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Abstract. We study the Thomas-Fermi-von Weizsacker theory of atoms and
molecules. The main result is to prove universality of the structure of very large
atoms and molecules, i.e., proving that the structure converges as the nuclear
charges go to infinity. Furthermore we uniquely characterize the limit density
as the solution to a renormalized TFW-equation. This is achieved by
characterizing the strong singularities of solutions to the non-linear TFW-
system.

1. Introduction

The Thomas-Fermi-von Weizsacker (TFW) theory for a molecule of K nuclei at
positions ^ . . . j ^ e R 3 and with nuclear charges zί9..., zκ e R + is defined by the
energy functional

;0ί) = A f (Vψ(x))2dx + iy f (ψ(x)2)5/3dx
R3 R3

K

~ Σ zj ί V ;W 2I : ) C~^/I~ 1^ : ) C+^(V ; 2?ψ 2)? (i)
7 = 1 1R3

where

D(f,g)=ίJ^f(χ)2\χ-yr1g(y)2dxdy. (2)

Here z = (z1; ...,zκ) and # = ( ^ 1 ; ...,^?κ). <f is defined on the set

G = {i/> eL10/3(]R3)|ψ real, VψeL2,D(ψ2,ψ2)<oo}. (3)
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On G, \£(ψ)\ < oo. This and all the following statements about the TFW theory are
proved in Lieb [10, Sect. VII] in which the foundation of the TFW-theory is
established, see also Benguria et al. [1].

The first two terms in S represent the kinetic energy of the electrons in the
molecule. The nuclei are considered infinitely heavy so they do not contribute to
the kinetic energy. The third term is the nuclear attraction while the last term is the
electronic repulsion. We are using units in which h2(2m)~x = — e = 1, where e and m
are the charge and mass of the electron. The unit of length is ^ao = h2(2rn)~1e2,
where α0 is the Bohr radius.

The physically correct value for y is given by the Thomas-Fermi (TF) theory,
y = (3π

2)2/3

? (the TF theory corresponds to A = 0 above, see again [10]). The
constant A is usually chosen so as to reproduce the Scott term in the asymptotic
Z-expansion of the true quantum energy (see [10, Theorem 7.30] and [7,15,16]).
The numerical value is ,4 = 0.1859 (see [8]).

By rescaling ψ(x)->A3/2y-3ψ(Aί/2y-3/2x\ £^All2y~9l2g, z^A3l2y~3/2z and
&-+A~il2y3/23# we get A = l and y = l in (1) above. For simplicity we will
henceforth assume A = l and y = l.

If K = 1 we get the TFW-theory for an atom. We will usually choose J ^ = 0 in
K

this case. For molecules we will denote the total nuclear charge by Z = £ Zy

In the TFW-theory we define the energy of a molecule with N electrons (N not
necessarily an integer), to be

^φ2dx£N\. (4)()

In the present work we are not interested in the dependence on the nuclear
coordinates so we do not write it explicitly.

It is known that there exists Nc(z) > Z such that the variational problem (4) has
a unique minimizer ψ(x',z;N)^.O with J φ 2 = AΓ, if and only if AΓ_iVc(z). We
interpret

Qc(z) = Nc(z)-Z>0 (5)

as the maximal (negative) ionization the molecule can achieve, i.e. the maximal
"number" of extra electrons a neutral molecule can bind.

The function

ρ(x;z;N) = ψ(x;z;N)2 (6)

represents the electron density for the molecule. For N^Nc(z) the unique
minimizer ψ( z N) of (4) is the unique positive function ψeG with \\p2 = N
satisfying the TFW-equation (The Euler-Lagrange equation for (4))

-Aψ+L*'3- ^Zj\x-<Mj\-1+ψ2*\x\-1jψ=-μxp, (7)

for a unique Lagrange multiplier μ = μ(z;N). Here * denotes convolution. Since

— μ = ——, we call — μ(z; N) the Chemical Potential. Since £ is a convex function of
oN

N, μ is decreasing in N and there is a one to one correspondence between μ and N.
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When N — Nc(z), ψ(x; z) = ψ(x; z; Nc) is the total minimizer for $ on the set G. In
this case μ(z; ΛΓC) = O. This case will also be referred to as the maximally ionized
molecule.

We define the Potential Function,

φ(x;z;N)= £ z , | χ - ^ | - i - v ( . ; z ; JV)2* M " 1 . (8)
. 7 = 1

In the atomic case the functions ψ and φ are radially symmetric. In the special case
of the maximally ionized atom there exists a unique radius Rz>0 such that
drφ(Rz) = 0 or equivalently

J ρz(x)d*x = Z, (9)

i.e. the total charge inside the ball of radius Rz, counting both the electrons and the
nucleus is zero. We call Rz the Radius of Neutrality for the atom.

Our main interest here is the behavior of the TFW model in the limit as some of
the nuclear charges go to infinity. We could of course let all the nuclear charges go
to infinity but we will consider the more general case.

If l^L^K we will consider z^-*oo, for; = l, ...,L while zj9j = L+ί, ...,K are
fixed. We denote z' = (z1? ...,zL) and z" = (z L + 1 , ...,z x). We will write z'->oo
meaning z }-+ GO for j = 1,..., L. In Benguria and Lieb [2] it was proved that Qc(z) is
bounded by a constant uniformly in z. Here we will prove that Qc actually
converges as z'->oo. This was conjectured in [2]. Furthermore we will prove that
the electron density for the maximally ionized molecule converges away from
Stu ..., 01L. At these points the limit density will have singularities that are not in
L1, this reflects the fact that the "limit molecule" has an infinite number of
electrons, that clump together near the big nuclei. It will also be possible for us to
give a surprisingly precise description of the order of the singularities (see
Theorem 6 below) and thereby uniquely characterize the limit density. We will not
restrict our attention to the maximally ionized case, but in general specify how N
tends to infinity with z'. There are two different cases. We either specify that μ(z; N)
or N — Z should be fixed as z' goes to infinity. The maximally ionized case
corresponds to fixing μ = 0. The main results are summarized in the following
theorems.

Theorem 1. // μ^O there exist functions ψμ( ;z")>0, φμ(-;z'f) and an excess
charge Q(z";μ)eΊR. such that if we fix μ(z;N) = μ then

lim ψ(x;z;N) = xpμ(x;zn)9 (10)
z'-»oo

uniformly on the complement of any neighborhood of {^l5 . . .,^L},

lim φ(x;z;N) = φμ(x;f)9 (11)

in Lfoc(JR3\{^ l5 ...,^L}), all p < 3 , and uniformly on the complement of any
neighborhood of {&tl9...9<Xκ}9

lim (JV-Z) = β(z";μ). (12)
z'->co
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Theorem 2. There exists 6o o(z / /)>0 such that

lim βc(z) = β j z " ) . (13)
z'-+oo

Corollary 3. In the case of the maximally ionized atom there exists R^ e (0, oo) such
that

l i m Λ z = ΛG0. (14)
Z->oo

Remark. If μ(z; iV) = 0 then N = Nc(z). The existence of the limit in (13) therefore
follows from (12) and Q(z"; μ = 0) = QJz"). The only part of Theorem 2 which does
not follow from Theorem 1 is the statement that QJiz") > 0. A priori it is not clear
that the "limit molecule" can have a negative ionization.

Theorem 4. If Qe(—oo,βoo(z")) then Q<Qc(z) for z' large enough. There exists a
chemical potential μ(z"; <2)eR+ such that if we fix N—Z — Q, then

lim μ(z;N) = μ(z";Q). (15)
z'-^oo

The function μ(z" -)is the inverse of Q(z" ). Again fixing N — Z = Qwe find with
the notation of Theorem 1 and writing μ = μ(z"; Q),

lim ψ(x;z;N) = ψμ(x;z"), and lim φ(x;z;N) = φμ(x;z"), (16)
2'->oo z'->oo

in the same sense as in Theorem ί.

Remark. Q = 0 corresponds to neutral molecules. Hence — μ(z"; 0) is the limit of the
chemical potentials for very large neutral molecules.

Corollary 5. With the assumptions of Theorem 4 we get the convergence of the
ionization energy

lim (E{z;Z)-E{z;Z + Q)) = *{?;Q), (17)
z'->oo

where S(z"; Q) e ( - oo, <fmax(z")), «fmax = S{z"; QJ.

Proof. This is an easy consequence of the dominated convergence theorem and

(15), since -μ= | | . Indeed we get S{z"; β ) = J μ(z"; Q')dQ'. D
ON 0

The next theorem gives the asymptotic expansions near each 3(j,j = ί9 ...,L.
The surprising conclusion of this theorem is that even if the Λ/s are distributed in a
highly non-symmetric way, both φ and ψ will be spherically symmetric to very
high order near St^ j=ί,...,L.

Theorem 6. (a) Asymptotically near each 0l^) = \, ...,L,
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and

:^ \xn, (19)

where σ = -1/2 + ]/73/2 x 3.8.
(b) The asymptotic form at infinity. If μ=0

lim |xΓ 1 / 2 logφ 0 (x ;z")=-2 |/βJ?) . (20)
[x|->oo

lim W 1 l o g V μ ( x ; ^ ) = - μ . (21)

For all μ^O
lim \x\φμ(x;z")=-Q(z";μ). (22)

Remark. The highest order terms for the asymptotic expansions of φ and ψ in (a)
are the same as in the TF-theory. The power σ also appears here (see Veron [20] or
Sommerfeld [18]). The asymptotic forms (20)-(22) hold, with the obvious changes,
for finite z also. These properties for finite z, especially that ψ is exponentially
decaying at infinity, and that φ<0 for large \x\ if N>Z, will be used throughout
this work.

