Hence instead of the reduced graph F_{g}^{R} we may consider the reduced graph $F_{g}^{R} \backslash[x, y]$. From now on F_{0}^{R} is merely a single vertex and $p+1$ branches should be added to this vertex in order to construct the BruhatTits tree $F_{0}=T$, for $g>0$ each vertex $x \in F_{g}^{R}$ has $2 \leqq n(x) \leqq p+1$ nearest neighbours in F_{g}^{R} and $b(x)=p+1-n(x)$ branches should be added to x in order to construct the generalized Bruhat-Tits tree F_{g}. Due to [3-5] the Bruhat-Tits tree $T \equiv F_{0}$ may be interpreted as the coset space $\operatorname{PGL}\left(2, \mathbb{Q}_{p}\right) / P G L\left(2, \mathbb{Z}_{p}\right)$, where $P G L(2, \mathbb{K})$ is the group of fractional linear transformations of the projective line $P^{1}(\mathbb{K})$ over a ring \mathbb{K} (we deal with the field of p-adic numbers \mathbb{Q}_{p} and with the ring of the p-adic integers $\left.\mathbb{Z}_{p}\right)$. The element of $G L\left(2, \mathbb{Q}_{p}\right)$ is called hyperbolic if it has eigenvalues which p-adic norms are different. A Schottky group Γ_{g} is a free subgroup of $\operatorname{PGL}\left(2, \mathbb{Q}_{p}\right)$ with g generators, all non-unit elements of which are hyperbolic. Usually the generalized Bruhat-Tits tree F_{g} may be interpreted as a coset space T / Γ_{g}, where Γ_{g} is some Schottky group [4-6].

Since the configuration σ takes the values ± 1 the Ising model action may be rewritten in the form

$$
\beta \sum_{|x-y|=1} \sigma(x) \sigma(y)=\beta N_{1}-\beta / 2 \sum_{|x-y|=1}(\sigma(x)-\sigma(y))^{2},
$$

where N_{1} is the total number of the links of the lattice. If σ is allowed to take any real values we obtain the action for \mathbb{R} Ising model

$$
S(\phi)=-\beta / 2 \sum_{|x-y|=1}(\phi(x)-\phi(y))^{2}
$$

by omitting the unessential term βN_{1} and by changing $\sigma \rightarrow \phi$. This model is a lattice version of the free massless field. On the broad class of the lattices including the generalized Bruhat-Tits tree the correlation functions of the \mathbb{R} Ising model with the free boundary conditions may be computed exactly [7]. By using the special average of these correlation functions the multiloop p-adic string amplitudes were calculated for the scattering of N identical tachyons attached to the boundary of the generalized Bruhat-Tits tree [8, 9].

In this paper we calculate the partition function and the correlation functions of the Ising model on the generalized Bruhat-Tits tree with the free boundary conditions. We also compute the averages of these correlation functions which are analogous to the p-adic string amplitudes.

2. Correlation Functions

In order to find the correlation functions and partition function for the infinite generalized Bruhat-Tits tree F_{g} we calculate them first on a finite subgraph $K \subset F_{g}$. A finite subgraph K of the generalized Bruhat-Tits tree F_{g} may be considered as a finite cell complex. It consists of zero- and one-dimensional cells: vertices and links. Every cell $\pm s_{i}^{q}$ is labelled by the integer $q=0,1$ (dimension) and by the number ± 1 (orientation). The cells with the opposite orientation s^{q} and $-s^{q}$ both belong to the lattice K. An integer-valued odd $\left(c^{q}\left(-s_{i}^{q}\right)=-c^{q}\left(s_{i}^{q}\right)\right)$ function c^{q} on the q-dimensional cells is called a q-chain of the complex $K . c^{q}$ can be regarded as a formal sum $\sum m_{i} s_{i}^{q}$, where the integers $m_{i}=c^{q}\left(s_{i}^{q}\right)$. A set of q-chains is an Abelian group: $c^{q}+c^{\prime q}=\sum\left(m_{i}+m_{i}^{\prime}\right) s_{i}^{q}$. It is denoted by $C^{q}(K, \mathbb{Z})$. It is possible to introduce the inner product on $C^{q}(K, \mathbb{Z}):\left\langle c^{q}, c^{\prime q}\right\rangle=\sum m_{i} m_{i}^{\prime}$. We define the boundary operator ∂ on $C^{q}(K, \mathbb{Z})$ by $\partial s^{0}=0$ and $\partial\left[x_{i}, x_{j}\right]=x_{j}-x_{i}$. By linearity it is easy to extend the boundary operator on $C^{q}(K, \mathbb{Z})$. We define the coboundary operator ∂^{*} by the following relations $\partial^{*} c^{1}=0$ and $\left\langle\partial^{*} c^{0}, c^{\prime 1}\right\rangle=\left\langle c^{0}, \partial\left(c^{\prime 1}\right)\right\rangle$. A kernel $Z_{1}(K, \mathbb{Z})$ of a homomorphism $\partial: C^{1}(K, \mathbb{Z}) \rightarrow C^{0}(K, \mathbb{Z})$ is called a group of cycles of the complex K. The image $B_{0}(K, \mathbb{Z})$ of a homomorphism $\partial: C^{1}(K, \mathbb{Z}) \rightarrow C^{0}(K, \mathbb{Z})$ is called a group of boundaries of the complex K. The image $B^{1}(K, \mathbb{Z})$ of a homomorphism $\partial^{*}: C^{0}(K, \mathbb{Z}) \rightarrow C^{1}(K, \mathbb{Z})$ is called a group of coboundaries of the complex K.

