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Abstract. Given a piecewise monotone transformation T of the interval and a
piecewise continuous complex weight function g of bounded variation, we prove
that the Ruelle zeta function ζ(z) of (T,g) extends meromorphically to
{\z\<θ~x} (where 0 = l i m H ^ Γ " " 1 - ••• -g°T-g\\ H") and that z is a pole of

n-* oo

ζ if and only if z " 1 is an eigenvalue of the corresponding transfer operator if.
We do not assume that i f leaves a reference measure invariant.

1. Introduction and Statement of Results

Suppose Γ:[0,1 ]-•[(), 1] is piecewise monotone, i.e., there is a finite partition *£
of [0,1] into intervals such that 7jz is strictly monotone and continuous for each

. For a function /:[0,1] ->C, let

var(/) = supίf

and denote by BV = {/:[0,1]->C such that | | / | | B K < oo} the space of functions
of bounded variation.

Given geBV, one can define the transfer operator

S£.BV-*BV, J?f(x)= Σ (
y T(y) = x

and the Ruelle zeta function

n=\ Π χ=T»x
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where ga(x) = g(T'-1x) ••• g{Tx)g{x). L e t

0=lim(sup|0π |)1 / n.
n —*• o o

The aim of this paper is to relate the poles of ζ(z) to the isolated eigenvalues
of 5£. Under the above assumptions, we prove in Sect. 2.

Theorem 1. The essential spectral radius of ϊ£ is g θ. For each Θ > 0, the operator
i f can be decomposed as

N(θ)

&= Σ λiPiΛi + pse, (l.i)
ΐ = l

where έPh for i — 1,..., N(Θ), and 0* are mutually orthogonal projections commuting

with $£ such that 0> + £ 0>

i = lά. For each i = l,...,iV(Θ), we have | A f | > © ,

Γ£ is nilpotent and 0>iNi = Ni0>i = Ni.

Finally | | ^ i H I * κ ^ const-<9m.
(/ί mαj; happen that θ = p{^\ the spectral radius of <£. In this case N(Θ) = 0.)

(Except in some unnatural cases the essential spectral radius of i f is equal to θ.)

Remark. In Sect. 2 we actually prove a bit more: If ̂  is a countable partition and
if Σ sup \g\ < oo, then Theorem 1 still holds. Based on estimates of Rychlik (1983),

Zeβ Z

a similar result was proved by Keller (1984). The main difference between our
Theorem 1 and this result is that Rychlik and Keller assume the existence of a
Borel measure m on [0,1] with full topological support and such that

\<efdm = \fdm for all feBV. (1.2)

(This implies in particular g ^ 0).
If, in our case, g ^ 0, then p(S£) is an eigenvalue of i f provided p{^) > θ.

(This can be proved directly as in Remark 6.8 of Keller (1986), but also follows
from our Theorem 2 and Pringsheim's theorem, see e.g. Landau (1946), Sect. 17).
In this case one can construct a measure m as above along the lines of
Proposition 6.10 of Keller (1986).

To study the zeta function, we make two additional assumptions:

#lZ is continuous for each Z e ^ , (1.3)

2t is a generating partition for T. (1.4)

In Sect. 4 we prove

Theorem 2. Assume (1.3) and (1.4).

1. ζ(z) is meromorphic and nonzero in {\z\ < θ~1}.

2. Suppose \z\ < θ'1. Then z is a pole ofζ of multiplicity k if and only if z~ι is an
eigenvalue of J£ of multiplicity k.

It follows that ζ(z) is analytic and nonzero in {\z\< ^( i f)" 1 } .

Remark. An analogon to Theorem 2 for subshifts of finite type and Holder
continuous g was proved by Haydn (1987) under the additional assumption
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inf|gf| > 0 , precursors of his result are due to Pollicott (1986) and Ruelle (1987).
Earlier work of Ruelle also points in this direction (see in particular Ruelle (1976)
and Ruelle (1978), Theorem 5.29), and in a recent manuscript Ruelle (1989) proves
Haydn's result without the inf|#| > 0 assumption. Our methods rely on Haydn's
work.

For piecewise monotone interval maps satisfying (1.2), Theorem 2 was
conjectured by Hofbauer and Keller (1984) who proved most of it for the special
case of piecewise constant g. This case is also investigated by Mori (1987). If g = 1,
ζ(z) is just the classical Artin-Mazur zeta function which has been studied e.g. by
Milnor and Thurston (1977, 1988), Hofbauer (1985) and Preston (1988).

