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Abstract. We study the generalized transfer operator £fpf{z) = £ x
n = i\z + nj

/(1/(Z + H)) of the Gauss map Tx = (l/x)modi on the unit interval. This
operator, which for β = 1 is the familiar Perron-Frobenius operator of T, can
be defined for Re β > \ as a nuclear operator either on the Banach space AJJ))
of holomorphic functions over a certain disc D or on the Hubert space
^Reβ(H-1/2) of functions belonging to some Hardy class of functions over the
half plane # _ i / 2 The spectra of <£ β on the two spaces are identical. On the
space ^Reβ(H-ι/2) &β is isomorphic to an integral operator Xβ with kernel
the Bessel function %2β-i(2y/st) and hence to some generalized Hankel
transform. This shows that S£β has real spectrum for real β > \. On the space
A^D) the operator $£}

β can be analytically continued to the entire β-plane with
simple poles at β = βk = (1 — fc)/2, k = 0,1,2,... and residue the rank 1 operator
jfWf = i(l/fc!)/(fc)(0). From this similar analyticity properties for the Fredholm
determinant det (1 — i f β) of i f β and hence also for Ruelle's zeta function follow.

00

Another application is to the function ζM(β) = Σ [ή]β, where [n] denotes the
« = i

irrational [n] = (n + (n2 + 4)1/2)/2. ζM(β) extends to a meromorphic function in
the β-plane with the only poles at β = ± 1 both with residue 1.

1. Generalized Transfer Operators for the Gauss Map

If / = [0,1] denotes the unit interval in R the Gauss (or continued fraction-)map
T:[0,1] -• [0,1] is defined as

From ergodic theory for general hyperbolic systems T:M->M it is known [Bo],
[Rul] that systems like the Gauss map allow for a description in terms of symbolic
dynamics π:Fπ+-+M with an alphabet F and a transition matrix A = (Aσσ,)>
<τ,σ'eF, defined through a Markov partition si = {0σ)σsF. This way T gets
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semi-conjugated to the shift map τ:Fz+ -• Fz+, {τξ)i = ξi+ x for ξ = ({;)/6Z+, on the
one sided subshift of finite type with the above data. For the Gauss map F turns
out to be IN and hence the symbolic dynamics takes place on a one sided subshift
of infinite type. The physical system corresponding to such a subshift is a spin
system on the lattice Z+ whose spins take values in N. Of special interest in the
ergodic theory of hyperbolic systems are the equilibrium states [Bo] which are
T-invariant probability measures defined through the Gibbs-ensembles of the above
mentioned lattice spin systems. These Gibbs-ensembles are determined by some
interaction energy characterizing the spin system [Rul]. A rather special role from
the physical point of view in this approach plays the interaction determined by
the function φ^x)^ -log|detZ)uT(x)|, where DUT denotes the derivative of T
along the unstable directions of the hyperbolic system T [Rul], [Bo]. For
1-dimensional systems this is the function φx{x) = - log | T'(x)\9 which for the Gauss
map reads φx(x) = logx2. Through the symbolic dynamics π : F z + -> J this defines a
function A(ξ) = φ1°π(ξ) in Fz+. As shown in [Ma3], the map π : N z + - > / for the
Markov partition si — (In)new /„ = [(1/fl + l),(l/n)], of the Gauss map T:/->/ is
given by

where [ni ,n 2 , . . . , ] denotes the number xel whose continued fraction expansion
has entries n ^ N , ieΊL+. Strictly speaking, the map π is not surjective since π(ξ)
is irrational for £ e N z + . This means that we are treating this way the Gauss map T
restricted to the invariant subset / i n v = {xel.x irrational}. As long however as we
are interested only in measures which are absolutely continuous with respect to
Lebesgue measure the properties of 7\/ i n v->J i n v and T:I-*I are the same since
J// inv is countable and hence has Lebesque measure zero.

A powerful method within the so-called thermodynamic formalism as developed
in [Rul] is the transfer operator method. It is a straightforward generalization
of the transfer matrix technique for lattice spin systems with finite range
interactions [Ma2]: if C(FZ+) denotes the space of continuous observables of the
spin system on Z+ and if AeC(Fz+) is any such observable, the transfer operator
J*?:C(Fz+)->C(Fz+) is the following linear bounded operator:

,σ,ξoexpA(σ,ξ)f(σ9ξ)9 (3)

where (σ, ξ) denotes the configuration ξ'= (ξ\) with ξ'0 = σ and ξ'i = ξi-.1. If
this ξ' is allowed then AσΛo = 1 otherwise A ^ = 0. In the special case of
a locally expanding Markov map T:M-*M and the function A = φι°π with
ψ1 = — log |det V(x)\ the operator S£ obviously induces an operator S£ on the space
of observables / of the system T:M ->M which has the form

v\ _ Y

σeF

and hence coincides with the so-called Perron Frobenius operator [LaM] of T.

