
Communications in
Commun. Math. Phys. 125, 565-577 (1989) Mathematical

Physics
© Springer-Verlag 1989

Quantum Jί-Systems

H. Narnhofer and W. Thirring
Institut fur Theoretische Physik, Universitat Wien, A-1090 Wien, Boltzmanngasse 5, Austria

Abstract. We generalize the classical notion of a X-system to a non-commutative
dynamical system by requiring that an invariantly defined memory loss be
100%. We give some examples of quantum X-systems and show that they
cannot contain any quasi-periodic subsystem.

1. Introduction

There seems to be general agreement [1-4] that classical X-sy stems exhibit those
mixing and chaotic properties which are necessary for the foundation of statistical
mechanics. Classically they can be characterized by the existence of a subalgebra
sd c M = the algebra of observables with

(i) σWi^V72eZ + ,

(ii) V σnsrf = Jί,

(iii) Λ σ~ns/ = cl.

Here σ is the time evolution and v and Λ mean union and intersection of algebras.
These conditions are met in particular if there exists a generating subalgebra

00 OO

s^Q^Jί with V σWo = J(,N V σ~n~js/0 = c\. The difficulties of gene-
— oo < « < oo n= ί j= 1

ralizing this for non-commutative algebras Jί comes from the fact that then even
two finite-dimensional isomorphic subalgebras may generate algebraically an
infinite-dimensional Jί. For instance, if x and p satisfy [x, p~] = ί and χ is a
characteristic function of [— 1,1] and σ:(x,p)-•(/?, — x), then s/0 = (χ(x), 1 — χ(x))
and σs^0 generate the algebra W =la®M2 and J / 0 Λ σstf0 = c\. Nevertheless,
Emch [2] has proposed a notion of a non-commutative K-system and an associated
dynamical entropy starting with the algebraic characterization given at the
beginning (see also [3,4]). We have recently [5] given an alternative definition
of the dynamical entropy of a non-commutative system and we propose a
corresponding notion of a quantum K-system. We start with the classically
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00 00

equivalent characterization of a K-system by requiring that the tail Λ V σ ~n ~J'si
B = l j = l

of any finite partition (finite subalgebra) si is trivial (= cl). The triviality of the
tail can be rephrased in terms of the entropy

«->αo .

lim lim S[ si V σ'ks/\-s( V σ~k ) =
/J

and this can be used as a starting point for a non-commutative theory. In [5] we
have introduced entropy functionals H(sll9...9sln) which have the desired

properties and reduce to S V sli I in the commutative case. They have the

intuitive meaning of the maximal information to be gained about the subalgebras
sii by a measurement of the total system. Using H(slί9...9sln) instead of

Si V sln J in the above criterion and replacing lim by the mean we get a
\i=l / j-»oo

characterization of quantum K-systems which roughly says the following: The
maximal information obtained about any si at previous times can never give the
full information about si at present, in fact if these times were too far in the past
all information gets lost.

In this note we will explore the consequences of such a definition of quantum
K-systems. They show features which contradict what one is used to from finite
quantum systems. Firstly, K-systems are ergodic in the sense that the only
time-invariant elements of the algebra of observables are multiples of unity. Thus
the Hamiltonian H which generates the time evolution cannot be an element of
this algebra. Even more strikingly Zermelo's recurrence objection is completely
rejected in the sense that there are no quasi-periodic elements φ cl.

We shall show that some infinite quantum system which are generalizations of
classical K-systems do indeed have our K-property. Our examples of K-systems
are of the type studied by Emch [2], Kummerer and Schroder [3,4] but we have
the advantage that we are not obliged to exhibit the expanding subalgebra si. If
one adds the assumption of strong asymptotic abelianess one can show [14] that
the K-systems in the sense of Schroder [4] are also K-systems in our sense.
Hopefully also the systems relevant for physics, namely bosons or fermions
interacting with pair potentials are of this class, but we are far from having
investigated all potentialities of this notion.

2. The Entropy Functionals

Our theory is based on finite-dimensional unital *-subalgebras and we shall
abbreviate this cumbersome construction by "finite subalgebra." The theory
can also be extended to nuclear C*-algebras without finite subalgebras, but
for simplicity of exposition we shall restrict ourselves to UHF-algebras Ji.
Furthermore, we shall only consider faithful states over Jί (which means
ω{\a\2)>\ω{a)\2\laeJi,aφc\).