A homomorphism of $C^{q}(K, \mathbb{Z})$ into the Abelian group $\mathbb{Z}_{2}=\{ \pm 1\}$ (Don't confuse with 2-adic integers) is a q-chain of the complex K with coefficients in \mathbb{Z}_{2}. A set of all these homomorphisms is an Abelian group which is denoted by $C^{q}\left(K, \mathbb{Z}_{2}\right)$. Each homomorphism $h^{q} \in C^{q}\left(K, \mathbb{Z}_{2}\right)$ is defined by its values on the q-chains $1 \cdot s_{i}^{q} \in C^{q}(K, \mathbb{Z})$ i.e. on the cells s_{i}^{q}. Thus h^{q} is an \mathbb{Z}_{2}-valued function on the q-dimensional cells of K. On $C^{q}\left(K, \mathbb{Z}_{2}\right)$ we introduce the boundary and coboundary operators: $\partial h^{1}\left(c^{0}\right)=h^{1}\left(\partial^{*} c^{0}\right)$ and $\partial^{*} h^{0}\left(c^{1}\right)=h^{0}\left(\partial c^{1}\right)$. For example $\partial^{*} h^{0}([x, y])$ $=h^{0}(x) h^{0}(y)$, because of $\sigma^{-1}=\sigma$ for $\sigma= \pm 1$. The group of cycles $Z_{1}\left(K, \mathbb{Z}_{2}\right)$, the groups of boundaries $B_{0}\left(K, \mathbb{Z}_{2}\right)$ and coboundaries $B^{1}\left(K, \mathbb{Z}_{2}\right)$ are defined in an
obvious way. The group \mathbb{Z}_{2} is selfdual: if $\sigma_{1}, \sigma_{2}= \pm 1$, then

$$
\begin{equation*}
\left\langle\sigma_{1} \mid \sigma_{2}\right\rangle=\sigma_{1}^{J\left(\sigma_{2}\right)}=\sigma_{2}^{J\left(\sigma_{1}\right)}, \tag{2.1}
\end{equation*}
$$

where $J(\sigma)=1 / 2(1-\sigma)$. Analogously, if $c_{1}^{q}, c_{2}^{q} \in C^{q}\left(K, \mathbb{Z}_{2}\right)$ then

$$
\begin{equation*}
\left\langle c_{1}^{q} \mid c_{2}^{q}\right\rangle=\prod_{s_{i}^{q} \in K}\left\langle c_{1}^{q}\left(s_{i}^{q}\right) \mid c_{2}^{q}\left(s_{i}^{q}\right)\right\rangle, \tag{2.2}
\end{equation*}
$$

where multiplication runs over all positively oriented links of the lattice K.
Let us consider the Ising model on the lattice K. A configuration is a chain $\sigma^{0} \in C^{0}\left(K, \mathbb{Z}_{2}\right)$, i.e. a function on the vertices of K taking the values ± 1. The Ising model action may be rewritten as

$$
\begin{equation*}
S\left(\sigma^{0}\right)=\beta \sum_{s_{i} \in K} \partial^{*} \sigma^{0}\left(s_{i}^{1}\right) \tag{2.3}
\end{equation*}
$$