For the Gauss map the operator has the form [Mai] ,

)
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and its spectral properties in the Banach space A^D) of functions holomorphic
and continuous over the disc D = {z:\z- 1| < | } have been studied in [Mai],
[MaRl], [MaR2]. The main application of operators of the form (3) originally
was to construct invariant measures for the system T.M^M, a special case
being the Sinai-Bowen-Ruelle [BoR] measure corresponding to the choice
A(ξ) = φi°π(ζ) with Ψi a s before [Ru2]. For general A one gets by this construction
Keane's ^-measures [K]. From equilibrium statistical mechanics of lattice spin
systems one knows that the Gibbs states corresponding to the interaction βA{ξ\
considered now as a function of the parameter β, which corresponds in fact up to
Boltzmann's constant to inverse temperature, describe the physical properties of
such a system when coupled to an exterior heat bath of fixed temperature. From
this one could expect that also for the dynamical system T.M^M the function
Ψβ(χ) = — β l°g I det (Du T(x) I respectively the corresponding observable for the spin
system Aβ(ξ) = φβ°π(ξ) plays a crucial role in the description of the properties of
the system T:M->M. The transfer operator then has the form

= X Aσ,ξ0 exp Aβ(σ9 ξ)f(σ9 ξ). (5)
σeF

Specialising to the Gauss map and going immediately over to the induced operator

on C(I) we get

2β

where for reasons of simplicity we have omitted the tildes in (4). To our knowledge
the first time where in ergodic theory an operator analogous to <£β has been used
to characterize invariants of a dynamical system was in [PaT] for Markov chains.
It was shown that the highest eigenvalue λ^β) of a certain generalized transition
matrix has a convergent power series around β = 1 whose coefficients define
invariants of the Markov chain. Instead of the eigenvalue λx(β) it is more convenient
to study the quantity P(β) = logλ1(β). For real β the eigenvalue λx(β) is positive
and P{β) hence well defined. It can be analytically extended around the real axis,
at least for systems where F can be chosen finite: one applies simply the
Ruelle-Perron-Frobenius (RPF) Theorem [Wl] to S£β which shows that for real
β the leading eigenvalue λx(β) is positive and simple. For these /J-values P(β) is
nothing else than the pressure of the observable βφ for the system T.M^M, and
hence a convex function in β [Rul]. P(β) can be defined independently of the
operator !£β in analogy to equilibrium statistical mechanics through the systems
partition functions Zn(βφ) [Rul]:

1

n-* oo W

where

Zn(βφ)= Σ expβnΣφ(Tkx\ (8)
xeFix Tn k = 0
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and Fix Tn = {xeM:Tnx = x}, respectively the variational principle [W2],

P(β) = sup \hμ{T) + β J φ(x)dμ(x)\ (9)

where the supremum is taken over all T invariant probability measures μ, and
hμ(T) denotes the Kolmogorov-Sinai entropy of T with respect to μ. The measures
maximizing the right-hand side in (9) are just the equilibrium measures μ for the
observable βφ. For ψ = ψι we recover thereby the Sinai-Bowen-Ruelle measure
for the dynamical system T.M-+M [BoR] [Ru2].

The results of Parry and Tuncel in [PaT] have been generalized recently by
Rand et al. [Ra], [RaB] who showed how practically all quantities introduced
over the last years to characterize chaotic behaviour of hyperbolic systems like
entropies, dimensions, singularity spectra etc. can be derived from the function
P(β). In complete analogy to equilibrium statistical mechanics where the quantity
P(β) is up to sign and a factor of β just the free energy of the spin system attached
to the map T through its symbolic dynamics, the analytic behaviour of P(β) as a
function of β is used to define phase transitions for the dynamical system T.M^M.
It is clear from the RPF-Theorem that for hyperbolic systems with finite F no
such phase transition can occur for real β. The situation changes completely if F
is countable infinite, as we will show in the special case of the Gauss map. Similar
results are expected to hold for all hyperbolic systems with a countable infinite
Markov partition. Candidates are the higher dimensional versions of the continued
fraction transformation as for instance the Jacobi-Perron algorithm. Their transfer
operators for β — 1 have been discussed in [Ma5].

In this paper we restrict the discussion to the ordinary Gauss map in dimension
1. It would be interesting to see how far our results for this case can be extended
to higher dimensions. By applying the same arguments as in [Mai] respectively
[MaRl], [MaR2] one shows for general βe<£ with Re β >^ that for a discussion
of the pressure P(β) of the Gauss map one can restrict the generalized transfer
operator 5£ β in (6) to the Banach space A^D) of holomorphic functions over the
domain D defined as for the operator 5£ x = 5£ in (4). As for β = 1 one has

Proposition 1. The operator ^β:AO0(D)^Ao0(D) with

2β

is nuclear of order zero for βe(C with R e / ? > | . For real β>\ ££ β has a leading
positive eigenvalue λγ(β) which is simple such that P(β) = logλ1(β) is the pressure
of the observable φβ for the Gauss map. For any meN the following trace formula
holds:

trace JS7= Σ ^S^Ί (10)

k = 0
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As a consequence we hence get for the partition functions

Zn(β)= £ expW£ φβ(Tkx):
xeFix Tn k = 0

Corollary 1. Zn(β) = trace <£f)n — trace ^{

β

)n, where the generalized transfer operators

<£{

β\ s = 0,1, are defined as

,2(β + s

Obviously £eψ = &β and ^ = - &β + 1 with <£ β as in Proposition 1. Since the
map β -• <£f is holomorphic in β for Re (β + s) > \ we find that the function

l W

which by a standard argument can be written as

d e t ( l -

is a meromorphic function in the domain Re β > \. Thereby one makes use of the
fact that the Fredholm determinant det(l - 5£f) is a holomorphic function of β
in the domain where j£?^s) depends holomorphically on β [G]. Obviously, the
function ζ(β) has poles in the domain Re β > \ among those β values where i f ^0)

has λ — 1 among its eigenvalues. This is certainly the case for β = 1 where λ = 1
is the leading eigenvalue of if(

1

0) and hence is simple. Since in this case i f ^ υ is just
the operator — if (

2

0), whose leading eigenvalue is strictly smaller than 1 in absolute
value, the Fredholm determinant det(l — JSf^J^O and hence β= 1 is a simple
pole of ζ(β).