As an important step in the proofs of Theorems 1-4 we give a unique
characterization of the functions φμ and ψμ. This characterization which is
interesting in itself uses the following renormalization procedure. Define the
Renormalized Electron Density,

ρf\x;z")=Wμ(x;z")2- £ {d^x-MfO + d^x-Mf*), (23)

where d1 = 21π~3 and d2

= —(27/8)π"1 are computed from (18). Then

Theorem 7. ψμ is the unique positive function on R 3 such that ρμ

2) e C ί,(R 3)nL 1(R 3)
(Cb = continuous and bounded), and which satisfies the Renormalized TFW-
equation

- Σ ^ - Λ Γ 1 + βί? )*W 1 + μjvμ = O, (24)
7=L+1 J

on R3\{^1? ...,^L}, where α1 = 9π~2 and a2= —27/4. φμ is given by

φμ(χ)= Σ (flil*-#;Γ4+*2l*-ΛjΓ2)+ Σ ^ i x - ^ r 1 - ^ * ^ ! " 1 .
(25)

^ 2 ) satisfies

(26)

Remark. Equation (26) illustrates the role of ρμ

2) as a renormalized density. In
Theorem 37 below we give a different characterization of φμ and ψμ.

The proofs of the theorems presented here will be given in Sect. 8. We will
conclude this introduction by describing the general ideas.
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Theorems 1-4 state that in the TFW-theory the configuration of the outer
electrons becomes more or less independent of the nuclear charges when these
charges are very large. This implies on the one hand that molecules do not become
very big and on the other that they do not collapse as the nuclear charges go to
infinity. If electrons were treated as bosons, i.e., y = 0 in (1) molecules would
collapse as zu ...,zκ become very large, i.e. the electrons would all sit on top of the
nuclei.

The idea in the proof of the main theorems is to prove first that molecules
remain bounded. That is to give upper bounds to ψ uniformly in z. This is done in
Sect. 3. Next we prove in Sect. 4 that molecules do not collapse, i.e. uniform lower
bounds. In Sect. 5 we prove that any sequence of z's and JV's has a subsequence
such that the convergences in Theorems 1-4 hold. To prove the theorems we have
to prove that all subsequences have the same limit. To conclude this uniqueness
property we first prove in Sect. 6 that the limits φ and φ of any subsequence satisfy
the asymptotic expansions in Theorem 6. In Sect. 7 we use the asymptotic
expansions to derive the renormalized TFW-equation. We finish the proof of the
main theorems by proving that the solution to this equation is unique.

In Benguria and Lieb [2] a series of estimates independent of z were derived for
φ and ψ. These estimates subsequently yielded an upper bound to Qc(z)
independent of z. In the present work we will rely heavily on these estimates. For
the sake of completeness and since we improve some of the results in [2] we
summarize these estimates in Sect. 2.

In [13] Rother gets upper and lower bounds on φ, φ, and Qc. Unfortunately
these bounds are not uniform in z.

In [17] the atomic case was studied numerically. It was found that in terms of
real units with the choice of A that reproduces the Scott correction, i.e., A = 0.1859

= (3π2)2/3,

and Ro0 = lSΛa09

where e is the electron charge and a0 is the Bohr radius. This might seem like a very
bad value for Q^ compared to the expected physical value Qo0 = l. That this is

10.0 \ 20.0 30.0 40.0 50.0

-0.001-

-0.002-

Fig. 1. Φoo (solid curve) and its asymptotic forms at 0 (dotted curve) and at oo (dashed curve). The
unit for r is α0, the unit for φ is a^1
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really not too bad can be explained from the fact that if we restrict ourselves to
integer values for N and ask when is the energy smallest we find

We would then conclude that it is possible to ionize an atom with exactly one extra
electron.

Alternatively we can take into account the fact that an electron is not
interacting with itself by introducing the Fermi-Amaldi correction (see also [2]),
i.e., replace D(ψ2, ψ2) in (1) by (1 — l/N)D(ψ2, ψ2). The effect of this is to multiply A,
γ, and Z by the factor N/(N — ί). The critical number of electrons is then 1.03.

In the Thomas-Fermi-Dirac-von Weizsacker (TFDW) model this effect is
taken into account by introducing an exchange term in the energy functional. A
numerical analysis has been made for a modified TFDW model in [19] (with
A = 0.2). For the critical charge the result is β c = 0.3 (Dreizler [4]).

The graph for φ^ for the universal (infinite) maximally ionized TFW-atom is
shown in Fig. 1. The unit for r is α0, the unit for φ is a$1. The figure also shows the
asymptotic forms given in Theorem 6. It is worth noticing how accurate the
asymptotic curve agrees with the numerical solution even for fairly large values of
r ( r^ l5-20α 0 ) . More detailed results are given in [17].

We finally mention that it is an interesting open problem to prove that
Zh-*QC(Z) is an increasing function.

2. The Estimates of Benguria and Lieb

With φ given in (8) we can write the TFW-equation as

*/3 0. (27)

Notice that we also have

2(Aφ(x) = 4π(ψ2(x)- Σ Zjδ(x-Λjή. (28)

We will call (27)-(28) the TFW-system.

Proposition 8 (Benguria and Lieb). For all N, and z

λψ(x; z; iV)4/3 ^ φ(x; z; N) + [C(λ) - μ(z; iV)] + (29)

for all λe(0,1) and all x e R 3 , where Cμ) = (9/4)π2A"2(l - A ) " 1 .

We use the notation [α]+ =max{α,0} for α e R .

Proof. Let φ ) = y>(x)4/3. Then from (27)

-Δu + {4β)(u-φ + μ)u^0. (30)

Let v{x) = λu(x)-φ(x)-lC(λ)-μ] + . From (28) and (30) we obtain

Av(x)^(4/3)λ(u-φ + μ)u-4πu3/2, x*9tp all;. (31)

Let S = {x\v(x) > 0}. Our aim is to prove that S = 0. Clearly Sts φ S for ally. Thus on S

Av(x) ^ (4/3) A φ - λu + [C(A) - μ] + + μ) - 4πu3/2

(32)
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with our choice of C(λ). Since u(x\ φ(x)->0 as x-> oo, v(x)-> — [C{λ)—μ] + ^0. If S
is bounded v = 0 on dS and it follows that S = 0, since i; is subharmonic on S. If S is
unbounded ι;(x)->0 as x-»oo in S and we conclude again that S = 0. •

Corollary 9. For ί/*e chemical potential of a neutral system we get

~μ(z;N = Z)^-352-4π2. (33)

Proof. C(λ) takes its minimal value 352~4π2 at λ = 2/3. If μ>3 5 2~ 4 π 2 we get from
Proposition 8 that φ(x) = λψ(x) > 0 for all x. Hence we must have N ̂  Z. Since μ is
continuous in iV for fixed z we conclude that N<Z. Π

The bound (33) is an improvement of the bound given in [2, Theorem 7] which
replaces 352~4π2(^150) by 27π2(*266).

Later on we will need to extend the bound in (33) to Q = N — Z<0. Such a
bound is more complicated and we have to wait until Sect. 5 to give the proof [see
Proposition 29 proof of case (Q)].

In the next lemma which is also in [2] we derive an estimate which in some
sense is converse to Proposition 8. Let eR(x) be the normalized ground state of the
Dirichlet Laplacian on the ball of radius R centered at the origin, i.e., eR(x)
= (2TLR)~

 1 / 2
 |X| ~1 sin(πR " 1 \x\) for |x| = R and eR(x) = 0 otherwise. Then f | VeR\2dx

= π2R~2. Define gR(x) = eR(x)2.

Lemma 10. Let ΩQR3 be any open set. IfO<ψe Hl(Ω) satisfies Eq. (27) on Ω with
φeL2{Ω) + U°(Ω\ then for all xeΩ with dist(x,dΩ)>R,

2R-2. (34)

Furthermore if Ω does not contain any nuclei we conclude

φ(x)SgR*φ(x). (35)

Proof Since 0 < ψ, ψ is the ground state for H = — ΔD + (t/>4/3 — φ). Here ΔD denotes
the Dirichlet Laplacian on Ω. Thus for all XEHQ(Ω),

ί \Vχ\2+ i (Ψ

4l3-φ)\χ\2dx^ -μ J \χ\2dx. (36)
Ω Ω Ω

Using this inequality on χ = eR(x — ), where dist(x, dΩ) > R gives (34). If φ satisfies
(28), φ is subharmonic on Ω. gR is spherically symmetric, positive and of total mass
one. This implies (35). •

In [2, Lemma 10] was used to prove an upper bound to φ(x) independent of the
Zj. Unfortunately this upper bound is not completely satisfactory near the nuclei.
Here we will give an improved bound which is optimal to leading order near the
nuclei. To do this we first notice (see also [3]) that if t solves t(t +1) = 18, then for all
fceR,

\ (37)

satisfies

Aω(x)^4πω(x)3/2 for |x |φθ, (38)
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on the set where ω^O. We denote the positive root of ί(ί +1) = 18 by σ and the

- + *-_
p

negative root by - τ . Then σ = - - + * - _ i s the exponent that appears in

Theorem 6, τ= - + ^r— >4 is used in the following

Lemma 11. Assume φ is a positive function on the set {x| \x\ > R], φ is bounded, goes
to zero at infinity and satisfies Aφ = 4πφ3/2 on {x\ |x|>Λ}. Then

Φ(x)ύχ(R/\x\)\xΓ* on {x||x|>K}. (39)

Where χ: [0,1)->]R+ is defined by

^ ) i = l 2 5 π - 2 ( l - α ) - if α o < α < l . ( 4 0 )

Here (C,α0) is the unique pair which makes χeCι{\Q, 1)).

Remark. We have C»167.6π"2 and αo«l/7.

Proof We first notice that

- 2 ( | x | - R ) " 4 for |x |>K. (41)

This follows easily from a comparison argument using that f(x)
= 25π-2(\x\-RΓ4 satisfies Af^4πf3/2 and f(x)->oo as \x\^R.

From the choice of (C, α0) we find that for |x| = αo XR, f(x) = ω(x), where ω is
defined as in (37) with k = CRτ~*. By the very same comparison argument as for /
we conclude that φ(x) ̂  ω(x) for |x| ^ α^ ιR. This together with (41) gives (39). •

We can now give the improved version of the bound of Benguria and Lieb, by
simply copying their proof.