where the summing runs over all positively oriented links of the lattice K. The partition function is

$$
\begin{equation*}
Z_{k}=2^{-N_{0}} \sum_{\sigma^{0} \in C^{0}\left(K, \mathbb{Z}_{2}\right)} e^{S\left(\sigma^{0}\right)} \tag{2.4}
\end{equation*}
$$

where N_{0} is the total number of the vertices of the lattice K. The correlation function has the form

$$
\begin{equation*}
W_{K}\left(\chi^{0}\right)=Z_{K}^{-1} 2^{-N_{0}} \sum_{\sigma^{0} \in C^{0}\left(K, \mathbb{Z}_{2}\right)}\left\langle\chi^{0} \mid \sigma^{0}\right\rangle e^{S\left(\sigma^{0}\right)}, \tag{2.5}
\end{equation*}
$$

where the chain $\chi^{0} \in C^{0}\left(K, \mathbb{Z}_{2}\right)$ takes the value -1 at the vertices x_{1}, \ldots, x_{m} and takes the value 1 otherwise. Thus the definition (2.2) implies $\left\langle\chi^{0} \mid \sigma^{0}\right\rangle$ $=\sigma^{0}\left(x_{1}\right) \ldots \sigma^{0}\left(x_{m}\right)$.

By Lemma 1 of [10] the correlation function $W_{K}\left(\chi^{0}\right)$ isn't zero only for boundaries $\chi^{0}=\partial \chi^{1}$ and

$$
\begin{equation*}
W_{K}\left(\partial \chi^{1}\right)=Z_{K}^{-1}\left|B^{1}\left(K, \mathbb{Z}_{2}\right)\right|^{-1} \sum_{\phi^{1} \in B^{1}\left(K, \mathbb{Z}_{2}\right)}\left\langle\chi^{1} \mid \phi^{1}\right\rangle \exp \left\{\beta \sum_{s_{i} \in K} \phi^{1}\left(s_{i}^{1}\right)\right\} \tag{2.6}
\end{equation*}
$$

where $\left|B^{1}\left(K, \mathbb{Z}_{2}\right)\right|$ is the order of the finite group of the coboundaries $B^{1}\left(K, \mathbb{Z}_{2}\right)$. By using the Fourier transformation on the group $B^{1}\left(K, \mathbb{Z}_{2}\right)$ we obtain due to Proposition 1 of [10]

$$
\begin{equation*}
W_{K}\left(\partial \chi^{1}\right)=Z_{K}^{-1}(\operatorname{ch} \beta)^{N_{1}} \sum_{\xi^{1} \in Z_{1}\left(K, \mathbb{Z}_{2}\right)} \exp \left\{-2 \beta^{*} \sum_{s_{i} \in K} J\left(\chi^{1}\left(s_{i}^{1}\right) \xi^{1}\left(s_{i}^{1}\right)\right)\right\} \tag{2.7}
\end{equation*}
$$

where $J(\sigma)=1 / 2(1-\sigma)$ and the number β^{*} is given by the following equation: $e^{-2 \beta^{*}}=\operatorname{th} \beta$.

Let K be a finite connected subgraph of the generalized Bruhat-Tits tree F_{g}. Let K contain also the reduced graph F_{g}^{R}. The cell complex K is torsion free. Hence

$$
\begin{align*}
\partial \chi^{1}\left(s_{k}^{0}\right) & =\exp \left\{i \pi\left(\partial c^{1}\right)\left(s_{k}^{0}\right)\right\} \\
\xi^{1}\left(s_{k}^{1}\right) & =\exp \left\{i \pi \zeta^{1}\left(s_{k}^{1}\right)\right\} \tag{2.8}
\end{align*}
$$

