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Abstract. We treat the open/?-adic string world sheet as a coset space F= TjΓ,
where T is the Bruhat-Tits tree for the /?-adic linear group GL(2, Qp) and
ΓaPGL(2, Qp) is some Schottky group. The boundary of this world sheet
corresponds to a/?-adic Mumford curve of finite genus. The string dynamics is
governed by the local gaussian action on the coset space F. The tachyon
amplitudes expressed in terms of /?-adic ^-functions are proposed for the
Mumford curve of arbitrary genus. We compare them with the corresponding
usual archimedean amplitudes. The sum over moduli space of the algebraic
curves is conjectured to be expressed in the arithmetic surface terms. We also
give the necessary mathematical background including the Mumford approach
to /?-adic algebraic curves. The connection of the problem of closed /?-adic
strings with the considered topics is discussed.

1. Introduction

The idea of a non-archimedean string proposed in the papers [1-4] has stimulated
great activity in this field [5-10]. Different approaches were suggested. One of them
treats both the string coordinates (and momenta) and the string amplitudes as
complex- (or real-) valued functions, but the string world sheet variables as the
/7-adic numbers [3, 4]. This approach seems to be the most fruitful. At least, it was
the only one which allows to obtain some non-trivial results and to compare them
with the archimedean ones. For example, Freund, Olson and Witten [3,4] have
interpreted bosonic string amplitudes at the tree level of perturbation theory over
the non-archimedean local field Qp (p is a prime number) as integrals of some
combinations of multiplicative characters on Qp (it is very close logically to the
definition of the corresponding amplitudes for the usual open string over the real
field). They discovered a remarkable property of the theory, namely, the so-called
"product formula" (see also [11 ]). That is, they have calculated the 4-point tachyon
amplitude, Ajf\ which is given in the archimedean case by the Veneziano formula
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for Aim):

Ai*K*i,*2,*3>*d= ί d c M ί l / 2 | l - * l ί l / 3 , (1.1)

where dt are <i-dimensional vectors, i{i^ denote the corresponding scalar products,
4

and the condition ]Γ £. = Q is implied, together with the constraints £j = 2. Then
i = l

it was demonstrated that (with appropriate regularization involved)

Λ ( 0 0 ) Γ M ( p ) = i , (1.2)
P

where p runs over all prime numbers. Some non-trivial extensions of this formula
also have been obtained [7].

Now some questions arise:

1. Whether it is possible to obtain the/?-adic amplitudes (1.1) within the Polyakov
approach?
2. Whether there exist any more formulas like Eq. (1.2)?
3. Whether there exists some formulation of the string theory taking into account
the adelic (or arithmetic) structure of Eq. (1.2), i.e. the formulation which includes
string theories over all p simultaneously?

The first question was answered at the tree level of perturbation theory. That is,
the non-local action was proposed [8] which reproduces the Freund-Olson
amplitudes:

Here dx is the additive Haar measure on Qp and we only write the single scalar field
φ(x) for the simplicity. We know a similar object in archimedean string theory. It is
"the effective action" governing the field dynamics on the boundary of the open
string world sheet. Actually, this object is a secondary one, as it originates from the
world sheet local action upon integrating out the field fluctuations in the interior of
the world sheet.

It turns out that the situation is just the same in the non-archimedean case.
Indeed, a natural analog of the/?-adic world sheet was proposed by one of us [9, 10].
There was demonstrated that a discrete homogeneous space T (the so-called
Bruhat-Tits tree) whose boundary is Qp, yields the correct analog of the interior of
the open string world sheet. It was shown too that there exists a simple "lattice"
local action (a kind of gaussian model) on the tree which produces the correct/?-adic
string amplitudes.

In this paper we propose a multiloop generalization of the above results. We
consider the Bruhat-Tits tree which is an infinite homogeneous graph without
cycles, each vertex being connected with exactly p + \ neighbours by edges of unit
length, as p-aάic zero genus Riemann surface. (We use the term "surface" in the
Bruhat-Tits construction as it is a direct non-archimedean analog of the open string
world sheet.) To produce ^-adic Riemann surfaces of higher genera we should
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factorize the tree by some discrete (Schottky) groups. The surface obtained is the
graph with cycles (their number is equal to the genus of the surface), the properties
of this graph can be described by means of the so-called reduced graph, which is the
finite subgraph containing only the cycles with crosspieces between them. It permits
us to introduce the/7-adic counterpart of the Jacobian, period matrix etc. All this
machinery as well as the detailed description of the Bruhat-Tits tree is contained in
Sect. 2.

Having a local action on the tree we can calculate the/7-adic string amplitudes.
This action turns out to be the discrete analog of the usual quadratic one. Thus in
order to find the amplitudes one needs to construct the solutions to the Neumann
problem. The Neumann boundary condition is imposed by the following reasons:
The archimedean case teaches us that an algebraically non-closed local field plays
the role of a boundary of an open string world sheet. We know that the open string is
characterized by the Neumann boundary condition. The situation in the non-
archimedean case is to be quite similar with the exception of one point: there exist a
number of algebraic extensions of the field Q p in contrast to the field IR, each
extension corresponding to a different type of the open string.

The problem of finding the Green function with the Neumann boundary
condition can be solved by two methods. The first is to find the solution to the
Laplace equation. One of us followed this way in [12] where slightly modified (in
comparison to this paper) notations have been used. The second way to calculate
the Neumann function is to use the path integral approach. This method was
developed in the general case of arbitrary lattice theory by Zinov'ev [13], and we
apply it to produce the tachyon string amplitudes in Sects. 3.2 and 3.3.

The obtained results appear to have a very natural structure, Namely, the
archimedean answer turns out to be just the same, with the usual norms, abelian
differentials, period matrix, etc. being substituted by their />-adic counterparts
(Sect. 3.3). Certainly, it is consistent with precedent predictions for genus 1 [14].

In this paper we calculate only the tachyon /?-adic amplitudes, with no
accounting of corresponding determinants which are to be introduced for the
correct normalization. The way to correctly determine them as well as the /7-adic
amplitudes for the emission of the states with higher spins is unknown at this
moment. The difficulties appearing here are discussed in Sect. 4. In particular the
crucial role of the/?-adic analog of the closed string (given by a string model over the
complete algebraically closed field Ω) is pointed out.

We know that the archimedean Riemann surfaces, parametrized by the
Schottky groups (over R or <C) uniformize all algebraic curves over archimedean
fields (IR or (C). This is not the case inp-adic theory. That is, the/?-adic Schottky
parametrized Riemann surfaces uniformize only some class of algebraic curves over
the /?-adic field, namely, the so-called Mumford curves. These curves are placed
close (in/7-adic sense) to that part of the moduli space boundary which corresponds
to highly degenerate algebraic curves. This fact is of great importance and it is not
caused by unfortunate parametrization (indeed, the Schottky parametrization is in
a sense unique). Certainly, such a situation should be clarified anyway. A sketch of
the resolution of this issue is also contained in Sect. 4. Finally, we briefly discuss a
possible way to integrate over the moduli space of algebraic curves in order to
obtain a kind of "arithmetic string partition function" and correctly normalized
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amplitudes. We formulate a conjecture in the spirit of the adelic string viewpoint
and the product formula [6]. Indeed, by this consideration we tried to answer
partially the third question above.

At last, it is interesting to generalize the relation (1.2) to the string amplitudes at
higher levels of the perturbation theory proposed in this paper. It would answer the
second question on the above list of problems. The work on this topic is in progress
now. Some comments on these problems with several concluding remarks can be
found in Sect. 5.

There are also two Appendices. The first contains the necessary facts about
identification of the tree boundary with^-adic numbers. Appendix B is devoted to
some analytic objects over Qp-fields like ^-functions. The properties of /?-adic θ-
functions and associated Prime forms for the Schottky groups are briefly reviewed.

This paper is though of as the second one in a series which began with the
publication [10]. The rapid version of this work was presented [15].

2. Schottky Parametrization of the String World Sheet

In this section we briefly describe Riemann surfaces over the Qp field. We only
formulate the statements with some comments. The reader can easily find the
necessary proofs and more material concerning this subject in Refs. [15-19]. We
begin with the description of the Riemann surface over R in order to work an
insight, as this case appears to be logically close to the Qp one.