Problem. What is the residue of ζ(β) at β = 1?
It is one of the aims of this paper to show that the function ζ(β) in (13) can be

extended to the entire β-plane and defines there a meromorphic function. Before
doing this we want to relate the generalized transfer operators ifj^ in (11) to some
integral operator with a simple kernel acting in some Hubert space of square
summable functions. The resulting integral transform turns out to be a generalized
Hankel transformation. This extends an analogous result for the case β = 1
discussed in [MaRl], [MaR2]. Since the arguments for general β,Re/?>^ are
slightly more complicated than for β = 1 we present them in more detail in the
next section.

2. The Operators &ψ in Generalized Hardy Spaces

Since if ^υ = - i f J^ t it is enough to discuss the operator 5£^ which for simplicity
we denote again by ^β. UfeA^D) is an eigenfunction of ^(β) then one deduces
recursively from the eigenequation

00 / 1 \2/* / 1 \
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that / can be extended to a function holomorphic in the entire complex z plane
cut along the line (— oo, — 1]. This follows from the contraction properties of the
maps φn{z) = l/(z + ή). If we therefore denote by Hδ the half plane

H a = { z e C : R e z > 5 } , (15)

then any eigenfunction / of i f β in Λ^D) is holomorphic in every half plane H_1+ε

for any ε > 0. It is also evident from Eq. (14) that any such eigenfunction vanishes
for \z\ -• oo in these half planes, and hence is also bounded there. From this one
can expect that i f β can be defined on some Hardy space of functions holomorphic
in a half plane. We denote by Jίf(2)(Hδ) the ordinary Hardy space of functions
holomorphic over the half plane Hδ [D]:

jj?i2)(Hδ) = < f:f holomorphic in Hδ9 /bounded in

Hδ+ε for all ε > 0 and +f \f(δ + iy)\2dy < oo 1. (16)
- o o J

This space is known to be a Hubert space with scalar product

(J1J2) = ^ 7 fUδ + iy)/2(« + itfdy. (17)

Furthermore the Paley-Wiener Theorem holds, giving a simple characterization
of the elements of this space [D]:

Theorem 1. A function f belongs to the space J^{2)(Hδ) if and only if there exists a
function φeJ?2(ds,Έl+) such that

f{z)=]dse-szeδsφ(s).
o

The function φ is unique (in the J£2 sense) and

Hδ) = ^-+Ϊ\f(^iy)\2dy=]ds\φ(s)\2=\\φ\\%2.

From what we have found earlier for the eigenfunctions of ^ β one could expect
that the Hardy space Jίf(2)(Hδ) for appropriately chosen δ > — 1 would be a good
space for if'β to be defined on. The discussion of the case β = 1 in [MaRl] shows
however that a slightly modified class of functions is better for simplifying the
operator S£β. Generalizing the procedure in [MaRl] we define for arbitrary real
α ^ 1 the space J^(2)(Hδ) as follows:

jei2){Hδ) = j / : / holom. in Hδ, feJ>f{2){Hδ+ε) for any ε > 0 and

]x2*~2dx+f
O

(18)
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We want to show that j f (2)(Hδ) is a Hubert space. Since any fe3^{2\Hδ) has the
+ 00

property that J dy\f(δ + x + iy)\2 < oo for x > 0 we find that for any ε > 0 and

Λf< oo,

δ +1 + '»I2

J x2"~2dx
ε - o- oo

J + f '»i2 - ί
Changing in the first term of the right-hand side the variable x to x = xf + \ gives

-(1/2J + JV +oo

left-hand side = \ (x! + \)2a~2dxr J dy\f{x'+ ^ +δ+ iy)\2

(l/2) +

J J
ε — oo

Introducing next the function φ{£N(x) with

0

φ%(χ) =

x>N

(19)

L — x
2α-2

we have shown for any ε > 0, N < oo

J
— oo

+ 0 0 + 0 0

= ί J
— oo — oo

For / e J f {2)(Hό) the limit ε-^0,N-> oo on the left-hand side exists, and hence also
the limit on the right-hand side exists and the two coincide. Since φ^N converges for
ε -• 0, N -> oo to the positive density φa(x\ where

0
2α-2 (20)

we have shown that for f

0

+ 00

= J φa(x)dx f (21)

This shows that ^12)(//^) is indeed a Hubert space.
The Paley-Wiener Theorem for this space takes the following form:

Theorem 2. A function f belongs to the space J^{2)(Hδ) if and only if there exists a
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function φe<£2(ds^+) such that

f(z) = J dse-szesδs"-ll2(l - e ' T 1 ' 2 <?(*). (22)

The function φ is unique in the $£\-sense and

Proof The "if"—part of Theorem 2 is easy: assume/can be written as in (22). Since
the function gε(s) = e~εssa~ 1 / 2(1 —e)~1/2 is bounded on the real line 0 ^ s < oo for
any ε > 0 the function gE(s)φ(s) belongs to j£? 2(ds, IR+). The Paley-Wiener Theorem
then implies that the function

belongs to J^{2)(Hδ+ε) for any ε > 0 . Furthermore any such / obviously is

holomorphic in Hδ. Applying next for x > δ PlanchereΓs Theorem to the function

fx(y) = / ( * + iy) we find

respectively for x > 0,

From this we conclude that for x > 0,

and hence

~ f x^-Hx 7° (|/(x + δ + iyψ - \f(x + S + Ϊ + iy)\2)dy
m o

= ] dss2*-^)?] x2*-2e-2°*dx=!^^] ds\φ(s)\2.
0 0 Z o

To prove the "only if" part of Theorem 2 we proceed as follows: for η > 0 we
define for any feJ^(2)(Hδ) the function

fη(z) = f(η + z). (23)

Then we have

Lemma 1. For anyfeJ?(2)(Hδ) andη>0 the function fη is in ^
and lim fη = f where convergence is in the space (2)

O
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Proof of Lemma 1. By definition any feJ^{2\Hδ) belongs to the space J f {2)(Hδ+η)
00

for any η>0. By Paley-Wiener this means f(z)= J e~sze(δ+η)sφη(s)ds with

φ l | ei f 2 (ds,R + ) . Hence fη(z) = ] e-szeδsφη(s)ds belongs to 3tf{2){Hδ) and trivially

also to 34?(2)(Hδ+ε) for any ε > 0 . To prove that fηeJ^{2\Hδ\ we have to show
that | |/Jli(2) ( J f a )<Q0. But

' f dy(\f(x' + δ + iy)\2 - \f(x' + δ+± + iy)\2).