Before we embark on the theory of general K-systems we shall first recall the
general definitions and deduce some useful estimates. Let ω be a faithful state over
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an UHF-algebra Jί and

a decomposition. For the multi-index (ϊi,...,iM) we shall use the shorthand
/ and define

<=hΣj»t <••
infixed

Furthermore let us denote the entropy function — x lnx by η(x\ω^ = the
restriction of ω to si cz^#, S(φ\φ) = the relative entropy of φ and ψ,S(φ[sf\4({^) =

,. Now we are all set for

Definition {2.1).

Hω(^u...,*?„)= sup
£ > , = <»
I

Remarks (2.2).

1. Denote by dim sik the linear dimension of a maximal subalgebra of sik. Given
M = max dim s/k and ε there is a number (5(ε, M, n) > 0 such that sup is reached

within ε by a decomposition with a)j(l) > <5V/ and thus #1 ^ 1/δ [5].
2. Tn general a decomposition can be written ωj(a) = ω(xt

Ia) = ω(σ™2(xi)a) with
x\eJί\ XteJi'Ίσ? the modular automorphism of ω. Since //ω is strongly
continuous in ω it is sufficient to take the sup over ω 7 with xt from a strongly
dense subalgebra of Jί". Thus if Jί is a quasi-local algebra we may assume the
Xj to be strictly local.

Properties of H (2.3).

(i) H{s#u..., sfn) ^ 0 and is symmetric in its arguments,
(ii) Monotonicity: j / i =>όgi=>Hω(s/l9...9j!/n)^Hω(Oil9...9gίn).

(iii) Subadditivity: H^1,...,^n

(iv) Invariance under repetitions:

Lemma (2.4).

^ sup

Proof. Use a decomposition which gives, within ε ,H ω ( s ί u s i 2 -> . . . ,^»- i ? ^)asa
decomposition for Hω(j^1, stf2, ...,«*/„_ 1 ? Jf). Then in the difference all terms cancel
except the term k — n in the last sum of (2.1).

Remarks (2.5).

\. \ί si and J^ are abelian, R(si\ΰ$) equals the corresponding classical quantity,
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i.e., Hω{*/\a) = Hω(s/ v08)-Hω{08) (see Appendix 1). Classically H and S
coincide, and we shall use both notations Sω(stf) = S(ω{j!/). If only one state ω is
involved we might skip the subscript ω.
2. (2.3, iv) implies

thus

i=ί

and

£ = 1

To complement these upper bounds by lower bounds we need more information
about the possible decompositions ωτ:

Lemma (2.6). Suppose that XjsJί give, within ε, Hω(08ί9..., 08„) and that there exist
y-3>0,Ydyj=ί such that

j

(i)

(ϋ)

Then

Hω(s/9<gl9...9<gn)-Hω(al9...9an)

^ sup -Σ\oj(yj)ω(a)-ω(ayj)\2—---ε-—1—.

If the y5 give, within ε, Hω(^) then

2 ε .
ί-ε1

Proof. Consider the decomposition

ωu(a) = ω(aσf/2{xjyj)).

We have

X ωu = ω( σ?/2(yj)) = ωj9 Σ ωu = ω1 and ω(xj^.) = ωItj{i).
i j

Thus, if we use ωItj as decomposition for H(jtf,&!,...,&„) all but the first term
of the Σ i n (2-1) can be used to form Hω(&l9...,08n) and we get

k

^ g η(ω(xiyj)) - X η(ω(Xl)) - £ η(ω(yj)) + ̂  ω(yj)S(ω\ώj), - ε.
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Here ώj(a) = cOj(a)/((uj(l)) is the normalized functional and we used the scaling
S(φ\λψ) = λ(S(φ\φ) + φ(l)ίnλ). The first three terms can be written

since Σcoixjyj) = 1 and |ln(l + x)| ^ \x\/(l — \x\). For normalized functionals one

knows [6]

and

| | ^ | | = sup \φ(a)\.

This estimate for the last term gives the first part of the claim (2.6). The second is
immediate from

j

Corollary (2.7). If si Φ cl, then HJrf) > 0.

Proof. T a k e in (2.6) a t = cl91 = {1}, Xj = 1,0<y±= aed,y2 = l - a . Hω(*/) = 0

would imply ω{a2) = ω(a)2 Vαej/. But for a faithful state

ω{a2) - ω{a)2 = ω({a - ω(α))2) = 0=>a = ω(d)Λ.