2.1. Schottky Groups

To begin with, we describe "real Riemann surfaces" (RRS for brevity) which are
closely connected with algebraic curves over R. The word "surface" may seem to be
inadequate in this context, because here we deal with one dimensional objects over
R. Nevertheless, we shall use such terminology in order to attain an unification
when working with different number fields. Besides it, the word "surface" refers to
the algebraic curve uniformized by a Schottky group in an analytic domain. To
obtain ΈIRS one has to start with natural action of the SL(2, R) group on the real
axis (we always imply the compactified real axis fll, or equivalently, projective line

P'iΊR)): χ - > ^ 4 , Γ b) being SL(2,R) matrix, ad-bc=l. We call P*(R) the
cx-\-d \c d)

zero genus RΛS; it determines all properties of the string model in the zero loop
approximation. For example, one easily obtains correct expressions for the string
amplitudes using the well-known non-local action (throughout this paper we
consider for the simplicity the single string coordinate):

However, a more fruitful approach exists: we would obtain these amplitudes
from a local action on some extended object which we call extended WLRS (EWLRS),
the Ri?S being E1B.RS boundary. The terms ΈLRS and EWLRS are not standard and
are introduced in this paper for convenience. We shall also use the notations QpRS
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and EQpRS in a similar sense. To obtain EΊ&RS one has to extend the SL(2, R)

action to upper half plane by clear means: z-> -, ze<t, Imz^O,
cz-\-a

)e SL(2, R). Then the upper half plane is just EΊBJIS (the open string world
c d)

sheet). To make this subject more evident one can provide EΈtRS with SX(2, R)-
invariant hyperbolic metric and treat it as homogeneous space of SX(2, R)
factorized by its maximal compact subgroup SO(2). This object is called the
hyperbolic plane. The local action on EW.RS generating (2.1.1) is written as

S = i J dφϋφd2z, ze hyperbolic plane . (2.1.2)

The same technique works for a genus one Riemann surface. In fact, one needs
to fix two arbitrary real discs Dλ and D2 at first stage. We choose them to be:

(2.1.3)

Another choice of these discs corresponds to another fundamental domain of the
Schottky group (see below). The complement of these discs to the whole R :

*! uZ)2} (D2 is closure of D2) is a fundamental domain for the subgroup of

SL(2, R) generated by the matrix ( ^ q ) e SX(2, R), which multiplies x by

V ° l/l/q/
q and is the simplest example of the Schottky group Γ. So the coset space R/Γ
consists of two segments, both with identified endpoints, or, equivalently, of two

circles S1 whose lengths are equal to ]/l/# — j/# and are related to the moduli space

parameter q. This set is just an example of ΈtRS. In this case ElStRS having this IURS
as a boundary is a cylinder. The extended fundamental domain of Γ is depicted in
Fig. 1. (In fact, one has to identify the boundaries of fundamental domain, resulting
in the cylinder.) Indeed, the El&RS is the coset of hyperbolic plane by Γ, so SX(2, R)
acts naturally on EWLRS.

Now we generalize the above construction to higher genera. At first, we define
the Schottky group over a local field IK (for convenience we don't specialize the field
at this moment). Instead of SL(2, Qp) we would like to consider a slightly modified
group, namely PGL(2,ΊK) which is determined to be equivalence classes of
GL(2, K) matrices with respect to multiplication by a non-zero element. (This

Fig. 1. Fundamental domains ^(Γj), dF{Γ^) and the half-torus (EWiRS) in the archimedean case
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extension corresponds to a pair of uncoupled planes in the archimedean case and
doesn't affect the results.) Certainly, we can consider the SX(2, K) construction as
well, but we prefer PGL(2, K)-grouρ as a more natural one from the Bruhat-Tits
viewpoint.

The natural PGL(2, K) action on P1 (K) (which is just zero genus KRS) is given

in homogeneous coordinates 0co>*i) by ( ° )-»( ) [° J, [ \ePGL(2,KX
az + b - ^Xl' ^C ' ^ X l ' ^C '

or, equivalently, z-» -, zeK. Note that PGL(2,K) exhausts all possible
cz + d

automorphisms of PX

An abstract Schottky group Γ is, by definition, a free discrete subgroup of
PGL(2, K) with a finite number of generators yt e PGL(2, K), z = 1,..., g. In fact, all
non-unit elements of Γ are hyperbolic, i.e. corresponding PGL(2, K)-matrices have
to have different moduli of their eigenvalues. Each generator yt is defined by three
parameters. We choose them to be two (distinct) fixed points ut, vt (̂ (w;) = ut, y^)
= Vi) and the coefficient jft. They define y(z) by the equation:

^ W , . ^ . (2.1.4)
zVyi{z)-vi

Explicit parametrization of yf is

For any local field IK one can extend the PGL(2, K)-action ont.^P1 (K) to the
homogeneous space ffl = PGL(2, K)/G, G being the maximal compact subgroup of
PGL(2, K). For example, PGL(2, (C)-action can be extended from (C to the upper
half space (see for ex. [18]). A fundamental domain for the Schottky group Γ acting
on the "extended" space ^f is denoted by F(Γ) and a corresponding fundamental
domain on S Ξ P 1 ® ^ ^ ) is denoted by dF(Γ\ Σ(Γ) being the set of all limit
points of Γ, i.e. the closure of limit points of all non-unit elements yeΓ. These
fundamental domains are imbedded into the covering spaces ffi and Ξ respectively.
We shall deal with the coset spaces F=J^jΓ and δF=Ξ/Γ which can be produced
from F(Γ) and dF(Γ) by an appropriate glueing. The notation prefers to the fact
that dF can be realized as the boundary of F (see the above example for the
archimedean case and the constructions of Subsect. 2.2 for non-archimedean local
fields).

Let us present an explicit construction of the so-called classical Schottky groups
acting on K. Consider 2 g open discs ^ l ί ? ^ 2 ί e i ( / = l , . . . , g ) such that their closures
§u and §2i do not intersect and have the same radius rt. Then we can construct a
Schottky group Γg with g generators yt corresponding to the pairs # H , §2i as
follows: yΓ1(^\»2i) = »ii. y ί (*\# l i ) = »2 j, r1 = l/μr ί

1 / 2-Jff 1 ' 2 | and Uie9u,
vie

(32i. Then

(2.1.5)

is a fundamental domain of the classical Schottky group Γg. For g> 1 we suppose
that the discs do not contain the point oo. Throughout this paper we only deal with
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groups of this type, though we know that non-classical groups could be important in
the uniformization problem when K is specialized as C

Thus any ULRS is represented by dF. In particular, JStRS is a collection of g + 1
disconnected circles S1, the connection between those and moduli space being far
from obvious. In fact, in the cylinder case we have observed that two circles are
described by a unique moduli parameter q. But one can cut the cylinder in its middle
part by a proper closed curve (the so-called invariant axis [21], see also below),
which immediately describes moduli space. Such a procedure can be easily
generalized to higher genus extended Riemann surface. In Q p case we shall
introduce a "reduced graph" (1-chain complex) corresponding to the moduli space
in a more direct way, this graph being just the analogue of the cut described above.
Now extend the action of Γ from IR to the upper half plane, the boundaries of <&ίi9

&2i being extended to half circles on it. Then we produce the fundamental domain
F(Γ) which is just EΊ&RS (after glueing) and it can be interpreted as the coset of the
hyperbolic plane by Γ.

From the one hand, the life on EΊ9.RS has an essential advantage, namely, the
locality of the string action which has the form (2.1.2) on EWiRS. But EWiRS itself is
a rather complicated object. On the other hand, Ψ.RS, being the simple one-
dimensional object, should be provided with non-local action in order to reproduce
the correct string amplitudes [22]. In Sect. 4 we shall present some more arguments
in favour of an "extended" viewpoint. It seems to be quite natural since it is the
extended object that is analogous to the string world sheet in the archimedean case.

2.2. Riemann Surface Over Q p and Bruhat-Tits Tree

It is just the time to describe the construction of the Riemann surfaces over Q p field.
To obtain the extended zero genus <QpRS one has to factorize PGL(2, Qp) by its
maximal compact subgroup, that is PGL(2, Έp), being determined as 2 x 2 matrices
with/?-adic integer entries and invertible determinant in Έp. It is this homogeneous
space that is called the Bruhat-Tits tree T. It is manifestly determined to be the
connected infinite graph with no loops each vertex of Tbeing connected with/? -f1
neighbour vertices by edges. Obviously, any two vertices z l 5 z2 in the tree are
connected by exactly one path zγ -*z2. We define the distance d(z1, z2) between these
vertices to be the number of edges in the path zι-+z2

There are half-axes in the tree which are infinite subtrees with no branch points
but with a single starting point (Fig. 2). We introduce an equivalence relation for
half-axes: two half-axes given by an infinite sequence of vertices {zt, z2,..} and
{zi,z2,...} are equivalent if 3d,neZ: Zj = z'j+n\fj}±i£. We call the equivalence
classes the rays. Then the tree Γcan be compactified by adding the set of "infinitely
far points" dΓdefined as the set of all rays. In fact, δΓcan be canonically identified
with P1 (Qp). On the other hand, the PGL(2, Qp)-action can be naturally extended
to δ Γfrom the tree Γ, so we shall consider δΓas the boundary of a compactified tree
TudT with PGL(2, Qp)-action on it.

In order to "coordinatize" P1(QP) we fix a point C (the "origin") in T. This
vertex corresponds to three half-axes starting at C whose endpoints in dT^P1 (Qp)
are (0,1, oo), by definition. Then we can identify P1 (Qp) with Q p and after fixing C
only PGL(2, Zp)-freedom remains (for details see [16,17] and Appendix A). Now C
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u .

branch Bz

Fig. 2. Subgraphs in the tree: half-axis, axis v-^ u and branch Bz

is the fixed point of PGL{2, Zp) and we describe the PGL(2, Qp)-action on Tmani-
festly as follows: PGL(2, Qp) acts on T=PGL(2, Qp)/PGX(2, Zp) transitively and
isometrically (i.e. the distances d ( v ) are conserved); vertices correspond to
QPGL(2, Zp)§~x subgroups, gePGL(2,Q p), and edges correspond to gi/g" 1

subgroups, H=\ V a,b,c,deZD, ceJί and adφJί, where Jί is the unique
\c dj

maximal ideal in the ring Zp (i.e. Jί = {xeQp\ \x\p<\}).

Let us define a branch Bz to be an entire subgraph of T with the only boundary
point z in the interior of T. The graph B is called entire if B\dB is a connected graph
(Fig. 2) (this definition differs slightly from the one given in [10]). In what follows,
we assume that the branches contain no cycles (in the case of the factorized tree
also). Then the set of rays contained in Bz corresponds to an open domain dBz in dT
and induce a natural topology on Q p .

Thus we have described the zero genus Ed$pRS. Note that as above the correct
string amplitudes may be produced from the non-local action on <QpRS [8] (1.3) and
from the local action on E<QpRS [9] which shall be described in Sect. 3.1, see
formula (3.1.12). It is also valid for higher genus surfaces [23].

