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Abstract. We show that cell calculus (first introduced by Ocneanu in the
context of relative position of factors) is a technique which permits us to
connect different integrable models. It generalizes the Vertex-IRF
correspondence.

Since the work of Baxter [Bal], the number of integrable lattice models (ILM) has
increased rapidly. Besides, conformal field theory (CFT) [BPZ,Gil], full of
success, has reached a status where the problem of classifying all CFT is worth
being investigated [MS]. In a similar way, it is time to put order in the huge
amount of solutions of the Yang-Baxter equation (YBE).

Quantum groups [Ji1, Dr] realize part of this: any highest weight represent-
ation of the deformation of a simple Lie algebra yields a solution of YBE.
Unfortunately all solutions obtained this way are trigonometric functions of the
spectral parameter. Except for the 8 Vertex model, which is associated to the
Sklyanin algebra [ Sk] [an elliptic deformation of SU(2)], one does not know what
the algebraic objects associated to elliptic solutions of YBE are. We should add for
completeness that there exist solutions of YBE which are related to algebraic curve
of genus greater than 2 [Au-Y, Ba2].

In this short introduction we will restrict ourselves to integrable critical models
associated to CFT having central charge ¢ <1 because one knows lots of things in
this case [Pa.1, Gi.2]. Representation of spin 4 of %SU(2), leads to the 6 Vertex
model. Using an IRF-Vertex transformation one obtains an SOS model which can
be consistently modified to a RSOS model when ¢ is a root of unity [ABF, Pa.2].
These last models are the ABF models based on the Dynkin diagram A4,. This
method does not shed any light on the construction of Pasquier models based on
other Dynkin diagrams. On the other hand it would be an important step if one
could understand more abstractly how ADE models are built.

In [FG] it has been shown that D, lattice models can be constructed from the
A, lattice models via a discrete symmetry Z,. Using a different point of view, we
show that on the lattice these models are linked via an object called a cell system
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[Oc, Pa.3]. This connection works as well away from the critical point. We also
show that Eg models are related to A, models via a cell system.

In the ¢ =1 case, Pasquier has built models associated to each extended Dynkin
diagram. All these models can be easily constructed from an IRF-Vertex
correspondence using cells which are Clebsch-Gordan coefficients of the sub-
groups of SU(2). All these features can be generalized using the work of Ocneanu
[Oc] on inclusion of hyperfinite factors [Su]. Cell calculus is shown to be a tool for
classifying solutions of YBE.

The paper is organized as follows: In the first part we describe cell calculus
using Ocneanu results. We show why it is relevant for physics and we give a few
examples. In the second part we describe an important class of cell systems, namely
those which are associated to group theory. As an example we show how to obtain
Pasquier’s models built on extended Dynkin diagram and we construct new
models.

After this work was completed, we received a paper of DiFrancesco and Zuber
[DZ] which overlaps substantially with our present work. They have used Cell
Calculus to construct new models from SU(N) lattice integrable models. They have
found a very interesting connection between the set of intertwining matrices (called
C in our work) and the fusion algebra of WZW models, and they have noticed a
generalisation of MacKay correspondence between subgroups of SU(3) and
incidence matrices of restricted height models.

String Algebras and Cell Calculus

This part is devoted to an introduction for physicists to the deep and difficult
theory of Ocneanu [Oc]. Most of the concepts are taken from Ocneanu’s papers
and Pasquier’s thesis [ Pa.3]. However the introduction of local operators and the
proof of identity of partition functions on a cylinder of various statistical models
definitely prove why these constructions are important in 2-dim physics.

Path and String Algebras. The set of known ILM can be roughly divided in two
families: vertex models and IRF (interaction round faces) models. We recall their
definitions and show that they can be unified in the same formalism by introducing
graphs.

Vertex models are statistical models, defined on a square lattice. Microscopic
variables are located on the edges of the lattice. They interact via a vertex. If
o, B,7, 0 are the states of edges surrounding a fixed vertex, the Boltzmann weight
associated to this configuration is W(a, 87, 9) (Fig. 1). Boltzmann weights depend
on an additional parameter (called spectral parameter) which controls anisotropy
of the system. In this representation YBE can be written as:

2 Wy, Byl Bas o) Wi(ag, v 73, 03)W (71, B1 | B2, 72)

a2,B2,72

= Z W’l('))z’ ﬁz |ﬁ3’y3)Wl(o‘19 Y1 |y25 aZ)W(aZ’ ﬁl IBZa 0(3).

a2,B2,72

Wio,B|v, 8 = o —[*—3

Fig. 1
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This formula is conveniently written in a picture (Fig. 2) which is reminiscent of
the third Reidermeister move in knot theory. We prefer for further purposes that
edges interact via faces (Fig. 3). These two representations are equivalent after a
change of the lattice and its dual. Arrows along edges have no relation with states
of the edge but merely indicate an orientation. Because in general there is no
rotational symmetry, ie. W(x, fB|v,0)%+ W(y,o|0d, ), these arrows prevent us
making mistakes in graphical proofs. The convention taken here is arrows
pointing down.

The simplest vertex ILM is the 6 vertex model, generalized in the 8 vertex.
Other integrable vertex models can be constructed via fusion methods [KRS,
DJKMO]. These models are associated to quantum SU(2); other models
associated to other quantum groups have been built.

In the IRF case, microscopic variables (heights) are located on the nodes of the
square lattice and interact via face. If a, b, c, d are the value of heights surrounding a
face, the Boltzmann weight attached to it is W(a,b,c,d) (Fig.4). We have put
arrows on the edges of the square to indicate an orientation of the square (due to a
lack of rotational symmetry). In the case of ABF models or Pasquier’s models,
heights take their value in a Dynkin diagram such that (a, b), (b, ¢), (¢, d), (d, a) are
neighbours on the diagram.
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YBE reads in this representation:
2 Wia,b,g, /)W'(f,8.d,eyW'(b,c,d,g)
g

=) W'a,g,e f)W'(a,b,c,g)W(g,c,d,e)
g

(Fig. 5). It is now easy to put vertex models and IRF models in the same formalism.
Let ¢ be a graph (oriented or not). Let 4 be the set of nodes of 4 and V) the set
of arrows in 4. We will use roman letters for elements of ¥ and greek letters for
elements of 4, If a is an arrow, we call s(«) its source and r(«) its range, i.e. & goes
from s(a) to r() (Fig. 6).