Let σ be an automorphism of M which leaves ω invariant, ω°σ = ω.

Definition (2.8).

hω(σ, si) = lim - Hω(jtf, σsrf,..., σk

Remarks (2.9).

1. Because of (2.3, iii) we have lim = inf, and since if ^ 0 we know that the limit
k-+ao k

exists.
2. If M is abelian

and

hω(σ9sf>=Vm (sj V

Thus (2.8) is a generalization of the classical definition and our results also cover
this situation.

Properties ofh (2.10).

(i) - hω(σ\ sf) g hω(σ9 si) ^ hω(σ\ sd\
n
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(ii) hω{σ-\sη = hω(σ9sη9

(iii) hωoσ-i[aσa~\ OLS/) = hω(σ9 si)V αeAut Jί.

Proof.

(i) From (2.3, ii) we deduce H{si, 3S) ^ H(jtf, 1) = H{si) and by iteration

hω(σ9 s4) = lim —Hω{sί9σsί9...9σ
nsi9...9 σkn"1 *

^ - lim γHω{sί9σ
nj/9...9σ

nik-1)s/) = --
fik^aok n

Conversely, (2.3, iii) tells us

lim - ^ - H J ^
k-^ao kn

g - lim |

+ + Hω{σ" - * sit σ2n ~1 si,..., σk" ~1

(ii) Hω(s

by (2.3, i).
(iii) Follows because sup is invariant under automorphisms of Ji.

3. Quantum /Γ-Systems

Proposition (3.1). Between the properties

(i) hJσ9rf)>Qy1 si Φc\9sf aJί.
(ii) lim hω(σn, si) = Hω(si) V si φ c\9 stf c Jί.

(iii) lim lim [HJ&9 an+hsί9..., σ M + J k ^) - Hω(σn+iιsi9...,

sέ^^M, ji ^ 0.
(iv) lim lim lHω(

β are ί/ze implications

(π) => (i)

ft ft

(iii) => (iv).

In the commutative case they are equivalent.

Proof.

(iii)=>(ii) By (2.3, iii) we have
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lHω{st, σnst9..., ω ( )

If, for sufficiently big n, lim [ ] ^ Hω(<srf) - ε, then also the mean

(\lk)Hω{sf, σ"st,..., σ<k" 1)fIj*) has to approach if α

(ii)=*>(i) follows from (2.10, i).
(iii)=>(iv) follows from (2.7).
(iv) =>(i) (iv) says that for sύ Φc\ there is some n such that hω(σn,at)>0, thus

For the converse implications in the commutative case, see Appendix 2.

Remarks (3.2).

1. It seems that for realistic quantum systems and σ the time translation hω(σ,st)
is more instructive than the dynamical entropy hω(σ) = sup hω(σ, st), since the later

will be infinite in 3 dimensions. Only when combined with space translations one
can get a finite dynamical entropy of a 3-dimensional abelian group.
2. Generally hω(σn, st) g Hω(jt) (see (2.3, iii)) and not decreasing in n. Thus we
know that lim in (ii) exists. On the other hand, we have neither a proof nor a

n—> GO

counterexample for the strong subadditivity which would insure the existence of
lim in (iii) and (iv). Thus we have to make do with the limit inferior.
fc^oo

3. We do not have a counterexample which shows that the conditions (3.1) are
not generally equivalent but at present we do not venture a conjecture.

We see that there are two possible generalizations of the positivity of h and two
of the triviality of the tail, the latter implying the former. To us the condition (ii)
seems the most suggestive one and we propose

Definition (3.3). Let σ be an automorphism of an UHF-algebra Jί and ω a faithful
invariant state. We define an invariant memory loss of (Jί, σ, ω) by

mω(σ)= inf lim
sύφc\ n-> oo

dimj/ < oo

Generally 0 ^ mω(σ) ^ 1. We call (Jί, σ, ω) a X-system, if mjσ) = 1.

Remarks (3.4).

