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Abstract. Given a piecewise monotone transformation T of the interval and a
piecewise continuous complex weight function g of bounded variation, we prove
that the Ruelle zeta function ((z) of (T,g) extends meromorphically to
{|z| <0} (where 8= lim ||geT" " *-.---goT-g|}/") and that z is a pole of

n—oo

¢ if and only if z~?! is an eigenvalue of the corresponding transfer operator .£.
We do not assume that . leaves a reference measure invariant.

1. Introduction and Statement of Results

Suppose T:[0,1]—[0,1] is piecewise monotone, i.c., there is a finite partition &
of [0, 1] into intervals such that T}, is strictly monotone and continuous for each
Ze%. For a function f:[0,1]—-C, let

var(f)=sup{gn:1 [f@a;)— f@-)in=21,05a,< - <a, = 1},

If lgy = var (f) + sup (| f1),

and denote by BV = {f:[0,1]— C such that || {5, < oo} the space of functions
of bounded variation.
Given ge BV, one can define the transfer operator

LBV-BV, Zf(x)= 3 (f90)=} (/9°Tz'X)

y:T(y)=x Ze7

and the Ruelle zeta function

ter=ex( 3,

SN

Y g,.(X)>,

x=Tnx
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where g,(x) = g(T" " 'x)-----g(Tx)-g(x). Let

6 = lim (sup|g,|)'".
The aim of this paper is to relate the poles of {(z) to the isolated eigenvalues
of #. Under the above assumptions, we prove in Sect. 2.

Theorem 1. The essential spectral radius of & is < 0. For each © > 0, the operator

& can be decomposed as
N(©®)
L= Y LPN+2PL, 1.1)

i=1

where 2, fori=1,...,N(®), and P are mutually orthogonal projections commuting
N(®)
with & such that ? + Z P,=1d. For each i=1,...,N(O), we have |1,|> O,

i=1
rank (2;) < o0, and A;=P;+ N,, where N, is nilpotent and P;N;=N;P,=N,.
Finally | P2#£™| gy < const-O™.
(It may happen that 0 = p(%), the spectral radius of . In this case N(®)=0.)

(Except in some unnatural cases the essential spectral radius of . is equal to .)

Remark. In Sect. 2 we actually prove a bit more: If & is a countable partition and
if ) sup|g| < oo, then Theorem 1 still holds. Based on estimates of Rychlik (1983),

Zexr Z
a similar result was proved by Keller (1984). The main difference between our

Theorem 1 and this result is that Rychlik and Keller assume the existence of a
Borel measure m on [0, 1] with full topological support and such that

[&fdm=(fdm forall feBV. (1.2)

(This implies in particular g = 0).

If, in our case, g =0, then p(¥) is an eigenvalue of ¥ provided p(&)> 6.
(This can be proved directly as in Remark 6.8 of Keller (1986), but also follows
from our Theorem 2 and Pringsheim’s theorem, see e.g. Landau (1946), Sect. 17).
In this case one can construct a measure m as above along the lines of
Proposition 6.10 of Keller (1986).

To study the zeta function, we make two additional assumptions:

g,z is continuous for each Ze Z, (1.3)
% is a generating partition for T. (1.4)
In Sect. 4 we prove
Theorem 2. Assume (1.3) and (1.4).

1. {(2) is meromorphic and nonzero in {|z| <67 '}.
2. Suppose |z| <0~ 1. Then z is a pole of { of multiplicity k if and only if z=* is an
eigenvalue of & of multiplicity k.

It follows that {(z) is analytic and nonzero in {|z| < p(&£)"'}.

Remark. An analogon to Theorem 2 for subshifts of finite type and Holder
continuous g was proved by Haydn (1987) under the additional assumption
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inf|g| > 0, precursors of his result are due to Pollicott (1986) and Ruelle (1987).
Earlier work of Ruelle also points in this direction (see in particular Ruelle (1976)
and Ruelle (1978), Theorem 5.29), and in a recent manuscript Ruelle (1989) proves
Haydn’s result without the inf|g| > 0 assumption. Our methods rely on Haydn’s
work.

For piecewise monotone interval maps satisfying (1.2), Theorem 2 was
conjectured by Hofbauer and Keller (1984) who proved most of it for the special
case of piecewise constant g. This case is also investigated by Mori (1987). If g =1,
{(z) is just the classical Artin-Mazur zeta function which has been studied e.g. by
Milnor and Thurston (1977, 1988), Hofbauer (1985) and Preston (1988).

A good knowledge of the eigenvalues of the transfer operator is needed, e.g.
for the study of resonances in dynamical systems, see Ruelle (1987), Baladi et al.
(1989) and Eckmann (1988).