In the paper we will define integrable models associated to certain graphs.
These models will be defined by putting elements of %) on oriented edges of the
square lattice. They will interact around faces. Let W(a, fi |y, d) be the Boltzmann
weight associated to the configuration described in Fig. 7. Configurations of
arrows should satisfy the following rule:

s@=s(y), r@=sB), r(»)=s(), r(p)=r().

Although redundant it will be sometimes useful to use the following picture for
Boltzmann weights (Fig. 7).

When %9 is restricted to a point we obtain ordinary vertex models.

When ¥ is non-oriented and such that there is at most one arrow from one
point to another, we recover ordinary IRF models.

We now introduce a few definitions.

A path of length n>1 is a n-uplet 9 =(a,, ...,,) of elements of ¥V such that:
ro)=s(;4 ) for 1<i<n—1. We define l(9)=n the length of ¢; the path ¢ has
source s(g)=s(«;) and range r(o) =r(x,).
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Let Path; , be the set of paths of length n going from x to y. It will be useful to
introduce the following notations:

Path"= () Path” ,
y

and
Path, ,= () Pathf ,.

There is an obvious composition law on paths: if o= (o, ..., a,) and e =(f4, ..., B,.),
and if r(¢)=s(g), the composition of ¢ and ¢ is the n+m-uplet goo=(ay, ..., %,
Bis - B We will require that there exists a distinguished node * such that for
every x in 49 Path,  +0.

We now define abstractly our statistical model and we will focus on algebras
associated to it. Consider a square lattice with 2M lines and N+1 columns
(N odd).

We choose for orientation left to right. We will use periodic conditions in the
south-north direction and we will fix the value of the sites of the first column to be *
(Fig. 8). The Hilbert space of our model is

HN= P Co.

oePath ¥
For convenience we introduce the space
H'= @O Co.

eePathl, x
Let /¥, o/ be the finite dimensional algebras defined by .«/Y = End(#Y, #¥) and
AN = P Y. [We will also use the notation #¥(%).]

A string is a couple (¢, ¢_)€Path, .. The vector space <Y admits a basis
labelled by strings (0,0 _) such that its action on the basis of #¥ reads: (0.,0_)
7=0,_,,0+. As a result we get the following algebra law for strings:

(@4:0) ¥ 4s7-)=0,_,,,.(@+:7-).
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These algebras are naturally endowed with an antilinear involutive operator f
defined on string by: (04,0-) =(0-,04)

Y, /" are called string algebras. They possess nice properties as we will see.

Using Boltzmann weights we can construct transfer matrices built from face
operators. Face operators are operators which add one Boltzmann weight to a line
at site k. For k< N —1 the face operator U, acting on site k is defined by:

U= 2 (@°B1oBro0, @oayouzoa)W(By, Balay, @),
e,0,a1,a2,B1, B2

where o, o, oy, &, By, B, have to satisfy: gePath ™', «;, a,, By, f,e%",
oePath" %71, s(a,)=s(8,)=r(0), r(oa;)=s(a), r(B1)=5(B>), roa;)=r(B;)=5(0)
(Fig.9).

Transfer matrices V¥ and V® (Fig. 10) are defined by:

YW= T U, and V®= [] U,.
kodd keven

Let Z, be the partition function of this model on a cylinder with sites on the last
column taking x value (Fig. 11). V¥ and V® are elements of &/. We have:

tr(VOVIOM =Y Z,. 1
We have in mind to handle the thermodynamic limit. String algebras have been
introduced for this reason.
Proposition 1 (Ocneanu). Let us define a linear map il: o/ .o/ by

i%04+,0-)= ) (04+°0,0-°0).

o,l(6)=q— p,s(c) =r(e)
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This is a T-algebra morphism. Furthermore i o il =i, when p<q<r.

This allows us to define ./ = lim o/".

All this needs just a trivial check.

Ocneanu has defined traces on string algebras which are useful for taking the
thermodynamic limit. Let (G, ) ,c9 be the matrix defined by
(G,,,)=card(Path} ,). This matrix is the incidence matrix of the graph . In the
following we restrict ourselves to a graph having irreducible incidence matrix
[Ga]. When the graph is not oriented this means that the graph is connected. From
the Perron-Frobenius theorem G admits a positive non-degenerate eigenvalue
which exceeds in module all the others. Moreover the eigenvector associated to
can be chosen such that all its components are strictly positive and this is the only
eigenvector satisfying this last requirement. Let (S,), .4 be this eigenvector. We
impose S, =1.

Proposition 2 (Ocneanu). Let Tr be the linear form on o/~ defined by:
Tr(Q+,Q—)=50+,Q_B_NSr(g+)' (2)

It satisfies: TroiY=Tr for m<N,
Tr(go)=Tr(cg) for g, o elements of /",
Tr(l)=1,

Tr(eo") =0 and Tr(ge')=0<0=0.

Proof. Simple checks.

The essential point for future applications is that we can to some extent replace
the ordinary trace of matrices by Ocneanu’s one in formula (1). This modification
will not change the bulk energy of our system as well as the central charge if the
system is at a critical point. More precisely, let Z' = Tr((V P V@)M), it follows that:

Z=BpNYZS.. 3)

We will see how one can use this relation in the next part devoted to cell systems.

Cell Systems. Cell systems originally arise in the context of the study of the relative
position of an hyperfinite factor in another one [Jo.1,Oc]. Here we will use cell
systems to compare two different statistical models associated to different graphs.
The mathematical objects we use are those constructed by Ocneanu. The idea
underlying the following part is that if a model possesses discrete symmetries, it is
possible to construct a new model which possesses the same specific features
(integrability, same bulk free energy, same central charge if one model is scale
invariant), but which is different at the level of operator content. This method
seems to be the lattice analogue of construction of orbifold models in CFT [FG].