+ 00

Since α ^ l a n d J dy\f(x' + δ + iy)\2 ^ J |/(χ' + δ + % + iy)\2 for x' > 0 [D] we
— 00 — 00

find for any η ^ 0:

To show finally that fη converges to / in the space Jf{2)(Hδ) we argue as follows:
since f - fηeJ^i2)(Hδ) we know from relation (21) that

7 φΛ(x)dx 7 dy\f(x + δ + ± + iy) - f(x + δ + ιj + i + i»|2 < oo.
— oo — oo

Hence there exists for any ε > 0 a compact set KE such that both / and fη are
holomorphic in Kε and

f φa(x)dxdy\f(x + H i + ι»-/(x + H ^ H # < I (25)

On the other hand there exists η = η(ε) such that

sup \f(z + δ + i) - /(z + fy + (5 + i) | < ^f J φ α W ^ ^ ) \ (26)

and hence lim || / — fη \\ 2#>M{H ) = 0 follows. This concludes the proof of Lemma 1.

To proceed then with the proof of Theorem 2 we apply again the Paley-Wiener
Theorem, now to the function fη which by Lemma 1 belongs to Jί?{2)(Hδ) for η > 0.
Hence there exists a function ψηey?

2(ds^+) such that

= ]dse-szeδsψη(s). (27)
o

PlanchereΓs Theorem then gives for all x ^ δ,

i + o o oo

~- ί \fη(x + iy)\2dy= $ dse-2°*e2ό°\ψη(s)\2. (28)
z π -oo o

Since fηe^2\Hδ) we have
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Together with relation (28) this shows that

f x2a~2dx f dse~2sx(l - e~s)\ψη(s)\2ds< oo,
0 0

and hence by Fubini

f ds(l - e~s)\φη(s)\2 J dxx2a~2e~2sx < oo. (29)
O 0

The x-integration can be performed to give ( Γ ( 2 α - l)/2 2 α~ 1)s~ ( 2 α" 1 ). From (29)
therefore we deduce that there must exist a function φηe<£2{ds^+) such that

ψη(s) = φη(s)s*-1'2(l-e-r112. (30)

From this we conclude that the function fη = f(z + η) for η > 0 has the unique
representation

fη(z)=]dse-szeδssa-1/2(l-e-sy1/2φη(s) (31)
o

such that
1 ΠΎci— W °°

— $2φa(x)dxdy\fη(z + δ+±)\2= ^ > μS\φη(s)\2. (32)

Since by Lemma 1 the sequence {fη} is a Cauchy-sequence, it follows from (32)
that also {φη} is a Cauchy sequence in £P2(ds,WL+). Hence there exists a unique
φeJ£?2(ds,]R+) with lim φη = φ in the S£2 sense. Define finally the function

f(z)=]dse-szeδssa-1/2(l-e-sy1/2φ(s), (33)
o

which by the first part of Theorem 1 belongs to Jfi2)(Hδ). From relation (32)
applied to the function / — fη we get

if-0

But by Lemma 1 we also have lim fη = f and hence
ι/->0

f(z) = f(z)=]dse-szeδss"-1/2(l-e-sy1/2φ(s)
o

with an unique (peJ?2(ds9lR.+). This concludes the proof of Theorem 2.
Equivalent to Theorem 2 is the following

Corollary 2. A function f belongs to the space Jfi2)(Hδ) if and only if there exists
φei? 2(dm,]R+) such that

/ ( z ) = Um(s)e-szeiδ+1/2)ssa-ll2φ(s), where dm(s) = -—-. (34)
J e — 1

The function φ is unique and

^ = Γ2*-~1)f'M«)l*(*)l2
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Proof. Set φ{s) = (es - l)1/2φ(s).
In (18) we defined generalized Hardy spaces H(2)(Hδ) for real α ^ l . This

definition can be extended to α's with α > \ as follows: if α ̂  1 then any function
/in J^i2)(Hδ) obviously has the property that its derivative/' with/'(z) = (d/dz)f(z)
belongs to the space ^f{2lx{Hδ). Hence we can define for arbitrary α with \ < α < 1,

= {/:/ holom. in Hδ9 lim f(x + iy) = 0 and f'eJίf™ .(H,)}. (35)
I J

Then it is clear that Theorem 2 respectively Corollary 2 hold for general real α
with α > j .

If one wanted to define the spaces J^(2)(Hδ) also for α ̂  J the situation gets
more complicated as one can see already from representation (22). For such α-values
the function e~s(x~δ)sa~1/2(l —e~s)~1/2 is for x>δ, because of the singularity in
s = 0, not any more bounded, even not $£2

 o n [0> °°) Hence such a representation
can be interpreted in the whole half plane Hδ only in the sense of distributions.
Since for our present discussion we do not need values α < \, we do not enter this
problem here. The following result shows how the above spaces Jfi2)(Hδ) are
related to the generalized transfer operators 5£β of the Gauss map:

Theorem 3. If &β:tf$β{H-1/2)^^^(^-1/2) denotes the operator

and <Xr

β' &2(dm^+)-+<

00

denotes the integral operator Jtβφ(s) = J dm(t)<$2β-i(2\/st)φ(t) with dm(t) =

dt/(eι' — 1), then the two operators are isomorphic for all βe(C with Re/?>^. They
are both of trace class.