A good knowledge of the eigenvalues of the transfer operator is needed, e.g.
for the study of resonances in dynamical systems, see Ruelle (1987), Baladi et al.
(1989) and Eckmann (1988).

In order to prove Theorem 2, it is useful for technical reasons to double all

points α 1 ? . . . , % _ ! of the set (0,1)\ (J int (Z) and all their preimages as described

in Sect. 1 of Hofbauer and Keller (1984) (int (Z) denotes the interior of the interval
Z). We call the enlarged space X, keep the notation 2£ for the partition, and extend
g and T continuously to X. X is totally ordered and order complete, such that it
is compact for its order topology and 2£ is now an open (and closed) partition.
This will be advantageous in particular in Sect. 3 where we construct Markov
extensions. Note also that X contains points isolated from one side (the doubled
points), but it does not contain completely isolated points, in fact, each nonempty
open interval in X is uncountable.

Since at most finitely many periodic orbits are affected by this procedure, the
poles of the zeta function are still the same. One defines the space BV of functions
of bounded variation on X and the transfer operator if acting on BV like in the
case of the unit interval. To see that the construction just described does not change
the spectral properties of i f outside {\λ\ ^ θ}9 we must check that one can identify
functions fί9f2eBV for which {x:/i(x)#/ 2(x)} is at most countable. (Write
/i ~ fi) This is the content of the following proposition, which also gives a useful
result from an "applied" point of view.

Proposition 1.1. Assume (1.3) and letfeBV.

1. If there exist a k ^ 1 and a \λ\ > θ such that (JSf - λff = 0 andf % 0, thenf(x) = 0
for all xeX.
2. If there exist a k ^ 1 and a λ Φ 0 such that (& - λff « 0, then there is fx eBV
such that / x « / and (if - λffx = 0.

Note that assumption (1.3) is needed in Theorem 2 only because of Proposition 1.1.
Since T is a positively expansive continuous mapping and g is continuous in

the modified system, the pressure P(T,\og(g)) for positive g is well defined by
(see Theorem 1.9 in Walters (1976)):

^(7,log(#)):= lim sup-log £ supforj, (1.5)
n
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where

rall/}. (1.6)

In Sect. 4 we complete the analogy with subshifts of finite type by

Theorem 3. Assume {1.3) and (1.4). Then P(T,log(|^|)) ^ log p(if) and, if g ^ 0, then
equality holds.

We end this section with the proof of Proposition 1.1:

Proof of Proposition 1.1.

1. We first consider the case k = 1. As £ |/(x)| ^ var(/) < oo, we have:

l/(χ)l = \λ-msemf{χ)\ ^

for all m > 0 and all x. Letting m -• oo we see that /(x) = 0 for all x.
If k> 1, we note ft:= (if - λ)fc~ */. Since/ % 0, we have h % 0 and the calculation

above implies /z = 0. Induction then yields / = 0.
2. Let {0 = b0 < bi < ••• < bM = 1} = (J {cz,dz} be the set of singularities

and denote S = { 7 ^ : 0 ^ i g M, w ^ 0}. For ΛeBK, let

lim ft(y), if x is one-sided isolated in X,

^( lim h(y)+ lim /I(J ) I, otherwise,

and observe that hι=h2 if hί&h2. Since T: (cz,dz)^{Tcz,Tdz) is a homeo-

morphism for each ZeJ^ and because of (1.3), §%(x) = g>h(x) for xεX\S,

and as T S ^ S , also £?kh(x)= <£kh(x) for X G X \ S and fc^O. Suppose now that

(if - λff % 0 for s o m e / e £ F and k > 0. Decompose (if - /ί)fc = ( - λf Id + R, such

that R is a lineai^combination of if, J^ 2 , . . . , if*. Then / % - ( - λ)~kRf and hence

