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Abstract. The generalization of Jones polynomial of links to the case of graphs
in R3 is presented. It is constructed as the functor from the category of graphs to
the category of representations of the quantum group.

1. Introduction

The present paper is intended to generalize the Jones polynomial of links and the
related Jones-Conway and Kauffman polynomials to the case of graphs in R3.

Originally the Jones polynomial was defined for links of circles in R3 via an
astonishing use of von Neumann algebras (see [Jo]). Later on it was understood
that this and related polynomials may be constructed using the quantum
K-matrices (see, for instance, [TuJ). This approach enables one to construct
similar invariants for coloured links, i.e. links each of whose components is
provided with a module over a fixed algebra (see [ReJ, where the role of the
algebra is played by the quantized universal enveloping algebra Uq(G) of a
semisimple Lie algebra G).

The Jones polynomial has been also generalized in another direction: in
generalization of links of circles one considers the so-called tangles which are links
of circles and segments in the 3-ball, where it is assumed that ends of segments lie
on the boundary of the ball. Technically it is convenient to replace the ball by the
strip R2 x [0,1], which enables one to distinguish the top and bottom endpoints of
the tangle. The corresponding "Jones polynomial" of a coloured tanlge is a linear
operator V1®...®Vk-^V1®...®V€ where Vί,...,Vk (respectively Vι®...®V*)
are the modules associated with the segments incident to bottom (respectively top)
endpoints of the tangle. Here the language of categories turns out to be very
fruitful. The tangles considered up to isotopy are treated as morphisms of the
"category of tangles." The generalized Jones polynomial is a covariant functor
from this category to the category of modules (see [Tu2, Re2])

Definitions of Jones-type polynomials for embedded graphs in R3 have been
given by several authors [KV, Ye] but the subject still remains open. It was clear
from the very beginning that the graph should be provided with thickening, i.e.
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with a surface containing the graph and contracting to it (cf. Sect. 4). Another
related problem is what should be understood by colours of the vertices.

The theory of the Jones-type polynomials has proved to be closely related to
the conformal field theories [KT, Wi]. In this connection one should mention
Witten's paper [Wi], where it is shown that the Jones polynomial and its
generalizations are related to the topological Chern-Simons action.

In the present paper we introduce the so-called coloured ribbon graphs in
R2 x [0,1] and define for them Jones-type isotopy invariants. Ribboness means
that the role of vertices of graphs is played by small plane squares with two
distinguished opposite bases, the role of edges is played by thin strips (or bands)
whose short bases are glued either to distinguished bases of the squares or to

Our approach to colouring is based on the DrinfeΓd notion of a quasitrian-
gular Hopf algebra (see [Dr, RS, Re2]). For each quasitriangular Hopf algebra A
we define ^-coloured (ribbon) graphs. The colour of an edge is an yl-module. The
colour of a vertex is an v4-linear homomorphism intertwining the modules which
correspond to edges incident to this vertex. The category of an ^.-coloured ribbon
graph happens to be a compact braided strict monoidal category in the sense of
[JS].

If A satisfies a minor additional condition, then we construct a canonical
covariant functor from the category of ,4-coloured ribbon graphs into the category
of y4-modules. In the case A = Uq(sl2) this functor generalizes the Jones polynomial
of links.

We would like to emphasize that coloured ribbon graphs are not merely
topological objects but rather mixed objects of topology and representation
theory. For some algebras a purely combinatorial description of ^4-modules and
^4-homomorphisms is available (via Young tableaux, Young diagrams, etc.). Note
also that for 3-valent graphs the colours of vertices are nothing else but the
Clebsch-Gordan projectors and their linear combinations (cf. Sect. 7.2).

Plan of the Paper. In Sect. 2 we recall the notion of a braided monoidal category
and related notions. In Sect. 3 we discuss quasitriangular and ribbon Hopf
algebras. In Sect. 4 we introduce yl-coloured ribbon graphs. In Sect. 5 we state and
prove our main theorem on the functor from the category of graphs in the category
of modules. In Sect. 6 we collect some applications and variations of the theorem.
Section 7 is concerned with examples and further comments on the theorem.

2. Compact Braided Categories

2.1. Monoidal Categories (see [Ma, JS]). A monoidal category C = (Co, ®, /, α, r, ί)
consists of a category Co, a covariant functor (the tensor product)
® : Co x Co-+Co, an object / of Co, and natural isomorphisms

= rv:V®I-*V,
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(where U,V,W are arbitrary objects of Co) so that the following two diagrams
commute:

(U®V)®(W®X)

U®(V®(W®X)) (2.1.1)

(U®(V®W))®X —

r*i\ /Λ®, (2.1.2)
U®V

The diagram (2.1.1) is called the pentagon for associativity and the diagram
(2.1.2) is called the triangle for identities. C is called strift if each auvw, rv, (v is an
identity morphism in C.

A braiding for C consists of a natural family of isomorphisms

c = cuv:U®V->V®U

in C such that the following two diagrams commute:

U®(V®W) —U (F® W)® U

y x
(U®V)®W V®(W®U), (2.1.3)

c 0 1 \ x 1 ^

{V®U)®W—a-^ V®(U®W)

(U®V)®W - ^ W®(U®V)

U®(V®W) (W®U)®V. (2.1.4)

U®(W® V) - ^ (C/®PF)® F

As noted in [JS] (2.1.4) amounts to (2.1.3) with cuv replaced by e^J. A monoidal
category together with a braiding is called a braided monoidal category. Below (in
Sects. 3 and 4) we give two fundamental examples of braided categories; for further
examples see [JS].

We call a monoidal category C compact if for all objects F there exists an object
F* and arrows ev: F® F*->7, nv: 7-> F*® F such that the following composites
are identity morphisms:

g) F) -̂ —* (F® F*)® F -^U I® V —e—> V,

F* -^-U 7® F* - ^ (V*®1^)® F* —^> F*®(F® F*) - ^ > F*®7 r > F*.

Remark that we do not require F** = F
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2.2. Functors of Monoidal Categories. Let C, C be two compact braided strict
monoidal categories. Recall that a covariant functor F:C-+C associates with each
object (respectively morphism) X of C an object (respectively morphism) F{X) of C
so that F(idx) = idF{X) for any XeOb(C) and F(fog) = F(f)<>F(g) for any two
morphisms g:U-+V,f: V-* W of C. We say that F preserves the tensor product if
F(Ic) = Iσ and for any two objects (respectively morphisms X, Y of C F(X®Y)
= F(X)®F(Y). We say that F preserves braiding if F(cuv) = cF{U)F{V) for any two
objects U, V of C. We say that F commutes with the compact structures if one can
associate with each object V of C an isomorphism Vv: (F(V))*-+F(V*) so that F(nv)
= (Vv®idF{V)) o nF{V) a n d eF(V) = F(ev) ° (idΓ(K)(g> FF).