Hence we have also

Corollary 3. The operators <£β and Jf β have the same spectrum, that means all
eigenvalues are identical and have the same multiplicity. For real β they are real.

Proof of Theorem 3. For fixed β = β1

Jr iβ2 by Corollary 2 any element / of the
space J^f^(H-l/2) has an essentially unique representation as

f(z) = ί dm{s)e~szsβ- 1/2φ(s) (36)
0

with φe£?

2(dm9*R+) and dm(s) = ds/(es - 1). There we have taken out a factor siβl

from the function φ of that Corollary. Applying the operator <£β to such a / we find

^/(z)= Σ (^r)^ ] dm(s)sβ-^2φ(s)e-^+n\ (37)
i \z + n j 0

Absolute convergence of both the sum and the integral allows us to interchange
summation and integration in (37) to get

f (J)2fie-«*+*\ (38)
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The sum under the integral can be rewritten by using the Hurwitz zeta function

< 3 9 )

as follows:
1 \ 2β

ι\z
(40)

For Re s > 1 on the other hand the function ζ(s, z) has the integral representation
[GR]

-, . 1

— Γ(s)

so that the right-hand side in (40) can be written as
00 (— s)k 1

right-hand side of (40) = £ y——L — — — j t

or, after performing the k summation [GR]:

* + 2 ' ~ ^ "

where %β denotes the Bessel function of order β, we find

right-hand side of (40) = s 1 / 2 " ' J t ' - ^ e - ' foί-iP^/sO (43)

Inserting this into relation (38) we therefore get

2>βf{z) = I dm(s)φ(s) I dm(t)ί'-1 / 2e-Λaf2 ί

Interchanging once more the order of integration we finally arrive at

(44)
0

where J^β:^2(^^+)^^2(dm^+) is the integral operator

(JTβφ)(t) = J dm(s)af2/I_1(2>/5ί)φ(s). (45)
0

If we therefore define for β = βi + iβ2> βι>Ί a linear map j β :

2 ! ' " I ί dm{t)e-»te-ι'2φ(tl (46)
o

then by Corollary 2 ^ is an isomorphism of the spaces J^2(dm,lR+) and
Jίfffl(H-1/2). Relation (44) furthermore shows that
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and hence <£ β and Jfβ are isomorphic. The proof of Corollary 3 is clear.
Obviously, the integral operator Jfβ in JS?2(dm;IR+) is trace class for Re β >^

and its trace is given by the well known formula

trace Xβ = J dm(s)Jfβ(s,s) = J
0 0

(48)

By Theorem 2 respectively Corollary 2 the operator <£β in the Hubert space
jfJ32)(/f_1/2) is trace class too with trace ^ = trace Xβ. In an appendix we will
use the integral operator Jfβ to give a new derivation for the K-S entropy of the
Gauss map from standard perturbation theory of a symmetric operator.

3. Trace Formulas, Fredholm Determinants and Zeta Functions

To calculate the trace of the operator X β respectively <£β from expression (48) we
apply the formula [GR],

? n ] 2 ^ - 1 . (49)

Since the solution xn of the quadratic equation x 2 + nx — 1 = 0 with xn > 0 is given
by χn = - n/2 + {n2 + 4)1/2/2, and hence its inverse x~ * by x ~* = n/2 + (n2 + 4)1/2/2,
which implies

the right-hand side of (49) can be written as

1+x. 2
right-hand side of (49) = w

 2 . (50)

Summing over n then gives

oo χ2β

trace Jt β— ^ < 2 P 1 /

If we compare this result with the trace of the operator S?^.A^D)-* A^iD) in (10)
we find

traceXβ = trace <£β\^ = t race& β \ Λ a e i D r (52)

This is a special case of the following general result:

Theorem 4. The nuclear operators ^β:Aao(D)^A00(D) and £?

β:XR

2<!β(H-.1/2)-+
^Reβ(H-1/2) have the same eigenvalues, multiplicities included.

Since the proof proceeds more or less along the same chain of arguments as for
the case β = 1 in [MaR2] we can be rather brief. The main problem for general
β = βι + ^2> βι > 2 is to show that every eigenfunction feA^D) of ifβ belongs
to the space ^ 2 ) ( / f _ 1 / 2 ) . To see this consider first the case βx ^ 1. If λf(z) =

00

£ (l/(z + n))2βf(l/(z + n)\ we know that / is holomorphic in every half plane

H_ i +δ for δ > 0. For ze/ί _ x +<5 and |z| large enough we certainly have |/(l/(z + n))\ < M



324 D. H. Mayer

uniformly in n and \z\ > R, say. From the eigenvalue equation one then deduces

ι/ωι~ΰ£=τ (53)

for z-»• oo and zeH_ 1+i,δ>0, where C = |/(0)/Λ|. Therefore

+f dy\f(x + iy)\2<ao
— oo

for all x > - 1 + <5, δ > 0 and all β1 > | , and hence fe3tf?i2)(H-1 +δ) for all δ > 0.
We have still to show that

From the asymptotic behaviour (53) it follows that in the half plane Ho one has

i-Γ (54)
2 - ^ 0 0 \Z\

Using polar coordinates z = reι>, π/2 ̂  φ ̂  π/2 in /ί0 the norm of an eigen-
function / in A^D) can be written as