Proposition 12 (Benguria and Lieb). For all αe(0,1) and all x,

φ(x;z;N)-μ(z;NU Σ (χ(α)|x-Λ jl"
4 + π 2 α - 2 | x - Λ i r

2 ) , (42)
7 = 1

where χ(α) is given in (40).

Proof Given R>0. For all x e R 3 w e get from Lemma 10,

Using Holder's inequality and the fact JgΛ = l we obtain

φ(x) = gR * φ(x)-μ-π2R-2^(gR * ρ)2'3(x). (43)

On the set {x| \x~gtj\>R, all j}, we get using (35) that

Convoluting on both sides of (4π)~1Aφ= - £ z^(x —Λj) + ρ we find

7 = 1
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Since φ is continuous and converges to —μ — π2R~2 at infinity it is easy to
compare it with the corresponding TF-potential. That is the positive function φ
which satisfies

(4πy1Aφ=- Σ ZjgR(x-^j) + φ3l2. (44)
J = l

We find

It is known (Lieb and Simon [11, Theorem V.12] or Lieb [10, Corollary 3.6])
K

that φ{x)S Σ Φjiχ)> where φj is the TF-solution for an atom with nuclear charge

density ZjgR(x — St^. Then φ} satisfies the assumptions in Lemma 11, and

o n

For all x satisfying \x—0tj\>R, ally, we hence get

For any x φ ^ , all j , we now choose i? = αminJ |x—3t^. Then

J

and since χ is an increasing function we obtain (42). •

Remark. In [2] the bound (42) was proved with χ(α) = 25π~2(l — α)~4. The χ given

here satisfies lim χ(α) = 9π" 2. This limit is optimal (compare Theorem 6 and the
α-*oo

remark after Lemma 21).

Remark. In Proposition 12 φ is bounded in terms of μ(z; N). It is thus important as
mentioned earlier to prove that μ is bounded if Q = N — Z is fixed (see
Proposition 29).

3. Upper Bounds

In this section we will prove that the electrons stay in a bounded region as z-»oo.
More precisely we will prove that the L2-norm of ψ on the set {x\ \x\ ^r} goes to
zero uniformly in z when r-> oo. From Propositions 8 and 12 we only know that ψ
is uniformly bounded by a constant for large |x|. Our first step is

Lemma 13. For all αe(0,1) and all x,

9α2\ κ

where χ is given in (40).
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Proof. Let fJ{x) = β(χ((x)\x-@j\-4 + π2(χ-2\x-@j\-2l where β>l. Define f(x)
= Σ/jW Proposition 12 states that β(φ — μ)^f. Consider the set
S = {x|φ4/3(x) > f(x)}. Then clearly 3ts φ S, all;, and since ψ decays exponentially at
infinity, 5 is open and bounded. On 5 we have ψ4/3> β(φ — μ). Hence the TFW-
equation (7) gives

- (φ - μ))ψ4/3 > (4/3) (1 - β ~x)

On the other hand for x Φ 01 j9

Hence

Δf<6{π2*-2βrl Σ fj2S6(π2oc-2βyιf2

7 = 1

for x + <Mj. If we choose ό ^ α " 2 ^ ) " 1 =4/3(1 -jS"1), i.e., β=l +(9/2)π"2α2, then
ψ4/3—f is subharmonic on S. On 55, φ 4 / 3 — / = 0, we conclude that 5 = 0. •

With this lemma we can now improve the upper bound Qc^270J4K given
in [2].

Proposition 14. βc(z)^178.03K

Proof. As realized in Benguria-Lieb [2] it is enough to consider the atomic case
K = 1. As in [2] we use the fact that if we define

then Qc = |x| p(x) for all x φ 0. We choose to estimate |x| p(x) at\x\ = 0.9086. If at this
point φ(x)>0 we use Proposition 12 to estimate φ and Lemma 13 to estimate
ψ(μ = 0). In both cases we take α = 0.4424. We get Qc = 141.03. If φ(x) < 0, we use the
estimate in [2] (p. 1052 formula (44)): β c = 178.03. •

Remark. Compared with the numerical value Qo0 = 11.54 (with A = l and y = 1, see
[17]) this is an order of magnitude wrong.

Unfortunately the bound on ψ given in Lemma 13 is not in L2. To get a better
estimate we will consider the problem of finding ψ outside the ball {x\ \x\ > r}. The
origin x = 0 is arbitrary but should be thought of as being somewhere in the center
of the molecule, r should then be so large that | ^ | < r for all j .

For the outside problem of finding ψ on {x| |x| >r} the function

ΦXχ)= Σ ^ix-Λ Γ 1 - ί Q(y)\χ-yΓxdy-μ9 (46)
j = i \y\ύr

will be considered as known.

Lemma 15. There exists a constant C>0, such that for r> max |

1'2\x\-1 (47)

on the set
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Proof. Let <5 = (max|^, | + l) 1 / 2 then r' = δr1/2 clearly satisfies max \3tj\ + ί<rf^r.

On the set {|x| > r'}, φr is subharmonic. An easy comparison argument shows
that for all |x|^r',

φr(x)S sup (r'φrO^lxΓ1.
\y\=r'

Now the definition (46) implies that

sup φr{y)^ sup {φ{y)-μ)+ sup J e(/)b>-/Γ 1 d/
|y|=r' |y|=r' |y|=r' |y'|£r

From Proposition 12, sup (φ(j)—μ)^ const(r')~2 and from Lemma 13,
\y\=r>

sup J ρMly-yΊ" 1 ^^ sup f const l / Γ ^ - y Γ W
\y\=r' \y'\Zr \y\=r' \y'\^r

^ const J |y |~ 4dy^constr~ 1.

Hence

for all x with |x| > r'. Π

Lemma 15 states that on the set {|x|>r}, φr is smaller than the potential
coming from a central charge of size Cr~1/2. It is a well known fact (Lieb [10] or
Lieb [9]) that the total number of electrons of an atom is of the order of the nuclear
charge (for real atoms N<2Z + \). Using the method of Lieb on the outside
problem we can now prove that the amount of charge outside the ball of radius r
goes to zero uniformly in z as r goes to infinity. This idea is being used on the true
quantum problem in [14].

Proposition 16. There exists a constant M > 0 independent of z and N such that for

all r>2 (max \&j\ + l\

f ψ{x;z;N)2dx^Mr-ί/2. (48)

Proof Choose ηeCΌO(R+) with supply Q [1, oo), O ^ ^ l and η(t) = l if ί^2. Let

//r:R
3->R be defined by ηr(x) = η(\x\/r). Then if r> max \Sts\ +1,

Δ (ηrxp) = ψAηr + 2VηrVψ + (ηrψ) {ψ^ -φ + μ)

ί

We multiply this inequality by \x\ηrψ, integrate over R 3 and use (47),

(49)
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It is not difficult to see (Lieb [9]) that $\x\(ηrψ)A(ηrψ)dx^O. By symmetrization
and using the triangle inequality

Finally we estimate the "boundary" term, that is the first term in (49), using that for

|x |^ max \0ts\ + U ψ{*)ύconst\x\~3/2,

U\x\nrΔηrψ
2 + \x\η,VηrV(W

2))dx\ = [ „ *

2r

^constr" 4 J s2ds = const r " 1 .
r

Inserting the two above inequalities into (49) we arrive at

The right-hand side here is a quadratic expression in \{ηr\p)2dx. We conclude that

f ψ(x)2dxS f (ηrψ)2dxSMr~1/2. •

Later on (Theorem 28) we will prove a uniform (in z) exponential bound on ψ.
The reason why we cannot prove this now is that we have to know that Qc(z) is
bounded away from zero for large enough Zj. This together with Proposition 16
will then imply that for a maximally ionized molecule we can find a ball
independent of z such that the total number of electrons inside will exceed the total
nuclear charge Z. For an atom this means that the Radius of Neutrality is bounded
above independent of z. But for the moment we can only say that the number of
electrons outside a ball Br goes to zero uniformly in z as r-»oo.

4. Lower Bounds to </>, ψ9 and Qc

The aim of this section is to prove that the electrons do not collapse to the point 9tj
as z7—> oo. We begin by proving a lower bound to φ. The major implication of this
lower bound is that φ is positive in a z-independent neighborhood of 91 ̂  (see
Corollary 18). We use this result to compare the TFW-system to a much simpler
boundary value problem to give improved lower bounds to φ and ψ near each
nucleus. We then extend the lower bound to ψ to a global bound and derive lower
bounds to Qc and μ. Finally we use these lower bounds to give the uniform
exponential upper bound on ψ.

Lemma 17. For allj = ί,...,K there exist κ-3 > 0 and Sj > 0 such that for allθ<ζ< zs

and κ>Kj with κζ3/2>sj9

φ{x',z\N)^ζ\x-mj\-1-κζ^l2\x~0tj\-112 (50)

for allxeΈi3.
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Proof Define the functions

fir \Λ,J — L, |Λ- — cΠ ;| — /vL, |Λ — iyt ;|

We will use a comparison argument to prove that φ^h(

ζ

j\ Denote JR = (l/2)

S/-ΛJ and let

Ω+ = {xeR3 | |x-^.|>lί for all;} and Ω_=R3\Ω+.

Let S = {x\φ(x)<h%\x)}. Since ζ<zj it is clear that ^φS for all i = ί,...,K. At

infinity we get from Proposition 14 that lim \x\ φ(x) = — Qc(z) > — const. Thus S
|JC|-OO

is open and bounded with φ = h[j) on dS. We will prove that h{^ — φ is subharmonic
on S, which implies that S = 0. We divide the proof of this into two steps.

Step 1. Sr\Ω+.
If xeSnΩ+ then from Lemma 13,

/ K \3/2

) = 4πψ(x)2Sconst 4 2 2 2

S const \x — 3tj\~3,

where (after minimizing in α) the constant only depends on the 0t{. On the other
hand

γ -0tjΓ5/2. (51)

Thus if κζ3/2 is large enough we get Ahψ>Λφ on SnΩ+.