In order to prove Theorem 2, it is useful for technical reasons to double all
points a,,...,ay_, of the set (0, 1)\ | ] int(Z) and all their preimages as described

ZeZ¥
in Sect. 1 of Hofbauer and Keller (1984) (int (Z) denotes the interior of the interval

Z). We call the enlarged space X, keep the notation & for the partition, and extend
g and T continuously to X. X is totally ordered and order complete, such that it
is compact for its order topology and % is now an open (and closed) partition.
This will be advantageous in particular in Sect. 3 where we construct Markov
extensions. Note also that X contains points isolated from one side (the doubled
points), but it does not contain completely isolated points, in fact, each nonempty
open interval in X is uncountable.

Since at most finitely many periodic orbits are affected by this procedure, the
poles of the zeta function are still the same. One defines the space BV of functions
of bounded variation on X and the transfer operator .# acting on BV like in the
case of the unit interval. To see that the construction just described does not change
the spectral properties of % outside {|A| < 0}, we must check that one can identify
functions f,, f,eBV for which {x:f(x)# f,(x)} is at most countable. (Write
f1= f,.) This is the content of the following proposition, which also gives a useful
result from an “applied” point of view.

Proposition 1.1. Assume (1.3) and let feBV.

1. Ifthereexistak =1 and a|A| > 0 such that (£ — A\'f =0 and f =0, then f(x) =0
for all xeX.

2. If there exist a k=1 and a A # 0 such that (£ — A)*f =0, then there is f,eBV
such that f; =~ f and (¥ — Af*f, =0.

Note that assumption (1.3) is needed in Theorem 2 only because of Proposition 1.1.

Since T is a positively expansive continuous mapping and g is continuous in
the modified system, the pressure P(T,log(g)) for positive g is well defined by
(see Theorem 1.9 in Walters (1976)):

P(T,log(g)=limsup g T sup(g,) (15)

n—oo neZ, "
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where
Z,={ZonT 'Zin-- AT~ VZ, _:ZeZ for all i}. (1.6)
In Sect. 4 we complete the analogy with subshifts of finite type by

Theorem 3. Assume (1.3) and (1.4). Then P(T,log(|g|)) = log p(&) and, if g = 0, then
equality holds.

We end this section with the proof of Proposition 1.1:
Proof of Proposition 1.1.

1. We first consider the case k=1. As ) |f(x)| < var(f) < oo, we have:
x, f(x)#0

SUP |Gl |
| A"

| £l =11~ L™ f(x)| < gm y)

Tmy=x

1= —55var(f)

for all m> 0 and all x. Letting m — co we see that f(x) =0 for all x.

If k> 1, we note h:= (% — A)* . Since f ~ 0, we have h ~ 0 and the calculation
above implies 4 = 0. Induction then yields f =0.
2. Let {0=by<b <--<by=1}= |) {cz,d;} be the set of singularities

Z=[czdzle?

and denote S = {T"b;:0<i < M,n = 0}. For heBV, let

lim  h(y), if x is one-sided isolated in X,
;‘l(x) — ;—’x,y;ﬁx
—( lim A(y)+ lim h(y)), otherwise,
yixy#x ylxy#x

and observe that h, =h, if h, ~h,. Since T: (cz,d;)—(Tcz, Td,) is a homeo-
morphism for each ZeZ and because of (1.3), %(x)=$7:(x) for xeX\S,

and as TS < S, also f?‘il(x)= P*h(x) for xeX\S and k = 0. Suppose now that
(& — A¥f ~ 0for some feBV and k > 0. Decompose (£ — A)* = (— 4)*Id + R, such
that R is a linear combination of &, P2, %* Then f ~ —(— 1) *Rf, and hence
f=—(=D*Rf= (=4~ "RfOHX\S N
We define a function f,, which is already close to f: For xe X\S, let f,(x) = f(x).
As T7YX\S) < X\S, (& — f,(x) =((—A¥Id + R) f,(x) = 0 for xe X\S. For xeS
we proceed inductively If there is xeS such that T~ 'xnS = J, then we set
falx)= A)"*R f,(x). (Observe that R f,(x) is a linear combination of the values
k

1200, ye [J T™¥{x} = X\S.) We repeat this procedure with the set S; = S\{x}. This
i=1
yields a sequence S2 S, 25, 2 -+, and if at each step we choose the point x = T"b;
such that n is minimal, the finite or countable intersection S':= N, S, contains no
point x with T~ !'xnS = . Suppose S’ # . Since it is contained in a finite
union of one-sided orbits, S’ consists of finitely many periodic orbits. Suppose
x, Tx,.. T”“x T”x—x is such an orbit of period p. Define f,(x) as f,(x)=
(—1)’(—A)~*PRPf,(x). (Observe that R? is a linear combination of ft’ PP PP,

the value RPf,(x) is a linear combination of values f,(y), ye U T~ '"{x}, and
i=1
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k

U T~%{x}nS"={x}.) We proceed in the same way for all xS’ and if q is a
i=1
common multiple of all periods of points in &, then f,(x) = (—1)4(—A) "*Rf,(x)
for all xeX.