where $c^{1} \in C^{1}(K, \mathbb{Z})$ and $\zeta^{1} \in Z_{1}(K, \mathbb{Z})$. Since the graph K is connected any chain ∂c^{1} may be presented as $\partial\left(\sum_{1}^{N} m_{i} \kappa_{c, x_{i}}\right)$, where $\kappa_{c, x_{i}}$ is some path from the arbitrary fixed vertex $c \in F_{g}^{R}$ to the vertex x_{i} and the integers m_{i} satisfy the condition $\sum m_{i}=0$. (By
definition the path $\kappa_{c, x_{i}}$ is the sum of the different links connecting two vertices c and x_{i}.) In view of the first relation (2.8) it is possible to add to the chain ∂c^{1} any chain $c^{0}=\sum n_{i} s_{i}^{0}$ with even integers n_{i}. Hence we may consider all $m_{i}=1$ and $N=\sum m_{i}=0(\bmod 2)$, i.e. N is even. Since the graph K contains the reduced graph F_{g}^{R} and any branch has no loops each cycle $\zeta^{1} \in Z_{1}(K, \mathbb{Z})$ has the form $\zeta^{1}=\sum_{i=1}^{g} m_{i} z_{i}$ where the loops z_{1}, \ldots, z_{g} form the basis of the group of cycles $Z_{1}\left(F_{g}^{R}, \mathbb{Z}\right)$. It is possible to choose the basis in this way thus $z_{k}\left(s_{i}^{1}\right)=0, \pm 1$ for any link s_{i}^{1} and $k=1, \ldots, g$. In view of the second relation (2.8) we may consider all $m_{i}=0,1$. Thus the relation (2.8) may be rewritten as

$$
\begin{align*}
\partial \chi^{1}\left(s_{k}^{0}\right) & =\partial\left(e^{i \pi \sum_{1}^{2 N} \kappa_{c, x_{j}}}\right)\left(s_{k}^{0}\right)=e^{i \pi \sum_{1}^{2 N} \delta_{x_{j}}, s_{k}^{0}} \\
\xi^{1}\left(s_{k}^{1}\right) & =\left(e^{i \pi \frac{g}{\varepsilon_{1}} \delta_{j} z_{j}}\right)\left(s_{k}^{1}\right) \tag{2.9}
\end{align*}
$$

where the numbers $\varepsilon_{j}=0,1$.
It is easy to verify the following formula:

$$
\begin{equation*}
1 / 2\left(1-e^{i \pi \sum_{1}^{n} \varepsilon_{k}}\right)=\sum_{q=1}^{n}(-2)^{q-1} \sum_{\substack{k_{1}<\ldots<k_{q} \\ k_{j}=1}}^{n} \varepsilon_{k_{1}} \ldots \varepsilon_{k_{q}}, \tag{2.10}
\end{equation*}
$$

where the numbers $\varepsilon_{k}=0,1$.
In view of the formula (2.10) the substitution of the relations (2.9) into Eq. (2.7) yields for the correlation function

$$
\begin{align*}
& W_{K}\left(e^{i \pi_{j=1}^{2 N} \delta_{x_{j}},}\right)=Z_{K}^{-1}(\operatorname{ch} \beta)^{N_{1}} \\
& \times \sum_{\varepsilon_{1}, \ldots, \varepsilon_{g}=0}^{1} \exp \left\{-2 \beta^{*}\left[\sum_{m=1}^{2 N}(-2)^{m-1} \sum_{k_{1}<\ldots . .1<k_{m}}^{2 N}\left\langle\kappa_{c, x_{k 1}}, \ldots, \kappa_{c, x_{k_{m}}}\right\rangle\right.\right. \\
& \left.+\sum_{n=1}^{g}(-2)^{n-1} \sum_{l_{1}<\ldots}^{i} \sum_{i}^{g}<l_{n}<\varepsilon_{l_{1}} z_{l_{1}}, \ldots, \varepsilon_{l_{n}} z_{l_{n}}\right\rangle \\
& +\sum_{m=1}^{2 N} \sum_{n=1}^{g}(-2)^{m+n-1} \sum_{k_{1}<\ldots \ldots k_{m}}^{2 N} \sum_{l_{1}<\ldots}^{g}<l_{i}^{g}\left\langle l_{c}, x_{k_{1}}, \ldots, \kappa_{c, x_{k_{m}}},\right. \\
& \left.\left.\left.\varepsilon_{l_{1}} z_{l_{1}}, \ldots, \varepsilon_{l_{n}} z_{l_{n}}\right\rangle\right]\right\} \tag{2.11}
\end{align*}
$$

and for the partition function

$$
\begin{equation*}
Z_{K}=(\operatorname{ch} \beta)^{N_{1}} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{g}=0}^{1} \exp \left\{-2 \beta^{*} \sum_{n=1}^{g}(-2)^{n-1} \sum_{l_{1}<\ldots i<i<l_{n}}^{g}\left\langle\varepsilon_{l_{1}} z_{l_{1}}, \ldots, \varepsilon_{l_{n}} z_{l_{n}}\right\}\right\}(2 \tag{2.12}
\end{equation*}
$$