Step 2. SnΩ_.
In this case we estimate ψ by Proposition 8,

On Ω_, \x~&j\~if2 is bounded below. Hence for any fixed λe{0,1),

[ λ - ^ + λ^Cίλf l+gλ^ζ lx-ΛjΓ 1

if κζ3 / 2 is large enough (depending on λ). From (51) we obtain for

if /c is large enough (depending on λ). Thus on SnΩ_ , JΛp^x)^ Jφ(x). Π

Corollary 18. There exist r0 with 0< r 0 < 1/2 min | ^ — @k\ and ζo>0 independent
of z and N such that if Zj>ζ0,

 ίΦfe

φ(x;z;N)>0 for \x-3tj\<r0. (52)

Remark. As z7 -^0 the TFW-solution will converge to the solution without the/ h

nucleus. Whether φ will be positive or negative near 0t^ in this case depends on the
position of 0tj relative to the other nuclei.

For a maximally ionized atom Corollary 18 gives a lower bound to the Radius
of Neutrality Rz for large Z, since φ(Rz) < 0. For small Z it is easy to see using the
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results of Benguria and Lieb [2] Sect. 3 that lim Rz — oo. Corollary 18 implies that

Rz is bounded below by a non-zero constant for all Z (for an upper bound for large
Z see Proposition 27).

4.1. Comparison with Simpler Boundary Value Problem

With the help of Lemma 17 and Corollary 18 we can now compare the solutions φ,
ψ of the TFW-system to the solutions y>0, V>0 of the following much simpler
boundary value system:

AV=4π(V3/2-ζδ(x)) on {x\\x\<r}, (53)

Ay = (y4/3-βV+μ)y on {x||x|<r}, (54)

and

*Ί { W=r} = 0, y | { W = r } = 0, (55)

where ζ>0 and β>0. Equation (53) is identical to the atomic TF problem with
nuclear charge ζ.

Before examining the solution to (53)—(55) we will show how to compare it to
the TFW-solution.

Lemma 19. With the notation of Corollary 18 we can for all C>\ find 0<rc<ro

independent of z and N such that if Vζ, yζ are solutions to (53)—(55) with r = rc,
β = C~2 and ζo<ζ<zp then on { x | | x - ^ / | < r c } ,

x-<Mj), (56)

ζ-<%j). (57)

Proof Let λ = C ~1/3 e (0,1). It follows from Lemma 17 that we can find rc such that
(C 1 / 3 — 1)φ > C(λ) on |x — 0t^ < rc, where C(λ) was defined in Proposition 8. Hence
from Proposition 8 we obtain

ψ{x)2 g lλ~ V + λ~ ̂ Ciλψ2 ^ Cφ3/2

on \x—<Xj\<rc. We thus get

A φ = 4π(ψ2 - Zjδ(x - &$ ^ 4π(Cφ 3 / 2 - Zjδ(x - &$.

Let φc = C2φ then

AφcS 4 π C 3 φ 3 / 2 - AπC2zjδ{x - 01 j) g 4π(φl/2 - Zjδ(x - 31 jf).

A simple comparison argument shows that Vζ(x — &j)^φc(x) on \x — Mj\<rc.
Since φ c ^ F ζ > 0 on \x — 3tj\<rc we have

On the other hand since β = C~2,

Δyζ = {ytβ-C-2VζΛ-μ)yζ for \x~^j\<rc

with yζ — 0 on \x — 0t^ = rc. To arrive at y ̂  ψ we appeal to the comparison theorem
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of Hoffmann-Ostenhof [6]. To use this theorem we actually need to know that yζ

and Vζ satisfy some regularity properties. These are given in the next theorem. •

Theorem20. For all r>0, /?>0, and μ > 0 we have ζr,β,μ>0 such that for all
ζ> ζriβfμ there exists a unique solution pair (yζ, Vζ) to (53)—(55) with yζe Hl(Br), yζ>0
for \x\<r and Vζ^0. yζ and Vζ have the following properties:

(i) y
( i i ) y ζ ζ { }

(iii) Vζ>0 on {0<|x |<r} and lim V£x)\x\ = ζ.
x->0

(iv) Vζ and yζ are spherically symmetric and strictly decreasing as functions of \x\.

Proof Equation (53) is the Thomas-Fermi equation. All the stated properties of Vζ

can easily be concluded from well known facts of TF-theory (see Lieb [10]). The
existence can also be proved by standard ODE-techniques (see Veron [20]).

Equation (54) is studied in exactly the same way as the TFW-equation (Lieb
[10]) by considering the functionals

ξ(Q) = ί (VYQ? + 3/5 ί£>5/3-jSjFζρ + μJρ and

ζf is defined on JϊJ({x||x|^r}) and ξ is defined on {ρ^O|l/ρeiίJ}. That yζ is
radially decreasing follows from the fact that Vζ is radially decreasing as in [10,
Theorem 7.26]. The only thing we have to prove is that y ζφ0. Choose
η e CQ(\X\ < r) such that η = 1 on |x| < (1/2)r. We can then prove (Lemma 21 below)
that lim J Vζη = oo. It is therefore clear that we can find ζrtβtμ such that ξ(η)<0 for

ζ->oo

ζ > ζTt βt μ. This implies yζ + 0. Π

Remark. Since in Theorem 20 we need ζr,β,μ<ζ, we see that (57) in Lemma 19 can
be used only iϊzj>ζrβμ which depends on C and μ. This again shows the necessity
of knowing the boundedness of μ given in the proof of Proposition 29 [case (β)]
below. Equation (53) by itself of course has a unique solution for all £>0.

The next lemma about solutions to the TF-equation is essentially due to Veron
[20].

Lemma 21 (Veron). For fixed r>0 we have for the solutions Vζ to the boundary
value problems (53)—(55) that

V*\x) as C^oo, (58)

for all x, 0 < |JC| < r. The function V£ satisfies

V£{x) = 9π-2\x\-* + O{\x\°), (59)

with σ=-l/2 + \/Ϊ3/2.

Proof It is clear by comparison that C i < ( 2 implies Vζl^Vζ2, and that Vζ(x)
< 9 π " 2 | x | " 4 . Thus lim V^V^ exists pointwise and in the sense of distributions

ζ->OO

on 0 < | x | < r . Hence we have that AVO0 = 4πV£/2 on 0 < | x | < r . Since
lim |x|Foo(x) = oo, it follows from Veron [20, Theorem 5.1] that F 0 0 ^ 9 π " 2 | x | " 4

+o(\x\η. D
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Remark. Equations (56) and (59) show that the χ(α) in the upper bound (42) has the
optimal limit lim χ(α) = 9π~ 2.

α->0

Since Lemma 21 gives good control on Vζ, our goal is to estimate φ, ψ below in
terms of Vζ. For φ this was achieved in (56). To get a lower bound to ψ we will use
(57), so we have to give a lower bound to j ; ζ in terms of Vς.

Lemma 22. Let Vζ9 yζ be the solutions of (53H55). // 0 < |x| < r and α e (0, (1 - \x\/r)

a)x)-π2oc-2(l-oc)2\x\-2~μ. (60)

Proof. Using (34) and (35) we see that for R<\y\<r-R,

βVζ(y)SgR*ytβ(ynμ + π2R-2. (61)

If we use that yζ is radially decreasing we find

Now choose R = oc\y\ and x = (\y\ — R)y/\y\ = {ί—a)y. Since 0 < | x | < K and
αe(0,(1 — |x|/r)(1 H-|x|/r)~x) we clearly get Λ < | j ; | < r - Λ . D

Corollary 23. For all C > 1, μ0 > 0 we can find 0 < rc and 0 < ( 0 such that if ζ0 < Zj
and μ(z;N)^μ0 we get

jζ(x)x)-π2oc-2(ί-oc)2\x\-2-μ(z;N), (62)

for all \x\<rc/2 and all αe(0,1/3).

Proof. This is just Lemma 19 and Lemma 22. •

4.2. A Global Lower Bound to ψ and Lower Bounds to Qc and μ

From Corollary 23 and (59) we get good lower bounds for xp near each nucleus
with large nuclear charge. It is not difficult as we will see to extend this to a lower
bound for ψ everywhere. Such a lower bound will then in turn imply lower bounds
to Qc and to μ(z; N). We will first give the proof in the atomic case (K = 1), because
the molecular case is technically much more complicated.

Proposition 24. (Atomic case: K = l,3#1 = 0) For all r,μo>0 we can find Z ( 0 ) such
that for all N^NC,Z satisfying Z>Z{0) and μ(Z,N)^μ0,

φ(x;Z;ΛΓ)^(3/4)3/4|x|-3/2exp(-εM)? for \x\Zr, (63)

where ε = max{N-Z 9μ(Z, N)1/2}.

Proof. Since ψ and φ are radially symmetric it follows from Newton's theorem that
φ{x)^ — (N — Z)!*!"" 1 . Inserting this into the TFW-equation gives

We compare ψ with /(x) = (3/4)3 / 4 |xr3 / 2exp(-e|x|). For |x
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Hence /—ψ is subharmonic on S = {x\f(x)>ψ(x)}. It follows from Corollary 23
and Lemma 21 that for any C > 1 we can find 0 < r' < min(r, rc) and Z ( 0 ) such that
{|x| = r'}nS = Φ for all Z>Z{0) and μ(Z,N)<.μ0. Since ψ-f^O at infinity it
follows that Sn{|x|>r'}=0. •

We can now prove the lower bounds on Q and μ in the atomic case. Notice that
for the maximal ion (N = Nc), μ(Nc, Z) = 0 so ε = N — Z = Qc. For the neutral atom
N = Z so ε = μ(Z, Z). A general lower bound to ε thus implies a lower bound to Qc

and μneutrai Since βc(Z)->0 as Z->0 (see [2]) we of course have to assume that Z is
bounded away from 0.