Finally let £, =é Y (=4A)7M(—=R)f,. Then f, = f, =fonX\S,ie. [y~ f~f,

ji=0
and

la! ; ;
(& =2 fr=((-N"1d+ R)E ‘;O(—i)""(—R)’fz

=$2(—A)-W‘“<—Rﬂf: —é -i(—i)‘”‘f'”(—Rsz
1

= (A= (=DTM=RYS)

=0. N

2. The Spectral Decomposition

From now on, let .# be a finite or countable family of intervals (which are subsets
of some totally ordered, order complete space, cf. Hofbauer and Keller (1982),
Rychlik (1983)). Let X be the disjoint union of these intervals I€.#. Suppose further
there is a family £ of disjoint subintervals of X (in particular, for each Ze % there
is Ie# with Z< I). Define Y = () Z.

ZeZ
We study a transformation T:Y — X such that for each ZeZ holds
Jle.# such that T(Z)< I and 2.1)

T, is monotone on Z and has the Darboux property (ie., if JSZ
is an interval, then TJ is an interval). (2.2)

For an interval J £ X and a function f:X — C, define
var; (f):= sup{ Z [fl@)—flai-)n=1l,a0<a, < <a,, aiEJ},
i=1

var(f):= ) var,(f),

les

I fllo:=) sup|f], and

les 1

If gy:=var (f) + [ f Il -

Let BV:={f:X > C:| f |l gy < 00}. One easily sees that (BV, |- | zy) is a Banach
space.
Fix g: X — C and define g, and 6 as in Sect. 1. We make the following assumption
on g:
M:= sup{var,(g)+ Y sup|g1}<oo. (2.3)

14 Zezr Z
yA=44
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Associated with T and g is the transfer operator

LBV BV, Y (f9)°T3"

Zer

(We check below that & is well defined, see Lemma 2.2.)
For ne#,, let T, ":=(T",)~". Then
2 f =% (fg)°T,"
ne)

By |.Z|, we denote the transfer operator associated with T and |g|. Finally,
© > 0 denotes a real number arbitrarily close to 6.

The following facts will be used in the sequel without further explanation: Let
J,K = X be intervals, f,,f,:J—C. Then:

VarJ(fl'fz)éVarJ(fl)'SL;plle+Var,(f2)'Sl;p|f1|,
VarK(f1’XJ)§VarJ(f1)+2'SLlelfll if JgKk,

vary(fieT)=vary,(f,) if J=Z forsome ZeZ,

finally, for ne%,,
-k : k
o (o Jae Ty (x), if xeT(n),
LX) = {O, otherwise.
Lemma 2.1. Let J be an interval, J] = ne%,, and f:J—C. Then
IL™(f %) gy < (var; (f) +3 sup lfI)'Sllelng + Sl;plfl'varJ [Gml-
Proof. Let Ie.# be such that T™y < I, then
var (L"(fx,)) = var (f gm 2)° Ty ™)
S var, (f gm) + 2Sl;p|f'gml

= (var, (f) + 2sup Ifi)Sl;plng + Sljplfl'varj(gm)

and IIS’"'(f'XJ)!Icoésl}plfl‘sgplgml- u

Lemma 2.2. #(BV)< BV. Furthermore, | & ||y < 3-M.
Proof. Let f:X — C. Then, by Lemma 2.1,

1L sy < X 120 %) lsv

ZeZ
< Zj(var;(f)+ 3Sgplfl)-<var;(g)+ > sgplgl)

SM3(flgy by(23). H

Remark. Since var(|g|) £ var (g), the proof of Lemma 2.2 also show that | Z|(BV) &
BYV.
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Lemma 2.3. For each © > 0, there exists a constant C such that var,(g,,) < C-O™
for all m>0 and neZ,,.

Proof. Choose § < ® < @ and fix k > 0 such that sup |g,| < @' for all | > k. Consider
NEZ i+ 1, and n'€Z,, such that T*n = #'. Then

var,(Gyw+1)) < var, (gk)'sulp [gui| + sup | gi|-var, (g..)
n n

< @™-var, (g,) + O* var, (gu),
and induction yields

var,(gim+ 1) S (n+ 1) O™-sup var;(gy)-
ey

The same recursion for k=1 (and _with Ok replaced by sup|g|) shows that
sup var,(g,) < oo (observe (2.3)!). As ® < 0, this proves the assertion for m = kn.
nez,
One passes to arbitrary m using once again the recursion for k=1. W

A consequence of Lemmas 2.1 and 2.3 is

Corollary 2.4. For each @ >0, there exists a constant C such that | L™,y
Varn(gm)9sup|gml = C'@"‘,for all m>0 and ﬂeffm,
n
Lemma 2.5. If, in addition to (2.3), var(g)<oo and Y supl|g|<oco, then
zez 2
Y 1 L™, llgy < o0 for all m>0.

ey,
Proof. Let ne%,,, Tnen'eZ,,_,. By Lemma 2.1,
I ngn“BV =¥ Yge T, 1‘)(Tr,) (/%%

< <var,,(g) + 3sup|gl>'suplgm-1| + sup|g|-var, (g,-1)
n n n

S 'y [IBV-<var,1(g) + 3suplg|>.
n

Hence,

Z | Ly llgy < Z ||,§f'”_1x,,,||BVZ(vaanT—ln,(g)+3 sup Igl)

L 1y WeZp_y Zez !

