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Abstract. We consider a vector bundle on Teichmϋller space which arises
naturally from Witten's analysis of Chern-Simons Gauge Theory, and define a
natural connection on it. In the case when the gauge group is 1/(1) we compute
the curvature, showing, in particular, that the connection is projectively flat.

1. Introduction

Projectively flat unitary vector bundles on the moduli space of curves are well-
known to define conformal field theories [FS]. When such a bundle ΊV is pulled
back to Teichmϋller space (which is simply connected), it has a finite-dimensional
space ĉ V of projectively flat sections with the dimension of J^V being equal to the
rank of iV. Moreover, the modular group acts projectively on the space of these
sections. In [W], it was argued that the state-space of Chern-Simons gauge theory
is, up to projective isomorphism, given by jtfψ for a certain projectively flat bundle.
The bundle Ψ* is well-known; our aim in this note is to give a purely differential-
geometric description of a natural connection on if, with the correct co variance
properties under the modular group. The definition draws on a construction from
[RSW], and further, makes a certain technical assumption, namely, that the state-
vectors of the Chern-Simons theory are normalisable. In the case when the gauge
group is (7(1), we prove the projective flatness of this connection in a computation
which also yields the "central charge." (In this case the assumption of finite norm is
trivially true, as we shall see.) It appears that this may complement the deeper
treatments of [BN, EMSS] which however involve considerations from conformal
field theory.

In Sect. 4 we outline a short proof of projective flatness, again in the (7(1) case,
which uses the "discrete Heisenberg group."

We are not able, at this point, to prove the projective flatness of the connection
for nonabelian groups.
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2. The Bundle ^Γand the Connection V

The arguments in this section are abstract, and meant to provide a concise
description of the ideas. In the next section we deal more explicitly with the U(\)
case.

Let M denote a compact 2-manifold without boundary (with genus g ̂  2 - the
other cases can be treated with analogous results), G a compact Lie group which
can be either SU(N) or (7(1), si the space of connections on the trivial G bundle on
M, s/F the space of flat connections, s/F the space of irreducible flat connections,
and 0 the group of gauge transformations. Then it is well-known [AB] that sff/y
is in a natural way a symplectic manifold. In [RSW] a natural hermitian line
bundle JS? with connection was defined on sίψj^. This does not require a complex
structure on M, and the curvature Ω of the connection is in fact i x (the symplectic
form).

A choice of conformal structure on M induces a complex structure on s/F/&9

and it can be identified (in the case G = SU(N)) with the moduli space of stable
vector bundles of rank N and trivial determinant on the Riemann surface defined
by the conformal structure [NS, AB], or (in the case G= 1/(1)) with the Jacobian.
The form Ω is of type (1,1) with respect to any of these complex structures, and the
line bundle JS? thus inherits a holomorphic structure.

Recall that the Teichmuller space Tg is defined as the space of conformal
structures # on M modulo the group ® 0 of diffeomorphisms of M which can be
continuously connected to the identity diffeomorphism. The group @0 acts
trivially on s/F/@ and in fact the complex structure defined on s/F/& does not
change when that on M is changed by an element of S)o.

We are now ready to define the vector bundle iV over Tg. iV is defined as the
bundle whose fibre at any point J of Teichmuller space is the space of holomorphic
sections of JSP, the holomorphic structure on s0Fl& and if being determined, as
outlined above, by J. Let ΊΓ denote the trivial vector bundle Ί% x L2(if, sfFl<&) with
fibre the space of square-integrable (with respect to the natural volume element on
the symplectic manifold sfF/& and the hermitian structure on JSP) sections of J£P.
Assume that the holomorphic sections of <5P are in fact square-integrable. (This
assumption is necessary in the nonabelian case because the space of stable bundles
of zero Chern class is not compact. It does, however have a compactifϊcation of a
kind which makes this assumption not unreasonable. In the case G=U(1) the
Jacobian, of course is compact.) Under this assumption ΊV is a sub-bundle of f\
Since the latter is a unitary bundle with a canonical trivialisation, Ψ* inherits a
natural hermitian connection which we denote by V. This is our candidate for the
protectively flat connection.

Consider now the action of the modular group 3Γ = <3/3)0 on Teichmuller
space. By the naturality of the construction of <£ (see [RSW] for details) there is
also a unitary action on L2(j£ffc, stfp/%) which takes ΊV to itself. Thus V is clearly
preserved under the lifted action of 2Γ on ΊV\ and Ψ descends to M% as a bundle
with connection.