We define a function/2, which is already close t o / x : For X G X \ 5 , let/2(x) =/(x).
As Γ " HA'XS) E X\S, (^ - λ)kf2(x) = ((-λ)k Id + R)f2(x) = 0 for xeX\S. For X E 5
we proceed inductively: If there is xeS such that T~xxnS = 0 , then we set
/2(x) = — ( — λ)~kRf2(x). (Observe that Rf2{x) is a linear combination of the values

k

fi(y\ ye (J F"''{*} E ^XS.) We repeat this procedure with the set Sλ = S\{x}. This

yields a sequence S => 5 2 2 S2 2 > a ^d if at each step we choose the point x = Tnb t

such that n is minimal, the finite or countable intersection 5':= nkSk contains no
point x with T~1xnS' = 0 Suppose S' Φ0. Since it is contained in a finite
union of one-sided orbits, 5' consists of finitely many periodic orbits. Suppose
x9Tx9...,T

p~1x, Tpx = x is such an orbit of period p. Define /2(x) as/ 2(x) =
(-iγ(-λ)-kpRpf2(x) (Observe that Rp is a linear combination of i f p, i^ 2 p,..., if*',

k

the value Rpf2(x) is a linear combination of values f2{y\ ye[j T~ιp{x}, and
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k

(J T~ip{x}nSf = {x}.) We proceed in the same way for all xeS' and if q is a

common multiple of all periods of points in S\ then /2(x) = ( - l)q(-λ)~kqRqf2(x)
for all xeX.

and

= -(

= 0.

2. The Spectral Decomposition

From now on, let / b e a finite or countable family of intervals (which are subsets
of some totally ordered, order complete space, cf. Hofbauer and Keller (1982),
Rychlik (1983)). Let X be the disjoint union of these intervals / G / . Suppose further
there is a family 2t of disjoint subintervals of X (in particular, for each ZeiΓ there
is IeJ with Z g /). Define Y = [j Z.

ZeS

We study a transformation T:Y-^X such that for each Ze£? holds

3/e./ such that T(Z) £ / and (2.1)

T\z is monotone on Z and has the Darboux property (i.e., if J g Z

is an interval, then TJ is an interval). (2.2)
For an interval J g X and a function f:X-*C, define

var(/):= £ vaΓ/(/),
IeJ

||/IL:=ΣsuPl/l. a n d

IeJ 7

ll/lluK-varί/ί+H/IL.
Let £ F : = {/:Z -• C: || / \\BV < oo}. One easily sees that (BV, || \\BV) is a Banach

space.
Fix g\X -> C and define #„ and 0 as in Sect. 1. We make the following assumption

on g:

ί v̂  1
M:=sup< var7(^)+ 2̂  s uPl^l f < °° (2-3)

Z£/
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Associated with T and g is the transfer operator

(We check below that <£? is well defined, see Lemma 2.2.)
For ηe3rn, let 77" := ( T y 1 . Then

By I if I, we denote the transfer operator associated with T and \g\. Finally,
Θ > θ denotes a real number arbitrarily close to θ.

The following facts will be used in the sequel without further explanation: Let
J , K c χ b e intervals, /i,/2:./->C. Then:

var,(/\ -/2) ̂  var,(/J sup |/21 + var,(/2) sup | f, |,
j J

1 | if J g K ,

varj (/i ° Γ) = varΓJ (/x) if J g Z for some

finally, for ηe&k9

Λ ί x ) _ ί r ^ k ( 4 if xeΓU
U ; " j θ , otherwise.

Lemma 2.1. Lei J fce an interval, J g ^ e ^ m and f:J-+C. Then

^ ( v a Γ j ( / ) + 3 sup I/D sup |flrm| + sup | / | va Γ j |^m|.
j J J

Proof. Let leJ be such that Tmη g /,

and | | ^ m (/Zj) l loo^
J J

Lemma 2.2. &(BV) g 5K Furthermore, \\ <£ \BV ̂  3 M.

Proo/. Let/ :J ί^C. Then, by Lemma 2.1,

by (2.3). •

Remark. Since var (| α |) ̂  var (α), the proof of Lemma 2.2 also show that | i f | (B V) g
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Lemma 2.3. For each Θ > θ, there exists a constant C such that va.rη(gm) f^CΘm

for all m > 0 and ηe££m.

Proof. Choose Θ<Θ<Θ and fix fc > 0 such that sup | gx | ̂  Θι for all / ̂  fc. Consider

ηe2£k{n + l) and η'e&kn such that Tkη g η'. Then

v&Φw +1>) ̂  var,(gk) sup \gnk\ + sup | #fc | var

^Θnk'

and induction yields

\eLVη(gk{n + υ ) g (n + 1) θ n / c sup var-(gffc).

The same recursion for k=\ (and with Θk replaced by sup|#|) shows that
sup vavή(gk) < oo (observe (2.3)!). As Θ < 6>, this proves the assertion for m = kn.
ήe3Tk

One passes to arbitrary m using once again the recursion for fc = 1. •

A consequence of Lemmas 2.1 and 2.3 is

Corollary 2.4. For each Θ>θ, there exists a constant C such that | | ^ m χ^ | | 5 F ,
va^feαsupl f tJ ^ C-Θm,for allm>0and ηe&m.