Here for the chains $c_{1}^{1}, \ldots, c_{k}^{1} \in C^{1}(K, \mathbb{Z}), k=1,2, \ldots$, we introduced the product

$$
\begin{equation*}
\left\langle c_{1}^{1}, \ldots, c_{k}^{1}\right\rangle=\sum_{s_{i} \in K}\left(c_{1}^{1}\left(s_{i}^{1}\right) \ldots c_{k}^{1}\left(s_{i}^{1}\right)\right) . \tag{2.13}
\end{equation*}
$$

For the Bruhat-Tits tree $T=F_{0}$ the formula (2.12) gives the partition function calculated in the paper [1].

If the vertices $x_{1}, \ldots, x_{2 N}$ are fixed, the limit $K \rightarrow F_{g}$ for the correlation function (2.11) is obtained by omitting the multiplier $(\operatorname{ch} \beta)^{N_{1}}$ in the formulas (2.11) and (2.12). We denote this limit by

$$
W\left(e^{i \pi \int_{j=1}^{2 N} \delta_{x_{j},} \cdot}\right) .
$$

3. Averages

Our aim now will be to compute the correlation functions with the vertices attached to the boundary of the generalized Bruhat-Tits tree.

If a vertex $x_{i} \notin F_{g}^{R}$ then by the definition of the graph F_{g} there exists the unique vertex $x^{R} \in F_{g}^{R}$ such that the path

$$
\begin{equation*}
\kappa_{c, x}=\kappa_{c, x^{R}}+\kappa_{x^{R}, x}, \tag{3.1}
\end{equation*}
$$

where the path $\kappa_{c, x^{R}}$ belongs to the reduced graph F_{g}^{R} and the unique path $\kappa_{x^{R}, x}$ lies in the branch $B_{x^{\text {R }}}$. Any half-infinite path (without returns) in $B_{x^{R}}$ starting at an vertex x^{R} we call a ray $x^{R} \rightarrow x$. The set of all rays will be called the boundary ∂F_{g} of F_{g}. On ∂F_{g} we introduce the basis of open sets ∂B_{x}, where $x \in F_{g} \backslash F_{g}^{R}$, and ∂B_{x} consists of all rays having infinite intersection with the branch B_{x}. The measure μ_{0} on ∂F_{g} is defined by the following relation:

$$
\begin{equation*}
\mu_{0}\left(\partial B_{x}\right)=p^{-\left\langle\kappa_{x} R, x\right\rangle} . \tag{3.2}
\end{equation*}
$$

The relation

$$
\begin{equation*}
\left|x^{R} \rightarrow x, y^{R} \rightarrow y\right|_{p}=p^{-\left\langle x^{R} \rightarrow x, y^{R} \rightarrow y\right\rangle} \tag{3.3}
\end{equation*}
$$

defines the distance on ∂F_{g}.
The reduced graph $F_{0}^{R^{g}}$ is merely a single vertex c. The boundary ∂F_{0} can be naturally identified with p-adic projective line $P^{1}\left(\mathbb{Q}_{p}\right)[4,5]$ with the measure related to the Haar measure $d x$ on \mathbb{Q}_{p} by the following relations:

$$
\begin{gather*}
d \mu_{0}(c \rightarrow x)=d x, \quad|x|_{p} \leqq 1 \\
d \mu_{0}(c \rightarrow x)=d x /|x|_{p}^{2}, \quad|x|_{p}>1 \tag{3.4}
\end{gather*}
$$

where $|\cdot|_{p}$ is the standard p-adic norm on \mathbb{Q}_{p}, and the distance (3.3) on $P^{1}\left(\mathbb{Q}_{p}\right)$ is defined by its restriction on \mathbb{Q}_{p} :

$$
\begin{gather*}
|c \rightarrow x, c \rightarrow y|_{p}=|x-y|_{p}, \quad|x|_{p} \leqq 1, \quad|y|_{p} \leqq 1 ; \\
|c \rightarrow x, c \rightarrow y|_{p}=\left|x^{-1}-y^{-1}\right|_{p}, \quad|x|_{p}>1, \quad|y|_{p}>1 ; \tag{3.5}\\
|c \rightarrow x, c \rightarrow y|_{p}=1, \quad \text { otherwise. }
\end{gather*}
$$