Now introduce QpRS and E<QpRS of higher genera. We consider a Schottky
group Γ over Q p acting on T. Then for any hyperbolic element γ e Γ the only γ-
invariant axis in Γexists which is called the y-axis (by definition, an axis is an infinite
connected subtree with no branch vertices and terminating vertices inside T
(Fig. 2)). Each element y acts by shifts along the corresponding γ-axis, and for any y

conijugated to the element ί j , 0 < \q\p =p o r d ^ < 1, the shift is equal to ordp#. So

the hyperbolic element has no invariant vertices and edges. Another description of
the y-axis uses the fact that axis endpoints in dT are fixed points of y, and any two
such points are connected by the only path in the tree. Obviously, this path is the
invariant y-axis. More precisely, the action of y on the whole tree is the shift along y-
axes defined by \q\p with a simultaneous "rotation" around y-axes defined by the
"phase" of q, i.e. by q\q\p.
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We define the Schottky tree T(Γ), which is a union of axes of all elements of Γ
and crosspieces between them (crosspiece is the unique finite path which has
common vertices but not edges with two chosen axes), or, equivalently, a minimal
connected subgraph containing the axes of all elements of Γ (let us recall that the
composition of any two hyperbolic elements γί,γ2eΓis again a hyperbolic element
unless y1=72~

1) Then T(Γ)czT, dT(Γ)αdT and T(Γ)/Γ~FR is a finite graph,
which is called the reduced graph (sometines we add index g which labels the number
of loops in the corresponding graph). Let us demonstrate a way in which the reduced
graph permits us to construct EQpRS from the Bruhat-Tits tree. As the first step we
consider the simplest example, namely, the torus. We choose an element y
generating Γt in the form:

q 0\

o i ) ' 0 < l < ? l > < 1 • ( 2 2 J )

The y-axis passes through the origin C, the fixed points w, v e φ p = dT are zero and
infinity and any element of Γx acts on the axis oo-»0 by zl-shifts, A = 0 modord p#
(see Fig. 3a). So the Schottky tree is a single axis, FR is a cycle (ring) consisting of
m = orάpq edges. To obtain EQpRS we factorize T by Γ x : Fx = TjΓ^ (Fig. 3b). The

= ordpq

Fig 3 a-b. A typical fundamental domain of the Schottky group Γγ in the tree. b. The "extended"
p-adic torus (in the case of p = 3)

result may be realized as a fundamental domain for Γγ glued into a ring.
Correspondingly, it induces the isomorphism dFί = d(TjΓ{) ^ dT/Γ1. So far we have
seen that Ff can be produced from F1 by truncating all branches with origins at the
reduced graph. It appears to be the general procedure for the surface of arbitrary
genus. The inverse operation is clear as well: to construct E<QpRS Fg = T/Γg it is
necessary to draw the reduced graph with a given number of loops (this number g is
equal to genus of the surface) and after that to add all the necessary branches with
origins at the vertices of the reduced graph in an evident way (Fig. 4a and b). If one
treats identity transformation as the trivial Schottky group Γo, then FQ is merely a
single vertex (denoted above as C), and T/Γo = T.

Now one can see that the reduced graph consists of 3 g — 3 or less segments
[segment in Ff is the line containing only 2-vertices and connecting two branching
vertices in Ff (see Fig. 4a)]. We denote st the lengths of these segments. In fact, they
are "the moduli" of the corresponding /?-adic surface. Strictly speaking, these
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0 '/
2-vertex — A p*"

p = 3 \ /

V / F

branching
vertex

a b

Fig. 4 a-b. A reduced graph for g = 2. b. The whole factorized tree (g = 2, /? = 3)

parameters are />-adic orders of the moduli of an algebraic curve, but we shall call
them merely moduli. Thus Ff provides a good description of the moduli space of
Riemann surfaces over Q p . The structure of Ff contains all necessary information
about dFg which consists of several different components, each of them being
isomorphic to an open set in P*(Qp) (i.e. the boundary dBz of a branch Bz in Fg)
which in turn is defined as a boundary dB of some branch BinFg. So non-trivial
dependence on moduli is gathered into Ff, but all properties at small distances on
P1(QP) (moduli space of the punctures) are determined by geometry of a single
boundary component. Thus if we wish to restrict string amplitudes produced from
the local action on Fto dF we should take into account only the reduced graph when
all points belong to different components of 3Fand, quite contrary, only structure
of the boundary component is important in the case when points belong to one
component of dF. In particular, for zero genus surface the reduced graph shrinks
into the point and we deal with the boundary of the whole tree (the non-local action
of [8] is given on the whole Q p !) .

To conclude this section we introduce some analytic constructions on EQpRS.
Generally speaking, they are well-defined only over algebraically closed field Ω ID Q p

but we shall restrict them to Q p . Here we consider the simplest objects (as the period
group and the Jacobi map) leaving 0-functions and Prime forms to Appendix B.

Given a Schottky group Γ, we define the abelian group H=Γ/[Γ,Γ], where
[Γ,Γ] is the commutant of Γ. Then the scalar product in H is given by:

(Xι>Xj)= Π {ui9Όi9γuj9γϋj} , iή=j , (2.2.2a)

(Xi>Xt) = Kt Π {ut>Vi>y"i>YVt} - (2.2.2b)
yeGi\G/Gι

Here χt, χ7- are classes of yt and yj in H ((•, •) depends only on classes of elements)
and classes of equivalence Gt\G/Gj can be parametrized by the elements

y = y{l'...my£,JιΦ0,i1+i,ikΦj; {a,b,c,d}= --——-is the cross-ratio. Now we

can construct the period group B by the isomorphism:

φ:H-+B, φ(χ) = (-,χ) . (2.2.3)
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Here B is a discrete subgroup of the /?-adic g-dimensional torus (Q*)6' (Q* is the
multiplivative group of Qp) and the elements of H are naturally identified with the
functions on (Q*)g. The factor (<i±*)9/B is the "/?-adic Jacobian". One can check the
correctness of these definitions [16].

At last, we observe the connection between H, B and the reduced graph FR. It is
important that these objects depend only on FR. It again confirms the separating of
moduli dependence from the dependence connected with the geometry of each
component of dF. Let us introduce on Γthe "FR-restricted intersection index" of
two paths C x i - ^ ί J i " * } ^ ! ^ where the notation x->y denotes the oriented path
from x to y. This index is merely the number of common edges (accounting for the
orientation) which, besides it, belong to the reduced graph FR. Every Schottky
generator y corresponds to a cycle ϋ?(y) in FR. Thus we have a natural scalar product
<^(/i), &(Xj))R on the abelian group of 1-chains which is just ordp(χ i ? χj) and it is a
direct analog of the imaginary part of period matrix Im τfJ in the archimedean case.
Note that the choice of Schottky generators ft determines the basis of cycles {2£ (ft)}
in FR and the period matrix as well:

Λ ϋ = <#(?,),#(?,)>* . (2.2.4)

(This definition differs from the one adopted in [15] by a sign.)
Finally, we have to describe the Jacobi map. It can be written in the Poincare

product form like (2.2.2) and its manifest expression is not necessary for us. But the
z

/7-adic order of this map, which is the counterpart of J ωt in the archimedean case
zo

({ωj is a basis of the holomorphic sections of canonical line bundle on the surface),
will be important in Sect. 3. So consider EQpRSF and fix a point z0 e dF which maps
into zero of the Jacobian. If {y } are Schottky generators which define the basis of
cycles ϋf (ft) in FR then the order of the Jacobi map is given by:

ovάpjZo{z)i = iz^z0^{yi)yR , zedF . (2.2.5)

This definition is correct as (2.2.5) is defined up to the choice of cycles, which results
into/?-adic order of the element of the period group, and Jacobi map is defined up to
the period group torus, as in the ordinary case. This ambiguity does not affect the
amplitudes (see Sect. 3). It is easy to check that ordp7Zo(z)f really depends only on
FR. Thus ordpB = ordpφ(χ) = ordp( , χ) = < , χ}R [cf. (2.2.3)], the Jacobi map has the
order given by (2.2.5). All these quantities are non-archimedean counterparts of the
usual ones, and the string amplitudes are expressed in these terms.

3. Tachyon Emission Amplitudes from the Mumford Curve

In this section we obtain the iV-point amplitude for arbitrary multiloop graph. The
plan is the following: the section falls into three subsections. In the first one we fix
notations and give general definitions, in the second one the 1-loop case will be
considered in detail; the third part is devoted to the mutiloop case and to the
comparison with the archimedean case.
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3.1. The Basic Definitions

Passing in this section to unified notations we shall use the standard language of
algebraic topology. Let us consider a factorized tree F= T/Γ with the corresponding
reduced graph FR. We introduce the space Cn(n = 0,1,...) of ̂ -chains which are the
formal linear combinations of the oriented elementary /?-symplexes u\n) in the graph
F, w 0 ) being the vertices zh u\1] being the edges et (generally speaking, one may
consider symplexes of higher dimension): ]£ ξiU{"\ ^elR. Further, one can define

i

the linear space C* of/z-cochains which are the functions on Cn. We choose the basis
{η\n)} in C* such that η\n) = ηf)(u\n)) = δij and define the scalar product:

Now for arbitrary φ = Yl y ^ e C * , Z = X ^ e C , , (we omit index n) one obtains

by linearity: * i

Index i runs over all vertices in F for Co and over all edges for C1. Later we shall
approximate the graph F by finite subgraphs, so these sums are well-defined.
Having these scalar products we identify the spaces C* and Cn and denote elements
of Co and C1 as φ(z) and φ(e) respectively.