2.3. Strict Extension of Monoidal Categories. Each monoidal category C is
equivalent to a strict monoidal category CD (cf. [Ma]). The objects of CΏ are finite
sequences Vl9...9Vk (including the empty sequence 0) of objects of C. The
morphisms from (Vl9..., Vk) into (Wl9..., W€) are just C-morphisms

(Here if k = 0 then Fx ®... <g) Fk = /). The tensor product in CD is defined for objects
by the rule

and for morphisms by the evident application of the tensor product in C. It is easy
to check that Cπ is a strict monoidal category with /D = 0.

There are two natural co variant functors relating C and Cπ: the inclusion
z: C-+Cπ and the projection p:Cπ-*C. The inclusion i sends VeOb{C) into the
1 -term sequence V and sends f:V->W into the same morphism / considered in the
category CD. The projection p transforms each object (Vu..., Vk) of Cπ into
(.. .(Fi® F2)®... (x) Vk_ x)® Fk and transforms each morphism of CD in its obvious
counterpart in C. Clearly, p o i = idc. Both i and p are equivalences of categories.
(Recall that a co variant functor G: C-*C is called an equivalence of categories C,
C if for any objects V9WofC,G maps Mor/(K W) bijectively onto Mor f{G{V\
G{W)) and each object of C is isomorphic to G(V) for someFeOί?(C).

Speaking non-formally one may say that Cπ has the same morphisms as C but
more objects: each decomposition V=(...(Vί®V2)®.. ®Vk-ί)®Vk of VeOb(C)
gives rise to an object (Vl9 ...,Vk) of Cα .

It is not difficult to show that each braiding in C (respectively a compact
structure in C) extends naturally to a braiding (respectively a compact structure) in
Cπ. In particular, (Vl9..., Fk)* = (Fk*,..., Vf).

3. Quasίtriangular and Ribbon Hopf Algebras

3Λ. Quasitriangular Hopf Algebras (see [Dr]). Let A be a Hopf algebra with the
comultiplication zl, counit ε and antipodal mapping s. Let R be an invertible
element of A®2 = A®A. Denote the permutation homomorphism
a®b\—>b®a: A®A-^A®A by P. The pair (A, R) is called a quasitriangular Hopf
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algebra if for any a e A,

Δ'(a) = RΔ(a)R-\ (3.1.1)

(Δ®idA)(R) = R13R23, (3.1.2)

(idA®A)(R) = R13R12. (3.1.3)

Here A' = ?oA, R12 = R®1 eA®3, R13 = (id®P)(Rl2% R23 = 1®R. Note that if R

is a (finite) sum £ α, ®/?f with αί? j8f e 4, then i^ x 2 = £ α f ®ft® 1, Kj 3 = Y αt ® 1 ® ft,

The element # is called the universal iΐ-matrix of A. This element satisfies the
Yang-Baxter equation

#12^13^23 =^23^13^12 (3.1.4)

Indeed, it follows from (3.1.1) and (3.1.2) that

Let us note the following important equalities:

(ε®id)(£) = (id(χ)ε)(#) = l , (3.1.5)

(s®id) (R) = ( id® s~1)(R) = R-1, (3.1.6)

(s®s)(R) = R. (3.1.7)

Indeed, from the axiom of counit we have (ε(x)id)zl=id = (id(x)ε)A Therefore

R = (ε® id® id) (A ® id) (R) = (ε® id® id) {Rt 3R23) = (ε® id) (R) R,

Since R is invertible, these equalities imply (3.1.5). To prove (3.1.6) note that if
m: A® A-+A is the algebra multiplication then the axiom of antipode states that

m(s® id) (Δ(a)) = m(id® 5) (Δ(a)) = ε(a)ίA (3.1.8)

for any ae A. Put m 1 2 = m®id: A®*->A®2 and m 2 3 = id®m: A®3->A®2. We have

m12((s® id® id) (A ® id) (£)) = (ε® id) {R) = 1,

(Note that s~x and 5 are antiautomorphism of A) On the other hand (3.1.2, 3.1.3)
imply that

m12((s® id® id) (A ® id) (R)) = (5® id) (R) R, (3.1.9)
1 (3.1.10)

Clearly, (3.19), (3.1.10) imply (3.1.6). Also, (3.1.6) implies (3.1.7).

With each quasitriangular Hopf algebra (A9 R) we associate the element u = uA

= £ s{β^c/Lb where as above R=Yuai®βi. This element is invertible and satisfies the
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following identities (see [Dr]):

s2(a) = uau~ι for all aeA, (3.1.11)

us(u) e (centre of A), (3.1.12)

Rί2Γ
1, (3.1.13)

(3.1.14)

Remark. One may more generally define topological quasitriangular Hopf
algebras so that the comultiplication A takes values not in A® A but rather in its
certain completion A® A. One also has to assume that R e A® A. The properties of
quasitriangular Hopf algebras mentioned above may be extended to the
topological case (cf. [Dr]).

3.2. Category Rep A With each algebra A one associates the category Rep>4 of its
finite dimensional linear representations. The objects of Rep A are left ^4-modules
finitely generated over the ground field. The morphisms of Rep,4 are ^-linear
homomorphisms. Note that the action of A in ^4-module V induces an algebra
homomorphism A^EndV, denoted by ρv.

Let {A,R) be a quasitriangular Hopf algebra. We shall provide Rep A with a
structure of compact braided monoidal category. The comultiplication A in A
induces the tensor product in Rep A: for objects V, W their tensor product is the
ordinary tensor product V® W of vector spaces equipped with the (left) ̂ 4-action
by the formula ρv®w(a)= (Qv®Qw) (^(α)) f°r a e A. The unit object / of Rep A is the
ground field equipped with the action of A by means of the counit of A. The
homomorphisms a, r, t (see Sect. 2.1) are given respectively by the formulas
(x®y)®z\-^x®(y®z\ x®j\-+jx, j®x\->jx. Thus Rep A is a monoidal category.

It follows from (3.1.1) that for any ^-modules V, W the mapping

cv W = PV>Wo(Qv®Qw){R):V®W-+W®V,

where P is the permutation homomorphism x®y\-^y®x, is an yl-linear homo-
morphism, i.e. a morphism of Rep A. The formulas (3.1.2), (3.1.3) imply the
commutativity of the diagrams (2.1.3), (2.1.4) so that Rep^4 becomes a braided
monoidal category.

For any ^-module V we provide the dual linear space F v with the (left) action of
A by the formula

(3.2.1)

for a G A. Denote by ev the canonical pairing (x, y)*-*y(x): V® FV->I. Denote by nv

the homomorphism I-+V*®V which sends 1 into Y^eι®eb where {et} is an
i

arbitrary basis in V and {e1} is the dual basis in Fv. It is easy to deduce from
definitions that ev, nv are ̂ [-linear and that the conditions of the compact category
are fulfilled.