1. Remember that Hω(si) > 0 V at Φ cl, (2.7), so that mω(σ) is well defined.
2. We cannot offer a non-commutative version of a theorem of Krieger [7] which
implies

hω{σ)>0o J § ^
j/cί H-oo In dim st

dims/ < oo

3. Intuitively speaking is mω(σ) the minimal percentagewise information gain by
measurements after long intervals. For K-systems every subalgebra has 100%
memory loss.
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4. In contradistinction to hω(σ) the invariant mω(σ) depends on the completion of
the embedding algebra Ji. If JίQ is a σ-invariant algebraic inductive limit of a net
of finite subalgebras, Jί its norm closure and Jί" its weak closure in πω then hω{σ)
is the same for (Jί0, σ, ω,^0), (Jί, σ, ω) and (Jί'\ σ, <β | |β>) [5]. That even in the
abelian case this is not the case for mω(σ) is shown by the following surprise.
Classically all conditions (3.1) are equivalent to X-clustering if we consider the
system (Jί", σ, ω) where Jί" is the von Neumann algebra of ω-integrable functions.
Now one knows that clustering is lost by mixing of states. On the other hand,

1 / k •
hω(s/9σ)=ϊimτsj V σ1

is concave in ω since Sω is. Thus

and hence there can be only one invariant state. If we start with the algebra Jί
of continuous functions for which there are several invariant states the K-property
cannot extend for all of them to the strong closure Jί" but we only have the
implications

Jί is a iC-system <=Ji" is a K-system oJί" is clustering oJί is clustering.

Nevertheless the K-property has some kind of stability which follows from the

Covariance of the Memory Loss (3.5).

mω(σ) = mω(σ " λ ) = mω(σn) = mωoα-1 (ασα " 1 ) ,

where αeAut<y# and neZ + .

Proof, (i) The first and the last equalities follow from (2.10, ii and iii) the other
from the definition of m.

The conditions (3.1) require that any finite subalgebra has to keep changing
under the evolution σ. This seems to contradict the usual situation where all
observables converge towards their thermal expectation values. This puzzle is
resolved by noticing that the convergence is weak and only strongly converging
elements form converging algebras. In fact, in a faithful state ω strong convergence
of any aφcλ to ω(a) is impossible because σna^ω(a) implies σna2-+ω(a)2, but
we have seen (for a* = a) that ω(a2)>ω(a)2. If the cyclic vector \Ω}eM?

ω

corresponding to ω is the only invariant vector no a φ c\ can converge strongly
to any operator: Strong convergence of σna =U~naUn requires that V ε > 03N with

| |(U~naUn - U~maUm\Ω} \\ = | | ( ( 7 m " n - l)a\Ω} \\<ε V m , ^ N.

Thus (U - l)a\Ω) = 0 or (a - cl)|β> = 0 for some ceC. Since |β> is separating
this implies a = c\. (The Fock vacuum is not separating for the CAR-algebra and
there the annihilation operators converge indeed strongly to zero for the free
time evolution [8].) Thus the absence of strongly converging operators is not
characteristic for K-systems but implied by our general setting. For iC-systems
also quasiperiodic elements are excluded and thus all finite quantum systems are
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excluded too. But also ///^-factors with σ their modular automorphism do not
qualify as K-systems.

Definition (3.6). Let Q be the set of finite subalgebras si which are quasiperiodic
in the sense that \fε>03neZ+ and <9eAutsi such that

Theorem (3.7). For K-systems Q is trivial (i.e. Q = {{cl}}).

Remarks (3.8).

1. Q contains all σ-invariant finite subalgebras and a K-system can have none
of those. The adjective finite is essential, there may be infinite-dimensional
invariant subalgebras. For instance, in the CAR-algebra elements of the form
Σ f l /Γ ' < α /Ar ' ' f l 0k>k^f t are for all neZ+ *-algebras. They are invariant under
all evolutions which conserve the particle number and some of them lead to
K-systems.
2. We have to insist on *-subalgebras because the finite algebra generated by an
annihilation operator af in the Fock vacuum |β>,a f \Ω} = 0 would qualify in (3.6)
for any quasifree automorphism some of which may lead to a K-system.
3. Since there are classical K-systems on compact manifolds (3.7) might seem to
contradict Poincare's recurrence theorem. However, as has been pointed out
previously (see f.i. [9]), Zermelo's recurrence objection does not hold for L00-
functions as observables. Though almost all orbits in any neighbourhood keep
coming back to it, they do it at different times such that functions never come
close to their original form.

For the proof of (3.7) we need

Lemma (3.9). Assume that for σekwXJί we have

||(a - σ{a))\Ω) || ^ ε \\ a|| Vαes/9 dims/ = d.

Then there exists c(d) such that

s/)^ -c(d)εlnε.