Theorem 25 (Atomic case). There exists δ>0 such that for all Z large enough and

(64)

Proof It is clearly enough to consider AT, Z such that μ(JV, Z) is smaller than some
constant. For any r>0 we can therefore assume from Proposition 24 that

r i i -

J I Λ I

J 5~1exp(-5)ίi5^-4π(3/4)3/2^-1ln(2εr). (65)
2εr

Using Proposition 16 we get a bound on ε for all r>2. •

Remark. We see that the physically correct exponent p = 5/3 in TFW-theory is
critical for the above proof, i.e., the lower bound to J ψ(x)2dx is only

\x\>r

logarithmically divergent in ε. For p > 5/3 the proof will still work, but for p < 5/3 it
would not be a useful method. For the same reason if one tries to give numerical
values for the lower bound the result will be quite unsatisfactory.

We now turn to the molecular case. Unfortunately the proof here is technically
complicated.

Theorem 26. There exists δ>0 such that if zx (say) is large enough then

ε = max{iV-Z,μ(z;JV)1/2}^<5. (66)

Proof The proof is inspired by a proof by L. Jeanneret of Lemma 7.18 in Lieb [10]
given in an unpublished note to Haim Brezis. The proof will be divided into several
steps.

Step 1. A Lower Bound to ψ
As in the atomic case we can assume that μ is bounded above by some constant.
From Corollary 23 we can then assume that ψ is bounded below independent of z
near 3tv That means that we can find 0<r1 <(l/2) min \^{ — 3t\ such that

ψ(x)^ c o n s t for \x — <%1\ = r1.

Now from Proposition 8 we know that

φ(x)^- min C(λ)= - 3 5 2 " 4 π 2 .
λe(0,l)



Thomas-Fermi-von Weizsacker Theory 579

Thus

Just as for the atomic case we can prove that

εΊx-^i l) on {x | | x-^ 1 |> r 1 } , (67)

where ε' = (3 52" 4π 2 + μ)1/2. Notice that this bound is not as useful as (63), since it is
not given in terms of ε. For simplicity we will from now on assume 31 ̂  = 0.

Step 2. Spherical Average
Here we use the trick of Lieb [10, Lemma 7.17]. Let \_xp]a denote the spherical
average of ψ, i.e.,

[v]βW = (4π)~1 1 ψ(rω)dω.
s2

Define /(r) = exp([lnφ]α(r)). Then from Jensen's inequality f{r) ^ [xp]a(r). Fur-
thermore / has the property (see [10])

Thus for r > max \3tj\, again using Newton's theorem we find

From Holder's inequality we have [ψ 4 / 3]α ^ [ψ2]a/3 = M»' 3 Defining g(r)
= -Δf(r) + [_Q]2

al\r)f{r) we obtain

(68)

Step 3. Choice of Radius

Choose ,R>2^max I ^ l + Λ =2/^max \Sts — Stγ\ + \\ >rv From (67) we see that

Choose m e N (depending on R) such that

(4/3)πC|(m3 - 1 ) £ 3 > J ψ(x)2dx.

From Proposition 16 we can choose m independent of z and N. We claim that there
that

If not f^CR on (R,mR) and Holder's inequality gives

mi?

j
R

mR

^4π J /(r)2r2dr^(4/3)πC|(m3-l)iί3

R
which is in contradiction with the choice of m.
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Step 4. Auxilary Function
Define for r^R the auxiliary function,

YΛt)t2dt. (69)
R R

Then

b'(r) = r~2]lQYJ*(t)t2dt, (70)
R

and

Ab(r) = b"(r) + 2r-ψ(r) = [ρ]2/3(r). (71)

Notice that

r r (r \2/3 fr \l/3

* W = f [ ρ ] ^ 3 ( ί ) ί 2 f s " 2 ώ Λ ^ J [ β ] α ( ί ) ί 2 Λ ί t - ' )
R t \R J \R

J ψ{x)2dx\2l^\n
\>R J

from Proposition 16 we can choose MJR = (4π)~1MΛ~1 / 2. Choose
0 S η S1 with η(t) = 1 for ί ̂  1 and ι/(ί) = 0 for t ^ 2. Define ι/n(x) = ι/(|x|/n). For the
function g defined in Step 2 we find (with R' as in Step 3)

I g(x)exp(b(x))>7n(x)</x= J ^ n

\x\^R' \x\=Rf

+ J /
1*1 £*'

We assume that n is so large that ηn = l on (R,mR). If we use that drf(R')<0
(Step 3), drί>CR')^O and zlb = [ρ]α/3 we obtain

^ ~ ί &{(Vb)2ηH + Aηn + 2VbVηn}dx. (72)
l*I^Λf l*l^«'

In the next three steps of the proof we will consider the three terms on the right-
hand side of (72). We will prove that the first term is bounded by a constant and
that the last two terms go to zero as n-+co. We begin with the last two terms.

Step 5.

febAηndx iπ)~ι J ψ(x)2dxY'2( J e2Hnx)\Δη(\x\)\2dxY12,
\x\ di j\ j \l*l = -i /

since Aη(t) = O if t< 1. Now from Step 4,

2fo(τzx) ̂  2M^/ 3 ln(n |x|/Λ)" 2 / 3 ln(n |.

Choose n0 so large that 2M 2

?

/ 3(ln(n 0/#))~ 2 / 3<l/2. Then for n^n0,

J febAηndx ^n-ll2MR

l2( J (n|x|/jR)1/2μιj(x)|2dxV/2

1*1 ̂ Λ ' \l*l^i /

n " 1/4Af i / 2 U " 1 / 4 . (73)
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Step 6.

J febVbVηndx

Now

^ ίQUt)t2dt

581

f (Vb)2(Vη(\x\/ή))2e2bdxY12.
l*κ' /

1 / 3

As in Step 5 if n ̂  n0,

Thus

7.
Since

J febVbVηndx

j fe\Vb)2ηndx^ j fηJtVVfdx.

(74)

From (67) we see that / and [ρ]α are bounded below. Hence from (70) (Vb)2 is
bounded below. If we make sure n0 is not too small, there exists dRm>0 such that

ί feb(Vb)2ηnodx^dRim. (75)

Going back to (72) we see from (73H75) that if n0 is large

J g(x)exp(b(x))ηno(x)dxS - (

8. End o/ Proo/
From (68)

But now the final result (66) follows from

f Qχp(b(x))ηno(x) f{x) (β |x |" ' + s2)dx
\\>R'

J

for some constants C ( 1 ) and C ( 2 ). Π

4.3. The Uniform Exponential Decay of ψ

In the atomic case, we will now prove, using the lower bound on Qc, that the radius
of neutrality Rz for the maximal ion is bounded from above for large Z. This result
is essentially equivalent to the uniform exponential bound as we will see in the
proof of Theorem 28 below.
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Proposition 27. For the maximally ionized atoms there exist R_, R+>0 such that

R_ g lim inf Rz<> lim sup Rz<*R+ . (76)
Z->αo Z->ΌO

Proof. The lower bound follows from Corollary 18 since φ(Rz)<0 (see also the
remark after the corollary). The upper bound is a consequence of the lower bound
on QC(Z) and the bound on J ψ2dx given in Proposition 16. We just have to

1*1 ^ r

recall that J ψ{x)2dx = QC{Z). •
\χ\*Rz

Remark. For molecules Corollary 18 states that the set {x\φ(x; z; N) > 0} is not too
small for large z. As for atoms we can now also prove that for the maximally
ionized molecule {φ{x; z; N)>0} is bounded for large z. This will follow from the
proof of the next theorem (see (81) below) in which we give the uniform exponential
decay of ψ.

Theorem 28, There exist constants m,η>0 and a radius R>0 such that if zx is large
enough and \x\*zR then

ψ(x;z;N)^mexp(-η\x\1/2) (77)

for all N.

Proof. From Proposition 16 we can find a radius Λ1>max|^PJ.| + l such that
j

J ψ2dx^(l/2)δ, where δ is the lower bound in Theorem 26. Now consider

Lemma 15 implies

sup φRί(x)SCRϊ3/2 + μ. (78)

On {x| |x|>R ί}, φRί is harmonic and φRι-+0 as |x|->oo. We can thus express φRl

using the Poisson integral formula for an exterior domain, i.e., if I

1 dse,\x-ξ\3 \x\

where dSξ is the Euclidean measure on {\ξ\ = R1}.lΐ \x\ > 2Rt and \ξ\ = R1 we find

| - 2
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Furthermore from Newton's theorem

(47LR0"1 ί φRί(ξ)dSξ=Σzj- ί Ψ(y)2dy
\ξ\=Ri j \\*R

= Z-N+ J

Putting everything together we obtain for \x\^

M- 2 . (79)

From (78) we of course have the much simpler estimate

1 , for \x\^Rx. (80)

Indeed (80) is true for |x| = jRl5 for |x| >RX it follows from the maximum principle
since both sides are harmonic. The difference between (79) and (80) is that for JV — Z
large enough (79) will be negative for large |x|. We know from (66) that either N — Z
^δ or μ1/2^<5. If N-Z^δ we use (79) to conclude that for \x\^2Ru

lϊμll2^δ we use (80)

for |x| ^ 2 R V It is now clear that we in both cases can choose R^2Rj^ independent
of z and N (i.e., independent of μ also) such that

φ{x)-μ^-{\β)δ\x\-\ for \x\^R. (81)

From the TFW-equation we obtain for | x | ^ # ,

Δxp{x) ̂  ψ(x)Ί/3 + (1/3)5 |x|" V (*) ̂  (1/3)5 M "

We compare ψ with / = mexp( —2(^|x|/3)1/2). Using Lemma 13 we can choose m
such that ψ(x)^f(x) for \x\=R. Since Δf(x)^(lβ)δ\x\~1f(x) we conclude ψ^f

D

5. Compactness

In the previous sections we have proved pointwise upper and lower bounds to ψ
and φ. We will now study the limit z,—• oo for j = 1,..., L and Zj fixed for L<j ^ K.
As in the introduction we will denote this limit by z'-> oo. We first have to specify in
what sense N tends to infinity. We are interested in two different cases

N<Nc(z), N-Z-+Q as z'-+oo, (β)

μ(z JV)—>μ as z'—>oo. (μ)

In this section we will prove that given sequences (Nn\ (zn) with z'n-+ oo as n-> oo and
satisfying (β) or (μ), then we can find a subsequence (nk) such that ψk = ( ;znk; Nnj)
and φk = φ(-; znk; NnJ and all their partial derivatives will converge uniformly on
all compact sets disjoint from {<%ί9...,0iκ}. Furthermore in case (β) the
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subsequence can be chosen such that μ(znk; NnJ converges and in case (μ) such that
Nnk—Znk converges. We first prove the last statements.