Let %, and ¢, be two graphs with distinguished nodes *, and *,. Let G, and G,
be their incidence matrices. We say that there exists a symmetry from ¢, to ¢, if
there exists a card (%) x card(%%’) matrix C with nonnegative integer coeffi-
cients, such that:

GIC:CGz, C*;,i=1©i=*2’ Vi,ﬂj,C,-‘fI:O.
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It is clear that the two matrices G, and G, share the same largest eigenvalues.
Indeed, let S be the eigenvector associated to the largest eigenvalue f§ of G, ie.
G,S=8S. Applying C to this equation we get: G,CS=fCS. Because CS has just
positive coefficients, it is the Perron-Frobenius vector of G, associated to the
greatest eigenvalue S.

The matrix C defines a graph ¢. We define €9 =4 0¥% and Path} (¥)=0if
x,y are both in ¥ or in ¥, and card Path{!)(¥)=C, ,. See Fig.12 for three
illuminating examples.

A cell system is a family of complex numbers labelled by 4 arrows a, o', f,, f,
and pictured as follows:

a_S 3
By Y B,
b, o
1 o bz
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where «, o'e@V; B,e¥9V; B,e¥9d and s(a)=s(B)=a,, r(@)=s(B,)=a,,
HB,)=r)=b,, r(f;)=s()=b,. Moreover this family should satisfy two non-
trivial families of algebraic equations (U and T') we will introduce later. We remark
thatif a, and b, are fixed, the number of paths 8, - o’ going from a, to b, is equal to
the number of paths a o ff, going from a, to b, because of the identity G;C= CG,.
The convention we use is that any cell can be rotated in the plane and conserves its
value:

a
1—3—3

By 1B, =
b, o b,

o "
a2 0;‘ al al - 32
B,y yB, = B,y 18,
<+—b >
b2 (I' 1 b] (x' b2

The following propositions are the heart of the matter.

Proposition 3 (Ocneanu). Algebra Morphism and Condition (U). If the cell system
satisfies the following condition (Unitarity ),

=6b1,b'1 5/’1,13'1 50!",11' ’

then the linear map o™ : oA™(% )~ oA™(%,) defined by:

(P(N)(Q+a Q-—) =
* P+ r (P+)‘ P— *

Y ‘ to Y M (,u+,,u_),

2 m . r (l»l+) n B *9

is a t-algebra morphism satisfying @ o i =i o 9. In the definition of (0 ,0-)
there is an implicit sum over vertical arrows. We will use this convention all
throughout the paper.

Proof. It is easy using graphical methods. It is given in the appendix and is worth
looking at.

Remark 1. The last equation permits us to define

p=1lim o™: (%)~ A(%,).
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This gives an imbedding of hyperfinite factors which was the desired result of
Ocneanu.

Remark 2. There is also a reverse statement which is much more difficult to prove
[Oc].

Proposition 4 (Ocneanu). Trace Preserving Property and Condition (7). If the cell
system satisfies the following condition ( Trace preserving):

SaiSs
a, < =04,,2,05,5, 0
tS,S,, ol

a,a

then ™ is trace preserving, i.e. Tro o™ =Tr.

Proof of this result is given in the appendix.

Although of central importance in the work of Ocneanu, it is not immediate
that these results are relevant for physics. The following proposition answers to
this question.

Proposition 5. Assume that: We are given two graphs 9, and 9, and a symmetry
between them. We are given sets of Boltzmann weights W, and W, attached to these
graphs. If there exists a cell system between the two graphs such that the following
condition is realized

then @™M(U(%,)=U(%,) for k<N.

Proof is given in the appendix.
Consequently ¢™M(VV)=VfV and o™M(V¥)=V{?. We get immediately the
fundamental result:

Z($)=2(%)). @
Indeed we have:
Z(9,)=Tr(VOVPPM) =Tr(p™(VOV2)M)
=Tr((e™(V V) ™MV2)M) =Tr(VV2)")
=7'(9,).

This implies lots of nice things.
Suppose the first model satisfies the YBE equation, that is

Uk(g1)U;c+ l(gl)U;c/(gl) = Ul:+ 1(g1)U;c(gl)Uk+ 1(«@1) >
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then by applying ¢™ to this equation we get:
Ud9 Ui+ 1(%)Ui%2) = Ui+ 1(9)UE)U, 4 1(9),

which shows that the second model is automatically integrable.

In fact we have more: the algebra underlying integrability, the smallest algebra
generated by {Uk, k;o} (Temperley-Lieb, Hecke, Birmann-Wenzl-Murakami
[Jo2, BW, AW] for instance) is the same in both models.

From the equation,

2, LdE)89)= 2 Z{92)5:9), &)

which is interesting in itself we deduce that: the models posess the same free bulk
energy. In particular after having taken the thermodynamic limit, if one model is at
a second order transition point so is the other one. In this event, using the
definition of the central charge as a universal correction in finite size effects, the last
equation shows that both models share the same central charge.

We can now describe a general scheme for constructing new models from known
ones.

1. Begin with a statistical model which possesses interesting properties and based
on a graph ¥,.

2. Look at the symmetries of 4, and find the graphs ¢, and €.

3. Look for solutions of the system U and T. (This is generally the difficult part.)
4. Verify that

(s)
B1,B1, 71,71
e

bz =5y.,vF(B,25 y’2> BZ’ y2)

which is equivalent to: there exists W, = F(f5, ¥5, B2, 7,) such that condition (S) is
satisfied.

After these steps one obtains a new model, which is the lattice analogue of
orbifold construction. Condition (S) means simply that the Boltzmann weights are
invariant under the symmetry implemented by . We will explain this in a moment
for ordinary symmetries associated to groups.

Remark 1. Gauge symmetry of solutions of U and T. Consider a cell system

3 ¢ @
C(ﬁlaalsa’ﬁ2)= Bl Y Y BZ.
b, o b,

If U(al,bl)gi, Ula,,a,)%, Ula,, bz)ﬁg are unitary matrices, then the family of
complex numbers defined by:

C(Bh 07’ &a BZ)
= > (U(ay, bl)gi*(U(b 1 b2)%:)*c(ﬁ1, o', B,)U(ay, az)ZU(aza bz)gi s

Br,a'sa, B2
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is also a cell system. We will say that C and C are related by a gauge
transformation, which is the language of physicists, Ocneanu prefers the term
perturbation. All solutions of U and T we give are unique up to a perturbation.