η

Lemma 2.5. //, in addition to (2.3), var(#)<oo and £ s u p | g | < o o , then

Σ \\&mχη\\Bv<<x>forallm>0.

Proof. Let ηe^m, Tη^η'e^^^ By Lemma 2.1,

3sup\g\\

Hence,

Σ WVXJBV* Σ W^m-%\\BvΣ(^ZnT-^(β) + 3 SUF

and the lemma follows by induction. •

For each m > 0 and ηe^m, fix some xηeη.

Lemma 2.6. For each Θ>θ, there exists a constant C > 0 such that

-^m(/ ^)llβκ^C 6)m var(/) uφrndy inm>0and feBV.
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Proof. By Lemma 2.1,

Σ II ^ " " M / " / ( * , ) ) ) HBK^ Σ

^ Σ v a r . (
S const Θ m var (/) by Corollary 2.4. •

In the sequel, it will be convenient to work with subsets to/m of %m. Without
specifying them now, we assume that there is an L such that for all m > 0,

:>7 c I,ηφs/m} SL<oo. (2.4)

For feBV, define

Proposition 2.7. || ifmαm - ifm | | β F ̂  const. Θ m ifstfm satisfies (2.4).

Proof. This follows from Lemmas 2.6 and 2.1, by observing that

Σ Σ ll^m(/ χ,)l|
lej

S const- Θn

If the operators i?mαm (m > 0) are compact, i f has the following spectral
decomposition (cf. Lemma VIII.8.2 of Dunford/Schwartz (1957))

N(Θ)

ί = l

where λh 0>h At = 0> x + Nt and 0* are as in Theorem 1. Note that

I = tr ( ^ ) + V ( m ) tr (N{) = tr ( ^ ), if m ̂  1. (2.7)

The following result is an extension of Theorem 1 from the introduction:

Theorem 2.8. // var(g)< oo and if £ sup|#| < oo, then the operators J£™αm with

srfm = 2tm are compact and <£ has the decomposition (2.6).

Proof. Since i f m α m (/)= £ f(xη)-^mχη= Σ Fη(f)'&mXη> where the linear func-
ηe3Cm ηeTm

tionals Fη:BV-+C, /»—•/(xf|) have norm equal to 1, it follows from Lemma 2.5
that ^m(xm is of trace class and in particular compact. •
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3. Markov Extensions

From now on we suppose that«/ = {X} and that 3£ is a finite partition of X into
compact intervals which satisfies assumption (1.4). Note that X is compact.

In general ^ is not a Markov partition for T. The estimate in Sect. 5, however,
which is borrowed from Haydn (1987) makes essential use of the Markov property.
Therefore, we extend (X, T) to a system with a countable Markov partition, show
how to deduce Theorem 2 for (X, T) from the corresponding statement for the
extension and finally prove Theorem 2 for the extension.

In a series of papers Hofbauer (1979, 1986) constructed Markov extensions
(X\ t) for piecewise monotone transformations (X, T): Let

Q) is an at most countable family of compact intervals. Furthermore, if we
denote &n = @n\@n-ί (n^2) then Theorem 9 of Hofbauer (1986) shows that
#Sn ^ 2 # ^ and thus #9n ^ const n.

Note that for Ze&n, Zfe%n, Z'e&m, we have ZnT'nZΈZm+n and Tn

{ZnT-nZ')=TnZnZ'. Hence, if D = TnZe9 and if DnZ' # 0 , Z ' e ^ m , then
Tm(DnZ')=Tm(TnZnZ')=Tm+n(ZnT-nZ')e@, and we can define t\X'->X'
by

where ηn[x] denotes the element of Sn which contains x. A simple inductive
argument shows that for n ̂  1,

For x = (x, C)eX\ we denote the two projections by

x = (π(x\Δ(x)).

We have π o f =Γ°π, and if for (x, C), ( i , i ) )eΓ there is an n^l such that
f |B[x]nC = ί j π [x]nΰ, then f"(x,C) = f"(x,D). For C E ^ , we denote C:= ^ " ^ C ) .
The equivalent of ^ in Sect. 2 is now defined by Φ) = A~γ(β). If we define
J = J v π" ^ ^ t h e n ^ f i4e^ for ^ G # .