Proposition 29. In case (Q) we can choose a subsequence such that

lim μ(znk;Nnj) exists.
k-*ao

In case (μ) we can choose a subsequence such that

lim (Nnk-Znj) exists.

Proof. We have to prove that μn is bounded in case (Q) and that Nn — Zn is bounded
in case (μ).

Case (μ)
This follows exactly as in [2]. Let

then

away from the nuclei. pn is thus subharmonic on the complement of the nuclei.
From Proposition 8 and Proposition 12 it follows that \φn\ and ψn are bounded for
|x| = r where r is any radius larger than max \ύtj\. Hence pn is bounded on |x| = r and

j

since pn is subharmonic

thus

pn(x)S (sup pn(y))r/\x\ for \x\>r,
\\y\=r

\Nn-Zn\ = lim \x\pn{x)Sr sup pn(x)^const.
M-+00 |*|=r

Case (Q)
This is more complicated. We can assume that Q < 0, since if Q ^ 0 we know that μn

is bounded from Corollary 9 if we recall that μ(z; N) is decreasing in N.
For fixed z the function Nh^E(z;N) is convex and decreasing and

dE
— = -μ(z;N). Hence with Qn = Nn-Zn,

0<μ(zn;Nn) = μ(zn;Zn-\Qn\)

(82)

We will prove that £(zM; Zn-2\Qn\)-E{zn; Zn) is bounded as n ^ o o . Without loss
of generality we can assume Qn — Q. Let ψZrt = ψ(';zn;Zn) be the TFW-function
corresponding to a neutral molecule. Choose f/6C°°(R+), 0^?/^l , such that
η(t) = 0 if t ^ 1 and η(t) = 1 if t ^ 2. For r < (1/2) min \0tt - &\ we define ηr: R 3 ^ R 3

by κ '•'

η,(x)=ί- Un(\x~^\lr),
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ηr is 1 near each nuclei. Define ψ^ = ψznηr. We will use ψ^ as a trial function to
estimate E(zn;Zn — 2\Q\). We must show that we can choose r such that Hψ l̂li
^ Zn - 2\Q\. Since ψ?n is the solution for a neutral molecule the corresponding μ is
zero. From Lemma 21 and Corollary 23 we conclude that

limliminf J ( φ J x ) 2 - φ £ W ) d x = o o .
r-*0 n-+oo 1R3

We can thus choose r such that

lim inf J (ψZn(x)2 - ψ%(x)2)dx > 2\Q\.
«->oo R 3

Then

lim sup J φ<r

n

)(x)2dx=limsup J Ψzn(x)2-(Ψzn(x)2-ψ<£(x)2)dx<Zn-2\Q\,
n-*oo R3 n-»oo K 3

where we have used that \ψln = Zn. From the definition of the energy
£(z n;Zπ-2|β|)wegetthat

for large n. Or since E(zn;Z^ =

E(z,,;ZH-2\Q\)-E{z.;ZJ
= ί (ηf - l)(VψJ2 + ψl(Vηr)

2+(l/2) V(η2) V(ψ2Jdx

Since ηr S1 we arrive at

E(zn;Zn-2\Q\)-E(zn;Zn)ί $((Vηr)
2-(l/2)A(η2))ψldx+ f φ , X ( l -ί7r

2)c/x

+ D((l-η2)ψl,(ί-ηf)ψ2J.

Since 1 — ̂ 2 is supported away from the nuclei, it follows from Propositions 8,12
(with μ = 0) and Theorem 28 that the above quantity is bounded as n->oo. Going
back to (82) we see that this finishes the proof of the lemma. •

We can now prove the main result of this section. In the proof we will need the
inequalities of Gagliardo and Nirenberg (Gagliardo [5], Nirenberg [12]).

Lemma 30 (Gagliardo and Nirenberg). // u^veL^^n^QSJ1) and FeCm(R),
with F(0) = 0, then

(83)

, ^ sup [||^tt)||Lβ(R^||tt||toUJIItt|lιr»(R-)- (84)
1 ^l^m

The main result is

Proposition 31. Given a sequence (Nn,zn)ne¥l, with Nn^Nc(z) and z'n-+oo as n->oo
and satisfying either (Q) or (μ), we can then choose a subsequence with the following
properties.

(i) The limits μ= lim μnjc and Q— lim (Nnk — Zni) exist.
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(ii) 0<ψ= lim ψnk and φ= lim φnk exist in the sense of convergence in

i.e., ψnk, φnk and all their partial derivatives converge uniformly on compact subsets.
(iii) φnk converges in L3

o~
ε(R3\{@u ...9&L}) for all ε>0.

(iv) ψnk converges in H2 on the complement of any compact neighborhood of

{#!,...,ΛL}.
(v) The limits φ, ψ, and μ satisfy

0= — Aψ + w (φ μ)w )

J κ A on R3\{Λlf...,<*L}. (85)
\

(vi) For j=ί, ...,L, φ and ψ satisfy

lim \x-^j\
Aφ{x) = 9π-2, lim \x-^j\3ψ(x) = 3]/3π312, (86)

lim\x\φ(x)=-Q. (87)

Proof From Propositions 29 we can assume that (i) is satisfied.
(ii) We will prove that for all open sets Ω whose closure is compact in

JR 3 \{^ 1 ? . . . , &κ}, (ψn) and (φn) are bounded sequences in Hm(Ω). We will do this by
induction on m. From Propositions 8 and 12 we see that (φn) and (ψn) are locally
bounded on JR 3 \{^ l 5 ...98tκ}. Hence they are bounded in H°(Ω) = L2(Ω). lϊ(φn),
(ψn) are bounded in Hm(Ω) for all Ω compactly in R3\{^? l 5 ...,ίMκ} we easily
conclude from the Gagliardo-Nirenberg inequalities that (φj/3), (ψ2), and (φnψn)
are bounded in Hm(Ω). Thus (Aψn) and (Aφn) are bounded in Hm(Ω). It follows from
standard elliptic estimates that (φn) and (ψn) are bounded in Hm+ x(ί2) for a smaller
compact set Ω.

This concludes the induction argument. From the Sobolev embedding
theorem we get that (φn) and (ψn) are bounded in the topology of
C0OQR3\{3ll9..., βtκ}). From Ascoli's theorem we conclude (ii). That 0 < ψ follows
as in Step 1 of the proof of Theorem 26.

(iii) We only have to prove that (φnj) converges in L 3 ~ε near each nucleus 3t-p

j = L+l,...,K. Since we know that (φnj) converges pointwise away from the nuclei,
we can conclude the L 3 ~ε-convergence from the dominated convergence theorem,
if we show that \(φni)\ is bounded by a L 3 ~ε-function near St^j = L + 1 , . . . , K. From
Proposition 8 we know that φnk is everywhere bounded below by a constant. On
the other hand for r < min ψti — dt^ φnk is bounded above by a constant C3 on

\x-@j\=r (see Proposition 12). Thus φnicS>{zj+\)\x — gtj\~1 + Cj both near Stj

and for \x — Mj\ = r. Now

is subharmonic on {0<|x — Mj\<r}. Hence

φnk^{zj+\)\x-Mfί + Cj for |x-

and the L3~ε-convergence follows.
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(iv) For j = L+ί,...,K we have on {\x — dtj\^r} [r chosen in (Hi)] from the
TFW-equation,

^ j - ί X j ^ - Q φ ^ . (88)

We compare ψnk with f(x) = cexp( — (l/2)(zj + 2)\x — 01 j\) which satisfies

If we choose rj<((l/2)(zj + 2)2 + Cj)~\ then for \x-gt^<r.p

Cj-izj+Wx-MjΓ1)/. (89)

As fc-»oo we know that since z7 is fixed ψΛk is bounded by a constant on
{|x — ̂ / | = '•_/} (see Lemma 13). We can thus choose c such that ψnk^f for
\x — <%j\ = rj. From (88) and (89) it then follows by a comparison argument that

-<Xj\) for | x - ^ r , .

Especially φΠk is bounded by a constant near each 0ijJ = L+ί9...9K. This together
with the exponential bound in Theorem 28 and the dominated convergence
theorem imply the L2-convergence of ψnk. (iv) then follows from the TFW-
equation.

(v) It is now clear that ( φ j , (φMk), (φ^3), (φjJ, and {φnkψnk) converge in the sense
of distributions on 3l3\{0$ί9..., «^L}. Since (85) holds for φΠfc, ψnk, and μnk it holds in
the limit as well.