Convergence properties of the integral on the right-hand side of this expression
are because of (54) the same as those of the integral

which certainly exists for /?x ^ 1.
This shows that any eigenfunction feAO0(D)oϊ the operator ifβ belongs to the

space Jrf?(H-m) for all βe<C with βt = Re β ^ 1. To extend this result to β's with
β1 > \ we have to show that for such β values any eigenfunction feA^D) has the
property that / ' belongs to 3tf?fι

)+1(H_ί/2)9 since obviously lim f(x + ry) = 0 and
feJfi2)(H_! +,) for all δ > 0. From the equation

one deduces

and hence f'eJίf(2\H_, + i ) for all δ > 0.
On the other hand we find for the Jffi

)

+l(H-U2)-noTm of/':
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An argument analogous to the case βx ^ 1 then shows that ||/Ίli<2>+1(H_12) *s

00 00

finite if and only if f r2βl + 1(l/r*βί + 1)dr exists. But J dr/r2βι obviously exists for
R R

βx>\. This concludes our remarks to the proof of Theorem 4.
An immediate consequence of Theorem 4 is

Corollary 4. For any H G N the following formula holds:

n

Π χ2β
•^ik inii ik- l

La n »

i i , . . . , i n = l i / i\n ΓT ^ 2

(56)

where x^...^ denotes the irrational number whose continued fraction expansion is
periodic of period n and whose entries are the integers il9..., in.

Since JS?^υ= -^fU the results for £?

β = yf) can be applied also to the
operator JSf̂ 1*: this operator is isomorphic to the integral operator — Jfβ+1 and
a formula analogous us (56) holds. A consequence of this is

Corollary 5.

oo n

ΔJ 1 1 Xik inii ik-ι

= traceJTJ5-trace(-Jf^ + 1 ) π = trace ^ 0 ) w - t r a c e ^ 1 ) n . (57)

By Corollary 5 the calculation of the infinite sum on the left-hand side has been
transformed to an n-dimensional integral. Resulting advantages for the numerical
determination of these quantities have been discussed for β= 1 in [MaRl]. They
apply for general β with Re β > \.

In the first chapter we had introduced a zeta function ζ(β) which by (13) could
be expressed as the quotient of the Fredholm determinants det(l — ̂ ψ\ s = 0,1.
From Grothendieck's theory of such determinants we concluded that ζ(β) is
meromorphic in the half plane Re β > \ with a simple pole at β = 1. We want to
extend this result now. For this we consider the operators ^ψ again as acting in
the Banach space A^(D). It is enough to treat the case <£ψ = !£'β. For this operator
we can prove

Theorem 5. The map β -> <£β extends to a meromorphic function with values nuclear
operators of order zero in the entire complex β plane. Its poles, located at β = (l-/c)/2,
k = 0,1,.. ., are all simple with residue the rank 1 operator Jίkf(z) = (/(fc)(0))/2/c!.

Proof Any feA^D) has a power series expansion around the point z = 0 which
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is uniformly convergent for \z\ ̂ | . Hence for \z\ ̂ \ the function

which obviously is in A^D), fulfills the bound

\fN(z)\^C\z\N + \ (58)

Furthermore the msip^>

N:A00(D)-^Ao0(D), defined as

PNf = fN> (59)

is bounded. For β with Re β > \ we can write <£βf also as

en r __ cp if f \ i cp f ((\0\

The first term on the right-hand side of (60) can be calculated explicitly for Re β > ̂ :

! \2β/ 1 \k

But the right-hand side is simply

Σ
k = 0

where ζ(s, z) denotes the zeta function of Hurwitz as defined for Re s > 1 in (39).
Denote by jVψ:Ax{D)^AJίp) the linear bounded rank 1 operator

Then we can write the operator if β for Re β > \ as

Σ ^ ^ V (62)

where the projector 0>N of A^D) onto the subspace A{£\D) of functions in A^(D)
vanishing in z = 0 at least to order N + 1 has been defined in (59).

Let us consider first the map β^jVf] with Jίψ the rank 1 operator in (61).
By Hermite's representation of the Hurwitz zeta function [E]

sin s tan 11 - Isin
\ 7 i \ ήt

(63)

valid for Re z > 0, the function ζ(fe + 2/?, z + 1) is meromorphic in the entire β-plane
with only one simple pole with residue \ at β = (1 — fc)/2 and is for fixed βΦ(\— k)/2
a holomorphic function in z for Rez > — 1. Hence the map β-^Jf^ is a rank 1
operator-valued meromorphic function in the entire complex β plane with a simple
pole at β = (1 - k)/2 and residue the rank 1 operator Λ'ik):AJίD)-+Aao(D) with

•4£ m
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This follows from [E]

lim (ζ(k + 2β9 z + 1) - } ) =-ψ(z+ 1), (65)
β-a-k)i2\ k + 2β-\)

where φ(z) = (d/dz)logΓ(z) and Γ is Eulers function. Obviously, the operators Jί(k)

N

are nilpotent for fc^l. This shows that also the map β-^>Σ ^V can be
fe

meromorphically extended to the entire complex β-plane with simple poles at the
points β = (1 — fc)/2, O^k^N and corresponding residues jV(k\

Let us next discuss the operator £?β

og?N. Since by (58) for any feA^D) the
function (0>Nf)(z) = fN(z) fulfills \0>Nf(z)\ ^ C \z\N+1 for all \z\ ^ we see that in

the representation

2β

the sum converges uniformly and absolutely in D for all βe<C with 2Re/? + J V + l > l ,
that means Re/J> -(JV/2). This shows, that the operator &β:A

i*P{D)-+Aao(D) is
nuclear of order zero for all β with R e β > -(JV/2). Since ^N:Aao(D)-^A(S)(D) is
bounded the operator ^β°^Ή is also nuclear of order zero for Re/?> —(JV/2).