ZnT 'y
(var(g)+ Y Sgplgl> Y L™ 2t sy

Zex neXpm-1

I\

and the lemma follows by induction. W

For each m> 0 and neZ,, fix some x,en.
Lemma 2.6. For each © >0, there exists a constant C >0 such that 'y, | ™y, f(x,)—
L™f xp) gy < C-O™-var (f) uniformly in m>0 and feBV. e
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Proof. By Lemma 2.1,

2L (f = fee v < Y |:<var,,(f—f(xn))+3SUPIf—f(x,,)|>Sllp|gm|

. neZ

+sup|f — f(x,)|-var, (gm)}

=9 Var,,(f)<4SUP|gm1+Var.,(gm)>

e

<const-®@™-var(f) by Corollary 2.4. H

In the sequel, it will be convenient to work with subsets .o/, of %, . Without
specifying them now, we assume that there is an L such that for all m > 0,

sup#{neZ, .nclhn¢sf,} <L <oo. (2.4)
les
For feBYV, define
= ) f0x) % (2:5)
ned

Proposition 2.7. | £, — F™||gy < const. @™ if of,, satisfies (2.4).

Proof. This follows from Lemmas 2.6 and 2.1, by observing that

Y 2 12L"(f 1)y £ ) L-const-©™ (Varl(f)+4SUp|f|>

leS neZ \A les
nel

Sconst: @™ f|p. W

If the operators #™u,, (m>0) are compact, ¥ has the following spectral
decomposition (cf. Lemma VIIIL.8.2 of Dunford/Schwartz (1957))
N(®)
L= WPAT+PL™, (2.6)

i=1

where A;, Z;, A;=2;+ N; and 2 are as in Theorem 1. Note that
tr (P,AT) =tr () + Z ( >tr(Nf)—tr(9,) if m=1. 2.7

The following result is an extension of Theorem 1 from the introduction:
Theorem 2.8. If var(g) < oo and if Y. sup|g| < co, then the operators ¥"a,, with
oA =%, are compact and L has tieegdezcomposition (2.6).

Proof. Since #™a,,(f)= Z fx,) L™, = Z F,(f) &%™x,, where the linear func-

tionals F,:BV —C, f»—»f(x,, ) have norm equal to 1, it follows from Lemma 2.5
that #™a,, is of trace class and in particular compact. W
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3. Markov Extensions

From now on we suppose that .# = {X} and that & is a finite partition of X into
compact intervals which satisfies assumption (1.4). Note that X is compact.

In general & is not a Markov partition for T. The estimate in Sect. 5, however,
which is borrowed from Haydn (1987) makes essential use of the Markov property.
Therefore, we extend (X, T) to a system with a countable Markov partition, show
how to deduce Theorem 2 for (X, T) from the corresponding statement for the
extension and finally prove Theorem 2 for the extension.

In a series of papers Hofbauer (1979, 1986) constructed Markov extensions
(X', T) for piecewise monotone transformations (X, T): Let

Do=1{X}, 2,={T"Z:Ze%,,1<m<n},
9={T"2:ZeZ,,1 <m},
X' ={(x,D):xeDe2}.

2 is an at most countable family of compact intervals. Furthermore, if we
denote &,=2,\9,-, (n=2) then Theorem 9 of Hofbauer (1986) shows that
#6,<2-#Z and thus #9, < const-n.

Note that for Ze%,, Z'€e%#,, Z'€¢%,, we have ZnT "Z'€e%,., and T"
ZNnT"Z)=T"ZNnZ'. Hence, if D=T"2€2 and if DnZ'#JF, Z'€eZ,,, then
T DNZ)=TT'ZNZ)=T""(ZNT "Z)eD, and we can define T:X >X
by

T(x,D)=(Tx, T(Dnny[x])),

where #,[x] denotes the element of &, which contains x. A simple inductive
argument shows that for n > 1,

T"(x, D) = (T"x, T"(D v, [x])).
For % = (x, C)e X", we denote the two projections by
% = (n(%), A(%)).

We have noT = Toxn, and if for (x, C), (x,D)eX’ there is an n=1 such that
n,[x]1nC =n,[x]N D, then T"(x,C) = T"(x, D). For Ce %, we denote C:= A~ Q).
The equivalent of # in Sect. 2 is now defined by 9 =A"Y(2). If we define
F=9vn 1%, then TAc for AcZ.

