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Abstract. We construct linearly stable periodic orbits in a class of billiard
systems in 3 dimensional domains with boundaries containing semispheres
arbitrarily far apart. It shows that the results about planar billiard systems
in domains with convex boundaries which have nonvanishing Lyapunov
exponents cannot be easily extended to 3 dimensions.

0. Introduction

Since the work of Sinai [S] we know that dispersing billiards (billiard systems in
domains with concave boundaries) have strong mixing properties in all of the
phase space. Conceptually such systems are close to geodesic flows on manifolds
of nonpositive sectional curvature. In particular the dimension of the domain does
not affect the basic features of the dynamics [C—S]. Bunimovich [B1] discovered
that convex pieces of the boundary may produce the same scattering effect in
planar billiards. He constructed examples of convex planar domains built of arcs
of circles and straight lines (the stadium) in which billiard systems have the
hyperbolic behavior. In [W1] the rigid requirement of constant curvature on the
convex pieces of the boundary was replaced by the condition that r”(s) < 0, where
r(s) is the radius of curvature as a function of arc length. Subsequently Markarian
[M] and Donnay [D] showed that other conditions may suffice. It was already
clear in [W1] that putting two convex pieces of the boundary sufficiently far apart
makes the orbits that go back and forth between the two completely unstable
(the difficulty there is to include the “glancing” pieces of the orbit: many consecutive
reflections at large angles in one convex piece of the boundary). This idea is further
supported by the work of Donnay, who shows that basically arbitrary sufficiently
small perturbations of the stadium have nonzero Lyapunov exponents. (Bunimovich
[B2] made some vague claims along these lines before but so far he has not
published the details.) The natural question arises: do these planar (locally) convex
domains have higher dimensional counterparts? More specifically we can ask if
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putting two convex pieces of the boundary sufficiently far apart makes all the
periodic orbits held by them completely unstable (no Floquet exponents on the
unit circle).

In the present paper we make a contribution towards the negative answer to
these questions. We construct a linearly stable periodic billiard orbit which reflects
only in eight semispheres in R3. Given any distance [ (not smaller than the diameter
of the semispheres) we consider two parallel planes at this distance. We attach four
semispheres to each of the planes (on the outside). The positions of the semispheres
are the free parameters in our construction. We adjust them in such a way that
there is a highly symmetric periodic billiard orbit which reflects only in the
semispheres. We are still left with some free parameters and we show that in a
certain range of these parameters the periodic orbit is linearly stable.

There are enough parameters in this construction to escape any resonances in
the Floquet exponents. One can naturally expect that also the Birkhoff normal
form is typically nondegenerate for this periodic orbit so that by the KAM theory
[A] there is a subset of positive Lebesgue measure in a neighborhood of the orbit
which carries quasiperiodic motions. Because of the lack of working criteria for
nondegeneracy of the Birkhoff normal form we were unable to complete this last
step. The straightforward computation of the Birkhoff normal form is in our case
out of the question (the orbit has at least 32 reflections in the semispheres).

Our construction shows that even with the simplest convex surface—the sphere,
the presence of linearly stable orbits cannot be excluded by merely putting the
convex pieces sufficiently far apart. In a recently published paper Bunimovich [B3]
claims that billiard systems in several multidimensional domains with convex
boundaries have strong mixing properties in all of the phase space. In view of our
construction we have doubts whether this can be indeed proven for all of his
examples (we believe that the long linearly stable periodic orbits are an exception
rather than a rule but we doubt that their absence can be secured by simple
conditions). As a byproduct of our discussion one case of scattering behavior
emerges—the reflections in a small piece of a sphere. It was already known to
Bunimovich, [B3, B4].

We would like to note that Knauf [K], and Donnay and Liverani [D-L] found
large classes of finite range potentials which produce nonvanishing Lyapunov
exponents in all of the phase space of a particle moving in the planar central field.
Yet they were unable to extend it to three (or more) dimensions. We think that
similar mechanisms are at work there.

The plan of the paper is as following. In Sect. 1 we discuss the linearized
dynamics around a billiard orbit (the evolution of orthogonal Jacobi fields). We
write down the reflection formulas for a sphere and we point out to their features
crucial to the subsequent construction. Section 2 contains the geometric details of
the construction. The analytic details of the proof that the orbit is linearly stable
in some range of the parameters can be found in Sect. 3.

1. Description of the Linearized Dynamics

A billiard system can be viewed as a kind of geodesic flow so that it is natural to
introduce Jacobi fields (infinitesimal variations) for a billiard orbit. In particular
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we describe the linearized dynamics around a billiard orbit by orthogonal Jacobi
fields.

We will consider billiard systems only in domains in R3. An orthogonal Jacobi
field along a piece of an orbit between reflections at the boundary is a vector field
E(t)eV such that

¢"=0 ey

and V is the plane perpendicular to the orbit (we identify by parallel translation
the planes perpendicular to the orbit at different points, not separated by a reflection
at the boundary).