Obviously, also the finite-rank operator ]£ Jίψ is nuclear of order zero away
fc = O

from the points /? = (1 — k)/2, fc = O,...,JV. All this being true for general JV the
proof of Theorem 5 is finished.

Interesting by itself as we see later is the following

Corollary 6. The function g(β) = trace S£'β extends to a meromorphic function in the
entire β plane with only one simple pole at the point β — \ with residue \.

Proof By (62) we have for Re β > - (JV/2), β Φ (1 - k)β

N

trace &β = X trace Jίf + trace J*V ^V

But the trace of the rank 1 operator Jίψ is given by

trace Λ^k) = — —Έζ(2β + k,z+ l ) | z = 0 . (67)

Using next the formulas

— C(s, z) = - sζ{s + 1, z) (68)

respectively

r/« n _ r / s \ _ y (fro)

we find for k ^ 1,

traceΛ^k ) = ^f-(2β + k)--(2β4- 2/c- l)Cκ(2j8 + 2/c), (70)
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respectively
trace ^ = ζR(2β). (71)

Since Riemann's zeta function ζR(s) in (69) can be extended to the entire s-plane
with a single simple pole with residue 1 at s = 1 we conclude that trace Jίψ for
k ^ 1 is holomorphic in the entire jS-plane and trace Jίψ is meromorphic in β
with a simple pole at /? = | with residue \. Since on the other hand g^gP^ is
nuclear of order zero and holomorphic in β for Re/J> —(N/2) we find that the
function g(β) is meormorphic in this region with a simple pole at β = \ and residue
\. Since N was completely arbitrary the proof of Corollary 6 is finished. Another
consequence of Theorem 5 is

Corollary 7. The Fredholm determinant d e t ( l — J£β) extends to a meromorphic

function in the β-plane whose only poles are at the points βk = (l— /c)/2, fc = 0 , 1 , 2 , . . .

which furthermore are simple.

This follows from the formula [G]

det(1 - Jίf,) = £ ( - iγtrace Λr J?βi (72)
r = 0

where Λr $£ β denotes the r-fold exterior product of the linear operator <£β in the
N

space A^D) together with the representation &β = £ Jίf + ^β°^N in (62),

where Jf*$ is an operator of rank 1 which as a function of β behaves for β-+βk =
(1 - k)β as JTW/(β - βk) with JΓ{k) defined in (64).

Remark. In the "basis" of A^D) spanned by the functions fk with fk(z) =
ζ(2β + k, z + 1), k = 0,1,2,... the operator J ^ can be represented for Re β > \ by
a matrix M = Mk ^(β\ kj = 0,1,2,... with

From this one concludes that all matrix elements JtΛkJ(β) with k ^ 1 can be analytic-
ally continued to the entire jS-plane whereas the elements MQj(β) = ζR{2β + O are
meromorphic in the /?-plane with simple poles at the points β = β( = (1 — l)/2. This
gives a formal proof of our results for the operator S£'β.

Corollary 7 now implies

oo Ύ (β\ n-l

Theorem 6. The function ζ(β) = exp £ -^- with Zn(β) = Σ ΓΊ (τkχ)2β extends
n=l ft xeFixTnk = 0

for the Gauss map as a meromorphic function to the entire β plane, ζ has trivial
zeros at β = 0 and β = ^. Its nontrίvial zeros are at β — βf such that —££βJrl has
eigenvalue λ=l, its nontrivial poles are at β = βk such that ££'βk has λ— 1 as an
eigenvalue. There are no poles besides β = 1 on the real axis β g: 1 and no zeros for

Proof. Apply Corollary 7 to formula (13).

Remark. We expect besides β = 1 no pole on the entire real axis.
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Another trivial application of the above results concerns analyticity properties of
the following function ζM:

CM(β)= Σχί, (74)

where xn denotes the irrational number which has periodic continued fraction
expansion of period 1 with entry n as defined after relation (49). It is clear that
asymptotically for large n xn behaves like n~ \ and hence ζM(β) should be somehow
related to Riemann's zeta function ζR(β)= Σ n~β. Corollary 6 implies

n = 0

Proposition 2. The function ζM(β) extends as a meromorphic function to the entire
β-plane with the only poles at the points β = +1 with residue 1.

Proof Since by Corollary 1,

ζM(2β) = Z^β) = trace J^ 0 ) - trace Seψ = trace £fβ + trace &β+l9

we get from Corollary 6 that ζM(lβ) extends to a meromorphic function in the
entire complex β-plane with simple poles at the points β = ±\ and residue \. From
this Proposition 2 follows.

We have seen that formally the operator ^β can be represented by the matrix
Mwith

(lfΓ(2β + ί + k)
Mu(β) = k[ Γ{2β + n ζR{2β + / + *).

By using this matrix the trace of $£β can be expressed as

This series is not absolutely convergent so that one has to be rather careful to
calculate its values.