Obviously, Z, =9 v n~'%,. We also use the notations 9, = {C:Ce2,} and
= {ﬁeﬁ?’,,:El De2, such that j = 13}, (n=1). Finally, let e: X - X', x+—(x, X) and
observe that e(X) = X is the “basis” of X'.

Note that the Markov extension described above is again of the form considered
in Sect. 2 (i.e., assumptions (2.1) and (2.2) are still satisfied) and that all results of

that section can be applied.
The following is Lemma 2 in Hofbauer (1985) or Theorem 8 in Hofbauer (1986):

Lemma 3.1. For a subset A of X, we denote by int(A) the interior of A in X and
by bd (A) the boundary of A in X.
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1. If T"% = %, then T"n% = n%.
2. If T "X =X and if xeint (nZ) for all Ze Z such that xen(Z), then there is a unique
%en”'x such that T"%

3. If T"x =x and if xe U bd (n(Z)), then there are at most four Xen ™ *x which are

A ZeZ
T-periodic. Their periods are n or 2n.
4. In particular, for a fixed n, the set {£ = T"%} is finite.

From Lemma 4.i of Hofbauer/Keller (1984), we obtain
Lemma 3.2. If i€Z,, and fj = T™, then e Z>™ and, furthermore,

LG
~»
=
In
O
N
3

The following lemma is crucial for the estimate in Sect. 5:

Lemma 3.3. Let 0 <k <m. Given n'eZ, and Ce@ there are at most two HeZ,,
such that H < C, T" *#eZ \Z¥" and nT™ *f <y

Proof. Let e Z,, h=Cnn 'y, where Ced, neZ,,. Write n=nVAT " 0y?),
Ve, _.n?PeZ,, and define 4= Cnn~'n"). Then

ﬁ — ﬁ(l)f'\ T—(m—k)n— 111(2),
whence
Tm kA Tm kA(l)nn n(Z)
and
Tch kA =Tm" k(Cﬁﬂ(l))f\T[(z)

Now the assumption nT™ *j<n'eZ, implies 12 =7, and because of the
hypothesis T™ *je %\ Z ™, we have

Tm_kﬁ(l)eg\‘@Zm’

T 5CnnP) =T *af®D = 2T *De D\ D,,n.

As T" "y Ve, _, < D,,, this implies n*) & C, and for a fixed interval C there
are at most two n'Ve %, _, with this property. Hence, given C and #/, there are at
most two 1= Cnn~ 1y AT ™" Pr~1y satisfying the hypotheses of the lemma.

|

We need some more notations:

B V denotes the space of function of bounded variation from X’ to C. We define
Ty BV BV by
e (x) = Z J(®).

ten x
Observe that Iln*flhw—var(n*f)+supl7r*f|<Z(varc(f)+supclfl)—l|fll§v

We associate to g: X — C a weight function in the Markov extension, §: X' — C,
§=gom AsnX =X, 0= lim (sup|d,|)"" = 6. We denote by Z the transfer operator

n—oo
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PS A~ N\
corresponding to T and §. Since (2.3) is satisfied for g, £ maps B/?/ to BV and
Mo P =Fen,. (3.1)

We end this section with the proof of Theorem 3 from the introduction: The
claim is that P(T,log|g|) = log p(¥) and that, if g = 0, then equality holds. First
we prove log p(¥) < P(Tlog|gl):

If 6 < p(%), then let A be an eigenvalue of £ with |1| = p(£). Suppose £ f = Af,
0 # feBYV. Fix x such that f(x) #0. Then

[A"f(x)| = ZL7f(x)| = TZ IgmWI S <suplfl- ). suplgml,
yeT ~mx ne, "
whence log p(¥) =log|A| =limsup(1/m)log|A"f(x)| < P(T,log|g|). If 0= p(ZL),
then log p(#) =lim sup (1/m)logsup|g,,| < P(T,log|g|).

For the reverse inequality, we assume first that infg>0. Then logg is

continuous, and it follows from Theorem 1.9 of Walters (1976) that

1
P(T,log(g))=1imsup;log Y inf(g,,).

m=co neZy, M
Now fix some z,eD for each De2. As T"ne2,, for each ne%,,, we have
Y oinflgn)S Y Y gm()= ) (£"1)(zp) S const:m:| L1l gy,
neZ, M DeD,, yeT Mzp DeD,,

whence P(T,log(g)) < log p(&).