Note that i^-restricted intersection index (see Sect. 2.2) is indeed restricted from
the scalar product (3.1.1):

<1>I,Φ2>R= Σ ΨΛedΨziei) • (3.1.2)
eτeFR

To clarify this construction let us consider two examples: the first is the path
x^y which we shall also denote SCxy e C1, the corresponding function ψ(e) equals
± 1 (the sign depends on the mutual orientation of the path x—•>> and each edge) for
the edges contained in this path, and zero otherwise. A cycle 3£(y) is a function
φeC1 which equals + 1 for edges contained in this cycle with, say, clockwise
orientation, — 1 for opposite orientation and zero for edges outside of the cycle.
Obviously, for cycles the scalar products (3.1.1) and (3.1.2) are identical.

For each vertex zeF we define the distance d(z,FR) (or simply d(z)) by the
formula:

d(z)= inf d(z,ω) . (3.1.3)
ωeFR

In the case of the trivial Schottky group Γo d(z) coincides with d(C, z) of Ref. [10].
Further, we should define a measure on the boundary dF. This measure μ will be
defined completely as soon as the measure on the basis of open sets dBz in dF is
given:

μ(dBz)=p-d^-ί , (3.1.4)

for any branch Bz.
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Example. For g-loop graph Ff (g> 1) with the moduli si9 ί= 1,..., 3cj — 3 the full
measure of the boundary dFg is:

+
\ PJ \ PJ

Consider now the function φ(z)eC0. Suppose the limit

(3.1.6)

exists for a point x e dF. In this case we shall call dnφ(x) the normal derivative of φ at
the boundary point x.

Now we shall introduce more notations originating from (lattice) chain
complexes theory. One can define the coboundary map δ* : C0-^C1 such that

. (3.1.7)

z^ and z{2] are endpoints of the edge er, the order in (3.1.7) depends on the
orientation of the edge. The operator conjugated to δ* is the boundary map
d:Cί->C0 which is defined as follows:

p+ί
)) , (3.1.8)

the sign is plus when arrows on edges enter the vertex z0 and minus otherwise, the
sum runs over all edges e 0 ) terminating in z0. For any two functions with
appropriate boundary conditions imposed (see below) we have:

(3.1.9)

so the operators d and δ* are indeed conjugated to each other.
The Laplace operator on F acts locally as follows [20,9]:

Δφ{z)= Σ φ(Zi)-(p + l)φ(z) . (3.1.10)
ί = l

Here zt are all neighbours of the vertex z. We can rewrite this operator simply as

Δ=-dd* . (3.1.11)

The string action on F (the free Gaussian model action) is the following [9]:

^d*φ,d*φ} . (3.1.12)

It is natural to impose the Neumann boundary condition at infinity [see (3.1.5)]:

dnφ(x) = 0 , xedF , (3.1.13)

as it should be expected in case of the open string. Then the action (3.1.12) acquires
the form:

^ (3.1.14)
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Consider now the scattering process for N identical tachyons attached to the
boundary of F. Let ErczF denote the "sphere", i.e. the set of vertices: Er

= {zeF\d(z) = r}. The definition of the amplitude under consideration is the direct
generalization of the one from [10]:

ί N

j£)φexp< — S[φ] + i Σ ^jψ(2

(3.1.15)

where fy are momenta constrained by

N

Σ 6j = 0 (momentum conservation law) (3.1.16a)
j=ι

and
42j = 2 (projective invariance condition) . (3.1.16b)

The sum in (3.1.15) runs over all possible placements of Appoints zt on Er. There exist
two slightly different methods for calculating the Gaussian integral (3.1.15).
Consider the first one, the second method will be used in Subsect. 3.3. We should
find a solution φcl to a classical equation of motion which can be obtained from the
exponential in (3.1.15):

Aφcί(z)=-ilnp Σ *jδx,XJ , (3.1.17)
J = l

here δz w = {l,z = w;0 elsewhere}. The Laplacian (3.1.10) has exactly one zero mode
in Co : φo = const. Integrating out this zero mode yields the infinite factor
which will be omitted in the following. Substituting φcl into (3.1.15) gives:

AN(*l9...9ίN)=]im Σ expji/2 Σ </Φci(^ ) j (3.1.18)

[The condition (3.1.16a) ensures that zero mode dependence is excluded from
(3.1.18).]

The Neumann condition (3.1.13) being imposed, the solution φcl exists only if
the constraint (3.1.16a) is satisfied. Simultaneously, it guarantees that amplitudes
do not depend on ambiguities in the determination of the Green function (see
Subsect. 2). The limit r-> oo is correct and, moreover, does not depend on the order
in which the points zf tend to the boundary if the condition (3.1.16b) is imposed.
(The last proposition implies that we may consider a more general case: each
tachyon may live on its own sphere Er. and the limits rf->oo can be taken in an
arbitrary order.) Let us write φcl in the form:

φcl(z)=-ilnp Σ ΛJN(Z9ZJ) , (3.1.19)

where N(z, w) is a Neumann function for the graph F. This function is not uniquely
defined but the answer (3.1.18) does not depend on its concrete form. In fact, we



Multiloop Calculations in /?-adic String Theory 689

define N{z, w) as follows:

N(z,w) = N(w,z) , (3.1.20a)

,x) = 0 , xedF , (3.1.20b)

(3.1.20c)

where κ(z) is an auxiliary "source" depending only on z. It follows from (3.1.20b)
that

Σ κ ( z ) = - l . (3.1.21)

If (3.1.16a) is valid κ(z) does not give a contribution to (3.1.18). In what follows we
choose κ{z) to be concentrated at the vertices of the reduced graph FR. We shall
apply this method to the simplest case of one-loop graph. For the general case of the
g-loop graph this technique has been developed in [12] where the answer for the
Neumann function for an arbitrary genus graph was presented. It expresses the
Neumann function in terms of moduli st so the answer is more complicated. The
method we shall use further in Subsect. 3 is more geometric and it allows us to
express the Neumann function in proper terms of period matrix determinant and
the Jacobi map. In fact, our formulas can be produced by integrating abelian
differentials of the third kind [23,24]. Moreover, the reader can find the answers for
Green functions are very similar to Sect. 12 of the book [24]. They were produced
there on absolutely different grounds.

3.2. The One-Loop Case

In this section we treat the one-loop case in detail. This case is the simplest to deal
with and it provides convenient tools for studying more complicated cases. The plan
of this subsection is the following: given a Schottky group Γx, we find the invariant
expression for the TV-point tachyon amplitude as an integral over dFx. After that, in
order to compare our result with the archimedean one we transform the answer into
an integral over the appropriate fundamental domain in Q p . This transformation
will be done for an arbitrary choice of the generator yx.

It was already pointed out in Sect. 2 that for an invariant description in terms of
the graph F neither the position of γ-axis nor the detailed information about q in
(2.1.4) are essential. The only information we need is the /?-adic norm of q that
defines the length m of the shift along the y-axis. So the reduced graph Ff is the ring
consisting of m vertices and m edges. (Fig. 3b).

The Neumann function for the graph F1 may be found by elementary methods
[12]. The result is:

m nz w)
- ^ , 0<nz>w<m

where nZtW is the minimal overlap of the path z->w and the ring F* (Fig. 5a), lz>w is
the minimal distance between the shortest path z->w and Ff (Fig. 5b). Obviously,
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d(z)

α b

Fig. 5. The various mutual positions of the reduced graph F* and the path z->w

nz w and lzw cannot be nonzero simultaneously. This follows from the fact that the
correlation function for two points lying on the same branch of F is just the same as
the Neumann function for the tree T. The properties (3.1.20) can be easily verified.
The auxiliary source κ(z) is nonzero only for the vertices of the ring Ff and has an
uniform density — m" 1 . The answer (3.2.1) can be rewritten in a more convenient
form:

(3.2.2)

Here ΘCWZ is an arbitrary path between the points w and z, and 3£x e C1 is the cycle,
Λίί is the only matrix element of period matrix (2.2.4), yl11 = <«2Γ1,«2Γ1> = m. We
define (not only for the 1-loop but also for any multiloop case):

d(w->z,FR) = sup inf d(y,v) . (3.2.3)

veFR

This "distance to reduced graph" is non-zero only when w, z belong to the same
branch in F. Actually, the answers (3.2.1-3) make sense in the limit z,w->dF1.
Namely, as r->oo, the sum over Er in (3.1.15) transforms into an integral over dFί

with the measure:

Bz

r)czBz is the subset {weBz \d(z) = r).
For the Gaussian integral (3.1.15) we obtain the expression:

AN(*19...,4N)= lim

• exp jln/> 1^ iiij (NQCi, x}) + § + y ) } (3 2 4)
i<3

The prefactors^ r i.. .prN should be cancelled by the singular terms in the exponential
( r^oo) . The conditions (3.1.16) do ensure these cancellations and the final answer
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has the form:

where

log

dFί j = ί

nXty(m-nXty)

dμ(Xj) Π

691

(3.2.5)

. (3.2.6)2m

Let us rewrite this integral as the one over the fundamental domain dF{Γx) czdT.
We can continue φ periodically to the whole tree boundary (or, to the complete set
of integers nxy)\

for any y e Γx. The form (3.2.5) is invariant because it does not depend on the choice
of the fundamental domain. To compare our results with /?-adic 0-functions
(Appendix B) it is necessary to choose some concrete domain dF(Γι)<^dT=<S±p.
This is equivalent to the choice of the generating element yt for I\ in PGL(2, Qp). Let
us begin with the canonical form (2.1.3) of the generator. Then

(3.2.7)