Therefore, Rep ,4 is a compact braided monoidal category. Its strict extension
(Repyl)D will be denoted by ReρD(^4).

Remark. All objects of Rep A are reflexive up to a canonical isomorphism. Indeed,
QVw{a) = ρv(s2{a)) = uvρv(a)uv S where we have identified the vector spaces F w and
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V and where uv = ρv(u). Therefore, the composition of the canonical identification
K W -»F and the homomorphism x^Uγ1x\ V-*V is an ,4-isomorphism.

3.3. Ribbon Hopf Algebras. Let (A, R) be a quasitriangular Hopf algebra with the
comultiplication A, counit ε and antipode s. Put u = uAeA. We call the triple (A,R,
a central element v e A) a ribbon Hopf algebra if

v2 = us(u), s(v) = v, ε(v) = l, (3.3.1)

= (R2lRί2y
1(v®v), (3.3.2)

where R12 = R and R21 = Perm(Λ). Since u is invertible, ι> is also invertible in A.
There exist quasitriangular Hopf algebras which do not contain v as above. Iff

exists it may be non-unique. To describe non-uniqueness of v we define the abelian
group E(A)CA consisting of central elements EeA such that

£ 2 = 1, s(£) = £ , e(£) = l , J(£) = £ ® £ . (3.3.3)

It is obvious that for any ribbon Hopf algebra (A,R,v) and any EeA the triple
{A, R, Ev) is a ribbon Hopf algebra iff E e E(A).

Each quasitriangular Hopf algebra (A9 R) canonically extends to a ribbon Hopf
algebra (Ά,R, v). Namely, let Ά be the module whose elements are formal
expressions a + bv with a.beA. We provide A with the Hopf algebra structure by
the formulas

(α + bv) {af + Vυ) = (ad + bb'us(u)) + (ab' + ba')v,

5(α + bv) = s(a) + s(fe)t?, ε(a + όι;) = ε(a

We identify A with a subset of A by the formula a = a + 0v. Clearly, Re A® A
CA®A.

3.4. Theorem. (A, R, v) is a ribbon Hopf algebra containing A as a Hopf subalgebra.

Proof. The equalities (3.1.1-3.1.3,3.3.1,3.3.2) follow directly from definitions. Thus
we have to check only the axioms of Hopf algebra for A. The associativity of A
follows from (3.1.12). Clearly, υ e (centre of A). Let us show that Δ : A-+A®A is an
algebra homomorphism. It follows from (3.1.1) that for any aeA,

Since s is a coalgebra antihomomorphism,

A(s{u)) = Perm((s(x) s) (Δ(u))) = (s(u)®s(u)) (s®s) (R2iRι2)~i

= (s(u)®s(u))(R21R12)~i.

[The last equality follows from (3.1.7).] Therefore,

Δ(us(u)) = (R21Rί2)-\us(u)®us(u))(R2ίR12)-^

Now we can prove that for any a, b, a\ b'eA,

Δ((a + bv) {af + Vv)) = Δ(a + bv)A{d + b'v).
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Indeed

= Δ{aa' + bb'us(u)) + A(ab' + baf) {R2ιRl2)~ \v® v)

= A(aa') + A(bb')(R21R12y
2(us(u)®us(u))

+ A(abf){R21R12y
ί(v(S)υ) + A(b)(R2ίRί2y

ι(v®v)A(af)

= A(a)A(af) + A{b)(R2ίR12)-\v®v)A(b')(R21R12y
1(v®υ)

+ A{ά)A{b'υ) + A{bv)A{a') = A(a + bv)A(d + b'v).

The counit axiom for A follows from (3.1.5). It is easy to verify (using 3.1.11) and the
fact that the antipode of A is an antiautomorphism of the algebra structure) that s
is an antiautomorphism of A. Therefore, to check the axiom of antipode (3.1.8) it
suffices to consider the case a = υ. Let R=Σai®βi. In view of (3.1.6) R^2

— Σ 5(αi)® βi a n d Rϊi = Σ βj®s(&j) Therefore,
i

Σ
i

m(id®s) (A(v)) = m(id®s) ((R^R^1) (v®v) = v2 £ s(αi)i8>s2(αJ.)s(iSi)

= v2u -ίs(u-ί) = v2(s(u)u) ~ι = v2(us(u)) -x = 1.

Here we have used (3.1.11) and (3.1.14). A similar argument shows that

m(s®id)(A(v)) = l. Here one should use the equalities Σs2((χi)βi = s(u~1) (which

follows from 3.1.7 and 3.1.14) and υ2 Σ sfew" ^ ^ = 1 (which follows from 3.1.11).
i

3.5. Remark. If (A, R, w) is a ribbon Hopf algebra then w e A C A, so that v = Ew for
some EsA, E + l. In view of (3.3.3) E generates a two-dimensional Hopf
subalgebra, say, E of A with the basis {1, E}. Clearly, A — A® E in the class of Hopf
algebras.

4. Coloured Ribbon Graphs

4.1. Bands and Annuli. A band is the image of the square [0,1] x [0,1] under its
(smooth) imbedding in R3. The images of the segments [0,1] x 0 and [0,1] x 1
under this imbedding are called bases of the band. The image of the segment (1/2)
x [0,1] is called the core of the band.

An annulus is the image of the cylinder S1 x [0,1] under an imbedding in R3.
The image of the circle S1 x (1/2) under this imbedding is called the core of the
annulus.

4.2. Ribbon Graphs. Let fc, £ be non-negative integers. A ribbon (fc,/)-graph is an
oriented surface S imbedded in R2 x [0,1] and decomposed as the union of finite
collection of bands and annuli, each band being provided with a "type" 1 or 2, so
that the following conditions hold:

(a) annuli do not meet each other and do not meet bands;
(b) bands of the same type never meet each other;
(c) bands of different types may meet only in the points of their bases;
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(d) <S meets R2x{0,1} exactly in bases of certain type 2 bands and the
collection of these bases is the collection of segments

(e) the remaining bases of type 2 bands are contained in the bases of type 1
bands.

The surface S is called the surface of the graph. The type 1 bands are called
coupons, the type 2 bands are called ribbons. Those ribbons which are incident to
the segments (4.2.1) are called border ribbons. Some examples of ribbon graphs are
given in Figs. 1-3.

Note that the choice of orientation for S is equivalent to a choice of one side of
S. The chosen side will be depicted white, the opposite side will be shaded. Note
that when we rotate an annulus around its core to the angle 180° we get the same
annulus with the opposite orientation. Thus, orientations of annuli are insignifi-
cant when one considers ribbon graphs up to isotopy (see Sect. 4.3).