If only g =0 is assumed, we approximate g from above by g v e=sup(g,¢)
(€>0). As gveeBV and gve=e>0, P(T,log(g v &) =log p(¥Z,), where &£, is
the transfer operator obtained from ¥ by replacing g by gve As g<gve,
P(T,log(9))< P(T,log(g v ¢))=log p(#,), and we have to show that lirrlionfp(fé’a) <

p(<£). By the upper semicontinuity of the spectrum of bounded operators on Banach
spaces (see Kato (1976), Chapter IV, Remark 3.3), it suffices to prove that
lim | &, — Z| gy =0. But &, — & is the transfer operator for the weight function
£—=0

gve—g=(e—g) xy<q Whence, by Lemma 2.2 (remember that .# = {X}):
IL:—ZL gy <3(var(g v e — g) + & #(Z)),
and we can finish the proof of the theorem by showing lim var(g v ¢ —g)=0:

=0

As lim g(x) v ¢ = g(x) for all xeX, lim var(g v &) = var(g). As

£—0 e—0
l9(x) =g =19(x) v e—g(y) v el +19(x) v € — g(x) — g(y) v & + g()]
for all x,yeX, var(g)=var(g v e)+var(g ve—g). Hence, limvar(gve—g)=

e—=0

var (g) — lirrg var(gve<0. W

4. Proof of Theorem 2

Throughout this section we assume (1.4), i.e. Z is a generating partition for T. For
m>0,let {,= Y gnx)and {,= Y §,(%). The zeta functions for (T,g) and
x=Tmx 2=T"2
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(T, g) are defined by:

m

{w C(2)=exp i

z"
mlm

{(z)y=exp i

Lemma 4.1. {(2)/C(z) is analytic and nonzero in {lz| <07}

This follows from Lemma 3.1 as in Hofbauer (1985).

For each m >0 and each fie 2, fix £, in such a way that 7%, = %, iff < T™j
and arbitrary otherwise. (Note that the Markov property implies that 4 and T™%
are disjoint if 4 & T™4.) Let o,, = {feZ,:nheZ,,} and define for f in BV

8uf = Y, TG
rieﬁ
As each D in 9 is an interval, only those two 7 < D which contain the endpoints
of D may fail to satisfy nieZ,,, hence, L as in (2.4) is at most 2.

PPN AN ~ A
Lemma 4.2. For each bounded linear ¢:BV — BV and each m > 0,  £™4,, is a finite
rank operator and

tr(@2ma,) =Y (L"1)(%)),

ﬁEJi,,,
where the right hand-side converges absolutely.
~ N\
Proof. For f in BV, we have

¢$m Amf Z f ')e (z;"?mxn = Z Fq(fA)'@nge(r]),

ne.o{ nes
where F,(f Z f(x;) and
r]eQ"
mi=n

PRGN C A B T e P
e m

As Z,, is finite, $.#™4,, has finite rank. Now
tr(gg’?m&m): Z Fn(q;’?m)fe(n)): Z Z (659 e(q))( )

nes m ned e,
mj=n

and the sum converges absolutely, because %, is finite and

2 1L ™ e () SN EL e o

rief)‘
mi=n

Hence tr(¢.£™4,,) = > (qg,?"‘xﬁ)()%ﬁ) converges absolutely. W
ﬁsim
In particular, Z has the spectral decomposition
)

Fm=Y WPAM+ PP, 4.1)

i=1
analogous to (2.6) and (1.1).

Lemma 4.3. Let | 1| > 0. A is an eigenvalue of £ of multiplicity d if and only if it is
an eigenvalue of £ of multiplicity d.
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Proof. Suppose 4 is an eigenvalue of # with multiplicity d. In order to prove that
it is an eigenvalue of % with multiplicity at least d, it suffices to show that if
(£ — 21d)¥f = 0 for some feBV and k>0 then there is feBV with 7, f = f and
(& — /IId)kf 0 for some k> 0. But this is Proposition 7.1.bis together with
Remark 7.2 of Keller (1986).

Suppose conversely that A is an eigenvalue of .# with multiplicity d. In order
to show that it is an eigenvalue of ¥ with multlpllClty at least d, it suffices to
show that if (3 AId)¥f =0 for some OaéfeBV and k>0, then n*f;éO and
(&£ — Ald)m, £ =0. The latter follows from (3.1) and we must only prove 7, f#o.

So suppose 7, f = 0. We consider the case k = 1 first, i.e., we assume f = A~ 1 2 f.
Fix X = (x, D)eX’. Then, for all m> 0,

J®=Y 2 m.0i®= Y A7"9n() Smoly)
peT "% yeT  ™x
where

Sup= Y .0

(y,C)s. th.
T™(Crn,ly])=D
If T™y,,[y]= D, then T"(Cnn,,[y])=D if and only if #,[y] = C. Hence, for
such y,
Smo= ¥ T~ ¥ f0.0)
¥

yen (y,C)s th.
m[y1EC

If T™y,,[v] # D, i.e., if D is a proper subset of T™#,,[v], then T"(C nn,,[y])=D
implies #,,[y] & C.

In any case
ISmpIS Y 1f3 O,
(y,C)s. th.
Mm[Y1€C
because Y f(§)=mn,f(y)=0. Therefore, for large m,
genly
“ em ~
| (%) I_ - Y lfpols 7 Y Y ;o
yeT ™x  CeZs.th. Ce yeT ™xs.th
NMulyInC#Z NYINC# D
Nm(¥1EC Nml¥1 ¢ C
< l "y suplfl< 2070
CeZ

As |A] > 6, we may assume 0 < @ < ||, whence | f(%)] =0 as m— oo.