We need also the reflection formulas which describe what happens to a Jacobi
field at the moment of reflection. Since we will consider only billiard orbits reflecting
on the inside of spheres we give the reflection formulas for that case alone. Let &
be (a piece of) a sphere of radius r and pe& be the point of reflection which takes
place on the inside of &. Let further n be the inside unit normal vector at p,w~
be the unit direction vector of the incoming billiard orbitandw* =w~ —2{n,w~ >n
the unit direction vector of the outgoing billiard orbit. We identify the planes V'~
and V' * perpendicular to w~ and w* respectively by reflection in the tangent plane
at p. Let 9,0 < ¢ < 7/2, be the angle of incidence, i.e. cos ¢ = {n,w* >. We assume
that 0 < ¢ < m/2 so that there is the distinguished plane W to which the orbit is
parallel, W is spanned by w~ and w™*. If we have several consecutive reflections
in the same sphere then all the segments of the orbit are parallel to W. We have
further that V' =¥~ = V™ splits naturally into V=V,® V,, where V,= VW and
V, is the orthogonal complement of ¥, in V.

An orthogonal Jacobi field at the moment prior to the reflection is given by
(£,meV x V,wheren = & and at the moment just after the reflection by (¢, 7)eV x V.
The relation of (£, 4) and (&, ) is given by a linear operator on V x V = (V,xV,)®
(V, x V,), which in this representation of ¥ x V has the following block diagonal
form:

1 0 @

2
_2cosg 1
r

This formula follows immediately from the general reflection formula, see for
example [W2], Appendix B.

The matrix (2) deserves special attention. Let us note that the first 2 x 2 block
describes the evolution of orbit variations (Jacobi fields) in the plane of the orbit
W, while the second block describes the evolution of orbit variations orthogonal
to W. In the following we will be referring to planar Jacobi fields (variations)—in
V, and transversal Jacobi fields (variations)—in V,. We can see that for ¢ close
to 7/2 the effect of the reflection on planar and transversal variations is drastically
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different: the transversal Jacobi field changes like the planar in a reflection at a
sphere with much larger radius. We know from the study of planar convex billiards
that if the boundary of the billiard table has the range of curvature all the way to
zero we may expect stable periodic orbits. At least all the known examples of
strongly mixing billiard systems in (locally) convex planar domains have all convex
pieces of the boundary with curvature bounded away from zero. Thus it appears
that passing to the 3 dimensional space we encounter difficulties comparable to
the smoothening of the Bunimovich stadium already when we consider reflections
in a sphere.

Suppose now that our billiard orbit experiences several consecutive reflections
in the same sphere, more precisely we consider the complete passage through a
semisphere. Our orbit lies in one plane passing through the center of the sphere.
We want to derive formulas connecting Jacobi fields at the entrance to the
semisphere with Jacobi fields at the exist. For planar Jacobi fields the operator in
V, x V, which describes the evolution from p,, to py; see Fig. 1, is given by the matrix

1 0

1)

(-1 n 1, ©)
rCOS @

where n is the number of reflections in the semisphere.
For transversal Jacobi fields we choose to describe the evolution from point
p, to p,, see Fig. 1, and we get the following operator on ¥V, x V,

cosf
cosa
. 4
sin (x + f) cos o @
rsin @ cos f8
o P
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The connection between o, , @ and the number of reflections n is given by
n—Dm=2np+a+p.

In the choice of points py, p,, P, and j, we aimed at making the resulting matrices
triangular. The matrices (3) and (4) were obtained from (1) and (2) by straightforward
matrix multiplication and a bit of high school geometry.

We can see that for the evolution of transversal Jacobi fields by (4) there are
two distinct cases: converging, a + > 0, and diverging, « + f <0 (when a + >0
the outgoing ray intersects the incoming ray and when a + 8 <0 it does not—the
two diverge). In the diverging case all the nonzero entries of the matrix (4) have
the same sign which is also always true for the matrix (3). It leads to the following
phenomenon: if we consider a two parameter infinitesimal family of billiard orbits
perpendicular to a convex surface, i.e. diverging, then after passing through the
semisphere the family emerges as a diverging family (the orbits are again
perpendicular to a convex surface). This makes the net effect of passing through
a semisphere similar to a reflection in a concave surface (like on the outside of a
sphere). Billiard systems with concave boundaries (dispersing) cannot hold a linearly
stable periodic orbit (see for example [W2]). It is clear that if we replace the
semisphere with a small piece of the sphere (the angle at which we see it from the
center less than 7/2) then only the diverging case is possible. This fact was already
known to Bunimovich [B4].

We will construct a linearly stable periodic billiard orbit held by eight
semispheres where

1. all the passages through the semispheres are of converging type,
2. the planar and transversal variations get interchanged on the way between some
semispheres.