Remark 2. If S is an eigenvector of G, such that all its components are non-zero, it
is possible to define a non-positive trace on o#" using formula 2. If there exists a cell
system such that (U, T, S) are verified, we obtain a new equality (5), with S (¥,) and
S.(%,) non-positive.

An Explicit Example. This example in the case 4, = A5 and at the critical point
has been already considered by Pasquier [Pa.3].

Consider ABF models [ABF]. These are integrable IRF models associated to
the Dynkin diagram %, = A4,. Parametrisation of weights are elliptic and up to a
normalization factor:

Wol— 1,11+ 1, )= W,(+1,1,1—1, ) = oy = h(2n —u),
Wi I+ 1, L1=1)=W (1= 1,114+ 1)= ;= h(u) (h(w,_ ) h(w, + ) /*[h(w)),
Wy, 141, 1, 1+ 1) =y, = hn)h(w, + u)/h(w;),
Wi(l,1—1,1,1—1)=6,=h(2n)h(w, —u)/h(w)),

where h(u)=0,(u)0,(u) and 6,, 6, are the usual Jacobi theta functions of nome

pel—1,1[, I is an element of {1, ...,n} and w,=2Iy, where n= 2(n7:-1)'

p measures deviation from the critical point which corresponds to p=0and u is
the spectral parameter, complex in general. Boltzmann weights can be made
positive by a gauge transformation [ABF] when ue]— 2y, 24[.

The graph A, posesses an obvious Z, symmetry: Reflection ¢ around the
midpoint (o(])=n+ 1 —1) leaves the graph invariant. It will be convenient to define
I=o0(l) (Fig. 13). The structure of the graph %, depends on the parity of n: when n is
odd it is the Dynkin diagram D, ; , and when nis even it is the Dynkin diagram

2

G1 = ——o .. 00— o —e - o—@
p/' 1 m\ m+1
m+1 C = \1 .. m m+1<
62 = 1.-——.2— m . T/ E‘/ il
m+1'
1 2 m m T
Cr= e 2 ' "
C = 1 >m
4 .
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A, with aloop attached to one end (Fig. 13). The cell system is easily found in both
2
cases, and we have:

— when n=2m+1 odd

i-1 i-1 I- i-1 i+1 i+1 i+1 i+1
\_—2<|<m—/L-1g.gm-1—/
mel . m+1 m+1  m+1"
\ '
m—n 7—"m 1 ( 1 1
m+1rm+1 m+1  m+i _—I/_S —1 1)
) R 1 1
m- - m m—"mn
m m m ——m \
Y 4 V
m+1 m+1 met——mT 1 —1
Gl W em =<1 1>
4 b y
m+1=="—7.1" m+1l—ap—JIms+1’
— when n=2m
i i it P, m_, m m _m
Y \ = \ 1 = y = y = Y = \
I e FE U £ S PR P e PR o b 0 S S S

¥-.2<i<"\_./\_1<i<m-1_/

Condition (S') means that weights are invariant under the Z, symmetry, more
precisely:
— when n=2m+1:

W,(i,j, k, )= W,@i,j,k,]) for i¢{mmm+1},
Wimm—1,m—-2,m—1)=W,(m,m—1,m—2,m—1),
Wy(m,m—1,m,m—1)=W,(m,m—1,m,m—1),
Wim,m—1,mm+1)=W,(i,m—1,m,m+1),
Wim,m+1,mm—1)=W,(m,m+1,m,m—1),
Wim,m+1,mm+1)+W,(m,m+1,m,m+1)

=W m,m+1,mm+1)+W,(m,m+1,mm+1).

In particular if W,(i,j,k,))=W,(,j,k,I) for every i,j,k,1 then the previous
conditions are satisfied.



408 Ph. Roche

— when n=2m W,(i,j, k,[)=W,(i,], k,1): These last conditions are easily checked
using the explicit parametrisation of weights. Using equation (S), when nis odd, we
obtain a new integrable model based on D,, this model has been constructed by
Pasquier using direct calculations [Pa.4]. We give here the parametrisation of
weights:

Wi, k', V)= W(i,j, k, )= W (i,j,k,]) when i'¢{m' ,m+1 ,m+17},
Wym',m—1"'m—2',m—1)=W,(m,m—1,m—-2,m—1),
W,m',m—1,m' ,m—1)=W,(mym—1,m,m—1),

Wym' ,m—1'm' ,m+1)=W,(m',;m—1",m' ,m+1')

= % Wim,m—1,mm+1),
Wy(m',m+1",m',m+1") = Wy(m',m+1',m',m+1')

=W (m,m+1,m,m+1)+ W (m,m+1,m,m+1)),
Wym',m+1",m' ,m+1)=W,(m',m+1,m' , m+1')

=W (mm+1,mm+1)—Wi(mm+1,mm+1)),
Wym+1,m',m+1",m)=Wym+1,m’,m+1",m')

=Wim+1,mm+1,m+ W(m+1,m,m+1,m),
Wym+1",m' m+1,m)=Wym+1,m',m+1,m')

=Wim+1,mm+1,m)—W,(m+1,mm+1,m).

This shows the power of the method: parametrisation of weights is almost
straightforwardly found compared to the direct method. Similar calculations using
a different point of view have been done in [FG].

When n is even, parametrisation of weights are given by:

Wi, j, k', I')=W,(i,j, k, I) for every i,j, k, I such that if (i, j, k, ) is admissible so
(7,7, k', ) should be chosen. Using the cell system, it is easy to convince oneself that
the partition function of the model 4, on the torus is equal to twice the partition
function of the model based on the graph ¢,. Hence we have not constructed a new
model at all, it is just the same model but associated to a different graph.

Vertex-IRF Transformation and Group Theory

It would be interesting to obtain general results on existence of solutions of U and
T: Because this is for the present time out of reach, we will rather concentrate on an
important class of solutions, namely those associated to group theory. (For
solutions associated to #SU(n), see [Pa2].)

Let G be a finite group and (V;, 7;);- ., its irreducible representations (V; is
the vector space on which 7; acts). It will be convenient to think V; as a G-module.
In the following we will always assume that if (V,x) is a representation of G, V is
endowed with an hermitian scalar product for which = is unitary.