Fig. 1

w— l w i w V

Fig. 2

^v.w ~ ̂ v,w

V,.ε

Fig. 3 7i 7ί
Kw Kw
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A ribbon graph is called homogeneous if in a neighbor hood of the segments
(4.2.1) the white side of the graph surface is turned upwards (i.e. to the reader). For
instance, the graphs in Figs. 1 and 2 are homogeneous, and those in Fig. 3 are not
homogeneous.

4.3. Directed Graphs. A ribbon graph is called directed if the cores of its bands and
annuli are provided with directions. Note that the directed core of a band leads
from one base to another one. The former base of the band is called initial, the
latter one is called final.

Two directed ribbon graphs Γ, Γ are called isotopic if there exists a (smooth)
isotopy ht:R

2x [0,1] -*R2 x [0,1] of the identity mapping ho=id so that each ht is
a self-diffeomorphism of R2 x [0,1] fixing the boundary pointwise, and hί

transforms Γ onto Γ preserving the decomposition into coupons, ribbons and
annuli, and preserving the directions of cores and the orientation of the graph
surface. Isotopy is clearly an equivalence relation.

With each directed ribbon (/c,/)-graph Γ we associate two sequences
εx(Γ%..., εk(Γ) and ε\Γ% ..., ε\Γ) consisting of ± 1. Here ε^Γ) = — 1 if the segment
[i —(1/4), i + (l/4)] x 0 x 0 is the initial base of the incident ribbon, and εf(Γ) = +1
otherwise. Similarly, εj(Γ)= - 1 if the segment Q/—(1/4), j + (l/4)] xOx 1 is the
final base of the incident ribbon and εj(Γ) = 1 otherwise.

Let Q be a coupon of a directed ribbon graph Γ. Denote by a = a(Q)
(respectively by b = b(Q)) the number of ribbons of Γ incident to the initial
(respectively final) base of Q. A small neighborhood of Q in R2 x (0,1) looks as in
Fig. 4 where we assue that the white side of Q is turned upwards. Denote the
ribbons of Γ incident to Q by B\Q\ ...,Ba(Q) and B1(Q),...,Bb(Q) in the order
shown in Fig. 4. The directions of B\ Bj are characterized by numbers ει(Q),
εj{Q)e {X ~ 1} Namely, ε\Q) = — 1 if the base of B* depicted in Fig. 4 is its initial
base; otherwise ει(Q) = 1. Similarly, εfQ) = — 1 if the base of Bj depicted in Fig. 4 is
its final base; otherwise ε7{Q) = l.

Fig. 4

4.4. Colourings of Ribbon Graphs. Fix a Hopf algebra A. Denote by Λ=Λ(A) the
class of v4-modules of finite dimension over the ground field. Denote by N = N(A)
the class of finite sequences {V^ε^}, ...9(Vk,εk) where Vl9...,VkeΛ and ε1?...,εfc

= ± 1 . With such a sequence η = ({V1,ε1\...,(Fk,εk)) we associate the ^-module
V(η) = VI1 <g>... (x) Vk

ε\ where Vι = V,V~ι = V^, the tensor product is taken over the
ground field, and the ̂ 4-module structure in V(η) is determined by the comulti-
plication in A.

A colouring (or an ̂ 4-colouring) of a directed ribbon graph Γ is a mapping λ
which associates with each ribbon B of Γ its "colour" λ(B)eΛ and associates with
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each coupon Q of Γ its "colour" λ(Q)eΐίomA(V(η), V(η% where

η=((λiB.iQ)), £ l (0 ) , . . . , (λ(Bb(Q)l

η' = ((λ(B\Q)),ει(

There is a natural isotopy relation in the class of coloured directed ribbon
graphs, defined as in Sect. 4.3 with the additional condition of preservation of
colouring. By a CDR-graph we shall mean a coloured directed ribbon graph
considered up to isotopy. By a HCDR-graph we shall mean a homogeneous CDR-
graph (see Sect. 4.2).

Some examples of CDR-graphs and the notation for these graphs are presented
in Figs. 2 and 3. The homogeneous (k, /)-graph with one coupon of colour /
presented in Fig. 2 will be denoted by Γ(f,η,ηf); here η = ((Vί,εί), ...,(Vk,εk))eN,
η' = ((V1,ε1),...,(V/f,ε'))eN, where Vb Vj are the colours of the corresponding
ribbons and εb εj are directions of their cores: +1 means down, —1 means up.

4.5. Category HCDR(^l). Let A be a Hopf algebra. We define the category of
homogeneous ^-coloured directed ribbon graphs <# = HCDR(^4). Its objects are
elements of N(Λ) (see Sect. 4.4). If η, ηf EN(A) then a morphism η-±η' is a HCDR-
graph such that the sequence of colours λ and directions ε of the top (respectively
bottom) border ribbons is equal to ηf (respectively η). The composition ΓΌΓ of two
such morphisms Γ:η-*η\ Γ':η'-+η" is defined as follows: shift Γ by the vector
(0,0,1) into R2 x [1,2]; glue the bottom ends of Γ with the top ends of Γ (this
glueing preserves colours and directions of ribbons since they are determined by
η')\ reduce twice the size along the line OxOxΛ. This gives a well-defined
composition law for morphisms. The identity morphism η-+η'ιs the HCDR-graph
consisting of plane rectangular ribbons whose directions and colouring are
determined by η.

We provide Jf with the tensor product (g): Jί? x Jf -• 2tf as follows. The tensor
product of objects ((Vί9 βj,..., (Vk, εk)) and ((Wί9 vj,..., {Wg9 v̂ )) is their conjuction

The tensor product of two morphisms (i.e. graphs) Γ, Γ is obtained by positioning
Γ to the right of Γ so that there is no mutual linking or intersection (see Fig. 5). It is
obvious that #? is strict monoidal. [Here / e N(A) is the empty sequence, idj is the
empty graph.]

Fig.5 lr»r'l = 0 \r]

The category Jf is provided with a natural braiding

(see Sect. 2.1). We take the HCDR-graphs representing Ίάψ idθ and form the
HCDR-graph cηθ as in Fig. 6. (This idea is borrowed from [JS].) It is a pleasant
exercise for the reader to check that we do have a braiding.

Finally, we provide Jtf with a structure of a compact category. For an object
η = ((Vί,ε1l...,(Vk,εk)) put η* = ((Vk, -εk% (F f c_1 ? -εk_,\ . . .,(F 1 ? - β j ) . The con-
struction of the homomorphisms eη, nη should be clear from Fig. 7.
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Fig. 6

Fig. 7

4.6. Theorem. $? = HCDR(^4) is a compact braided strict monoidal category.

Proof. Obvious.