Proof. From the arguments which lead to (2.2,1) we can also in the sup in (2.4)
restrict ourselves to decompositions with co r(l)>5 to get Hω(s#\σs0) within ε^
This number δ depends only on d and ελ and with the continuity of S used in the
proof of (2.6) we reach the conclusion as

as Jίl3xi<\. Since £ω^(l) = 1 we can appeal to the continuity of S to complete
ί

the proof.
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Proof of (3.7). First of all the H's depend only on the algebras. Thus for 6^6 Aut si x

we have Hω(stfl9..., sin) = Hω(Θ1 siί9..., Θnsin) and we might ignore Θ. Secondly
the invariance of ω under σ says Hω(σksi\σk+ίsi) = Rω(s$\βsέ) and using (2.5,2)
we conclude

lim lim - 1 — # ( J / , σ W , . . . , σ n r s i ) S lim H(si\σns#) = 0.
H—•oo r—>• oo 7* τ ~ 1 n - ^ o o

Thus a nontrivial Q would violate even the weaker condition (3.1, i).
So far our theory is based on an invariant state ω, but in physics one considers

the dynamical system (Jl, σ) as the primary object and quantities appearing only
in πω(Ji)" as mathematical artefacts. To get a characteristic which does not refer
to a particular state but depends only on the topological structure of (M9 σ), we
introduce

Definition (3.10). The topological memory loss is m(σ) = inf mω(σ)9 where inf goes
ω

over all faithful extremal invariant states. We call (Jί9 σ) a topological X-system,

if m(σ)=l.

Remark (3.11). For a von Neumann algebraic system (Ji\ σ) there will be
only one invariant state and there is no distinction between m(σ) and mω(σ).
However, in physics we have a C*-algebraic system (Jί, σ) with many inequivalent
representations and there the distinction makes sense.

Invariance of the Topological Memory Loss (3.12).

m(σ) = m(σ ~x) = m(σn) = m(aoa ~~1),

where oceAutJί, neZ + .

4. Examples of Quantum ϋf-Systems

As in [5,10] we shall first examine the generalization of the Bernoulli shift of the
classical theory, i.e. the shift of the quasilocal CAR-algebra.

Theorem (4.1). (Jί, σ) with Jt the C*-algebra generated by even powers of af and
σaf = aσf9(σf)(x) = f(x + 7), seRv\{0} is a topological ^-system.

Proof. Since for all faithful states ω Hω(<$f) > 0 V si φ c\ it suffices to verify that

Vε > 03rc with hω(σn, si) > Hω(srf) - ε. According to (2.2,2) we may choose the xf

in ω^a) = ω(σfl2(Xi)a) strictly local such that [σnkxh Xj] = 0V /, , fc> 0 for n suf-

ficiently big. Therefore xIk = Y\ σn{l~1)xh is a candidate for Xj in the decomposition

for Hω(s/9σ
ns/9...,σ

n{k"l)s^). We estimate

hω(σ\si) = lim \lljsi,σW,...,σ"*'1^)

^ lim IΣn(ω(xIk)) -Σn(ω(xd) + Hω(s/) - ε,
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if the Xι give Hω(s/) within ε. Now consider the abelian algebra Jίa = (X) J k ,
k— — oo

each / k being (1,2,..., r}, r = #lx < oo. The shift σaJk = Jk +1 is an automorphism
of ./#α and ω(xj) a state ωfl over Jίa with ωα°σα = ωΛ. The quasilocal structure of
J( and the extremal invariance of ω imply already the following clustering [11]:
For all strictly local aeJί and ε > 0 3 A <= Rv such that

\ω{xa) - ω(x)ω(α)| ̂  ε | |x | | Vxe J / Λ C .

This implies that ( ^ α , σ α , ω J is K-mixing (see (Appendix B, (iv)) and therefore a
classical K-system. For them the properties (3.1) imply

lim lim J 2 > ( ω ( x / k ) ) - lim hωa{σn

aj1) = Hωa{I1)
M —• oo fc-»• oo it Ik n—^ oo

Corollary (4.2). p # , ̂ σα" 1 ) is for all aeAut^ a topological K-system.

Proof. Follows from (3.12).

Examples {43).