Let (¥, n) be a fixed representation of G (not necessarily irreducible) and B an
orthonormal basis of V.
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Fig. 14 a

Vertex Representation. Let R(u)e End(V ® V) be a solution of YBE equation, i.e.:
RS (ISRW)) (Ru")®1)=1SRW") (R)®1) (1@ R(u)).

We associate to this solution a vertex model where states of edges are vectors taken
in a fixed basis of V. We define:

{B1®B,IR|o; ®ay ) =

B,
We will assume that the model has a G invariance:
[R(u), n(g)®n(g)]=0, VgeG.
An important example is the 6-Vertex model which exhibits SU(2) symmetry for

a*+b*—c? . . . .
A= ~oah = —1 (Fig. 14). At this point the 6-Vertex model describes the
WZW-SU(2) level 1 CFT.

Cell System. As a G-module we have:

N
Vi®@V= @ Homg(V, V,®V)®V,,

i=1
where Homg(V, V;®V) is the space of intertwiners between 7; and 7;®. Let e{?,

p=1..dim(V})) be an orthonormal basis of V¥, and @@,

p=1...dimHomg(V, ;®V) a basis of Homg(V}, ,® V) such that (¢{P(e{?)),, , ; is
an orthonormal basis of V,®V.
We define:

\ &l

i
(oM [e"@B>=» Y
j L

I B. 6)

<%

This system of complex numbers is a cell system. This system satisfies the
relations U, and Tj:

dimm;

=01 aaOpy g
i
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Proof of these relations are given in the appendix. At this stage we can work out
the simplest example, namely G=Z,. Let w=e*™", There are n irreducible one-
dimensional representations (m;);-,, ., defined by:

n{k)=w*, VkeG.

Let us define the 2-dim representation n=n, @7 _,. We have n;Q@n=mn;_  ®7;, ;.
Let (+,—) be a basis of V adapted to this decomposition. An immediate
calculation shows that:

i > i >

i+1 > i-1 -
1 - 2 > 1 > 2 >
n=2 \ Y+ = Y - = Y Y - = \ Y+ =1
2 > 1 > 2 > 1 >-
C— T
n=1 " } + = \ \ = 1
1 >~ 1 >

the other cells are zero. Other cell systems associated to non-abelian groups will be
used later.

IRF Representation. Letj,:V —V* be the antilinear isomorphism induced by the
hermitian product.

Lemma. If (V},n,) and (V,,n,) are irreducible representations of G, if (W,o)isa
representation of G and @:Vi-»W and y:V,»W are intertwiners then
Jr oyt ojy o @ is an intertwiner denoted (¢, ).

As a result:
— if m; and &, are non-equivalent then (¢, y)=0,
— if my=m, then (¢,p)=A41y,. In that case, we will replace (¢,y) by the pure
number A. If x is a unit vector in V}, (¢, )= {(p(x)| @(x)>.

We have:

(Vi®V)®V= (@ Homg(V, V.®V)® V,-) V
J
= @ Homg(V}, ;@ V)@Homs(V,, V;®V)® V.
Js

Define
¢ =(¢'®1y)¢if” e Homg(V,, VOV QV)
and
v=(0"®1,)plf” e Homg(V, VOV RV).
It is easy to verify that (1, ®R) is element of Homg(V,QV®V, V,QV V).
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It follows from the lemma that (y,(1y,®R)p)=0 if k+1, and is a C number
when k=1. It is convenient to use the following graphical notation:

W, (1y,®R)p)= |

The relation between Vertex representation and IRF representation can be
written:

(V-IRF) ¥

J'sp1,p2
b

Proof of this relation is given in the appendix. Using relation (U,) this last
equation permits us to recover Vertex representation of R from IRF representation
of R and conversely.

Let 4, be the graph with one node and n arrows. Define a matrix (N(r);;) by:

TE'@TC: @ N(ﬂ),jﬂ:].
J

Let &, be the graph having N(r) for incidence matrix. Let y, be the character of the
representation m. We have y, (g)x.(g8) = Z N(m);;%x,(8), where g € G. This shows that

J

the eigenvalue of N(r) are x,(y)=B,, where y is a conjugacy class of the group G,
and the eigenvector associated to B, is (x.(1)i=1,...m- We always have [y (y)|
< x.(e)=dimn, where e is the unit element of the group G. As a result N(r) admits a
largest eigenvalue f =dimn associated to the eigenvector S =(dimn;);~ . .. If we
introduce C the m x 1 matrix such that C;; =dimr;, then G,C = CG, and Clebsch-
Gordan coefficients defined by (6) are a cell system between %, and %,. U, and T,
are equivalent to U and T.

Examples

In this part we will discuss critical integrable ¢ =1 models and give examples of
c=3 [DSZ] models. First of all we have to remind the reader how integrable
models based on quantum groups are built [Ji]. For simplicity we will restrict
ourselves to the Hopf algebra A=%SU(2),. Let V; be the highest weight A-module
of dimension 2j+1 where je3IN. Let R(x)e End(V;®V)) be the trigonometric
solution of YBE constructed by Jimbo. R(x) is entirely characterized (up to a
multiplicative constant) by the two following equations:

[R(x),4(a)]=0, VaeA, 7
R(x)(xJ -®¢"*+q™"*®J_)=(J-®¢"* +xq "*QJ _)R(x). ®)
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Aacts via 4 on V,®V; as the [1]®[1] representation. From [[]1®[j]= (—B [k] and
k=

Eq.(7) we deduce R(x)= Z a(x)P®, where P® is the pI’O_]CCthn on the

irreducible 4-module of dlanSIOl‘l 2k + 1. Equation (8) implies that:

Gya() _ x—g*
) 1-xg*

It remains to calculate P% in an explicit basis to obtain an explicit description of
R(x) (for j=4% and j=1, see [Pa.2]).

j=4% Case. In this case
R©)=(1—xg*)PPV +(x—g*)PO=1—xq* +(x—1)(1+¢*)P?.
®N—k—l

Statistical models are defined by face operators U,(x)=1®"®@R(x)®1 ,
where N is the number of edges of the lattice. e, =12 @PO®1®" "' define a
representation of the Temperley-Lieb algebra. In a basis (4, —) in which

h= (1/ 20 ), non-zero elements of P9 are:

e )

From [R(x),4(h)]=0, we obtain [R(x),A <exp <i47:1kh>)] =0. Because

4 <exp <l47:lkh>>=n(g)®n(g), where g=w* and n=n,@®n_, we can apply a

Vertex-IRF transformation using Clebsh-Gordan coefficients of the group Z,.
The graph associated to the IRF model is the Dynkin diagram of the affine algebra
A" | (when n=1 the graph has only one point and two arrows: we recover the 6V
model). The non-zero matrix element of P© in this representation are:

G L
) T

Models associated to this representation of the Temperley-Lieb algebra are
models called “Z ” by Pasquier. His parameter z is equal to ¢>. The 6V model in
the regime |4] <1 renormalizes to a CFT consisting of a free compactified real
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2
boson on S! with radius r defined by —cos (% - +2q
correspond in the language of CFT to constructing the Z, orbifolds.