The invariant measure (3.1.4) transforms into

dμ(x) = dx/\x\p , (3.2.8)

where dx is the standard Haar measure on Q p . On the left-hand side of (3.2.8)

x e dF1 and on the right-hand side x e dF(rx) a Q p , the isomorphism being implied

in what follows. For pm \y\p > \x\p > \y\p we have

pnx,y=z\x/y\p 9 (3.2.9a)

a n d for \χ\p = \y\p:

(3.2.9b)p ι*,y =

(see Appendix A). In the second case the points x and y belong to the same branch
growing from F1. Suppose 1 ̂  \x/y\p <pm, then (3.2.6) can be rewritten using (3.2.9)
as follows:

ord2

p(x/.y)

=P 2oτdpq
y

1/2

(3.2.10)

This formula can be periodically extended to all values of x and y if one performs the
infinite product:

=P 2 ordpq
X

y

1/2

V
1 x

00

p n = l X P

=p 2m \θp(x/y9q)\p , (3.2.11)
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Here m = oτάpq> 0, q epZ, the periodicity with respect to x-+y(x) = qx being clear.
θp(ξ,q) is the one-dimensional odd/7-adic ^-function (B.I). As for the amplitude
(3.2.5), we obtain:

AN(^...,£N)= J Π ~- Π [ψ(xt/xj)]Mj= j Π dxj
j = l \Xj\p i<j l£\xj\p<\U<l\p J = l

^ ^ p { 2 o 7 ^ J ^ J J , (3.2.12)

where E(x,y) is the Prime form for the genus 1 (B.5):

The exponential in (3.2.12) can be treated as the /?-adic norm of the integral over
zero modes which together with the Prime form give a contribution to the Green
function for the open string. This integral in the archimedean case gives the
following contribution (in standard notations [25]):

, q = e2**, Imτ>0 . (3.2.14)

This expression may be identically rewritten as

p j j

P~~^^q - (3.2.15)

The/?-adic modulus of this expression can be correctly defined only in an algebraic
extension of Q p (note however that it is always sufficient to consider finite
extensions since the power value in (3.2.15) is a rational number). Thus, the/?-adic
norm in (3.2.15) being taken, we obtain the exponential term in (3.2.12). Therefore,
in order to obtain the /?-adic amplitudes one may simply perform the integration
over QpRS with the additive Haar measure instead of the standard integration over
WLRS and replace all real moduli by the/>-adic ones. It confirms the proposal of the
paper [14] in which this trick has been claimed ad hoc for g = l. This important
observation appears to be valid with slight modifications for higher genera as we
shall demonstrate in the next subsection.

Now let us consider for completeness the case of Γt generated by arbitrary
hyperbolic γ:

The attractive and repulsive points v, u together with the multiplier q can be easily
found and we have for nxy, lxy\

(x-u)(y-v)

(x-v)(y-u)

(x-y)(u-v)

(x-u)(y-v)
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~ \ePGL(2, Q p ) be an element transforming the axis v-+u into oo->0

such that

(a
y\c dΓ VO 1

A possible choice of γ is γ = 11. Then the measure (3.1.4) transforms as

dy = \detγ\pdx ^ = \u-v\p ^ ^

X — II
Here y = y(x)= . So we have

v — x

( a - * ; ) 2 1/2

f - W) (Xj - U) (Xi - V) (Xj - V)

(Here nij = nXιXj and lij = lXifXj for brevity.) Hence

Π rfμίxj) Π ^ ( i " y ' l 0 ) / < / ^ Π ^ Π to-xjlί1'

(Here the constraints (3.1.16) has been used). This relation is valid for a special

fundamental domain [see (2.1.4-5)], which is in fact the Q p with two discs removed.

The Prime form is performed by the following infinite product :

So the periodicity of the whole expression holds and we obtain:

AN(*19...,4N)= j Π dxj Π ΪIE^XJXP^Y , (3.2.19)
L J

where m = ordpq.

In the case of general orientation this comparison teaches us one trivial but

rather important lesson; the amplitudes do not depend on the orientation of the y-

axis. It is also true for the multiloop case: the PGL{2, (^- t rans format ions do not

affect the structure of the answer, they change the fundamental domain only. Thus,

it is more instructive to describe the scattering processes in invariant terms of the

factorized tree F.

3.3. The Amplitudes for Arbitrary Genus

In this subsection we consider correlation functions for tachyons on arbitrary

homogeneous space Fg=T/Γg. The invariant description of Fg implies that we treat

it as an infinite lattice of some special kind. In fact, any such lattice consists of:

a) A finite closed g-loop reduced graph Ff\

b) The branches Bz., zf e Ff, which should be added in order to fill all p + 1 bounds

of any vertex zx.



694 L. O. Chekhov, A. D. Mironov, and A. V. Zabrodin

Thus there arises a technical problem of finding the Green functions with the
Neumann boundary condition (3.1.13) in the Gaussian (free) lattice field theory
with the action (3.1.12). The general method for the solving of such a problem has
been developed by Zinov'ev [14] who proposed the general geometric formulation
based on chain complexes. (This issue has been also raised independently in [28]).
Here we calculate the amplitudes using this method.

We begin with the Gaussian integral (3.1.15) with the constraints (3.1.16)
imposed. Consider now the regularized functional integral on a finite lattice Jfr. It
consists of all vertices z e .Fwith d(z) ^ r and edges between them. For clarity we also
assume, though it is not necessary, that all sources are attached to the boundary of
the graph Jfr. Using the operator d* (3.1.7) we can rewrite the integral for
AN(ίl9...9*N) (3.1.15) as

dr
{zi}eEr

(3.3.1)

This formula needs few comments. Firstly, we choose in graph Jfr some point C,
"the center", but the answer does not depend on this choice due to the condition
(3.1.16a). Secondly, the integration goes over the space of functions
d*φeBg(Jfr)czC1(Jfr). This space is called "the space of coboundaries", i.e. it is
the image of the operator 3*. This operator generates a short exact sequence:

Here ZgB\β£^ is a space of cycles in Ff. Moreover, the whole space of functions
C\ (Jfr) splits into a direct sum:

So the integration in (3.3.1) goes over functions b{e^) which are orthogonal to any
cycle 2£t: for / = 1,..., g <Z>, &t> = 0. The quadratic form in (3.3.1) is very simple and
the gaussian integral can be easily done. The answer has the form:

( 3 3 4 )
f-^oo {zi)eEr

N

where @ = Σ %Zic PB

 i s the projector to the space Bg(Fg). In fact PB = Id - Pz, Pz

being a projector to the space of cycles Zg:
9

Pzφ= Σ ^iΛ^^j.φy . (3.3.5)

Here Λ^1 is the inverse period matrix (2.2.4). This answer can be rewritten in terms
of two point Neumann functions [cf. (3.1.20), (3.2.1)]:

(3.3.6)
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Here N{zi,zJ) is the following:

695

det

(Of
\Λ Xy,

det

Of \
*** xy/

Of \
xy /

( (ψ

<^y^i>- < ^

<ar1,ar1>...<ar1

< ^ g ) ' ^ > ... <iF9

Φ \ / W Φ \

^>...<^ 9, :^>

^ \

(3.3.7)

It is clear from this expression that the answer does not depend on the choice of the
path Si'xy since any two paths differ by a linear combination of the cycles which does
not affect the determinant (3.3.7).

The answer (3.3.7) expresses the Neumann function in terms of period matrices
determinants. Note that the upper matrix in (3.3.7) may also be treated as a period
matrix for some reduced graph Ff+1. This graph can be obtained if one identifies the
points x and y resulting in a g + 1 -loop graph, the path 3Cxy being the g + Γth vector
in the new basis of cycles {β {, i = 1,..., g, SCxy). The one-loop graph in Fig. 5a gives
us the simplest example. The identification of the points z and w leads to a two-loop
graph (Fig. 6). A question arises how one may express these determinants through
the moduli s( of the corresponding surfaces. Acttually, the formula (15) of the paper
[12] gives this answer.

Fig. 6. The "auxiliary" cycle

Now we present the tachyon amplitudes. Again we replace the sum in the limit
r-κx) by the integral over dF with the invariant measure (3.1.4). The details are
identical to the above consideration for the 1-loop case (3.2.3-4) and we give only
the final expression. For any two points xί,x2e dF we define d{xx -+x2, F

R) by the
formula (3.2.3) with z-^x1 and w->x2- We also choose an arbitrary path S£XlX2.
Then one can define the function φ(xί9x2):

(3.3.8)

and the function Φ(xx,x2):

1 A
l o g p Φ ( x 1 ? x 2 ) = - - X 2> (3.3.9)
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Here as above 3£12 = 3£XlX2 for brevity. Certainly, the Neumann function N(z,w)
(3.3.7) is connected with φ and Φ by the relation:

\ogp(φ(x1,x2)Φ(xux2)) = lim β N(z9w)~ d(z)~d(w)\ . (3.3.10)

W->X2

The result for the amplitude (3.1.15) acquires the form:

AN(Jί,...JN)= J Π dμ(xj) Π Mxt,Xj)Φ(Xt,xj)Yιdj (3.3.11)
dFg 7 = 1 i<J

In order to compare the result with the archimedean one we should "coordinatize"
dF. For the canonical choice of the fundamental domain dF(Γg) of the correspond-
ing group Γg the measure appears to be the additive Haar measure dx on Qp, and the
final answer is the following:

AN(tl9...,ΛN) = f Π dxj Π l\E(Xt9Xj)\PΦ(Xi9Xj)Yidi • (3.3.12)

The E(x9y) is the/?-adic Prime form ((B.5), cf. [29]). One can always choose the
fundamental domain dF(Γg)a<flp, such that \E(x,y)\p = \x—y\p (see Appendix B).