We call the vertex $x^{R} \in F_{g}^{R}$ external if x^{R} is the end of $b\left(x^{R}\right)>0$ branches in F_{g}. For $g>0$ by definition of the reduced graph an external vertex $x^{R} \in F_{g}^{R}$ defines $b\left(x^{R}\right)$
$\left(0<b\left(x^{R}\right) \leqq p-1\right)$ branches. Then the ray $x^{R} \rightarrow x$ starting at the external vertex $x^{R} \in F_{g}^{R}$ may be identified with the p-adic integer number $x \in \mathbb{Z}_{p}$ in the form

$$
\begin{equation*}
x=a_{0}+a_{1} p+a_{2} p^{2}+\ldots \tag{3.6}
\end{equation*}
$$

where $0 \leqq a_{0} \leqq b\left(x^{R}\right)-1$ and $0 \leqq a_{i} \leqq p-1$ for $i>0$. We denote the set of these numbers as $\mathbb{Z}_{p}\left[a_{0}<b\left(x^{R}\right)\right]$. Thus for $g>0$,

$$
\begin{equation*}
\partial F_{g} \cong \bigcup_{\substack{\left.x^{R} \in F^{R} \\ b\left(x^{R}\right)\right)_{0}}} \mathbb{Z}_{p}\left[a_{0}<b\left(x^{R}\right)\right] . \tag{3.7}
\end{equation*}
$$

It is easy to verify that under this correspondence

$$
\begin{gather*}
\left|x^{R} \rightarrow x, y^{R} \rightarrow y\right|_{p}=\left(|x-y|_{p}\right)^{\delta_{x}^{R}, y^{R}} \tag{3.8}\\
d \mu_{0}\left(x^{R} \rightarrow x\right)=d x \tag{3.9}
\end{gather*}
$$

The distance between k rays $x_{1}^{R} \rightarrow x_{1}, \ldots, x_{k}^{R} \rightarrow x_{k}$ is defined similarly to the definition (3.3)

$$
\begin{equation*}
\left|x_{1}^{R} \rightarrow x_{1}, \ldots, x_{k}^{R} \rightarrow x_{k}\right|_{p}=p^{-\left\langle x_{1}^{R} \rightarrow x_{1}, \ldots, x_{k}^{R} \rightarrow x_{k}\right\rangle} . \tag{3.10}
\end{equation*}
$$

The definition of the generalized Bruhat-Tits tree F_{g} and the relations (3.3), (3.10) imply

$$
\begin{equation*}
\left|x_{1}^{R} \rightarrow x_{1}, \ldots, x_{k}^{R} \rightarrow x_{k}\right|_{p}=\left(\max _{i, j=1, \ldots, k}\left|x_{i}^{R} \rightarrow x_{i}, x_{j}^{R} \rightarrow x_{j}\right|_{p}\right)^{\delta_{x}^{R}, x_{2}^{R} \ldots \delta_{x}^{R}, x_{k}^{R}} \tag{3.11}
\end{equation*}
$$

We call the boundary ∂K of the graph K the set of all vertices from $K \subset F_{g}$ which have among the nearest neighbours the vertices from $F_{g} \backslash K$. Let $f_{1}\left(x^{R} \rightarrow x\right), \ldots, f_{2 N}\left(x^{R} \rightarrow x\right)$ be the positive continuous functions summable with the measure $d \mu_{0}\left(x^{R} \rightarrow x\right)$ on ∂F_{g} defined by the relation (3.2). We introduce the average

$$
\begin{equation*}
A_{2 N}\left(f_{1}, \ldots, f_{2 N}\right)=\lim _{\substack{K_{j} \rightarrow F_{g}, j=1, \ldots, 2 N}} \sum_{\left\{x_{j} \in \partial K_{j}\right\}} W\left(e^{i \pi} \sum_{j=1}^{2 N} \delta_{x_{j}}, \cdot\right) \prod_{j=1}^{2 N} \bar{f}_{j}\left(x_{j}\right) \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{f}_{j}\left(x_{j}\right)=\left(\mu_{0}\left(\partial B_{x_{j}}\right)\right)^{-1} \int_{\partial B_{x_{j}}} d \mu_{0}\left(x^{R} \rightarrow x\right) f_{j}\left(x^{R} \rightarrow x\right) \tag{3.13}
\end{equation*}
$$

If all graphs $K_{j}=K$ and all functions $f_{j}\left(x^{R} \rightarrow x\right)=1$ the average $A_{2 N}(1, \ldots, 1)$ is the straightforward analogue of the p-adic string amplitude $[8,9]$.