(vi) The bounds

lim sup \x-@j\4φ(x)^9π~2 and Km sup \x-@j\3ψ(x)^3]/3π3/2

follow from Propositions 8 and 12. The lower bounds

lim inf|x -«/φ(x)^9π" 2 and liminf | x - ^ / φ
*9t »Λ

follow from Lemmas 19, 21 and Corollary 23.
To prove (87) we write as in Theorem 28 for |x| ^Rl9

ί

Using the Poisson integral formula as in Theorem28, we get for \x\^2Rl9

\φn{x)-{Zn-Nn)\x\-'\

S ί ψ^nixr' + lx-yr^dyH^Γ'CM-2 J \(φRί)n(ξ)\dSξ.
\\*R \ξ\=Rι

From the uniform exponential decay (77) and the bound on φ we see that given
ε>0 we can choose Rx such that for some constant C and \x\>2Ru

If we let w-̂  oo we find
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6. Asymptotic Expansions Near the Nuclei

Our goal is to prove that given μ ^ 0 then φ, ψ, and Q are uniquely determined from
(85)—(87). Likewise given Q then φ, ψ, and μ are uniquely determined. This together
with Proposition 31 will then imply Theorems 1 and 4. In this section we will
present the first step which is to prove that φ and ψ satisfy the asymptotic
expansions in Theorem 6. For technical reasons it will be necessary for us to keep
track of the asymptotic expansion of the function

W(x) = ψ(x)4J3-φ(x). (90)

Define the functions

(91)

where an, bn, and cn are uniquely defined by requiring al9b1ή=0 and that
asymptotically near x = 0,

Δψn{x) = ψn(x) Wn(x) + O(\x\2n ~ 7 ) , (92)

Aφn(x) = 4πψn(x)2 + O(\x\2n-6), (93)

Wn{x) = Ψn(xr3 - φn(x) + O(\x\2n ~ 4 ) . (94)

It is not hard to see that α 1 = 9 π ~ 2 , fo1 = 3|/3π~3 / 2, and that for n ^ l ,

2 Ί r 2 5 (95)
2 w - 4 ) , (96)

^^ (97)

From this we can compute all the a% &'s, and c's. φ4 and tp4 are the functions given
in Theorem 6.

Proposition 32. If φ,ψe C°°({x|0 < x < R}) satisfy
Ί/3-φψ + μψ = 0, (98)

= 4πψ2

9 (99)

lim φ(x) \x\4 = ax and lim ψ(x) \x\3 = bx, (100)

then

φ(x) -μ = φA(x) + O(\x\"), ψ(x) = φ 4

H (̂x) + μ = W,(x) + O(|x | σ + 2 ),

= 1/2+ |/73/2.
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Remark. We can compute

Strategy of Proof of Proposition 32. Without loss of generality we can assume that
μ = 0. We formulate the proof as an induction argument. We assume that for some
n, 1 ̂ n ^ 5 , the following estimates hold:

n, (101)
+ 1 ) , (102)

+ 2 ) . (103)

We then prove that they hold for n replaced by n + 1 . First notice that (101)—(103)
hold for n = 1. In fact (101) and (102) are equivalent to (100), (103) follows from (101)
and (102).

In proving the induction step it is important to proceed in the right order. First
we prove (103) for n replaced by n + 1 . Using (103) for n + 1 we then prove (101) for
n + 1 . (102) is then a trivial consequence of (103) and (101). Before proving (103) we
have to settle an important technical point.

Lemma 33. // (101 HI03) hold for some n,ί^n^6, then

Vφ(x) = Vφn(x) + o(\x\2n ' 7) + O(|x|* " ' ) , (104)

and

Vψ(x) = VΨn(x) + o(\x\2n ~ 8) + O(\x\σ). (105)

Remark. While (104) has the right power law behavior compared to (101), (105) is
very bad compared to (102), unless n = 6. Since we eventually will prove (101H103)
for n = 6 this defect is unimportant, see also Corollary 36 below.

Proof Choose η e Cg)(R+), 0 ^ η ̂  1 with supply Q(1/2,5/2) and η = 1 on (1,2). For
0<r<(2/5)R, let ηreC£({0<\x\<R}) be defined by ηr(x) = η(\x\/r). For all
fe C^({0 < |x| < R}) define fr=fηr. Then by a trivial identification fr e C^(R3) and

Thus by integrating by parts

Differentiating with respect to x we obtain for xφsnpp(Vηr\

4πVfr(x) = (ηrAf-fAηr) * x/|x|3 + 2(fVηr) * l/|x|3

-6ίf(y)(x-y) Vηr(y)\x-y\-5(x-y)dy.

Since xφsupp(Vηr) we do not pick up delta functions from differentiating x/|x|3.
For / we will insert φ — φn and ψ — ψn. Notice that
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from (93) and (101) (which we assume holds for ή). Likewise

Using φ - φ n = o(|x|2""6) + O(|xΠ, with (5/4)r^|x|^(7/4)r gives

\V{φ-φn){x)\ = \V(φ-φn)r{x)\

Likewise for ψ-ψn = o(\x\2n-5) + 0(\x\σ+ί),

Ψn) Ml ̂  o(r2n ~ 8) + O(rσ) = o(\x\2n" 8) + O(\x\σ). D

Lemma 34. // (101H103) hold for n,l^n^5, then (103) holds for n replaced by
n + ί.

Proof We have to prove that

For any ε>0 we will prove that there exists 0<Rε<R such that for |x|<i?β,
2 w - 4 . (106)

We concentrate on the lower bound, the upper bound is proved in exactly the same
way. For 0 < r < R define

a^icn-εy1 sup (\x\«-i»\W(x)-Wn(x)\ + \cns\r2). (107)

From (103)π we get that lim αε

r = 0. Define for fc^O,

-WJ,x))\x\6-2nHcn-ε){-\A2^ (108)

It is only relevant to have feφO if n = 5. Our aim is to prove that we can find
0 < rε < R such that fε

ε(x) Z 0 for |x| ̂  rε. The final result (106) will then easily follow.
From the definition of a\ we get fr

ε(x) ^ 0 for |x| = r and from (103)π /r

ε(x)-^0 as x-^0.
Thus either /r

ε(x)^0 for all \x\^r or there exists x0, 0 < | x o | < r such that

, Vfr\xo) = 0 and Δfr\xo)^0. (109)

We prove that for r small enough (109) cannot occur.

+ (cn - ε) ( - 2x + 3a%\x\/rγ \x\' 2x) + O(\x\σ + Ί~2n). (110)

Here o( ) and O( ) are vector-valued functions that are independent of r. Even
though (105) gives an unsatisfactory estimate for Vψ, we can get a good estimate for
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Vψ(x0) by using the above expression together with (103)π, (104), and (109). We get

lψ(xo)1/3 Vψ(x0) = Vφn(x0) + V Wn(x0) + 0(\x0Γ
l) + o(\x0\

2n~ 7)

r - 1 ) , (111)

here we have used (94).
We know that W- Wn = o{\x\2n~% thus since Vfr

ε(xo) = 0 we get from the first
equality in (110),

drW(x0) - dr Wn(x0) = o(\x0\
2n ~ 7) + a%\xo\/rγ 0{\x0\

2n ~

Inserting this and (111) into the last inequality of (109) gives

0 ^ tψn(x0Γ
2l3(Vψn(x0))2 + iwt13 Wn(x0)-4πψn(x0)

2 - Δ Wn(x0)

+ ίψ{W{x0) - Wn(x0))+(al)2(\x0\/r)6 O( |x o | 4 "- 1 0 )

+ cfr{\x0\lrf O(\x0\
2" - 8) + o(\x0\

2n ~ 8) + O(\x0\" " 2 ) ,

where we have used (102)n. Now (95)-(97) easily imply that

Since |xol = r a n ^ ύί-*0 as r->0 we can finally write

0 ^ - f cnbψ + f ψ(xo)
4l3(W(xo) - Wn(x0)) \xo\

8 ~ 2" + or(ί) + O(\xo\"+6 ~ 2n).

Here or(l) is a function of r that goes to zero as r->0. We now use the definition
(108) of ff and (102) for n = 1,

We have used that //(x 0 )<0 and assumed r so small that f b\^ + o x o ( l)>0. From
the definition of a\ it is clear that (cn — ε)aε

r^0, hence

It is therefore clear that we can choose rε and in the case n = 5,k, such that (109)
never can be satisfied for | x o |<r ε , i.e., /r^(x)^0 on | x | ^ r ε or

If we choose i?ε = min{rε,εr3(aj: (cn — ε))'1} (recall that (cn—ε)α^0), then for all

\

Thus for

Lemma 35. // (101)-(102) hold for n,l^n^5, then (101) holds for n replaced by
n + 1.
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Proof. Since σ < 4, (101) for n = 5 is equivalent to (101) for n = 6. We thus only have
to consider n g 4. As a consequence of Lemma 34 we are allowed to use (103) for n
replaced by w + 1, i.e., (103)π + 1.

Let φn = φn~
(Pi' We first prove

ιΔφn + ln\x\2n'6^o{\x\2n-6), (112)

where

= (4π)- 1 (2n-3)(2n-4)α B + 1 - |αl ' 2 α n + 1 . (113)

Notice that /1=(3/2)α}/2c1. For n = l, φ i = 0 and

We have used that from Lemma 34! W(x) = c1 |x|~2 + o(\x\~2). Hence (112) holds
for n = l.

For n^2,

= (Ψ, + Wn)
3'2 + ί(φn + WnY% W- Wn) + {ψ~ Ψn))

-φn+W- Wn)
2/(φn + Wf)

where we have again used Lemma 34. Since n^2, 4n —10^2n —6, and we can
forget about the last term.

On the other hand recalling that ψ\l2={An)'1Δφί we find

Equation (112) now follows from the identity

(^+TO 3 / 2-(4πΓ 1zl( /^^

Given ε>0, iflrgn^3 define

g\(x) = φ(x)-φn(x)-(an + 1±ε)\x\2n-\ (114)

if n = 4 define

g\(x) = φ{x)-φn(x)-(an + 1+ε)\x\2»-\ (115)

Then writing g+ = g we find for |x| =f= 0,
2 = 4πψ2-Aφn-4π(φ~φn)

3/2

Inserting (112) gives

Ag-4πg312 = ±ε(6πal<2 -(2n-4)(2n-3))\x\2"-6 + o(\x\2"-6).
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Recall that σ, — τ are the roots of t(t +1) = 18, thus if — τ ^ 2n — 3 ̂  σ, i. e., n ̂  3 then

and if rc = 4 this expression is negative. With the definitions (114) and (115) for g+ it
is now clear that we can choose rε<R such that for all x with 0 < | x | < r ε ,

Jg ε _-4π(g ε _) 3 / 2 <0 and Δg\ - 4 π ( g ε

+ ) 3 / 2 > 0 . (116)

Now consider ω = φ1+k\x\σ = 9π~2\x\~Ar + k\x\σ. We know from (38) that for
|x |+0, zlω(x)^4πω(x)3 / 2. Choose k = kε^O such that ω(x)>gε

+(x) for |x| = r£.
From (101)! we know that g*+/ω->ί as x->0. We will prove that

ω(x)^gε

+(x) (117)

for all x, |x| ^ r ε . If not we must have x0, |xo | <rε such that

(g ε

+/ω)(x 0)>l, V(g\/ω)(xo) = 0 and A(g*+/ω)(xo)<0.