These are the two basic elements in our construction.

2. Construction of the Periodic Orbit

Our periodic orbit lives on the four side faces of the rectangular box in Fig. 2.
In particular the bold edges in Fig. 2 are part of the orbit. The length of the box
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G Po =P1
Fig. 3.

is an arbitrary given /, it can be arbitrarily large but should not be too small; the
exact condition will be formulated later on. Figure 3 shows how the orbit gets
from g, to g, by the way of n reflections in each of two semispheres attached at
the sides of the box. Then in the same fashion reflections in another two spheres
attached similarly take the orbit from g, to g5, etc., until it comes back to q,. We
need eight spheres altogether. We will take care that they do not intersect.

The configuration in Fig. 3 is centrally symmetric about the center co- Let us
summarize some of the geometric quantities that play a role in the computations
(d(,") stands for the distance of two points):

d(Po, P1) =rsinptana,

1
2cosa’

d(co,Py) =

-~ l
I:=2d(co, Po) = m —2rsingtana,

. 1
d(ql,qz)=2rsm<p<1 +a)s—a>—ltana. (5)

In this construction there is so far one continuous parameter — a (or @) and one
discrete parameter—the number n of reflections in the sphere. We have that

n
0<
_a<2n—1

The evolution of orthogonal Jacobi fields on the way from q, to q, is described
by the following matrix products. For planar Jacobi fields

101'1' 1011
7= 1[0 1] 2n 1[0 1]’

rcos @ 7 COS ¢
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and for transversal Jacobi fields

cosa 0 l !

0
) 1 g(;a- cosa [] l]
—sina 1 —sina 0 1/

cos o

rsing cosa_J| 0 1

N
I

rsin ¢

Our construction is such that the planar (transversal) Jacobi fields become
transversal (planar) in the next face of the box. Hence the evolution of Jacobi fields
around the whole periodic orbit is given by the block diagonal matrix

TPT P
|: PT PT ]

Clearly the eigenvalues of the two diagonal blocks coincide so that it remains to
show that in a certain range of the angle a the matrix 7 2 has eigenvalues on the
unit circle. It amounts to showing that the trace of 7 2 is between —2 and 2. Alas
the expression for the trace of 2 is quite complicated and its straightforward
analysis is more than we can or wish to do. Instead we will show that as a varies
from 0 to n/(2n — 1) the trace of 7 2 changes from a value bigger than 2 to a negative
value. By continuity there must be an interval for «, where the trace of 72 is

between 0 and 2.
The periodic orbit constructed so far is resonant (the eigenvalues of . 2 and

PT are the same). We can easily destroy the resonance by taking different « in
consecutive faces of the box.

3. Analytic Details

We introduce a new parameter

Isino
V= - .
rsin @
We have then
[ 1 |
cos o l
cosa cosa
T = v 1—v
[ cosof —= coso—V
r 1l—v I(1+ cosa—v)
= 2 _ 2
_e-y v —<1+ 2 >v+1
| Icosa cosa cosa
Also
2nl - T
142 [T+
e rCos ¢ rcos @
4n 4n?T 4nl 2nl 4n2lT
1 +

+ 2 2 + + 2 2
rcosg r2cos? o rcosg rcosg r?cos’o
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Thus the trace of 2 is equal to the following unsightly expression:

4nl 2nl 4n*ll

roosg | 2 cos?
@ rcoseg r?cos’e

v (v —cosa)(v — (2 + cos a))(l +

aml \ v2—v/, T 2nl
—cosaf 1+ - 1+-+ .
rcos @ cosa I rcose
It is nevertheless easy to see that this expression is negative for cosa < v <2 and
that it exceeds 2 for v =0. Hence in some interval of values of v we get the trace

between 0 and 2.
To make v =cosa we have to have

l_rsin(p
" tana

rsin @/tan a attains all the values from

rsin @;n
tan a,,,,

to + oo, where o, = n/(2n — 1), @min =((2n — 3)7)/2(2n — 1). Hence we need to
require that

si :
I > S0 Pmin ©6)
tan «

max

If we want to make sure that the semispheres used in the construction do not
intersect as v changes from 0 to cosa we have to satisfy the following inequality
(see (5))

. 2 2 .
[r51n¢<1 +Ko—(>~ ltana] +r2sin? ¢ = 4r.

It can be rewritten as
. 24 cosa—v\?
sin? (p[(—) +1 ] > 4.
cos a

Clearly it will be satisfied if only
sin? @i > £.

The last inequality holds if n > 4 (it does not for n =2 or 3; one can check then
that the semispheres do intersect at least for some values of «).

Since we want the condition (6) on ! to be as weak as possible we take n =4
which yields the requirement that

sin on
"SI

> =~ 1.8709r.

tan n
7
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If we allow the semispheres to intersect we can put even n=2, and then it is
sufficient that | > 0.2887r.
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