We find the limit (3.12) for the special sequence of graphs $\left\{K_{1}\right\}$ such that

$$
\partial K_{l}=\left\{x \in F_{g} \mid\left\langle\kappa_{x^{R}, x}\right\rangle=l, x \in B_{x^{R}}, x^{R} \in F_{g}^{R}, b\left(x^{R}\right)>0\right\} .
$$

We suppose also that the supports of the functions $f_{i}\left(x^{R} \rightarrow x\right)$ and $f_{j}\left(x^{R} \rightarrow x\right)$ don't intersect for $i \neq j$.

For $g=0$ the relations (2.11), (2.12), (3.2) and (3.12), (3.13) imply

$$
\begin{align*}
A_{2 N}\left(f_{1}, \ldots, f_{2 N}\right)= & \lim _{l \rightarrow \infty} \exp \left\{2 N l\left(\ln p-2 \beta^{*}\right)\right\} \\
& \times \sum_{\left\{x_{j} \in \partial K_{l}\right\}}\left(\prod_{j=1}^{2 N} \int_{\partial B_{x_{j}}} d \mu_{0}(c \rightarrow x) f_{j}(c \rightarrow x)\right) \\
& \times \exp \left\{-2 \beta^{*} \sum_{m=2}^{2 N}(-2)^{m-1} \sum_{k_{1}<. . .1}^{2 N}<k_{m}\right. \tag{3.14}
\end{align*}\left\langle\kappa_{c, x_{k_{1}}}, \ldots, \kappa_{\left.c, x_{k_{m}}\right\rangle}\right\} .
$$

Since the supports of the functions $f_{i}\left(x^{R} \rightarrow x\right)$ and $f_{j}\left(x^{R} \rightarrow x\right)$ don't intersect for $i \neq j$ the last sum in (3.14) absolutely converges as $l \rightarrow \infty$ to

$$
\begin{align*}
P^{1}\left(\mathbb{Q}_{p}\right)^{\times 2 N} & f_{1}\left(x_{1}\right) d \mu_{0}\left(x_{1}\right) \ldots f_{2 N}\left(x_{2 N}\right) d \mu_{0}\left(x_{2 N}\right) \\
& \times \prod_{m=2}^{2 N} \prod_{k_{1}<\ldots}^{2 N}<k_{m}\left(\max _{i, j=1, \ldots, m}\left|x_{k_{i}}, x_{k_{j}}\right|_{p}\right)^{(-2)^{m-1} 2 \beta^{*}(\ln p)^{-1}} . \tag{3.15}
\end{align*}
$$

Here we use the relations (3.3), (3.10), (3.11) and we denote by $d \mu_{0}(x)$ the measure given by the right-hand sides of the relations (3.4). The distance $|x, y|_{p}$ is given by the right-hand sides of the relations (3.5). We use also the correspondence $\partial F_{0} \cong P^{1}\left(\mathbb{Q}_{p}\right)[4,5]$ and replace the functions $f_{j}(c \rightarrow x)$ simply by $f_{j}(x)$.

It follows now from (3.14) that

$$
A_{2 N}\left(f_{1}, \ldots, f_{2 N}\right)= \begin{cases}0, & 2 \beta^{*}>\ln p \tag{3.16}\\ \infty, & 2 \beta^{*}<\ln p\end{cases}
$$

If

$$
\begin{equation*}
2 \beta^{*}=\ln p \tag{3.17}
\end{equation*}
$$

inserting (3.15) into the right-hand side of (3.14) we obtain the non-trivial limit

$$
\begin{align*}
& A_{2 N}\left(f_{1}, \ldots, f_{2 N}\right)=\int_{P^{1}\left(\mathbb{Q}_{p}\right)^{\times 2 N}} f_{1}\left(x_{1}\right) d \mu_{0}\left(x_{1}\right) \ldots f_{2 N}\left(x_{2 N}\right) d \mu_{0}\left(x_{2 N}\right) \\
& \quad \times \prod_{m=2}^{2 N} \prod_{k_{1}<\ldots}^{2 N}\left(\max _{i}\left|x_{k_{m}}, x_{k_{j}}\right|_{p}\right)^{(-2)^{m-1}} . \tag{3.18}
\end{align*}
$$

Here we considered the simplest case when the supports of the different functions $f_{i}(x)$ on $P^{1}\left(\mathbb{Q}_{p}\right)$ don't intersect. In order to extend the formula (3.18) to the general case it is necessary to study the convergence of the integral (3.18).