When g= +1 A degenerates to #SU(2), Eq.(7) reduces to [R(x),g®g]=0
VgeSU(2). As a result this equation is valid for every g in G where G is a finite
subgroup SU(2). Finite subgroups of SU(2) are known, they are the inverse image
in the mapping SU(2)—SO(3) of the celebrated crystallographics groups. Mac Kay
has found a one to one mapping between these binary groups and Dynkin
diagrams of simply laced affine algebra without torsion [McK]. Let © be the
two-dimensional representation (called natural representation) of the binary
group G coming from the inclusion G CSU(2). N(r) is the incidence matrix of an
extended Dynkin diagram, and this is a one to one mapping. IRF models
constructed via the Vertex-IRF correspondence applied to the 67 by modding out
by a subgroup G gives all models constructed by Pasquier with extended Dynkin
diagrams. These models describe the orbifolds (WZW SU(2)-level 1)/G [Gi.2,
Pa.5]. This shows in this particular case that Vertex-IRF correspondence is the
lattice analogue of the construction of orbifold models. Equality of the central
charge of Vertex model and of IRF models in general is an indication of this
conjecture. Face operators of the 6-Vertex model are R (u)=1+ue,, where u is a
positive anisotropy parameter. Let R;(u) be the face operators of the system after a

-1

. These “Z;” models

. u . . . .
rotation of 5. We have R;(u)= = R , which shows that the isotropic point is

4
2%\
obtained at u=2. Let W(i,j, k,j) (u) be the Boltzmann weights of the IRF model
obtained by the mapping 6 V-IRF using a cell system associated to the group G and

its two-dimensional representation. We must have

FOSG)
k)

W(iaj/a ka]) (u)“ By W(I’ L] >k) ( ) (9)

We obtain that:

_ 1010
F01 k)

k
From e} = ¢, we deduce that ), N;;f(j)* =2/(i)?, which implies f(i)=(dim=;)"/.

J
This proof does not use at all properties of cell systems. We can give here another
proof which uses only property U and T. If we introduce F&.(i,j, k; k’, j) defined by:

i o a
Fcc’(l:]sk:ksj)= E J J

kl ’
¢ c

where ¢, ¢ are elements of (+, —) and ¥ = — and = = +, we obtain:

W(,j, k. j)= 5,,+ ZF”U kk, 1)
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(c is any fixed element of the basis of V;). Equation (9) implies then
v . SOSG)
Fgés L lak;k, = E O; .
& P GIIRD= 707 O

It remains to calculate f. From positivity of Boltzmann weights it is sufficient to
calculate the square module of F(i,j, k,j)= Y F%°(i,j, k,k,j).

g

From Y F&8(,j,k;k,j)=0 100..F>“(i,j, k;k,j), we have

2

[FG.J' k. j)I* =

Fgei,, ks k.j)

e, &

1
)

dimm, .

Hence

Y Feilig, kK, j)?

e,

dimm|FGi.j, k= ¥

N YN

[because F(i,j', k,j) is proportional to §; ;]

= T RS kKo (Fes ) ks Kof),
k' ¢,
£1,81,€2,82

£1,€1,82,82
by,b1,b2,b%
c,c

_ dimn;  dimn; dimz;

dimn; dim7;

x dimz; =

dimzn; dimz; dimz; dimmr;,

(Sij/)l/z

i

As a result F(i,j, k,j)=6; which is the well known result.

j=1 Case. In this case expression of R(x) reads as follows:

R(x)=(1—-xq") (1 —x¢*)P? +(x—q*) (1 = xg*)PV + (x — ¢*) (x —g*)P*.
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nodd

- - Fusion —

1 2 n
1 2 n
AN re]
neven
greater than 4
1 2 n

R(x) defines a vertex model known as 19V [because R(x) has 19 non-zero matrix
elements]. This model is critical for |g|=1 and it is believed to renormalize to a
SUSY N=1 CFT [DSZ]. When g=1 it describes the WZW SU(2)-level 2 CFT.
Using the analysis of [DGH], we deduce that the 19V renormalizes to a point on
the line of the moduli space of SUSY N=1 CFT containing the point
WZW SU(2)-level 2. This is the line s—a [DGH] and the expression of the coupling
constant g is given in [DSZ]. Matrix elements of P> and P¥) have been calculated
in [Pa.2]. In this part we will discuss fusion of IRF models associated to extended
Dynkin Diagram. Mac Kay correspondence will help us to understand this fusion
process.

Let g; be the highest weight representation of spin j of #SU(2),. We have [R(x),

4nkh
(0:®0)A@]=0 VaeuSU(Q2), Let g=exp(’” ) from (o, ®0,)4(g)

=n(g)®7n(g), where n=mn,Pn,@n_,, we can proceed as in the (j=1) case. Using
the V-IRF transformation we obtain an IRF model associated to a graph ¢, we
now describe:

when n is odd, ¢, is connected and is pictured in Fig. 15,

when n is even, ¢, has two connected components, each of them is pictured in

Figs. 15 and 16

Fig. 16 having each g nodes.