1. Consider v = l and a quasifree time evolution τ®af — aft, /t(k) = e~iε{k)f{k)
with / the Fourier transform of /. If ε is a strictly monotonic function with
l/ε'(fc) integrable, this automorphism is conjugate to the shift which reads
in Fourier space f(k)-^eιskf(k\ f(k)-^g(ε)=\/yJY(έ)f(k{ε)) is a unitary map
L2(R, dk)-+L2(R, dε) and α~ ̂  = ag is an automorphism of Jί such that ασ fα~x = τr°.
Thus (^#, τ) is a topological K-system.
2. Introduce in example 1) an external potential such that the Miller operator

Ω+ = limeiHte~iHot

ί->oo

exists and is complete. (H0,H generate τ°, respectively τ). If H has no bound state
then (Jί,τ) are a topological K-system since Ωte~iHotΩ~ι = e~ίHt and thus τ and
τ° are conjugate. If there is a bound state fb then {Jί, τ, ω) is for no ω a K-system
since α / b generate a finite invariant subalgebra.

Unfortunately, so far we are not able to control the tail properties in this generality.
We can show only in a special case that the strongest condition (3.1, iii) is not empty.

Proposition (4.4). Let σ be the shift on a quantum lattice system, τ the tracial state
and J$ strictly local. Then

lim lim [ i f t (Λ,αV,σ n + h s/ 9 . . . ,α" + i ¥)-H t (αV,σ n + h s4 , . . . ,σ n + j k ^ = Hτiβ)

V ji ^ 0, & any finite subalgebra of M.

Proof In the tracial state any subalgebra is invariant under modular auto-
morphism and thus Ms^^Jί exists the canonical conditional expectation
y:Jί-±sί which conserves τ:τ = τ,^oy. Similarly in the decomposition for

( n V -
Hτ(jtfί9...,#/„) one has X7G V sέΛ =stf since τι{a)

V /
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Thus in the decomposition for Hτ(σnstf9σ
n+hjtf,...,σn+jksi/) we can take the

°° V
(J σn+Jstf 1 . H(β) can be obtained, within ε, by strictly local y}. Thus, for

sufficiently big n,Xj and yj commute and τ(x/};J ) = τ(x/)τ(^)V/,7. Then all
condition of (2.6) are met and this proves Proposition (4.4).

Appendix A

In the classical theory one defines

HJs* 10) = HJs/ v SS) - HJβ). (A. 1)

We have to prove that it coincides with

Ha(sf\!8)= sup Σ M ω l ω ^ - S ί ω l ω , ) * ) (A.2)

in the abelian situation. Using in (A.2) for the ωt the minimal projectors P} of
<srf,ωj(a) = ω(Pja) the right-hand side becomes S ω ( i v J ) - S J l ) . There only
remains to show that no other decomposition ω^a) = ω(Qiά) can give more. Now

Uj k ί,k

Sω{stί v C) - SJβ) + 5 ω (^ v C).

Here Rk are the minimal projectors in & and formally we considered ω(QiPjRk)
as the state over the probability space (i, j , fc) with C the elements depending only
on /. Now monotonicity and strong subadditivity say

v C) - SJβ) + Sω(β v C)

Sω(^ v C) - Sω(Λ) + Sω(^ v i v C )

Appendix B

Classically a K-system (Jί,T,ω) is characterized by the following equivalent
conditions [12]

(i) ^JίQ aJί with

1. TJKo^JKθ9
OO

s) \ I ππn rfd dd

n— — oo

3. Λ TnJί0 = cl.
n = — oo

— oo n

(ii) Λ V Ύkstf = cl for all finite s/cj(.
n = 0 k= - oo

(iii) /ί(T,^)>OVj/,l<dimj/<oo.
(iv) T is K-mixing. This means for all finite jrf c:Jί, AeJί and ε > 03 AT such that
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\ω(AσnB)-ω(A)ω(B)\<ε\\B\\ VBG V σkstf, n>N.

We add now some more equivalences, (si and $ are finite subalgebras.)
(v) lim h(Tn,stf) =

00

/ °°
V

00

V

(vi) l imH

(vii) lim H
n-+ oo

To show the equivalence we appeal to [12,13]

Lemma.

(a) H($\srf) is continuous for monotonic limits in both arguments,
(b)

It says (ii)o(vii), (ii)=>(vi). Next we argue that (vi)=>(v), because

= lim H
«->• (X)

V '
k = n 5 = 1

V TnW = lim h(Tn, si) S H(si).

Finally (v)=>(iii) because
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