We may similarly introduce the category CDR(yl) of CDR-graphs. In contrast
to HCDR(^) the objects of CDR(v4) are sequences (Vl9 εl9 v j , ..., (Vk, εh9 vk), where
Vί9...9VkE Λ(A) and εi9 vf = ± 1. The numbers {vf} are responsible for the up/down
position of the white side of the border ribbons near the border segments.
Theorem 4.6 may be easily extended to the case of CDR(A).

5. The Main Theorem

5.1. Theorem. Let (A, R, v) be a ribbon Hopf algebra over the field I. There exists a
unique covariant functor F = FA:HCDR(A)^RQpπA which has the following
properties:

(i) F preserves the tensor product;
(ii) For any A-module V of finite dimension over I the functor F transforms the

object (V,ε) into V\ where Vί = V andV~1 = F v ;
(iii) F transforms the CDR-graphs r\v, >r\v, XViW (see Fig. 2) respectively in

the canonical pairing

in the pairing

and in the homomorphism

where

(5.1.1)

(5.1.2)

(5.1.3)
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(iv) F transforms each CΌR-graph Γ(f η, ηr) (see Fig. 2) into the homomor-
phism f:V{η)-+V{η') (cf Sect. 4A.).

Note that according to (i, ii) F transforms each object (Vuε1%...,(Vk,εk) of
HCΌR(A) into the object Vf1,..., Vk

£k of RepD A. The action of F on morphisms of
HCDR(^) (i.e. on HCDR-graphs) is more subtle. Using the identities F(Γ o Γ)
= F(Γ)oF(Γ) and F{Γ<g)Γ') = F(Γ)®F(Γ) one reduces the calculation of F(Γ) to
"building blocks" of Γ. Roughly speaking, the functor F associates with local
maximums of ribbons the homomorphisms 5.1.1, 5.1.2; with positive crossings of
ribbons where the ribbons are directed downwards F associates the action 5.1.3 of
R, and with coupons F associates their colours. Theorem 5.1 implies that these
assignments are consistent and give a well-defined isotopy invariant for each
HCDR-graph Γ.

Let us show how to compute the value of F for the graphs KJV, \JV. Since /F, Iγ
are identity morphisms, F(I v) = idv, F(Iγ) = idv . It is easy to deduce from the
equality (r\v®Iv)°(Iv®^ι) = Iv that F(\^v) is the homomorphism 7->F(x)Fv

which transforms 1 into £ e{®e\ where {e^ is a basis in Fand {e1} is the dual basis
ΐ

in F v. Similarly, F{\JV) is the homomorphism /-> Fv(g) V which transforms 1 into
y£je

ι®u~1υei.
i

It follows easily from Theorem 5.1 and definitions that the functor F preserves
braiding. The composition of F and the functor of forgetting the ,4-linear structure
may be shown to commute with the compact structure (here for X = ((Vί,εί),
...,(Fk,εfc)) the isomorphism VV:(F(X))*-+F(X*) is the tensor product of isomor-
phisms (Fε)v->F~ε, where for ε= — 1 F W ->F is the (non ^4-linear) canonical
identification, and for ε = l FN'->FV is the multiplication by v~ιu).

To prove Theorem 5.1 we need the notion of generators of HCDR(^4). We say
that certain HCDR-graphs {Xj generate HCDR(^) if each HCDR-graph may be
obtained from {Xt} and {Iv, Iγ}veΛ(A) using composition o and tensor product ®.
This notion is very similar to the notion of generators of a group.

5.2. Lemma. The graphs {r\V9 ^>κ, >r\v, ^Jv, Xv w, Xγ W\V, WGA(A)} and
{Γ{f^η')\η, rfeN(A\ feHomA(V(η\ V(η'))} generate HCDRμ).

This lemma follows from the obvious fact that each graph (considered up to
isotopy) may be drawn so that it lies in a standard position with respect to some
square lattice in the plane of the picture. The words "standard position" mean that
in each square of the lattice the picture looks as in Fig. 2.

Following the lines of group theory we may consider relations between
generators. The following lemma provides us with a "generating set" of relations
which meansn that all possible relations between our generators follow from the
given ones. We shall present the relations in a pictorial form.

5.3. Lemma. Figure 8 presents a generating set of relations for the generators of
HCDR(^) given by Lemma 5.2.

Note that all the relations Rel1-Rel13 of Fig. 8 may be written purely
algebraically. For example, the first relation Relx means that
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Rel7

ReL

ReL
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Fig. 8

Rel«

The main point in the proof of Lemma 5.3 is to show that if two isotropic
graphs are expressed via our generators then these two expressions are equivalent
modulo our relations. In the case of graphs with no coupons this is known (see
[FY, Tu2]). To handle coupons note that each graph may be positioned so that all
coupons are parallel to the plane of the page. This condition may be violated in the
course of isotopy. However we may always assume that in the course of isotopy
each coupon moves as a solid rectangle. Thus isotopy of a coupon gives rise to a
path in SO(3) starting in 1 and finishing in SO(2) (since in the end all coupons are
again parallel to the fixed plane). All such paths may be deformed to SO(2). This
enables one to change isotopy so that in its course all coupons are always parallel
to the plane of the page. Now it is easy to see that in a neighbourhood of a coupon
such isotopy changes the picture as in Fig. 8, Relx i-Re^ 3. This implies Lemma 5.3.

5.4. Proof of Theorem 5.1. Uniqueness of F follows from Lemma 5.2. Indeed, the
values of F on n*v, <~\v, Cv w, Γ(f9 η, η') are given in (iii, iv); the values of F on \^v,
\jv are computable from the relations Re^-Re^ (cf. the remark in Sect. 5.1);
finally, because of relation Rel5, Rel6 F(Xγ W) = (F(XW v))~ι. Thus we know F for
generators. This implies uniqueness.

To prove existence it suffices to check that our operators F for generators
satisfy all the relations of Lemma 5.3. Relj-Re^ are straightforward. Rel7 follows
from (3.1.4). Let us prove Rel8. Let

Set

φ± =(
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The operator counterpart of Rel8 states that φ ~ o φ + = idF. We shall prove that φ ±

is the multiplication by υ± x. This would imply Rel8. Let {βj} be a basis of K A direct
computation shows that

and

We have

= v.

To prove the equalities corresponding to Rel9, Rel10 fix bases {et}, {f3)
respectively inV,W and dual bases {e1}, {fj} respectively in F v and W. The left-
hand side of Rel9 gives rise to an operator ψ: Fv(x) W^> F v® W which is computed
to act as follows:

j)= Σ
k S , q

ek(s2(aq)e,)-ei(s(ap)ey®(βίlβp)(fj)Σ
k,S,p,q

The last equality follows from the fact that

Σ s(ocp)s2(aq)®βqβp = (s®id) ((s®id) (Λ) Λ) = 1.