When g=1, ¢; degenerates into the representation of spin j of SU(2). From
(0/®04)(8)=0;+4(8)®De;-4(g), we deduce N(g)N(es)=N(e;+3)+N(g;-;). This
recurrence equation permits us to calculate the graph associated to fused IRF
models. After one fusion the graph ¢, is defined by N(g,) and are pictured in
Figs. 16 and 17. Boltzmann weights of these IRF are obtained by a Vertex-IRF
transformation. To calculate them we prefer to use a fusion technique [KRS],
which is an inhomogeneous block spin transformation. The idea is to construct the
R™W(x) matrix in spin one representation from the R®%)(x) matrix in spin one-half
representation. More precisely let us define R(x) acting on End((V;)®") by:

R(x)=RP(xq " ))RP()RFP(X)RF (xq?).
R(x) is a solution of YBE. From R(q%)=(1—¢*P"), we see that:
R(x)P{" = PORP()RP(xqg ™ *)RP(xq*)RP(x).
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- X e

2 1

A =
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Fig. 17

ol

This proves that we can restrict this R matrix to the spin one component of V,® V.
As a result, up to a multiplicative constant, we have

RW(x)= POPYR()PHPY. (10)

The limit g goes to 1 is singular. If we put g =e*, x =e** and take the limit A goes to
1 . . 2 .

zero, R%)(x) has the limit (up to a scalar) 1 — ﬁ P, Using the Vertex-IRF

transformation in the expression (10) we obtain an IRF model associated to the
graph %, where heights (i, j, k, ) are irreducible representations of G and arrows
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(a,b, c,d) are labelled by irreducible representations of G, such that (i, a), (a,j), (j, b),
(b, k), (k, ¢), (c, D), (I,d), (d, a) are neighbours on the graph ¢,. The incidence matrix of
%, is equal to N(g,)+ 1. Although ¥, differs from ¥, by a loop to each point, the
statistical models are equal due to the projection on the spin one component.
From the definition of fusion, we have:

When written completely this is a sum of 64 terms. After reduction one ends
with only 14 terms. Finally:

w(,j, k1] a,b,c,d)
u(u—1)
w+1)m+2)

(S;8)'2
S;
(SSSS)? 2 o o (S8
S12 (u+2) a,bVb,cYc,d Sa

. u 5.5 (SaSbSl)l/z (SdSch)I/Z
(w+1)(+2) \ HIAEed g2 K

1/2
u+1<6 5“5“(3%,)

51 kéa b5c d

=5j,t5a,d5b,c+

(u+3)?
wu+1)(u+2)

5i,j5j,k5k,l

2

+ 5i,k5k,15a,b

5,8)"
+0;,10;,400.4 %)

t J

(550 S0
L = (5k 1511 béa p 5. Sk)1/2 +5j,k54,454,c W

(5.5)'" (Sde)1/2>
(5,80 (SaS)'

u—1 (S.5)'* (SbSd)1/2>
2(u+1) < 1,70k,108,4 5.5, )1/2 +0;,10;,k04,c (SiSJ-)I/z .

These models should describe (WZW level 2)/G conformal field theories. We hope
to report elsewhere the study of these models.

+0;,;6p,c0c,4 +0;,104,50%,c

An Example not Associated in Group Theory: The Cell System Connecting A,, to
E¢. In this part we prove an unexpected result: there exists a cell system
connecting 4, and E4. Moreover, existence of this cell system proves that it is
necessary to investigate cell system not connected to obvious symmetry of graphs.
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(@)
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Fig. 18

w]|

A1, E¢ and matrix C are pictured in Fig. 18.
We have solved equations U and T, the solution up to a perturbation is:

c1,21,2)=1,

CZT,2,1)=C(23,2,3)=1,
C(3,%,3,4)=C(3,2,3,2)= —C(3,4,3,6)=1,
—C(5,4,5=1,C43,4,3)=C5,6,3)=3"",

- _ 1 \/?

—C4,3,6,3)=C(4,5,4,3)= <1— ﬁ> S
C(5,4,3,6)=C(5,6,3,2)=1,
—C(5,4,5,4=C(5,6,3,4)=(2)/3-3)'?,
C(5,4,3,4=C(5,6,54=)/3-1,
C(6,7,2,1)=C(6,5,4,5)=1,
C(6,5,2,3)=C(6,7,4,3)=4(/3+ 12,
C(6,5,4,3)=—C(6,7,2,3)=3(3—/3)'2,
C(7,6,3,4)=C(7,8,3,6)=1,
C(7,8,1,2)= — C(7,6,3,2)=(2)/3-3)2,
C(7.8,3,2)=C(7,6,1,2=)/3-1,
C(8,7,2,1)=1,C(,7,6,3)=C(8,9,2,3)=3"14,

_ _ 1 1/2
—a&%@3=a&z;$=<y—vé),
C0,8,3,2)=C(9,10,3,4)= —C(9,8,3,6)=1,
C(10,9,4,3)=C(10,11,4,5) =1,

C(11,10,5,4)=1.
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It is easy to verify by direct calculation that relation S is verified only at the
critical point. (In fact we have chosen the gauge such that (S) is verified.) This shows
that E¢ models can be constructed from 4, models via a cell system. We have
verified that there exists a matrix C connecting A, to E, and 4,4 to Eg. There
should exist a cell system connecting these graphs. If so, quantum groups,
Vertex-IRF correspondence and cell system would permit us to construct all
critical CFT with ¢<1.

(It is indeed true: explicit formula for cell systems connecting 4,, to Eq, A, to
E,, and A4,, to Eg have been worked out in [DZ].)

Conclusion

In this article we have developed cell system calculus and shown that it can be
applied to lattice models construction. There are lots of questions which are still
unanswered:

Cell calculus still remains mysterious. We would like to understand it more
abstractly. It would be an important step if one could connect it with paragroups
[Oc], which are objects constructed by Ocneanu which generalize the notion of
groups, quotient of groups and quantum groups. This could permit us to
understand which graphs posess an internal symmetry.

Cell system should also be used to relate partition functions on the torus and
local height probabilities of different models. (Steps in this direction have been
done in [FG] in the case of abelian groups.)

It remains to understand why Vertex-IRF correspondence seems to be the
lattice analogue of orbifold construction in CFT. It would also be interesting but
certainly tedious to construct new models with a different representation of other
quantum groups and compare them with known CFT.