Obviously, <#„ = J v π " 1 ^ . We also use the notations §n = {C:Ce^n} and
^ * = {ήe*tn:3De@k such that ή c D}, (w ̂  1). Finally, let e:X->*', xh->(x,J^) and
observe that e(X) = X is the "basis" of A''.

Note that the Markov extension described above is again of the form considered
in Sect. 2 (i.e., assumptions (2.1) and (2.2) are still satisfied) and that all results of
that section can be applied.

The following is Lemma 2 in Hofbauer (1985) or Theorem 8 in Hofbauer (1986):

Lemma 3.1. For a subset A of X, we denote by 'mt(A) the interior of A in X and
by bά(A) the boundary of A in X.
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1. // Tnx = x, then Tnπx = πx.
2. IfTnx = x and ϊ/xeint (πZ) for all Ze& such that xeπ(Z), then there is a unique
x e π " 1 * such that fnx = x.

3. IfTnx = x and ifxe{J bd(π(Z)), then there are at most four xeπ~1x which are

T-periodic. Their periods are n or In.
4. In particular, for a fixed n, the set {x = fnx] is finite.

From Lemma 4.i of Hofbauer/Keller (1984), we obtain
m

Lemma 3.2. Ifήe&m and ή c f mή, then ήeS2^ and, furthermore, (J Tή c §2m,
i = 0

The following lemma is crucial for the estimate in Sect. 5:

Lemma 3.3. Let 0 < / c ^ m . Given ηfe£¥k and Ce@, there are at most two
such that ή^C, fm~kήe^k\^ and πtm~kή c η\

Proof. Let ήe&m, ή = Cnπ~1η, where CeS), ηe^m. Write η = η{l)nT~{m~k)η{2\

k, and define ή{1):= Cnπ-^η^. Then

whence

fm-kή=fm-kή(l)nπ-lη(2)

and

nt m~kή = Tm-k{Cnη(1))nηi2).

Now the assumption πtm~kή<^η'e^k implies η(2) = η', and because of the
hypothesis tm~kήe^k\^2m, we have

i.e.,

Tm-k(Cnη(1)) = Tm-kπή{1) =

-k^ $)lm, this implies η(1)φC, and for a fixed interval C there
are at most two η{1)e^m-k with this property. Hence, given C and η', there are at
most two ή = Cr\π~1η{1)r\t~{m~k)π~ιη' satisfying the hypotheses of the lemma.

•
We need some more notations:

BV denotes the space of function of bounded variation from X' to C. We define
π*:BV->BVby

nj(x)= Σ /(*)•

Observe that | | π J ' | | w = var(π 1 > /)+sup|π φ / |g Σ (varό(/) + suP ( ? |/ |) = ||/|IBK-

We associate to g:X -• C a weight function in the Markov extension, g:X' -• C,
g = g o π. As πX' = X, θ = lim (sup | gn \ ) 1 / n = θ. We denote by & the transfer operator
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/\ /\
corresponding to T and g. Since (2.3) is satisfied for g,J? maps BV to BV and

%+<>&= <£*%+. (3.1)

We end this section with the proof of Theorem 3 from the introduction: The
claim is that P(Γ,log|#|) ^logp(i?) and that, if g^O, then equality holds. First
we prove logp( i f )^ P(T, log M):

If θ < p(JSf), then let λ be an eigenvalue of if with \λ\= p(Jδf). Suppose &f = λf,
0 # feBV Fix x such that f(x) φ 0. Then

X sup|flfM|,
η

whence logp(J2?) = log|λ| = limsup(l/m)log|Am/(x)| gP(T,log | f f | ) . If 0 =
m->oo

t h e n log p(JS?) = l im s u p (1/w) log s u p IgfmI ^ P ( T , log Igf I).

For the reverse inequality, we assume first that infg>0. Then logg is
continuous, and it follows from Theorem 1.9 of Walters (1976) that