Thus φ = id which proves the operator version of Rel9. Similarly, the operator
ψf: V® W^> V® W corresponding to the right-hand side of Rel10 is the identity:

)= Σ f\s{«q)feYf\s2{qp
k,ί,p,q

= Σ fJ(s2^P)s(aq)fMβqβP)(eι)®f=ei®fJ.
P,q,t

The operator counterparts of Rel l l 5 Rel12 follow directly from the assumption
that the colour of the coupon is ^4-linear.

Let us check the operator equality corresponding to Rel13. Fix a bases {et} in
Vι®...®Vb and a bases {/)•} mW1®...®Wa. The operator

corresponding to the left-hand side of Rel13 acts as follows:

θ(ej)= Σ e \ u - ι υ e '
jk

Here we have used our assumption that the colour / of the coupon is ^-linear.
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6. Applications and Generalizations of Theorem 5.1

6.1. Isotopy Invariants of Coloured Links. A link in R3 is a finite set of disjoint
oriented smooth circles imbedded in R3. The circles are called the components of
the link. Fix a ribbon Hopf algebra A. An ^4-colouring of the link is a function
associating with each component an ̂ 4-module of finite dimension over the ground
field. A link is called framed if each component is provided with an integer. As
usual, one introduces the isotopy relation for coloured framed links [Re2].

Each framed link L determines a ribbon (0,0)-graph ΓL, consisting of several
annuli. Namely, let L l 5 ...,Lfe be the components of L and let m1? ...,mk be the
associated integers. Let A{ be theannulus in R3 with the oriented core Lt and such
that the linking number of two circles making dAt is equal to mv Assume that the

annuli A1,...,Ak are disjoint. Compressing (J A{ into R2 x (0,1) we get the desired

ribbon (0,0)-graph ΓL. Each colouring of L gives rise to a colouring of ΓL in the
obvious fashion. The formula L\->ΓL defines a bijective correspondence between
the isotopy types of coloured framed links and the isotopy types of HCDR-graphs
which consist of annuli.

Note that for an arbitrary HCDR-graph Γ which has zero number of border
ribbons the operator F(Γ) is a linear endomorphism of the ground field, i.e. the
multiplication by an element of this field. This element is an isotopy invariant of Γ.

In particular, with each framed coloured link L we may associate its isotopy
invariant F(ΓL) which is an element of the ground field. For instance, if
A = Uh(sln((E)\ (cf. Sect. 7), if all integers which determine the framing of L are
chosen to be zero, and if the colours of all components of L are chosen to be the
vector representation of A in C" then the invariant F(ΓL) depends on q = eh as a
polynomial. Up to a reparametrization this polynomial equals PL(qn,q — q~ί),
where PL is the 2-variable Jones-Conway polynomial of L. In the case n = 2 we get
the Jones polynomial of L. For A=UhG, G = so(n\ sp(2k) a similar construction
gives an infinite set of 1-variable reductions of the 2-variable Kauffman
polynomial of L (see [TuJ).The invariants corresponding to the exceptional Lie
algebras and to the spinor representation of Uhso(n) seem to be new (see

6.2. Even Graphs. A HCDR-graph is called even if it may be obtained from graphs
v^v, r\v, Xyt w, Γ(f9 η, η') and the graphs Zyt w shown in Fig. 9 by applications of
the operations (x) and °.

There is a simple necessary and sufficient criteria which enables one to decide if
a given HCDR-graph is even. Draw a picture of this graph so that all coupons are
represented by rectangles with horizontal bases (as in Figs. 1,2 and 4). The bases of
ribbons will be automatically horizontal. Assume also that white sides of the
coupons are turned up and that all ribbons lie "parallel" to the plane of the picture,
i.e. have no twists (cf. Fig. 1). Now, moving along the directed core of a ribbon or an
annulus one meets a certain number of local extremums rv, *^? v>, KJ of the height
function. Compute the number of left oriented extremums \J, *Λ lying on the

Y Y Y
Fig. 9 V V \
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ribbon (respectively the annulus). It is a simple topological exercise to show that a
HCDR-graph is even if and only if these numbers are even for all ribbons and
annuli of the graph. For example, the 1-ribbon graphs *̂ \ \j do not satisfy this
criteria and therefore they are not even. The HCDR-graph ΓL corresponding to a
framed coloured link L is even if and only if all framing numbers of L are odd.

Let (Λ,R,v) and (Λ,R,v') be two ribbon Hopf algebras with the same
underlying quasitriangular Hopf algebras. Let F, F' be the corresponding functors

-̂ RepQ] A It follows directly from definitions that the values of F, F' on
> Xv,w> Γ{f,η,η') are the same. Using the assumption that v, υ' lie in the

centre of A one easily shows that F(Zγ w) = F'(Zyt w). This implies that on the set of
even graphs we have F = F. In other words, for even graphs the functor F does not
depend on the choice of v.

Moreover, for even ^-coloured HCDR-graphs we can define operators F
without any use of v, i.e. for such graphs we may use an arbitrary quasitriangular
Hopf algebra (A,R). Here is a sketch of the construction. First, extent the ground
field to an algebraically closed field. Note that each representation of A may be
extended to a representation of A (see Sect. 3.3); we use that for any finite-
dimensional operator Θ over an algebraically closed field there exists an operator
d acting in the same vector space such that d1 — ̂ ) and d commutes with all
operators commuting with 21). Thus ^-colouring giver rise (non-uniquely) to an
^[-colouring. Apply now the functor F = Fχ and the reduction homomorphism
RepDy4->Repα A The composition restricted to even graphs does not depend on
the choice of square roots.

6.3. Theorem. (An extension of Theorem 5.1). Let (A,R,v) be a ribbon Hopf
algebra. Assume that for each A-module V we have fixed two ίnvertible A-linear
operators θy, θy'.V-^V. There exists a unique covarίant functor FΘ:CΌR(A)
->RepD;4 which has the following properties: (i) on the subcategory HCDR(̂ 4) of
CΌR(A) Fθ equals F; (ii) Fθ preserves the tensor product; (iii) for any A-module V

Fθ(Jv) = θv and Fθ(Jy) = θy .

We give here a construction of Fθ. Note that an arbitrary CDR-graph Γ with k
bottom ends and t top ends may be uniquely represented in the form
(/ί ®. . ® /0 ° Γ ° (J l ® ® h)> where Γ is a homogeneous CDR-graph and each Γ
is either Γv or Jε

v, ε = +1, each Jf is either Γv or Ky, e = +1 (see Figs. 2 and 3). Put
Fθ(Jy) = θy, FΘ(KV) = (θy)-\ Fθ(Iy) = idyE, Where V+ = V, V ~ = V\ Put

F(Γ) = (Foil1)®... ® FΘ(I')) o F(Γ) o (FeilJ®... ® Fθ(Ik)).