Let us consider the generalized Bruhat-Tits tree F_{g} with $g>0$. By using the relations (2.11), (2.12), the decomposition (3.1) and the formulas (3.7)-(3.11) we obtain the relation (3.16). If β^{*} satisfies the condition (3.17) we have the non-trivial limit

$$
\begin{align*}
& A_{2 N}\left(f_{1}, \ldots, f_{2 N}\right)=\sum_{\substack{\left\{x_{1}^{R}\right\} \in F_{\boldsymbol{F}}^{R} \\
b\left(x^{R}\right)>0}} W\left(e^{i \pi \sum_{j=1}^{2 N} \delta_{x_{j}^{R}}^{R},}\right) \\
& \times \int_{\mathbb{Z}_{p}\left[a_{0}<b\left(x_{1}^{R}\right)\right]} f_{1}\left(x_{1}^{R} \rightarrow x_{1}\right) d x_{1} \ldots \int_{\mathbb{Z}_{p}\left[a_{0}<b\left(x_{2 N}^{R}\right)\right]} f_{2 N}\left(x_{2 N}^{R} \rightarrow x_{2 N}\right) d x_{2 N} \\
& \times \prod_{m=2}^{2 N} \prod_{k_{1}<\ldots}^{2 N}\left(\max _{1}\left|x_{k_{i}}-x_{k_{j}}\right|_{p}\right)^{(-2)^{m-1} \delta_{x} x_{k_{1}}^{R}, x_{k_{2}}^{R} \ldots \delta_{x k_{1}}^{R}, x_{k_{m}}^{R}}, \tag{3.19}
\end{align*}
$$

where the correlation function

$$
W\left(e^{i \pi_{j=1}^{2 N} \delta_{x},}, \cdot\right)
$$

is given by the equations (2.11), (2.12) with the omitted multiplier $(\operatorname{ch} \beta)^{N_{1}}$. The proof of the formula (3.19) is exactly analogous to the case $g=0$. To extend the formula (3.19) to the case when the supports of the functions $f_{1}\left(x^{R} \rightarrow x\right)$ intersect one needs to study the convergence of the integral (3.19).

References

1. Eggarter, T.P.: Cayley trees, the Ising problem, and the thermodynamic limit. Phys. Rev. B 9, 2989-2992 (1974)
2. Müller-Hartmann, E., Zittartz, J.: New type of phase transition. Phys. Rev. Lett. 33, 893-897 (1974)
3. Bruhat, F., Tits, J.: Groupes reductifs sur un corps local. I. Données radicielles valuées. Publ. Math. IHES 41, 5-251 (1972)
4. Serre, J.P.: Trees. Berlin, Heidelberg, New York: Springer 1980
5. Manin, Yu.I.: p-Adic automorphic functions. Sovr. Probl. Mat. 3, 5-92. Moscow: VINITI 1974 (in Russian)
6. Gerritzen, L., van der Put, M.: Schottky groups and Mumford curves. Lecture Notes in Math. vol. 817. Berlin, Heidelberg, New York: Springer 1980
7. Zinoviev, Yu.M.: Lattice \mathbb{R}-gauge theories. Theor. Math. Phys. 49, No. 2 (1981)
8. Zabrodin, A.V.: Non-archimedean strings and Bruhat-Tits trees. Commun. Math. Phys. 123, 463-483 (1989)
9. Chekhov, L.O., Mironov, A.D., Zabrodin, A.V.: Multiloop calculations in p-adic string theory and Bruhat-Tits trees. Commun. Math. Phys. 125, 675-711 (1989)
10. Zinoviev, Yu.M.: Duality in the Abelian lattice theories. Theor. Math. Phys. 43, 481-490 (1980)

Communicated by Ya. G. Sinai

Received November 11, 1989