P(T,log(0)) = l imsup-log £ inf(gj.
m - -oo Wϊ ηe&m Ί

Now fix some zDeD for each De9. As Tmηe@m for each ηe£?m, we have

X infteJ^ Σ Σ βm(y)= Σ (^ml)(z

%
whence P(T, log fe)) ^

If only gf ^ 0 is assumed, we approximate g from above by g v ε = sup (#, ε)
(ε > 0). As g v εe£K and g v ε ^ ε > 0, P(T,log(gf v ε)) =Ίogp(JSfe), where JSfe is
the transfer operator obtained from if by replacing g by g v ε. As g^g v ε,
P(Z log (#)) ̂  P(Γ, log (̂  v ε)) = log p(JS?e), and we have to show that lim inf p(JSfe) ^

p(«ίf). By the upper semicontinuity of the spectrum of bounded operators on Banach
spaces (see Kato (1976), Chapter IV, Remark 3.3), it suffices to prove that
lim II i f e — if \\BV = 0. But if e — if is the transfer operator for the weight function
ε->0

g v ε — g = (ε — g) χ{gύε}, whence, by Lemma 2.2 (remember that«/ = {X})'

and we can finish the proof of the theorem by showing lim var (g v ε — g) = 0:

As lim g(x) v ε = g(x) for all xeX, lim var (g v ε) ^ var(g). As

l0(x) - 0UOI = I0M v ε - 0(3>) v ε| + |#(x) v ε - #(x) - #(>;) v ε + g(y)\

for all x, y eX, var (g) = var (# v ε) + var (g v ε — g). Hence, lim var (g v ε — g) =
ε-0

var (g) — lim var (g v ε) ^ 0. •
ε->0

4. Proof of Theorem 2

Throughout this section we assume (1.4), i.e. % is a generating partition for T. For

m > 0, let £m = Σ 0mM a n d Cm = Σ ί « ( 4 τ h e z e t a functions for (T,^) and
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(t,g) are defined by:

oo 2m °° vm

ζ(z) = exp X —ζm, ζ(z) = Qxp Σ — Cm-
m=i m m = i m

Lemma 4.1. ζ(z)/ζ(z) is analytic and nonzero in {|z| < θ" 1 } .
This follows from Lemma 3.1 as in Hofbauer (1985).
For each m > 0 and each r\e&m, fix xήeή in such a way that T xxή = xήiϊή^ tmή

and arbitrary otherwise. (Note that the Markov property implies that ή and Tmή
are disjoint iϊήφ fmή.) Let Jm = {ήe^m:πήe^m} and define for / in 0

&mf= Σ f(*ή)Xή
ήεJm

As each D in 3) is an interval, only those two *y c β which contain the endpoints
of D may fail to satisfy πήe£¥m, hence, L as in (2.4) is at most 2.

^ /\ /\ ^ ^
Lemma 4.2. For eαc/z bounded linear φ.BV^BV and each m > 0, φJ?mάm is a finite
rank operator and

where the right hand-side converges absolutely.

Proof. For / in BV, we have

where Fη(?) = £ M ) and

• Σ 1 / ( ^ ) 1 = 117 Hoc ^ 117 UBV

πήJη

As 2tm is finite, φ^m6ίm has finite rank. Now

&„)= Σ Fη(Φ^mXeiη))= Σ Σ

and the sum converges absolutely, because %m is finite and

Σ

Hence tr($J?mAm)= Σ (Φ^mXή)(xή) converges absolutely. •

In particular, ^ has the spectral decomposition

N(Θ)

&m= Σ AΓ /̂Λ?1 H-#^ m , (4.1)
ί = 1

analogous to (2.6) and (1.1).

Lemma 4.3. Let \λ\ > θ. λ is an eigenvalue of' <£ of multiplicity d if and only if it is

an eigenvalue of & of multiplicity d.
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Proof. Suppose λ is an eigenvalue of if with multiplicity d. In order to prove that
it is an eigenvalue of §? with multiplicity at least d, it suffices to show that if
(if - /IId)*/ = 0 for some feBV and k> 0 then there is feBV with πj = f and
(J& — λldff = Q for some k>0. But this is Proposition 7.1.bis together with
Remark 7.2 of Keller (1986).

Suppose conversely that λ is an eigenvalue of §? with multiplicity d. In order
to show that it is an eigenvalue of i f with multiplicity at least d, it suffices to
show that if (J?-λIdff = 0 for some OφfeBV and k>0, then πjΦθ and
(i^7 — λ \d)kπj = 0. The latter follows from (3.1) and we must only prove π^f φ 0.

So suppose π # / = 0. We consider the case k = 1 first, i.e., we assume f = λ'1 S£f.
Fix x = (x, D)eX'. Then, for all m > 0,

= Σ = Σ
where

(y,Q sΛh.
Tm(Cnηm[y-]) =

If
such y,

= D, then Tm(Cnf/m[j;]) = D if and only if ηm[y] c C. Hence, for

sm,D(y)= Σ /(i>)- Σ /(y.Q
j'eπ S' (>',C)sth.