We conclude this section by the comparison of the answer (3.3.12) with the
archimedean one. The archimedean amplitude has the form [29] (up to normaliza-
tion factors):

C β xj _ XJ ]

E(xi9Xj)exp<-πΣ j ω^Imτ),,1 J ωΛ
L r,s ^ Xi )

(3.3.13)

The Neumann function on the WiRS is expressed in terms of the real Prime form
E(x, y) (x, j elR). The exponential in (3.3.14) being in fact the nonholomorphic part
of the Neumann function resulting from zero modes integral. In the case of WiRS τi}

y

is pure imaginary. We also have the analog of the Jacobi map J ω which is now
X

defined as the intersection index between the cycle basis \βt J and the path x-+y. So
in order to obtain the/?-adic expression we should replace the real norm of the Prime
form by/7-adic one and besides it substitute new (p-adic) definitions of the period
matrix and Jacobi map:

2πImτ,s->Λrs , J ωr-*(Xij92Sry . (3.3.14)
Xi

Thus we do reproduce the formula (3.3.12) from (3.3.13).

4. The Mumford Curves and Other Issues

In this section we intend to answer some more questions related to the mathematical
background of our treatment. In particular, we discuss the role of algebraic
extensions of Qp. Then we describe the Mumford curves and formulate a conjecture
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about the general construction of the sums over moduli space which appear,
for example, when calculating the /?-adic string partition function for different
values of p.

4.1. The Role of Algebraic Extensions

The open string theory over R-field is well-known to be self-consistent only if closed
strings (corresponding to the algebraically closed field <C) are included. More
precisely, the open strings without closed ones are suitable to describe only tachyon
amplitudes in higher loops (or arbitrary amplitudes at the tree level) [25]. The main
reason for such a situation is the absence of a profound analyticity notion in
algebraically non-closed fields. Generally speaking, the constructions of algebraic
geometry are well-defined only over algebraically closed fields [28]. Just the same
situation appears in the non-archimedean case. But there exist serious compli-
cations connected with the involved structure of algebraic extensions, or, equiv-
alently, with a huge Galois group.

The field Q p has an infinite number of algebraic extensions, each finite extension
corresponding to a proper type of the open string (in contrast to the statements of
some earlier papers [3-6]). Therefore the "/?-adic closed string" should be
connected with the complete algebraically closed field Ω. Again the self-consistent
"finite extension string" is possible only if Ω is included. In particular, the analytic
expressions exist only on Ω.

The following interesting example is the determinant calculation [29]. We can
easily obtain the part determined by zero modes, that is [det/l^]"1/2, which is just
the same as in the archimedean case. This expression can be obtained using only the
open string framework, but the rest should depend on the metric and diverges as for
the archimedean non-compact hyperbolic domains due to the conformal factor
(any natural regularization makes the answer rather complicated). The string
partition function for a given surface is a finite combination, which does not depend
on the metric, and is equal to det(zl_1)(det(zl0))~1 3 where Aj is the Laplace-
Beltrami operator acting on^'-differential space. This definition requires the notion
of metric, which can be hoped to exist only on Ω. Thus, in contrast to the
amplitudes, the determinant calculation can be done only over Ω. To all
appearance, the answer for the properly defined partition function should be equal
top s [30] (for the multiplier connected with the non-zero modes), S being defined in
(3.1.5) (see also below).

As we have seen in the previous section, the Neumann function is natural in the
Q p case in contrast to the Dirichlet one (though the latter can also be obtained [23]).
It follows from the fact that the Dirichlet function corresponds to the semi-off-shell
closed string amplitudes [31] (i.e. it relates to Ω, not to Qp).

At last we point out one more example when the necessity of algebraic
extensions is obvious. Consider a Schottky parametrized Riemann surface over Q p .
It is presented by Q p with a number of discs removed (see Sect. 2), whose radii may
be equal top r, r being half-integer, which corresponds to a valuation on an extension
ofQ p [17] .

Now we would like to describe finite extensions manifestly in terms of the
Bruhat-Tits tree [17]. Let IK be a finite extension of Q p of degree n with the
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ramification index e. Setf=n/e. A Bruhat-Tits tree T(K) can be drawn for any such
EC by the following procedure: 1) insert into each edge of T e — 1 new vertices
separated by equal distances 2) draw new branches in such a way that each vertex
has exactly/>^+1 neighbours. All the constructions may be developed for such trees
and the answers can be obtained with only slight modifications. However, T(Ω)
gives us a less trivial example of the tree which contains infinitesimal edges and
vertices with an infinite number of neighbours. So the tree language seems to be
adequate only if some limiting procedure is implied. In any case we expect that our
answers for the amplitudes turn out to be the same for arbitrary extensions (up to
slight modifications) with the lengths of reduced graph segments ^(the moduli)
being continuous in Ω-case.

The only trouble we should note is the special case of Qp-tree with small p and
5f = l. Let us consider the example in Fig. 7 for p = 2 and g = 2. Then the whole
measure of the boundary of this world sheet is zero [see (3.1.5)] because no branches
go to infinity in this case. So we cannot define the important quantities like the
Jacobi map and so on. But the problem can be resolved if we turn to the proper
finite extension.

Fig. 7. An example of EQpRS with the empty <$pRS (g = 2, p = 2)

42. The Schottky Parametrization and Mumford Curves

The next problem to be discussed is the integration (summation) of the amplitudes
obtained in the previous section over the moduli space. The key question is the
uniformization of algebraic curves. Namely, in the archimedean case one can
uniformize any algebraic curve over (C. To treat the open string theory it is
necessary to uniformize the curves over IR. This problem can be reduced to the
uniformization of the curves over C as follows. Given a Riemann surface with
complex antilinear involution such that the fixed points of this involution form a set
of circles (i.e. IR-points of the curve, or ΈLRS) which divide the surface into two
pieces (EΈLRS) without handles. Then we manifestly describe the embedding of
EΈtRS into a Riemann surface over <C, with the corresponding equation admitting
the involution. Certainly, it is not an isomorphism. For example, the curve given by
the equation;;2 = (x2 +1) Π (χ ~ α/X α i G ®-> has a handle which is not cut by the fixed
contour since it lies in a non-real domain.

A more complicated situation may be expected in the />-adic case since there
exists a lot of different algebraic extensions. But the general scheme seems to be the
same, and the uniformization problem should be resolved for Ω and Q p simul-
taneously. In the non-archimedean case in contrast to the archimedean one, curves
exist which do not admit any uniformization even over an algebraically closed field
Ω. Namely, only the so-called Mumford curves admit the Schottky uniformization.
Now we discuss these curves in more detail [17, 18].
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To begin with, let us concentrate on the elliptic curve case [32]. One can write the
elliptic curve equation in Legendre form:

y2 = x(x-l)(x-λ) , (4.2.1)

where the ramification points are placed in 0,1, αo and λ (we can fix three of them by
using of the global P(jL(2)-invariance). There exists the relation between λ and the
modular parameter q = e2πiτ:

Δ(q) = 16[λ(l-λ)]2κq Π ( W ) 2 4 (4.2.2)

Here A(q) is the Jacobi J-function, which is just the discriminant of Eq. (4.2.1).
Such relations also do not depend on the number field. Since we are interested in the
norms of both sides of relation (4.2.2) and the constant multiplier on the right-hand
side has unit norm when/?=t=2, we shall consider (4.2.2) as the precise relation and
suppose /?Φ 2 in the elliptic and hyperelliptic cases. Then we have

\A(q)\p=\q\p = \λ(l-λ)\2

p for | 9 | p < l . (4.2.3)

The parameter q describes a Schottky parametrized Riemann surface. It is natural
to consider Eq. (4.2.1) over a quadratic extension of Q p . Then ovάpλ and
ordp (1 — λ) may be half-integer, with orάpq being integer. If one wishes to consider
odd ordpg, then it is impossible to represent the cubic Weierstrass equation [32] in
the form (4.2.1) with AeQ p . Consider two possibilities: | λ | p < l and | 1 — λ\p<\,
which cannot be satisfied simultaneously. In both cases one can determine oτάpq
using (4.2.3) and it is a kind of modular parameter (see Sect. 2) with the condition
ordp<7>0 being analogous to I m τ > 0 . However, the case | λ | p ^ l destroys this
inequality. It is an illustration of Tate's well-known result [18]: only elliptic curves
with non-integer ̂ -invariants (asj = \jq+regular terms) can be uniformized. These
"Tate's curves" are just the Mumford curves for genus 1.

A less trivial example of a higher genus curve is the hyperelliptic curve defined by
an equation of the form:

20 + 2

y2=U (*-«,) , (4.2.4)
i = ί

where three arbitrary ramification points αf can be fixed. Again it is sufficient to
work within a quadratic extension. Let us construct a concrete example of the
hyperelliptic Mumford curve. Choose the set {αj satisfying the following
conditions:

p

2. all other pairwise differences are nonzero modulo/?. In fact, we can describe this
"degenerating" curve in terms of the reduced graph Ff. That is, pinch the handles
corresponding to each pair {α 2 {_ 1,α 2 i}. Then we obtain a set of zero genus
Riemann surfaces (spheres) with punctures. Each sphere corresponds to a vertex
in Ff, and each pinching - to a segment with the length si = 2ordp(a2i-1 — α2 i)
[cf. (4.2.3)].

Now we are ready to define a general Mumford curve [18]. Let a set ^ ( Q p ) of
Qp-points of a curve # be given by a set of algebraic equations:

Pk({xs}) = 0 , xse<Hp . (4.2.5)
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Here Pk({xs}) are irreducible polynomials in xs with/?-adic coefficients (we do not
specialize them somehow). Strictly speaking, it should be "homogenized" to obtain
the projective curve. By appropriately replacing ({xs})-+({x's}) one can cause each
coefficient of (4.2.5) to become a/?-adic integer. There are many ways to do so; we
choose a "minimal" way ("a minimal model," see below).