But then

Δg\{x0) = ω J(gε

+/ω) (x0) + 2VωV(gε

+/ω) (x0) + (gε

+/ω)zlω(x0)

which is in contradiction with (116). Hence (117) follows, i.e.,

<r t*)^ n (x) + ( α B + 1 + f i ) M 2 " - 4 ^ ^

if n ̂  3. If n = 4 we get since σ < 4,

To get similar lower bounds we use Lemma 21 with r = rε. Vζ solves
AVζ = 4πVζ

3/2 for |x|#=0 and Fζ(|x| = rε) = 0. Furthermore from Theorem 20 (iii)

lim (|x| Vζ(x)) = ζ < oo. Since |x|4g(x)-»9π~ 2 as x->0, we can of course assume that
l* |->o
gε_^Ofor |x|^re. The set

Sζ = {x\0<\x\<rε,g*4x)<Vζ(x)}

therefore does not contain {|x| = r j nor points x such that |x| is small. An easy
comparison argument shows that Sζ = 0 for all ζ>0. Taking C/oo and using
Lemma 21 gives

or if n ̂  3

If n = 4 we get

φ(x) ^ φs(χ) + O(\x\σ) ( = ψA{x) + O(\x\η). D
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End of Proof of Proposition 32. We have proved that (101)—(103) hold for n = 1 and
that if they hold for n then (103) and (101) hold for n +1. Then clearly (102) also
holds for n +1. We can then conclude that (101)-(103) hold for n = 6. Since 3 < σ < 4
this is equivalent to Proposition 32. •

We can now reformulate Lemma 33 as

Corollary 36. Vφ(x) = Vφ4(x) + O(|x|σ~ι)and Vψ(x) = VψA(x) + 0{\x\σ).

7. Uniqueness

The proofs of the main Theorems 1-7 that are given in Sect. 8 below will be simple
consequences of the following theorem and its proof.

Theorem 37. (a) Given μ^0, there exist unique φ, 0<ψ and β e R , with
φetfo*

δ(R3\{0ll9...90lL}) for some δ>0, and ψ in H1 of the complement of any
compact neighborhood of {0tl9 ..., Mj} and such that φ, ψ, and Q satisfy (85)—(87).
(b) Let Q^be the value of Q for μ = 0as described in (a). Then given Q e (— oo, Q^\
there exist unique φ, 0 < φ and μeR, with φ and ψ as in (a) such that φ, ψ, and μ
satisfy (85H87).

The existence parts of (a) and (b) follow from Proposition 31. The uniqueness
parts will follow from a series of lemmas which are of independent interest.

Lemma 38.

φ,ψeC°(R3\{al9...,aκ}) and ΨeIZJ(R3\{Λl9...9ΛL}).

Proof This is standard elliptic regularity. •

We can now conclude from Proposition 32 that for j = 1,..., L, φ and ψ satisfy
the following asymptotic expansions near Sly.

φ(x) - μ = ψ4(χ - #.) + O(\x - 9t£) and ψ(x) = ψ4(x - Mj) + O(\x - 9t$ + γ).

The idea is now to subtract the singular part from Q = ψ2. We define the
renormalized density (see also (23))

where the b's are as in the previous section. From Proposition 32 we know that
ρi2\x) = O(\x — &j\~2). In fact we can conclude more. From (93) we see that

thus ψ^x)2 contains no term of order |x| ~ 2 (we could have concluded this from the
numerical values of the bn's also). Hence ρi2)(x) = O(l) or

ρWeLSJR^ntffR3). (119)

Notice that ρ(2) is not necessarily everywhere positive, but we can think of it as a
charge density. ρ(2) has the following remarkable property:
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Lemma 39.

\Q{2Xx)dx = Q+ Σ zi (120)
j = L+ί

Proof. It is clear from (93) that A φ2 = 4π(fe2 |x |" 6 + 2bx b2 |x |" 4 ). Hence if we define

L

j Σ j Λ^ (121)

we get

j l (122)

for xφ{&l9...,giL}. F r o m Propos i t ion 32 φ ( 2 ) G L f o c ( R 3 ) . T h u s φ ^ ί )
Since the Dirac-measure < 5 0 ^ i ί " 3 / 2 ( R 3 ) we see t h a t daδ0φH~2(K3), for all
multiindices α with |α| ̂  1. We can thus conclude from (122) that there exist Z/
j = 1,..., L such t h a t o n all of R 3 ,

K

or

L Ί

Now the right-hand side is in L 2 near 3tpj= 1, ...,L. Hence

L

is in f ί 2 near ^ . But from Proposition 32 φ{2) is bounded near 0tpj = 1,..., L. We
conclude that z = 0 fory = 1,..., L. Thus (122) holds on all of R 3 . It is now clear that

is harmonic and h(x)->0 as |x|-»oo. Hence h(x) = 0, i.e.,

K

From this and (87) we find

K

Q=— lim (φ(2\x)\x\)= $ρ(2)(x)dx— Σ z/ Π
χ->-oo j = L+l

We denote

(124)



596 J. P. Solovej

From (121) and (123) we find

Lemma 40. ψ solves the Renormalized TFW-equation

09 (125)

Lemma 41. W is bounded at infinity.

Proof. For the solutions constructed in Proposition 31 we of course know that
W-+μ as |x| -> oo. For the abstract solution we just have to prove that ψ is bounded
at infinity. This is not too difficult and is left to the reader. •

We define the following functional:

L(f)=j3\Vf\2 + W\f\2dx, (126)

for all functions in the set

F={/eH1(R3)|/=O(|x-Λ/+ 1),P/=O(|x-ΛJ |
β),forj = l,...,L}. (127)

Notice that L(/)< oo for all feF.

Lemma42. /ef=>L(f)^0.

Proof. It is enough to consider feC^(R3\{3ll9 ...,&L}). Then

2 2 2 2 2 1 2- D

Lemma 43. If feF then
2 2 2-Wψ2)d3x. (128)

Proof. The right-hand side of (128) is equal to

Notice that

|F/||Fφ| + |/iμφ| = θ ( | x - ^

hence is in //(R3). We just have to argue that we can integrate by parts. But this is
clear from \V\p\ |/ | = 0( |x-Λ/- 3 ) . •

We can now give the

Proof of Theorem 37 (a). We have to prove the uniqueness. Assume (φ, ψ, Q) and
(φ, ψ, Q) are two different triples satisfying (85)-(87) for the same μ. We have two
corresponding functionals L, L. Notice that from Proposition 32 and Corollary 36
ψ — ψeF. Thus from Lemmas 42 and 43,

0 ̂  L(ψ - ψ) + L(ψ - ψ) = J (W- W) (ψ2 - ψ2)dx

= Πv4 / 3-v4 / 3)(v2-v2)+
ύ i (Qi2) - Qi2)) * \x\ ~ \Qi2) ~



Thomas-Fermi-von Weizsacker Theory 597

Since |x — y\"* is a positive definite kernel this last expression is non-negative if and
only if ψ = ψ. From (121) and (123) we find φ = φ.Q = Q follows from (87). •

Proof of Theorem 37 (b). (Existence) From Theorem 37 (a) and Proposition 31 we
get that Qo0= lim g c(z)>0 (the lower bound is a consequence of Theorem 26).

z'->co

The existence then follows from Proposition 31, since if Q<Q 0 0 , then for zl9..., zL

large enough Q < Qc(z).
For the uniqueness we proceed as in case (a). Given two triples (φ, ψ, μ) and

(φ,ψ9μ) satisfying (85)—(87) for the same g, then

0 S ί(Ψ*1 3~Ψ4 / 3)(Ψ2~Ψ2) + (ρ(2)~Q i2))*\x\~ l(Q(2)~Q i2))dx

+ (μ-μ)$(ψ2-ψ)dx.

But from Lemma 39

We again conclude ψ = ψ, φ = φ. μ = μ follows from (85). Π

8. Proofs of Main Theorems

As a simple consequence of the results of the previous section we can now give

Proof of Theorem 1 and Theorem 4. It follows from Proposition 31 that any
sequence has a subsequence satisfying Theorem 1. From Theorem 37 all the
subsequences must have the same limit. This implies Theorem 1. For Theorem 4, if
Qe{-oo,QJz\St)\ then it follows from Theorem 1 that Q<Qc(z) for z' large
enough. Then Theorem 4 follows in the same way as Theorem 1. •

Proof of Theorem 2. As noted in the remark after the theorem this is just a special
case of Theorem 1, except for the lower bound which follows from
Theorem 26. •

Proof of Corollary 3. We first note that Z\-+Rz is continuous. This easily follows
from Theorem 6 in [2]. If Rz is not convergent we can find sequences converging to
any value in some open interval. Since φz(Rz) = 0 we would conclude that the limit
φμ = 0 is constant in an open set. But then ψμ = 0 is zero on this set since Aφμ = 02

 0. •
Proof of Theorem 6 (a) and (b). This is just Proposition 32. Theorem 6 (b) is a
consequence of the exponential decay (77) and (86) and the TFW-equation. •

Proof of Theorem 7. That ψμ has the properties given follows from Lemma 40 and
Lemma 39. Equation (25) is just (123). The uniqueness follows from Theorem 37
and its proof, if we can prove that Vψμ is in L2 on the complement of any compact
neighborhood of {Rί9 ...,&L}. But this is clear, since from (24) Aψμ is in L2 over
such a set. •
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