Imagine now that we knew that the connection V is projectively flat. Since Tg is
contractible there exists over it a hermitian line bundle / with connection such that
iV®\ is actually flat; further, there exists an action of a central extension (by 1/(1))
of the modular group on / preserving the connection [R, p. 360]. Denoting by
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JίV®, the space of flat sections of ΊV% I over Teichmϋller space, the above action
of the modular group defines a projective representation on «#V®Z. Any other
choice of I yields a projectively equivalent space and representation.

3. The U(l) Case: Projective Flatness

We consider now the case G = U(l). We can now drop the constraint on the genus
of M. The space of flat U(l) connections on M modulo gauge transformations is
the 2g-dimensional torus J M = Hι(M,R)/Hι{M,Z). The construction of the line
bundle if proceeds as follows. Let k be an even integer (this is the integer
multiplying the Chern-Simons action in functional integrals). Define the 1/(1)-
valued cocycle on H\M, R) x H\M, Z)

Θk(x, u) = exp( — kπί J x A U)

and define

where on the right we mean the quotient of Hι(M,R)xC by the equivalence
relation

(x, z) ̂  (x + u, Θk(x, u)z), u e H\M, Z).

The one form

ώk(x)(y)=-(kπiixΛy)

defines a connection ωk on this bundle (i.e., if X is a vector field on /^(MjR)
invariant under HX{M,Z\ and F is a function on H1(M,R) satisfying F(x + w)
= Θk(x,u)F{x) for ueH\M9Z)9 so is DxF(x) = XF(x) + ώ(x){X)F(x)). The curva-
ture is

βk(*> y)=—

We shall denote by JSP the line bundle J f̂c for k = 2. Thus &k =
Note that a diffeomorphism σ of M induces a symplectic automorphism of JM,

which lifts to a connection-preserving automorphism of jSPfc. It is also clear that
Diff0M acts trivially. Suppose given a diffeomorphism σ of M. Let σ be the induced
map on JM. From the definition of S£k it is clear that there is a natural lift of σ to 5£k

which preserves the connection V, and preserves the inner product on sections

of if*.
Note that up to now we have not used any complex structure on M. A complex

structure on a surface is given by any endomorphism J of the cotangent bundle of
M such that J2 = — 1. Any such J defines a complex structure J on the vector-space
HX(M, R) in a standard way (in short: represent the real 1-cohomology by forms α
satisfying doc = 0 and dJα = 0, and define J by αi—• J(α) = Jα). The torus JM becomes
the Jacobian β. The curvature form Ω is of type (1,1) with respect to J, Ω(Jx, Jy)
= Ω(x,y); also

defines an inner product on H1(M,R) and a translation invariant Kahler metric
on / .
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We can now define the bundle iV\ its fibre at any J in Tg is defined to be the
space of holomorphic sections of !£k with respect to the complex structure induced
by J.

We are now ready to compute the curvature $FV of V. Let us first define V
explicitly. Let X be a vector field on Γg, 5 a section of iV over Tr We define

where P is the orthogonal projection L2(JM, J?k)-*H°(f, 5£k) and X(s) is the action
of the vector field on s, the latter regarded as a function from Tg to the vector space

The holomorphic sections of J£?k are in fact the ground states of the Laplacian
on sections of «5fk. This is because of the identity

^U = 23*/ ω k + π x (dim JM).

Note that the lowest eigenvalue is independent of the complex structure, so in fact
(see Sect. 4) is the degeneracy of the ground state, so that Of is really a vector
bundle. Let H denote the operator Aωk — πx (dim/); then H~ί is well-defined on
the orthogonal complement of H°(/ , JS?k), and the connection V can be expressed
as:

Vx(s) = X(s)-hH~1X(H)s.

Note that X(H)s is orthogonal to H°(f, ££k\ for, given υ any other section oίifr

9 we
have (v, X(H)s) = X((v, Hs)) - (X(v), Hs) - (υ, HX(v)) = 0, where we use the fact that
H is selfadjoint and annihilates s and v. We check that this is indeed a unitary
connection on ΊV\

H{Vx(s)}=H{X(s

= X(Hs)

= 0

Let now X and Y be two vector fields on ^ . We can now compute (s, ̂ V(X, Y)s)
and find (s,#p(X, Y)s) = {H~1X(H)s, H-ίY(H)s)-(H-1Y{H)s, H-^X^s).