# A i.e., if D is a proper subset of Tmηm[y\ then Tm(Cnηm[y]) = D
implies ^ n

In any case

because Σ f(9) = π*f(y) = O Therefore, for large m,

g Σ
(>',C)s.th.

Θ
Σ Σ

Σ 2 sup|/|:
CeQ C

•211/11

As \λ\ > θ, we may assume θ < Θ< \λ\, whence |/(x)| = 0 as m ^ o o .
The case k> 1 is easily reduced to the case k= 1: Suppose (J^ — /Id)*/ = 0

and π ^ / = 0. Let fι=(&-λ I d ) * " 1 / Then (j£ - /I Id)/! - 0 and πjγ = 0 in view
of (3.1). Hence / x = 0 by the case A; = 1 and / = 0 follows by induction. •

Remark. We would like to mention that this proof can be adapated to the systems
investigated in Sect. 7 of Keller (1986).

Because of Lemmas 4.1 and 4.3, and Proposition 1.1, it suffices to prove
Theorem 2 for & and ζ. As a matter of fact, we shall prove the more detailed
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N(Θ)

Theorem 4.4. Assume [2Λ)-{23) and(1.4% thenfor each 6> > 0, f(z) J ] (\ ~ ^z)mnk{^

is analytic and nonzero in {\z\ < Θ" 1 } .
Observe that rank(^) = tr(^). As

N{θ) N(Θ) oo 7m

yv — Atz) — exp L la λi
i=l i = 1 m = 1 " I

oo zm /N(€

= exp Σ tr £ K&iW) by (2.7)
m = i m \ ί = i

oo z m /N(Θ)

= exp Y tr ( V ί

Theorem 4.4 will be proved if we can show that

N(Θ)

Vtr I V Φ.J ^ const- Θm. (4.2)

In the course of the proof, estimates by terms of the form m Θm or (1 + ε)m Θm

will occur. In order to simplify our notation, we shall replace them tacitly by
const- Θm. This is possible because Θ> θ is arbitrary.

L e t f t O ) = Σ &.(*„) and fL1} = Cm-CL0 ). As CL0) is a finite sum (see Lemma 3.1),

ήc:fmή

and as <&mχή(y) = 0 for yφtmή, we have in view of Lemma 4.2

CL0)= Σ (i7,)°t-(^)= Σ (^mz,)(^)
ήeJm ήeJm

ή^fmή ή^fmή

= Σ (&mχή)(*ή) = tr(£mάj. (4.3)

For ζ(

m

1) we have the estimate (observe Lemma 3.2)

Ifiί'l^ Σ ld-(^)|g Σ 1̂ (̂ )1
ή^fmή

£2 #(®2mysup\όm\ ^const-Θm. (4.4)

So (4.2) will follow if we show that
N(Θ)

Σ | tr(# ι (J^ m ά m -if m )) | + | t r ( ^ m ά j | ^ const-Θm. (4.5)

By Proposition 2.7,
N(Θ) N(Θ)

Σ |tr(# f(^άm-^))|^ Σ rank^ ll^ll^ll^^-^ll^
i = l i = l

^ const-Θm,

and the proof of (4.2) will be finished in the next section by showing that

Φ&J\ ^ const- Θm. (4.6)
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In order to do this, we will need more sophisticated estimates and make use

of a telescoping trick of Haydn (1987).

5. The Bound for | t r ( # ^ m ά j |

In this section, we prove estimate (4.6) for ζ^} = tr(#J^""άm) under the additional
assumption (1.4).

For each CeJ>, we fix some y^C. If ήe&k and Tkή = C, we denote by yή the
unique tk preimage of y^ in ή.

For ήe^k, define

if * = i ( ]

Observe that tyή = yfή. Hence, for ήe^k and k ^ 2,

so that

™tΊ*ή(Ϋή) ̂  vatfηiΰh-1) var.(^) + sup |$fe_ x | v a r ^ )

and

Therefore

If πή c ηe£?k, this yields

II %IIBV ^ var,(g) (varΓ//(gk- ί) + 4sup\gk-1\)=:v(η,k). (5.2)

Note also that in view of Corollary 2.4,

(5.3)

We now give the formal computation used to bound ICmY By Lemma 4.2,

&2> = t r o

= Σ

(5.4)

Now

m - 1

= Σ Σ:
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= Σ Ύ
-άr k = 0

m - 1

Σ Σ βk(yήWYtφήl (=:y!»4)), (5.5)

where we use the notational convention g0 = 1. Finally

Σ Σ gk{
fcΣ

Y Σ ύk(yή)(^%')(yή) (=:yί?) (5.6)
Tkή = ή'

The result of this section follows from:

Lemma 5.1.