Since the function ζM(β) in (74) can be expressed as

ζM(2β) = trace <£β + t r a c e & β + l9

we find after a simple calculation using representation (75)

r in Λ v (-1)" Γ(β + 2k)
v 2k) ( 7 6 )

This representation can be used indeed to rederive the analyticity properties of
the function ζM. We are going to show namely that

CM(β) = Uβ) ~ βCΛβ + 2) + ψ(β), (77)

where Ψ(β) is holomorphic in the entire β-plane. Corollary 5 shows that for
n= 1 and Reβ> 1,

00 //o

U{β)= J ^ r ϊ [ a f ' - l ( 2 s ) + 8f'+l(2s)] (78)
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Using the functional equation for Bessel functions [GR],

2υ

this simplifies to

If we introduce the finite power series g ^ ^ s ) ,

- sβ

we get for Re β > 1 the following representation for ζM:

The first integral in (81) can be performed explicitly to give

-5 ds %N\2s) Λ f (-1)* Γ(β + 2k)
βί7[Ί βSΌ k\ {β )

= ζR(β)-βζR(β + 2)+Ψ<N\β). (82)

The function ΨiN)(β) is obviously holomorphic in the entire /J-plane for all JV ^ 2.
The second integral in (81) defines a function Φ(N\β) which is holomorphic in β
for all β with Re β > -(2N + 1) since

g , ( 2 s ) - $ W ) ( 2 s ) ~ s ' + 2 < w + 1 > . (83)

This shows that the function ζM can indeed be represented as

ζM(β) = ζκ(β) - βζκ(β + 2) + Ψ(β), (84)

where

(85)

is independent of N for ΛΓ §; 2 and hence holomorphic in the entire β-plane.
Since the function ζM is defined by the numbers [n] which have nice arithmetic

properties like periodic continued fractions, one could wonder if ζM does not fulfill
some sort of functional equation. Unfortunately we cannot say much to this
problem at present.

Let us add some remarks concerning the transfer operator i f β and its Fredholm
determinant det(l — J£β). Quite recently M. Pollicott gave a new approach to
Selberg's theory of compact surfaces of constant negative curvature through the
transfer operator method [P]. He applied this method to the Bowen-Series maps,
analytic expanding Markov maps of the boundary of the unit disk, which have
been used by these authors to construct symbolic dynamics for the geodesic flow
on these surfaces [BoS]. It turns out that there exists a close connection between
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the Fredholm determinant of the transfer operator for these boundary maps and
the Selberg zeta function for the flow on the surface. Its poles are known to
determine the spectrum of the Laplacian on that surface and this means that also
the transfer operator for the corresponding Bowen-Series map determines this
spectrum. The operator however is completely determined by the classical geodesic
flow on the surface.

From this one should expect that very similar things are true for the modular
surface: the Bowen-Series map in this case is just the Gauss map T in (1) whose
transfer operator we have studied in this paper. One could therefore hope that
there is also a close relation of the function ζ(β) in Theorem 6 and the Selberg
zeta function for the geodesic flow on the modular surface. Indeed, the pole β = 1
of ζ(β) corresponds, when translating Pollicott's formulas to the present case, just
to the lowest lying eigenvalue λ = 0 of — A for the modular surface with / = const,
as eigenfunction.

Let us finally come back to our discussion of phase transitions in hyperbolic
dynamical systems in Sect. 1. There we argued that hyperbolic dynamical systems
with a finite Markov partition cannot have such a phase transition, that is a
singularity in the function P(β) for real β. For the Gauss map, whose minimal
Markov partition is infinite, this is not true. From what we have found for the
transfer operator 5£β it follows that P(β) has a logarithmic singularity at β = \,
and henceforth T has a phase transition for "finite" temperature. This follows from
the behaviour of <£β for β -• β0 = \ determined by relations (64) and (65):

\im(β-βo)J?β = ̂ °\ (77)
β~*βo

This shows that for real β the leading eigenvalue λx(β) behaves for β^>β0 like

where \ is the eigenvalue of the operator J^{0). All the other eigenvalues λ^β) have
a finite value for β = β0 = \. This is just what one expected from Corollary 6.

Appendix. The K-S Entropy of T Through the Thermodynamic Formalism

From the variational principle (9) together with Pesin's identity

ί | , (Ai)

where dμG = (l/log2)- — dx denotes normalized Gauss measure for T, one
\X -j- 1)

derives the formula [Ra], [RaB]:

hκ^(T)=--^P(β)\β=1. (A2)

Since P(β) = logλι(β) with λ^β) the leading eigenvalue of the transfer operator
5£'β in Proposition 1 we find

fcκ-sOO=-^0%=1 (A3)
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because λι(l)= 1. Since for real β>\ the eigenvalue λx(β) is simple it is analytic
in β in a neighbourhood of β = 1, and hence

+ . . (A3)

is a convergent power series for | β — 11 small enough. Since σ(J?β) = σ(X*β) with
Jfβ the integral operator in Theorem 3, standard perturbation theory applied to
the selfadjoint operator Jf'β9 β real, gives

A'1(l) = ( φ 1 , J f > 1 ) , (A4)

where Jf \ is defined through the power series expansion of the operator X β as

+ . , (A5)

φ x is the normalized eigenfunction of X'1 with eigenvalue Ax(l) and (,) denotes
the usual scalar product in the Hubert space J^2(dm,]R+). The eigenfunction φγ

is known explicitly [MaRl]:

^ - l l 2 ( l - e - * ) . (A6)

The operator tf\ on the other hand is defined through the kernel

K\(s,t) = 2 — $υ(2y/st)\v = 1. (A 7)

This kernel can be written as [AS]

Using this representation one finds

Inserting this into formula (A4) leads to

^tij 2)-ψ(k+ί)). (A9)tτττ
k=o /c + i

Since φ(k + 2) = φ(k + 1) + l/(fe + 1) we get

2 oo (_\)k π2

and therefore finally

, ,™ π 2

Obviously, this result can be derived directly from Pesin's identity (Al). The
approach presented above however is more general in that it allows to determine
also the higher derivatives of P(β) at β = 1 which themselves are again interesting
invariants of the system TJ-+I.
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