All the properties of Fθ easily follows.

6.4. Remarks. 1. It is obvious that the operator invariant F(Γ,λ) of a directed
ribbon graph Γ with a colouring λ is additive with respect to the colours of the
coupons of Γ. This invariant is also additive with respect to the colours of those
ribbons which connect 2 distinct coupons. More exactly, if the colour of such a
ribbon B is a direct sum of ^-modules, V, W then we split the colours of the
coupons incident to B and obtain thus two yl-colourings, say, X and λ" of Γ. Here,
λ' and λ" coincide outside B and the incident coupons and λf(B)= V9 λ"{B)= W.
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Then F(Γ,λ) = F(Γ,λ') + F(Γ,λ"). This follows from the isotopy invariance of
F(Γ,λ\ since B is isotopic to a standard plane vertical ribbon for which the
assertion is obvious. Similarly, the invariant F(Γ, λ) is additive with respect to the
colours of annuli and of those ribbons which connect a coupon with one of the
border segments (4.2.1). Note also that each annulus of Γ may be replaced by two
coupons and two ribbons without changing F(Γ,λ) (see Fig. 10).

2. Let Γ be a HCDR-graph and let the colour of a ribbon B of Γ is the tensor
product V® W of two ^4-modules, V, W. Cutting out B along its core we get two new
ribbons which make together with Γ\B another DR-graph, say, F'. The colouring
of Γ obviously induces a colouring of Γf. Note that looking on B from its white side
we see one of the new ribbons to lie to the left of the directed core of B, the other one
lying to the right; we colour them respectively by V and W. It turns out that F(Γr)
= F(Γ). This follows from 3.1.2, 3.1.3; these equalities directly imply equalities
presented in Fig. 11. A similar assertion holds for each annulus coloured by a
tensor product V®W\ We may replace such an annulus by two subannuli,
obtained by cutting along the core, and coloured V and W. Such a replacement
does not change F(Γ).

3. The functor F:HCDR(,4)->RepD,4 is surjective since each morphism
f:η-+η' of RepG A is the image of the graph Γ(f, η, η'). Moreover, / may be always
presented by a 3-valent HCDR-graph, i.e. a graph whose coupons are all incident
to ^ 3 ribbons. This follows from the fact that the local operation on the HCDR-
graphs depicted in Fig. 12 preserves the image of the graph in Repπ^4 and
decreases the valence of the coupon by 1 by virtue of introducing an additional
coupon of valence 3. Note that in Fig. 12d is the identical endomorphism of
Vk^1®Vk and the colours /, / ' are equal.

Fig. 10

Fig. 11
V V W V V®W V W V V®W V

Fig. 12
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4. To colour a directed ribbon graph is a problem in itself. It is natural to
colour such a graph Γ in two steps: first ribbons and then coupons. The second
step is somewhat more complicated as it is not easy to describe the
yl-homomorphisms in a combinatorial language. The following construction gives
a useful method of colouring coupons.

Assume that the ribbons of Γ are coloured. Assume that with each coupon Q of
Γ we have associated a DR-graph ΓQ with coloured ribbons so that the border
ribbons of ΓQ have the same directions, colours, and orientations (white/black) as
the ribbons of Γ incident to Q. Gluing ΓQ instead of Q we get a "simpler" directed
ribbon graph with coloured ribbons. This in principle enables us to reduce the
problem of colouring coupons of Γ to the same problem for simpler graphs {ΓQ}.
For instance, in many cases we may take ΓQ without any coupons at all. (Ribbon
graphs without coupons are called ribbon tangles.) This construction suggests a
specific point of view on coupons: one may think that coupons are black boxes
hiding inside some blocks {ΓQ}.

7. Examples

7.1. Algebra Uh&. The theory of quantum groups developed in [Drl, J] gives
nontrivial examples of (topological) ribbon Hopf algebras. We mean the quantized
universal enveloping algebras of simple Lie algebras, called also briefly quantized
Lie algebras.

Let © be a simple Lie algebra. The quantized Lie algebra Uh(δ is the associative
algebra over the ring of formal power series C[λ] generated (as an algebra
complete in the ft-adic topology) by elements Hb Xf

+, Xf, ί=l , . . . , r = rank©
subject to the following relations:

[Hb Hj] = 0, [HbX±]

J o ( " 1 ) l [ l ] ( ϊ ' ^ ( X i ±

where {αf}JL 1 are the simple roots of©; (αf, oCj) is the value of the canonical bilinear
form in the root space and

rhn\

H-
Put U = l/h(5. The algebra U is provided with the structure of (topological)

ribbon Hopf algebra as follows. The antipodal mapping S:U-^U and the counit
ε: 1/-><C are defined by the formulas

S(Xt)= -
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Denote by U®U the completion of UQ^jU in the /z-adic topology. The
comultiplication A : U-^U® U is given on generators by the formulas

?) = Xt ®exp fc H) + exp

The universal JR-matrix ReU<g)U is described in [Drl] as an infinite sum
£a;®/?p where ocb βisU are determined via a recurrent procedure. It is not
i

difficult to show that the infinite sum u = £ s(βi)oίi gives a well-defined element of

Let ρ be the half-sum (1/2) £ α of positive roots of (δ. Let ρt be the
aeΔ +

coordinates of ρ in the basis α l9 ...,αr so that ρ= X ρfαj. Put

t> = uexp( -h Σ βiίίil- (7.1.1)

It is straightforward to show that i? satisfies relations 3.3.1, 3.3.2 so that the triple
(U,R,v) is a (topological) ribbon Hopf algebra.

7.2. Representations of U and U-Colourίngs of Graphs. There exists an isomor-
phism of C[/i]-algebras U= Uh(ΰ-+(UQΰ) [Λ] identical an the Cartan subalgebra /
generated by Hl9 ...,Hr (see [Drl]). This implies that i.h.w. (irreducible highest
weight finite dimensional) ί/-modules have the same structure as the correspond-
ing ©-modules, i.e. they are identical as linear spaces and have the same weight
decompositions with respect to / (see [L, Ro]). Finite dimensional representations
of U are completely reducible. In particular for any i.h.w. ^/-modules Vλ, Vμ we
have

(7.2.1)

where Wv

λμ is a vector space over (C, Fv(χ) Wv

λμ is the primary component of F v in
Vλ®Vμ with multiplicity ά\mW^λμ.