1. yί4) converges absolutely,

2. y{n} converges absolutely and \y^\ ^ const-6>m,
3. y[^) converges absolutely and ly^l ^ const-Θm,
4. |y^ 5 ) |^const Θm,
5. \y^\^ const-Θm.
(A// bounds are uniform in m > 0).

Indeed, the absolute convergence of y^ and yj^ implies that of y\^ and shows
that all equalities of the sequence (5.4)-(5.6) are correct. Thus, we only need to use

to obtain the desired inequality.

Proof of Lemma 5.1. In the proof, we will often use the decomposition

0* = Id — £ ^ f and the fact that for each 0i

i there are φueBV and linear functionals
ι = l

^ i y ( = 1,...,rank (# t ) =:dt) such that »β) = £

1. We have

Σ Σ
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Remark. In the last inequality, we used the fact that (| J&\k\ Ϋή>\)\ή' φ 0 if and only
if \(Yή.)\ή φ 0 for some ήe&m with fkή = ή'. But this is possible only if f m~kή' 3 ή9

i.e., if fmή 3 ή, i.e., if ή e # £ m and also ή'e^2

m

m.k by Lemma 3.2. Therefore the term
N(Θ)

corresponding to the Id part in the decomposition Φ = Id — Σ §>i is zero in the
first sum. ί = 1

Now, by (5.2) and (5.3):

m - l N(Θ) di

β^S Σ Σ Σ ll̂ yll Σ v(η',m~k) Σ (\&\k\Φij\)(yή')
k = 0 ί = l 7 = 1 ^ ' e i T m _ Λ n'efmηk

πη c ̂ '
m - l JV(6>) ίίi

^ Σ Σ Σ H^υl| const ©"-*- 1 var(flf) | | |^| t |φylllBκ<oo,

and )?<?) < oo as #£2

m"Lk g 2m # ^ m _ t < oo.

2. We again use the decomposition of Φ:

N(θ)

+ Σ Σ \(Pι&mXή)(*ή)\ (=
f ~ X ήeέm\s£m

Now, by the same reasoning as in (4.4),

Λ 3 ^ Σ sup | 0 J ^ const-Θ",

and

iV(Θ) ^

) ^ Σ Σ Σ \Φtj(&mχή)\\Φitfή

i l l #
iV(Θ) <ί.

^ Σ Σ Σ l l^ H const 6)- |φ l7(^)| by Corollary 2.4

N(Θ) dx N(Θ) di

^const-Θm Σ Σ Σ sup|<py|^const-Θm £ Σ ll̂ ylliw'
i = l 7 = 1 c 6 ^ C i = l J = l

^ const-6>m.

3. Let 0 S k < m. We first study

yί?i= Σ var^y^)= # Σ Σ Σ

+ Σ Σ Σ va^ί

The first term is bounded by:

A 5 ) ^ Σ Σ
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g Σ const 2m | | # | | φ /,m-fc) by (5.2)

^ const m 6>m"fc.

For the other term, we use the remark of part 1, and obtain:

N(Θ) άx

^^ Σ Σ Σ
l j 1 '

N(Θ)

ί Σ Σ ll̂ yll Σ v(η',m-k) y) by (5.2)

\m — kV"\ V ii / ii

£mU 1_^ II T IJ M

^ const- Θmk.

We have thus proved that y%\ ίk const- Θmk. Therefore:

by (5.3)

m - l

^ Σ c o n s t ' Θ k Ί m \ ^ c o n s t - Θ m .

This shows the absolute convergence of y^K

4. The definition of <£ yields:

m-l

^ Σ const <9k Σ 2'm'v{η\m-k) by Theorem 1 and (5.2)

^ const-6>m

5. We use again the remark in 1 and obtain

by (5.3).

=
m - l

Σ ,Σ

<y y

g const- Θ

^ const-Θ

% ,(

•WΨij

N(Θ)
kΣ

m

m

Σ

Σ

\-v(η',τr

.Σ
m - l

Σo

Σ

. Σ.2

l-k)

Σ

ύMή)
NΣ^%m

1

ί

Σ const-Θk

~k f W
by (5.2)

v(η\m — k)-\\ψij\ *2 |U

by Lemma 3.3

by (5.3). •
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