Then one can immediately define a reduction of # to be a curve <? over a finite
field Ψp given by (4.2.5) modulo p. By definition, the Mumford curve is a non-
singular curve <&, whose reduction ^ is a set of components isomorphic to P1 (Ψp)
and containing only double singular points with separated tangent lines (such
curves are also called degenerating with split reduction). Obviously, the above
examples fall under this definition. In the first case λ = 0 mod/? implies that a
degenerate curve # is just the "sphere" [i. e. P1 (Ψp)] with two punctures (Fig. 8a). In
the hyperelliptic case condition 2) means that the cusp singularities (Fig. 8b) are
forbidden.

y 2 = x 3

+ x 2

node cusp

Fig. 8. Examples of singularities (elliptic curves over R)

Mumford has shown [18] that one can establish one-to-one correspondence
between factorized Bruhat-Tits trees F(Γ) and the Mumford curves (see Fig. 9).
That is, 9F(all rays contained in the branches Bz, zeFR) correspond to Qp-rational
points of the curve. All edges with the only endpoint belonging to FR correspond to
the Iryrational non-singular points of the curve (in particular, the reduced zero
genus curve is P1 (F p ), i. e. p + 1 edges with the common origin [17]). Each branching

= T/Γ

Fig. 9. The correspondence between rays in F= T/Γ and Qp-rational points of an algebraic curve
(g = 2, p = 3). The dots correspond to IEyrational points of the curve while the segments 1, 2, 3
correspond to double singular points (stable reduction)
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vertex in the reduced graph corresponds to a "sphere" P1 (Ψp) in ^ and, eventually,

all segments in FR correspond to double singular points in <?. Thus the map

#(Qp)->i?(]Fp) is described by the natural map:

dF-+FR .

A simple example is depicted in Fig. 10.

Up to now we dealt with the so-called stable reduction of the curve (i.e. any

^-component without self-intersections has more than two double points), when

the map / :

/ : {edges of FR}^> {double singular points} (4.2.6)

pinching

X / /

punctures

1 ! ~1

punctures

punctures

oo
Fig. 10. Different types of degeneration for g = 2 and corresponding reduced graphs. In b an
example of semistable reduction is depicted. Dots in the reduced graph refer to the irreducible
components P 1 which are depicted schematically as lines at the last picture of each sequence. Their
intersections correspond to the edges in the reduced graph
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is surjective (but in general non-isomorphic). A finer reduction is the semistable one,
when any ^-component without self-intersections has at least two double points
(Fig. 10). It makes the map/isomorphic and can be described as follows: Let us
associate with the curve (4.2.5) a surface given by the equation:

Pk({xs};{ai(t)}) = Pk({xs},t) = 0 , (4.2.7)

where all the coefficients a{ are represented as formal polynomials in t, namely, the

integer number a= ]Γ a{p
l must be replaced by a= ]Γ a{t\ Then the reduction

mod/? tends t to zero (t plays the role of "the arithmetical coordinate" [33]). Thus we
have a surface (4.2.7) with the singularities which should be resolved by a sequence
of σ-processes [28]. For example, the simplest singularity of the surface

y2 = x(x-l)(x-p)-+y2=x(x-l)(x-t)

at the point (x, y, t) = (0,0,0) can be resolved by the single σ-process resulting in two
components Pί(ΊFp) of the section t = 0 of the surface (which is nothing else but the
reduced curve). A stronger singularity of

yz=χ(χ-l)(χ-pz)^y2=:χ(χ-ί)(χ-t2)

requires one more σ-process resulting in four components P 1 ( F p ) . Given a curve
one can choose the integer coefficients in (4.2.5) in many ways. We constrain them
to give a "minimal model" of the curve. By definition, the minimal model should
have a minimal number of irreducible components in any fiber of the surface (4.2.7)
after resolving all the singularities [28]. For instance, the minimal model of an
elliptic curve has the discriminant with the minimal /?-adic order (for more details
see [32]). In fact, the number of components originating from a singular point of the
minimal model is equal to the length of the corresponding FΛ-segment under the
map (4.2.6). Thus, now all irreducible components are mapped to the edges of the
segment bijectively.

For elliptic curves this description is part of the Neron-Kodaira classification
[32]. For higher genera, there are different patterns of degeneration corresponding
to topologically inequivalent reduced graphs. See examples for genus two in Fig. 10.
So the moduli space is naturally divided into distinct domains.

Finally, note that the quantity S introduced in (3.1.5) is nothing else but the
number of all components P1 (Ψp) of the whole reduced curve, i.e. it coincides with
the number δp in Ref. [30], which is hoped to be closely related to the Mumford
measure on the moduli space [29].

4.3. The Mumford Curves and the Moduli Space

Thus we have observed that the main information about the moduli space is
contained in the reduced graphs. Certainly, one would like to sum various quantities
over the moduli space. Working with fixed p, it is natural to expect that this sum
should go over only Mumford curves, since the Riemann surfaces but not algebraic
curves provide an adequate description in the fixedp framework. So we introduce a
sum Zp = Σ fpQβ), where fp is a function on the "moduli space" ^ # R S of Riemann
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surfaces over Q p . In particular, a proper density on the moduli space should give the
/?-adic string partition function (the notation Zv refers to this case).

On the other hand, working with arithmetic surfaces [30] requires us to consider
all the prime numbers simultaneously, i.e. this treatment implies summing some
"adelic quantities" over the moduli of the algebraic curves: A = ^] φa e 1 C (^).

Arithmetic
surfaces

The quantity φ a d e l l c is expected to be the product like Π ΦP

 m analogy with Eq. (1.2).
p

The/?-component φp of ^ a d e l l c is quite similar t o / p . Moreover, these two quantities
are supposed to be the same, when/p is restricted to the subspace of the Mumford
curves space. It should be noted that the idea of product formulas was proposed by
Manin [11].

We would like to say some words about the notion of arithmetic surfaces [30,
34]. Let a curve ^ be given over a global field, say, the rational number field Q (for
simplicity we consider the curve embedded into F 2 here):

PeZ[TuT2] . (4.3.1)

Here Z[Γ l 5 T2] is the ring of polynomials with the integer coefficients [cf. (4.2.5)].
Then one can consider the reductions ("fibres") ^ip) of ^ at each place/? of the field
Q. In order to "compactify" this construction Arakelov has introduced [30, 33, 34]
a "non-existing" fiber over the archimedean place {oo}. The number of degenerate
fibres <f (p*} over p* is always finite, with the archimedean fibre assumed to be
highly degenerate (in a rather sophisticated sense). Such/?*'s are called the places
of bad reduction of the curve. All these data can be arranged into the "arithmetic
surface" (£:

«1 (4.3.2)

Here Spec TL denotes the set of all prime ideals of the ring Z, with the maximal ideals
being generated by the prime numbers (i.e. the non-archimedean places of Q). This
construction may be considered as a fibre bundle over the base B (spread in an
arithmetic direction) with the fibres over/? eB being the reduced curves ^ip). There
exists also a generic fibre which is the initial curve over Q. It grows over zero ideal in
Spec TL.

After these preliminaries are done we are ready to formulate our conjecture
(only this conjecture can justify the summing over moduli space under fixed/? [35]):

Conjecture.

A= Σ ΠιM*)->Πz p=π ΣΛ(*) (4 3 3)
Arithmetic P P P ^ R S

surfaces

At the present time we are not able to give any precise meaning to the quantities
entering this formula. In particular, we hope that the arrow should imply an
equality provided all the quantities are correctly defined. We would like to consider
the formula (1.1) as a very special case of (4.3.3). The left-hand side of (4.3.3) is also
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reminiscent of the proper adelic expression for the string measure Π μ p Ξ f ] ^ p

p p

(up to possible zero mode factors) which can be extracted from [30,35].
We immediately observe from (4.3.3) that non-Mumford curves give the unit

contribution to Zp. It follows that the expression for φp is non-trivial only at the
places of split reduction; this makes both sides of (4.3.3) consistent.

The first problem to be resolved is to check the above conjecture for genera 1 and
2 when a convenient parametrization in terms of ramification points exists. In these
cases the sums in (4.3.3) can be transformed into the sums over integer numbers.

5. Concluding Remarks

Thus we have demonstrated the considerable resemblance of the/?-adic strings and
the usual ones. The underlying reasons of this similarity can be only guessed at this
moment. For instance, it is rather favourable to think about both /?-adic and
archimedean strings as two faces of the unique object associated with the arithmetic
surface [30]. This viewpoint is rather close to the adelic formulas like (1.2) (see e.g.
[3-7]). It is likely that further investigation of the conjecture (4.3.3) will be helpful in
clarifying this point.

In any case a number of important questions remains beyond the scope of this
paper [23, 29]. In particular, it is not evident how one should define a string model
over Ω, and, moreover, it seems that there is no adequate language for the
description of Ω itself. A related question is to obtain the/?-adic analog (if any exists)
of the usual conformal metric.

There are some more questions we point out the following:

1. A natural formulation of the /?-adic string is expected to be given by using the
moduli space for all genera (an universal moduli space, or grassmannian [36]). So
questions arise whether a maximal unification exists which is a grassmannian
related to arithmetic surfaces? Should one sum in (4.3.3) over the universal moduli
space or over the moduli for a fixed genus?

2. It is an absolutely unclear question how we can describe a fermionic string on
EQpRS (in contrast to the archimedean case). Its formulation on <QpRS provided
with the corresponding non-local action was proposed by A. Marshakov and one of
us (A.Z.) [37], but the extension to E<QpRS remains an open question.