For the algebra U = Uh& we have a more or less satisfactory combinatorial
description of [/-colourings of ribbon graphs. The i.h.w. (/-modules are para-
metrized by the highest weights of (5. Thus we can colour ribbons by associating
with them some highest weights λ, μ, v,... of®. Remark 6.4.3 show that the process
of colouring coupons may be reduced to the case of 3-valent coupons. Consider the

Fig. 13



22 N. Yu. Reshetikhin and V. G. Turaev

3-valent coupons with coloured ribbons depicted in Fig. 13. The colours of such
coupons are linear mappings respectively.

/ : F v - > F λ ® F μ , g:Vλ®Vμ-+V\

Such homomorphisms bijectively correspond to elements of Wv

λμ (respectively
(Wv

λμ)*). There are rather explicit parametrizations of the elements of Wv

λμ. In the
case (5 = sln the simplest parametrization is given by the Young tableaux.

7.3. Homomorphίsm wλ. Let Vλ be the finite dimensional i.h.w. representation of
U=Uh& with the highest weight. Let (Vλf be the dual representation (3.2.1). Put
λ* = — wo(/ί), where w0 is the element of the Weil group of maximal length with
respect to the Bruhat order. There is an 17-linear isomorphism

Thus for any aeU,

Since WQ = 1 we have (A*)* = 1.
For representations Vλ with multiplicity free weights acts in the weight basis by

the formula [Rel],
_hcλ h

{Q'W 2 2 / 2\Ί Λ

ελ

μe
λ

Woμ9 ( $ 2 = 1 .

The action of wλ in arbitrary Vλ may be defined using imbeddings of Vλ in the
tensor powers of the vector representation of (5. (For the case © = sl2 see [KR]).

Assume that we have a HCDR-graph Γ without coupons and that Γ is the
same graph in which the directions of several ribbons and annuli have been
reversed and their colours have been changed by the rule Λi—»Λ*= —wo(λ). Then
one may use w to compute from F(Γ). In particular, for generators of the
subcategory of HCDR(t/) consisting of graphs without coupons we have

It is easy to extend these formulas to all generators of HCDR(l/) if one agrees to
change not only the colours of ribbons and annuli but also conjugate by wλ the
colours of coupons.

Remark. The homomorphisms {xvλ} suggest the extension UhQΰ of t/h(5, generated
by a certain element w subject to relations

= eh,
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where θ is the non-trivial involution of the Dynkin diagram. The formulas

A(w) = R~1(w<S)w), ε(w) = l , S(w) = uw~ι

make U a Hopf algebra containing U as a Hopf subalgebra. One may show that

(w(g)w)R = K2i(w(x)vv), WM = S(u)w.

Using these formulas it is not difficult to show that (U,R, w2) is a ribbon Hopf
algebra. According to results of Sect. 3.3 the element v given by (7.1.1) and w2 are
related by the formula w2 = υE, where E satisfies (3.3.3).

7.4. The Case ® = s/2. The Hopf algebra U = Uhsl2 is the simplest among the
quantized Lie algebras. It has been extensively studied in [KR]. The finite
dimensional i.h.w. representations {VJ}j of U = Uhsl2 are parametrized by integers
and half-integers j = 0, 1/2, 1, 3/2,... where dim c 7 / = 2 / + l . In the weight basis

Y-j of Vj the action of H, X± e U is given by the following formulas:

where

The universal β-matrix Re U®U is computed as follows:

fh

It is not difficult to compute the matrix elements ofRjlJ2 = (ρjl®ρh)R in the weight
basis:

— Y (ΌJdiγni +n,m2-n J!

Here the non-zero matrix elements may be expressed as follows:

( ΌJiJ2\mi +n,m2-n

\Ji-m1-n]\\j1+m1]\[j2

xq2

The tensor product Vh ® Vh is decomposable into the direct sum of irreducible
summands Vj by the formula (7.2.1) where all multiplicity spaces are 1-dimen-
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sional for \jί —jj\ t^jύji +j2

 a n d a r e equal to zero for other j . In other words

2j=2j1 + 2j2{mod2)

Therefore, the ΐ^s/2-colouring of 3-valent ribbon graphs is extremely similar. It
suffices to associate with each ribbon and integer or half-integer j and with each
coupon a complex number. Of course, the invariant F of the graph may be non-
zero only if for every coupon the' colours j1J2J of the adjacent ribbons satisfy the
inequalities \jι-j2\ύjύjιjtj2, 2j = 2j1+2/2(2).

The modules Vj are self-dual: (V*)vκVK This implies that the corresponding
invariants of coloured ribbon tangles do not depend on the choice of directions of
ribbon cores and annuli cores. This generalizes the fact that the Jones polynomial
of a framed link L does not depend on the choice of orientation. Indeed, if all annuli
of the graph ΓL (see Sect. 6.1) are coloured by Vί/2 we get exactly the Jones
polynomial. Also, if one colours all the annuli of ΓL by V1 one gets a one-variable
reduction of the Kauffman polynomial.

Since the modules {Vj} have the preferred bases one may study the
transformation matrix of (7.4.1). For any j l 9 j 2 9 j 3 and ml5 m2, m3 with 1 ̂

Γ JdJ 1
lm1m2mχ

-δ t

x Σ ίl Ygϊrim+j+1)

These numbers are called q — 3/-symbols (see [KR,K]). They constitute the
transformation matrix for (7.4.1): for \j1 —j2\<^j<.j1 +j2 and m = — j , . . .J, we have

2mi = 2ji

For Uhsl2,

J - v Γ /i'/27 1 j ,
m ~ ^ \m m m r m i

- — ϊ + hm

f = e 2JU "^^ly-ms 2

7.5. Remark. In this paper we have constructed a functor F: HCDR(^4)-»RepD A.
Let p:RepD^-^Rep^4 be the standard projection (see Sect. 2.3). Let w be the
forgetting functor which transforms each ^4-module into the underlying vector
space. Let C(Λ) be the image of Rep(̂ 4) under ω. This is a "generalized Tannakian
category" (cf. [D]). The commutativity and associativity morphisms in C(A) are
induced by the corresponding morphisms in Rep(̂ 4). For this it is convenient to
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choose in Rep A a "multiplicative bases" consisting of finite dimensional irredu-
cible A -modules {Vλ}λ. The commutativity morphism Vλ®Vμ-+Vμ®Vλ and the
associativity morphism (Vλ®Vμ)®Vv ^>Vλ®(Vμ®Vv) are given by a calculus
generalizing the Racah-Wigner calculus for groups. The composition
ίoωopoF:ΐίCΌR(A)-+Cπ{A) is a representation of HCDIφl) in CΠ(A) realized
via Racah-Wigner ^-coefficients (the case A = Uhsl2 was treated in [KR]).

A functor similar to ioω°p°F was constructed in [MS] using fusion rule
constants in the conformal field theory. This similarity once more suggests a close
relationship between the conformal field theory and the theory of quantum
groups.
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