The case k> 1 is easﬂy reduced to the case k= 1: Suppose (3’ —AIdy¢f =0
and 7, f =0. Letf1 (£ — A1d)*"'f. Then (Sf Ald)f, =0and n, f; = 0in view
of (3.1). Hence f, =0 by the case k=1 and f =0 follows by induction. W

Remark. We would like to mention that this proof can be adapated to the systems
investigated in Sect. 7 of Keller (1986).

Because of Lemmas 4.1 and 4.3, and Proposition 1.1, it suffices to prove
Theorem 2 for # and C. As a matter of fact, we shall prove the more detailed
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. N
Theorem 4.4. Assume (2.1)—(2.3) and (1.4), then for each ® > 0, {(z) ]_[ (1

_ ii Z)rank(é’i)
is analytic and nonzero in {|z| < ©®'}.
Observe that rank (%) = tr(%,). As
N(©6) N©) o zm
[ (1 =22)"® = exp Z Z ——i’"tr(ﬁ’)
i=1 i=1 m=
0 Zm N(©) R
=exp ), —Ztr< Y l}"%/\?) by (2.7)
m=1 =
o gm ey
=exp , ———tr( Y %3’"‘),
m=1 M i=1
Theorem 4.4 will be proved if we can show that
R Ao
Cn— tr< Y 9’#’"’) < const- O™, 4.2)
i=1

In the course of the proof, estimates by terms of the form m-®™ or (1 + ¢)™- O™

will occur. In order to simplify our notation, we shall replace them tacitly by
const- @™ This is possible because @ > 0 is arbitrary.

Let {9 = Z gm(%,) and f =7 — 09 AsfO s a finite sum (see Lemma 3.1),
ﬁe.mf
. =TT N
and as £"y,(9) =0 for p¢T™7, we have in view of Lemma 4.2

=3 Gnr)oTi"E)= Y (@)%,

e p, et
ist™ st
= Y, (")) =tr (274,

. 4.3)
e
For {1 we have the estimate (observe Lemma 3.2)

IEPIS Y 1gnB)IS Y 19a(®))]
1€Z \ o py AEZE™ oy
AsT™

< 2:#(P2m) sup |gm| < const- O™

4.4)
So (4.2) will follow if we show that
N(®) A N R
Y [t (PAL ™G — L™)| + | tr(PL™4,,)| < const- O™ 4.5
i=1
By Proposition 2.7,

N©) N(©)

Z te (P LG — L™)| < Z rank (2,) | 2l g | L™ — 2™ | 5
< const- O™,
and the proof of (4.2) will be finished in the next section by showing that

[tr (PP™4,,)| < const- O™ (4.6)
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In order to do this, we will need more sophisticated estimates and make use
of a telescoping trick of Haydn (1987).

5. The Bound for [tr (P£"4,,)|

In this section, we prove estimate (4.6) for {2 = tr (P P™4,,) under the additional
assumption (1. 4)

For each Ce2, we fix some yCeC If heZ, and T*j = C, we denote by 9, the
unique T* preimage of ye in 7.

For #eZ,, define

“ Py, — k=lys if k22,
¥,= { 1= 900 &y I k2 (5.1)
,Sfx,, if k=1
Observe that Tﬁﬁ = yz,- Hence, for Ae#, and k=2,
V=2 @ T = 90)) = xay G- o THE V@0 T — 409y)s
so that
varp,(Y,) < varg,(ge- 1) var,(g) + sup| gy, |- var,(d)
and
sup| ¥;| < sup|g—,|-var,(9).
Therefore
1Y, 5 = var (Y,) + 1| ¥, ||, < varp,(¥,) + 3-sup| 7|
< var,(g) (VarT;;(gk 1) +4-sup|g—y|).
If nA = neZ,, this yields
“ ”BV < var, (g) (VarTn(gk 1) +4suplg,_|) =:v(n, k). (5.2)
Note also that in view of Corollary 2.4,
Y. v(n,k) < C-©* !-var(g). (5.3)
neZy

We now give the formal computation used to bound |{!?)|. By Lemma 4.2,

(P=uw@L",)= Y @PL")%) (=)

fied
=Y @I"L)%) (=)
ey
gy (PLm1)(%,) (=72). (54)

Now
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z z KON P Y%, — PVoi(9))) (=9
2 &

+ 2 Z 99,)2 Y14, 9,), (=), (5.5)

feZ,, k=0
where we use the notational convention §, = 1. Finally

Tw' = Z ) Y 90)@Y)0,) (=:99)
ﬁez,%, " ﬁsfz
+mil > Y GO)@Y)0,) (=9%). (5.6)

k=0 jed, (\FI", ied,,

=4

The result of this section follows from:
Lemma 5.1.