Appendix
1. Proof of Proposition 3. Relation U implies [(«, f) being fixed]:
p_ . .
Y af r T 1D =0, 0,00
. u_A *2 " [

T P_ *1 Oy 'Lz
o Y Yo, ¥ 1 Y B Y8
povanps ¥ ! B 1 2
Y " *2 [T Y
Y, a a Y,
= Z 59_,a+ =5e-,a+571,725a2,ﬂz'
a,y o
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By definition
(p(N)(Q+’ Q—) =

Ph. Roche

* _p*’ r (p+) P- *
> 1
, Zﬂ_ e . J{ ly ¥ o e e Y v (ﬂ+,ﬂ_).
E hy - r(u:) k_ o
?™ e+, 0 )Mo ,,0-)=
* 1 P+ E— " 1 ci+ 0‘_ * .
) [ ! ) (s
HBtsPh—y V4,V < > < R
"2 v, TR v, v_ 2
* 1 P+ p - * 1 o+ o _ *
= Z \ { \ V (I""+5v—)
B+ pi—yv— - > - .
Y2k, [T 1y v_ 2
"\ P+ o- i
= Z M Y (ﬂ+9v—)6g-,a+
B+,vV- -+
Y2 H, Vv _ "2
=0"™0+,0.)3, .5, =0™((0+,0-)(0+,0.).
This ends the proof of ™ algebra morphism.
2. Proof of Proposition 4. Relation T implies [(«, «') fixed]:
ai pi- p —A a'l
Z o \ \ a' Sr(u+)
H+ > - S"(Q*-)
aj ay
b Ky
= S_a2 5e+,e—5an.ai6a,a"
ay
This is done by induction on l(g. ). Indeed,
1
47 b P+ o, b Y, a .
z B | ‘Bl Sr(es)
Beoy - - -— Sries)
a, y a u+ w, a y a,
b b,
‘Yl o o 'Y S
=) a X la' 6, , —
ya ! ! e-+,e Sb
BN YN8
a a
2 2 S
=5)’1.Y'15<11,'1'159+,9—5B:ﬂ' S_az'

po) (v, vo)
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By definition,

Tr(¢p™(e+,0-))

421

1 P+ p— 'l
=TI'< Z { { (H+»H—)>
Ry
*z Ky Ko '2
'l p:_ p- *,
=X B8
M+ > -
2 “"l- u‘.q. 2

) 5.,
=ﬁ N59+,Q— S—*“ Sr(g+)=Tr(Q+=Q—)‘

*1

3. Proof of Proposition 5. We have:

U%,)= b3 * -

0,0 1 P

ag,a2,B1,B82

Hence,
* “‘:
2 >
(N), —
UG )= Y .
QO it ey Vi,V p
ay, a2, B1,B2 f _
ag00,1.85 ¥, >
u+
* K
2 -
A
Q0 et =y V4,V y 3
a1,a2, 81,82 " -
i, b, B, B2 2 >
u+
_ y L
= " -
v
ah, a5, B4, B5 2 H

(We have used relation U)
=U(%,).

VQ/
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4. Proof of Relations U, and T,. The left-hand side of relation U, is equal to:
Z (pPAe?) | @ (@B | 9 (el”)> = pPeP) | 9 (€)= 05,10, pr b5

which proves relation U,.
Consider the map y: V-V, defined by:

Plu)= B% (@B (")) LopP(e) [u@BHel® .
v is an intertwiner. Indeed,
p(mg)u) = Z @B 9 () o) | {Qu® el
= MZ‘ @B o)) (m@m) (8™ o e”) | u@n(g ™ )B)el”
= Z (g™ et @n(g ™ B e @n(g ™ Nplf(e)

X (@) (g~ YoeD) (g™ )Byels”
= T (g™ e @l B 1ol nfe e

X <<P“”(7r,(g‘ Ne?) lu@m(g™")BYel”
Z @B | 9 (e)) PPl |u@ By (g)el) = m(g)y(u).

Consequently, 1f i=%i' then p=0 and if i=i" then y is a € number. We get
gb e @B o e)) <piPe) | e ®BY=Ap, P, 1, )4, 1O, a -
When i'=i and a’'=a, we have
Z (@B | (e)) <pPAeP) | 6@ B> = Ap, P, 1,j) dim(m).
The left-hand side of this last equation is equal to
; (P | 9 () =0, dim()).

This proves relation Tj.
Proof of Vertex-IRF Correspondence. The right-hand side of (V-IRF) is equal to:

Z <¢‘”"(e‘b’)|e‘”’®ﬁ > <% | 6@ B By ®B,IRlt; @ty
= Z <(<p"’"®1)<p5"2’(e‘“))I<P“’"(e"”)®ﬁz>
X <<P“’"(e"”) | @B, ) {B1 @B,IRley @0ty .

Introducing the projector
P(if'”)_ Z |(p("‘)(e(b))> ((p(”‘)(e(b))l ,

the last expression is equal to:

Z (P& R@1)p% ) | (PEYR1) | @B ® B2 By @B, IRty @aty >
= <(<p‘“’®1)<p‘“’(e‘“’)|1 ®RleP®@0; @ty .
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The left-hand side of equation (V-IRF) is equal to:

u=

u=

Y Ao ®)efe?) 1®Ru),

J’'sp1,p2,b

Z ((p(m) ® 1)<p“’2)(e(‘)) <q,(p1)(e(b )) | e(a) ®a,) ((p(p”(e(‘)) [ e§!g’)®a2> ,

J'sP1,p2, b’
T @ @eE) (@ @0 o ()@
J'sP1,P2,s
RCRACHIELLIY
S (@5 @Defe) (B Nl e) | PE®1 | ®ot; ®0)

J'sp1, P2

=P ®; Q,),

where P, is the projector defined by

Pe= T (@ @Defe)) (@f @ Do)

J'sp1, P2

The reader will verify that [R, ®n(g)] =0 Vg e G implies [P.,1®R]=0. Conse-
quently the left-hand side of equation (V-IRF) is equal to:

(@' @NeE e [ I®RP, | e @0ty @2t
=@ ®D)pEef?) IPAQR) | e’ @0, @21, )
=@ @N)eF ) [1®R) [ @0, @01, .

This ends the proof of the Vertex-IRF correspondence.
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