To all appearance, all these problems are connected with the absence of an
analyticity notion on the tree. Probably, a good understanding of Ω should clarify
these points.

All the above refer to the tree with a fixed prime p. But there exists another
viewpoint which naturally incorporates the tree into the arithmetic surface
approach of Sect. 4.3. That is, besides of the reductions # ( p ) of the curves ^ one can
investigate the curves cβp over the completions Q p of Q at the places/?. They have a
Schottky uniformization in place of the split reduction (see Sect. 4). Given the
arithmetic surface (£, one can using σ-processes "blow u p " all these points, after
blowing up the points produced before, etc. This process repeated infinitely many
times leads to v4-surface ί£ (a "foam space" [41]). In particular, if <β = P1,
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) = P1(ψp) has exactly p + \ points over the finite residue field F p , then one can
blow up each point to the whole branch of the Bruhat-Tits tree [i.e. paste P1 (F p) at
each point of P1(Ψp) and then repeat this process infinitely many times]. One
eventually obtains the Bruhat-Tits tree. Just the same, if the curve ί? has a split
reduction at/?*, then ^{p*] is described by the reduced graph, and the points of this
graph can be blown up to produce the branches of the factorized Bruhat-Tits tree
(see Fig. 11). In the case of ^ = P1, the corresponding ^4-surface φ 1 is a union of the
Bruhat-Tits trees growing over all places p together with the Poincare disc over the

(split
reduction)

(good
reduction)

Fig. 11. Maximally blown up arithmetic surface

Fig. 12. The correspondence between rays and numbers
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archimedean place oo. So this Poincare disc is analogous to the "maximally blown
up" fibre over a finite place of ^4-surface. The general (£ is a union of trees over places
of good reduction (Fig. 11) and a finite number of "singular fibres". Roughly
speaking, the whole family έ can be given by its singular fibres.

This "arithmetic catastrophe theory" viewpoint seems to be rather natural. We
hope that such an approach can be more suitable for the further development in
non-archimedean physics.

Appendix A

In this Appendix the basic results on the coordinatization of dTare briefly reviewed.
We follow [10].

One can introduce a coordinate function on P 1 (Q p )^3Γ, i.e. to identify the
boundary of the tree Γwith the field of/?-adic numbers. In terms of the tree this
amounts to choosing three rays leading to the points of the boundary which are to
be identified with 0,1 and oo. Any three distinct points on dT (i.e. three rays)
uniquely define a point inside T, namely, it is the common starting point of the
corresponding three rays, the rays being chosen to have no common edges. We shall
denote such a point for the rays 0,1, oo as C.

In order to clarify the rules of coordinatization, it is useful to interpret the tree in
a somewhat different way (Fig. 12). Let us write down the number x e Q p in the
form:

... , (A.I)

where the coefficients at take values in the residue field F p and a0 φθ. Then the ray
C->x corresponding to (A.I) coincides with the path oo->0 until the vertex Cn is
encountered and, further, goes within the corresponding branch. The direction to
be chosen at the ith step when moving inside this branch is determined by the
coefficient ai_1 in (A.I). So we have an identification (non-canonical) 3 Γ ^ Q p ,
where Q p = Qpu{oo}.

The/?-adic norm has a nice interpretation in terms of the "coordinatized" tree.
For xί,x2,yί and y2edT let (xί-

J>x2,y1-*y2} be defined by Eq. (3.1.1). (In the
notation of [10] this quantity was denoted as δ(x1->x29y1->y2); it is the length of
the common part of the oriented paths xx -+x2, yx ->y2 with the negative sign when
the orientations are opposite.) Then the/>-adic norm of the cross-ratio of the four
points is

In particular, we have

\l-x/y\p=p-<x^y-^ (A.3)

Appendix B

In this Appendix we present analytic constructions over Q p used in the main body of
the paper. They are well-defined only over Ω but we shall restrict them to Q p .
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+ 00

At first, let us consider a formal Laurent series over Ω:f(z) = £ anz
n, which

_ ~ °°
converges in a point z0 e Ω if and only if lim \anz

n

0\p = 0. The point t is called critical
n-*oo

for / if 3ίJ(ίΦy): |α, |j,ί = |α7 | ^ = max |^|pί f c. Then an arbitrary function / (given

on a finite segment) has the following properties [16]:

1. The set of critical points {ίj is finite, ^ e|Ω|p and |/(z)|p may vanish only

when \z\p = tt.

2. If \z\p φ {ίj, |/(z)|p is the function of |z|p only. Then ordp/(z) is a piecewise linear
function of ordpz with the slope growing with ordpz.

Now we define the/?-adic one-dimensional 0-function which gives an example of
converging Laurent series with the critical points ^ = Mp> ieTL, \q\p< 1 [16,17]:

θp(z,q)= Π (I-?"*) Π ( l - ^ " 1 ) (B.I)

It is a literal counterpart of the usual 0-function over <C [38]:

θn(z,q) = c(q)zV2 Π ( 1 - ^ ) Π (1- ί"*" 1 ) , (B.2)
w>0 π^O

where we redenote elniτ-^q and e 2 π ί z ^z; c(q) does not depend on z. The only
difference between (B.I) and (B.2) is the factor z1/2. It can be easily included as

ordp θp = 0 for — ordp q < ordpz < 0

pθp= —ordpZ for 0<ord p z<ord p ^ (B.3)

pθp= -ordpq-2ordpz for ordpq<ordpz<2ordpq ,

and so on. We can rewrite (B.3) as

(ord z)2 ord z

ordp0 = - - — \ 7Γ- + Ψ , (B.4)
p p 2oτdpq 2

where ψ is a periodic function with the period ordp q, which can be obtained from the
condition ordp0p = O for — ord pg<ord pz<0.

Now we shall restrict all formulas to Qp. It is convenient to work in a special
fundamental domain: — ordp#<ordpz5^0. Then ordpθp is zero in non-critical
points (ordpz=|=0).

This technique we apply to βp-functions of many variables. That is, define a
formal Laurent series /(z1 ?...,zn) like ^-function as in [16]. Then the above
statement is valid with the only change that the critical points should be replaced by
critical subspaces of unit codimension. They form a complex, which in fact is the
Voronoj decomposition, and it results in the skeleton which is a visualization of the
period lattice. Consider the simplest nontrivial example of n = 2. Then the possible
Voronoj decompositions together with the corresponding reduced graphs are
depicted in Fig. 13. Moving along the critical line corresponds to moving along a
cycle in the reduced graph. When two cycles do not overlap, the Voronoj lattice
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Fig. 13. The Voronoj decomposition in two dimensions

evidently is square (two axes giving this lattice are independent). The elementary cell
corresponds to a fixed choice of the fundamental domain. We may again choose
such a fundamental domain that ord p 0 p is zero outside the critical points. (It can be
done due to the above theorem, see the proof below.) One can write the product
formula for 0p-functions analogous to (B.I) [39], but we omit it here, as we need a
slightly different object, namely, the Prime form E(x9y). In the archimedean case it
is defined to be

E(x,y) = -
ί

h(x)h(y)
(B.4)

Here is any odd ^-characteristic, {ωf} is a basis of holomorphic 1-differentials,

h(z) is the holomorphic 1/2-form:

1 = 1

Though the abelian differentials and other objects in (B.4) are rather complicated in
the Schottky group terms [39,40], the infinite product expansion for E(x, y) has a
simple form [27]:

ΛΓy^-y{?l (B.5)

The product goes over all elements of the Schottky group (except the unit element)
with y and y'1 elements counted only once. The/?-adic formulas should be obtained
simply by replacing the variables x,ye<E by x , j e Q p .

Now we demonstrate that for any Schottky group Γg it is possible to choose such
a fundamental domain dF(Γg) c Q p that \E(x9 y)\p = \x -y\p for x9 y e dF(Γg\ i. e. the
infinite product term in (B.5) gives no contribution. Let us consider the Schottky
tree for Γg. It is in fact the universal covering space for the reduced graph F*. (The
example of such a covering for Γ2 is depicted in Fig. 14a). Given the graph Ff
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dF(Γ'

F(ΓJ

Fig. 14. An example of the Schottky tree T(Γ2). The choice of the connected fundamental domain
F(Γ2) leads to trivialization of the Prime form (B.5)

containing R segments Sfhi=l,...,R. Any segment £fk is replicated infinitely many
times in the Schottky tree. We denote these copies as <9*k

{α}. Any appropriate
fundamental domain F(Γg) c= Γmay be determined by the set of R arbitrary copies of
these R segments <?lai) u ^ 2

{ α 2 } u . . . u 9?^R\ The fundamental domain dF(Γg) is the
collection of points at infinity of all branches growing from the vertices belonging to
this union. The "good" choices of such domains are subtrees F(Γg) which are
connected in the tree T. It is easy to show that such domains do exist for an arbitrary
Schottky tree. (They can be obtained if one cuts all g loops of Ff by exactly g cuts,
the obtained graph being connected without loops and any of its connected replica
in the Schottky tree gives us a connected graph F(Γg)). It means that for any two
points x,ye dF(Γg) the path x-*y <=F(Γg). (The example of such a choice for Γ2 is
depicted in Fig. 14b.)

Consider now the action of an element y on the subdomain F(Γg). It follows that
y(F(Γg))nF(Γg) = 0 and the path y(x)^y(y)ciyF(Γg)). Let us calculate the cross-
ratio (A.2),

(χ-y(y))(y-y(χ))

(χ-y(χ))(y-y(y))
+y,y(χ)->y(y)>

It is clear from the above that for connected F(Γg) and any y e Γg the intersection
(x^>y, y(x)^y(y)} = 0. Thus for this fundamental domain the infinite product in
(B.5) gives no contribution.
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