1. Y converges absolutely,

2. 3 converges absolutely and |y'?| < const- @™,
3. y¥ converges absolutely and |y$Y| < const- O™,
4. |1y < const- O™,

5. 19| < const- O™,

(All bounds are uniform in m > 0).

Indeed, the absolute convergence of {3 and y$ implies that of 7! and shows
that all equalities of the sequence (5.4)—(5.6) are correct. Thus, we only need to use

E21S P21+ 11+ D1+ 159
to obtain the desired inequality.
Proof of Lemma 5.1. In the proof, we will often use the decomposition

N@)
P=1d— Z 2, and the fact that for each 2, there are ¢, JGBV and linear functionals

.p,.,. (j=1,...,rank (?,) =:d,) such that 2,(f) = E lﬁ,-ij*),-j.
=1
1. We have

) Z [ACAIIED EHCA]

ﬁeI

=Z DI IRFACAIIES ATA]

k=0 g'e#, _, ﬁez,g

Z Y (12M2Y,)0,)
k=0 ﬁ,ei;m—k
m—1 N@©) di

> ) ) Z (121M6uDO NI 1 e lsy (=:8%)

k= OﬁeI,,, k\-?mk‘ 1j=1
m—1 ~ ~~~
+ ) Y (ZM2Y0) (=:B2).

k=0 gezim

lIA
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Remark. In the last inequality, we used the fact that (|2 IY DIy # 0 if and only
if |(Y;)]; # 0 for some neff with T4 = #’. But this is p0531ble only if T %' 24,

ie., if T"‘ 124, ie., if e Z2™ and also #'e Z2™, by Lemma 3.2. Therefore the term
N(@)

corresponding to the Id part in the decomposition 2 =Id — Z 2, is zero in the
first sum. =
Now, by (5.2) and (5.3):

-1 N©) d; . ~
w<'y Z sl Y otrm—ky Y (1L FouDGy)
k=0 i=1 j=1 r;'eﬁfm_k r]e.f,,, -k
m' <

-1 N©) di
Z _Z X 1y l-const- O+ -var (9) 1| 2 16y 4 < 0

and B < o0 as #Z2" < 2m# Z,,_, < 0.

2. We again use the decomposition of 2

P YN KA AT (=BY)
ﬁezmw
- z Y 2L )G (=),
i=1 ped \dpy

Now, by the same reasoning as in (4.4),

BY< Y suplgnl < const-O,
NeZp\Ap N
]
and
N(@) di

BP= Y X W@l éyx)l
i=1 j=1 ﬂEI \d
NO) d R
Z Z Y. IlYi;ll-const- @™ p,(%,)] by Corollary 2.4

i=1j=1 pef \o,

N(@) d, N(@) di
<const:®@" Y Y Y sup|¢;l<const-@™ Y Z [ @ijll sv
i=1j=1¢co ¢ i=1 j=1
< const-O™,

3. Let 0 < k <m. We first study
k= X van@Ym)= ¥ ¥ % vay(PY) (=%

e, neXp rye.!,,, & ‘r;ef
ni'sn’ Thi=i
+ ) Y Z var, (2Yy) (=:B9).
WeZm i HeFp_ k\—?‘m k '753
meiq Tri=w'

The first term is bounded by:
< Y y var(@f’ﬁv)

NeZ oy feF2m,
mi'en’
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Y. const-2m-| 2| -v(y’,m—k) by (52)

n'eifm_k
<const-m:- @™k

For the other term, we use the remark of part 1, and obtain:

N@©) d

BO < z > ¥ > Y Wi(Tp)lvar, (@)

iS1J=1 yeZpy e, k\f,., x ey

i) w'en’ Thh=r
< Z Z 1Pl Y v,m—k) Y var ;) by(5.2)
=1j=1 "e-{m—k ﬁeé}m
N@©) di
Zl Z I, - var (¢;;)-const- @™ by (5.3)
i j=1

<const-@™

We have thus proved that ) < const- @™ ~*. Therefore:

P ESDY z 19(9,)]-var, (P Yzx,)

ﬁe.‘?’

const Ok < const-O™.
*Vm,

This shows the absolute convergence of 7.

4. The definition of & yields:

| = Z Y (@*97,)0,)

k=0 l 2.2m

< i const:@* Y 2:m-v(n’,m—k) by Theorem 1 and (5.2)
k=0

”/Eg’m—k
< const- O™ by (5.3).
5. We use again the remark in 1 and obtain
m—1
=Y X > > 9@ Z @ Y)9,)

k=0 y'ey_y H'ed,_ k\zrzn -k ﬁe.”l’
' <n’ T'? #’

N©) di m-1

<YSY Y Y T comte

=1 =1 k=0 yeg, , fed,_\FI", ned,
~ mien  T=q
1001 131 -v(n',m — k) by (5.2)
N©) d m-1 .
< const- OF Z Z z Z o', m— k) |51 -2- 11 @5l 5
i=1 j=1 k=0 yeo, _,

by Lemma 3.3
<const-O™ by (5.3). H
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