We need an explicit expression for X(H). Choose a standard basis
{βi\i = l, ...,2g} for the integral cohomology of M. Let d{ denote the co-ordinate
vector fields on J M , and define the (translation-invariant) tensor fields J{, Ωi} and

K{ by Jdi = Jjdj, Qtj=Ω(db d3) and K{ = <δί9 dj). Note that Ktj = -?- J\Ωjk, and if we

define Kij and Ωij as inverses of Ktj and Ωi} respectively we have KiJ=2πiJι

kΩ
kJ.

(Repeated indices are summed.) Denote by Dt the co variant derivative with respect
to the coordinate vector field dt. We have then [Dt, Dj] = Ωip Aωk = — K^Dfij and
[mDi9H~] = 4πiJ{Dj. For any w, we have [H,D^\= —4πiJjDjW, yielding

= + 4πP?jDjW +

where P ί

±t/=i(δ/±ϊVf). From this we conclude:
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i) If w is a ground-state of H, P+jDjW = 0, P[jDjw = Diw, which is just the
statement that w is a holomorphic section of Jέ?fe, and DJW is an eigenstate with
eigenvalue 4π.

ii) Again, if w is a ground-state. X(H)w = X(Kij)DiD w is an eigenstate of H
with eigenvalue 8π. (It is a priori a linear combination of states with eigenvalue 0
and with eigenvalue 8π, on the other hand it is orthogonal to the ground-states.)

The expression for the curvature now becomes

(s, W , Y)s)= ^X(KίηY(Kkl)((DiDjs,DkDιs)-(DkDιs,DiDjs)).

Let us now compute the expression Qijkl = (DiDjs, DkDts). We have (the inner
product being defined to be C-linear in the first argument),

= Pyp(DiDps,DkDιs)

= PJ p(Ωίps, DkDιS) + Pj p(DpDiS, DkDιS)

= Pj pΩip(s, DkDιS) - Pi p(DiS, DpDkDιS)

= PJpΩip(s, DkDιS) - PJp(DiS, ΩpkDιS) - PJ*(D& DkDpDts)

= PjpΩip(s, DkDts) + PjpΩpk{D& Dfi) + PjpΩpl(DiS, Dks)

= PjpΩip(s9 DkDιS) - PjpΩpk(s, Dβfi) - PjpΩpl{s, DtDks).

We can similarly compute (s,DqDrs)= +P*sΩqs(s,s) which yields

βy.« = { + PϊPPΐsΩipΩks-Pj>PrΩkpΩis + Pr >P^ΩipΩls} (s, s).

Finally,

(5, JV(X, 7)5)= ^

This proves projective flatness, since we have shown that the curvature is a
multiple of the identity. Note also that the curvature is independent of k, and a
universal expression independent of g. The first Chern form, however depends on k
since the rank of iV is fe8. Note that the curvature is of type (1,1).

4. The Heisenberg Group and Projective Flatness; Conclusion

One can give a short proof (which, however, does not yield the central charge) of
projective flatness using the "discrete Heisenberg group". The importance of this
group in this context was stressed to me by R. Bott and M. S. Narasimhan.

The following facts about the line bundle Jδ?fc, considered as a holomorphic line
bundle on J, can be established easily [ M l ] :

i) It is ample.
ii)
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We restrict ourself to the case fe = 2, for simplicity. Consider the abelian group
Hι(M, Z/2Z). The cup product defines a central extension (which we denote by Ά)
of Hί(M, Z/2Z) by Z/2Z. One can check, using the expression for ώ2 and Ω2, that
the action of Hι(M, Z/2Z) on JM (i.e. translation by elements of order 2) lifts to a
connection-preserving action of Ά on <£ such that the nontrivial central element
acts by — 1. 2L acts by unitary transformations on L2(JM, 5£\ and, if we choose a
complex structure on M, this action leaves iΓ invariant. In fact the representation
on Of is irreducible [M2]: one can check this directly by a dimension count. One
can check from the definitions that the action on ΊV commutes with J*y, and this
proves that #"F is a multiple of the identity.

A similar proof probably works for the case SU(N),k = l, As D. Freed pointed
out to me, it fails when k ̂  2.

Acknowledgements. I would like to thank R. Bott, M. S. Narasimhan, and I. M. Singer for
valuable conversations regarding this work.

Since this paper was written, I have learned of related works by N. Hitchίn and S. Axelrod,
S. Delia Pietra and E. Witten, both reported at the Second Meeting on "Links between Geometry
and Physics," Schloβ Ringberg, April 1989.
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