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Abstract. A class of diffeomorphism invariant theories is described for which
the Hubert space of quantum states can be explicitly constructed. These theories
can be formulated in any dimension and include Witten's solution to 2 + 1
dimensional gravity as a special case. Higher dimensional generalizations exist
which start with an action similar to the Einstein action in n dimensions. Many
of these theories do not involve a spacetime metric and provide examples of
topological quantum field theories. One is a version of Yang-Mills theory in
which the only quantum states on S3 x R are the θ vacua. Finally it is shown
that the three dimensional Chern-Simons theory (which Witten has shown is
intimately connected with knot theory) arises naturally from a four dimensional
topological gauge theory.

1. Introduction

Gravity in three dimensions is often considered trivial since the field equation
Rμv = 0 implies that the spacetime is flat. However this does not mean that there
is only one classical solution. On a manifold of topology Σ x R, where Σ is a
compact two manifold of genus g > 1, there is a I2g — 12 dimensional space of flat
metrics [1]. Since the solution space is finite dimensional, the theory is analogous
to ordinary particle mechanics and the quantization should be straightforward.

However if one writes the three dimensional Einstein action in canonical form
using the usual canonical variables (the spatial metric and its conjugate momentum)
then one finds that the constraints associated with diffeomorphism invariance are

PuPU-(Pi)2-^ = 0, (1.1)

DίP

ij = Q, (1.2)

where Dt and R are the covariant derivative and scalar curvature of the spatial
metric. These are essentially identical in form to those of the four dimensional

* On leave from the Department of Physics, University of California, Santa Barbara, CA, USA



418 G.T.Horowitz

theory. There is no obvious simplification. To quantize the theory, one must either
solve the constraints to isolate the "true degrees of freedom" (reduced phase space
approach) or impose the constraints as operator conditions on the wave functions
(Dirac approach). From this viewpoint, neither approach seems any easier than
the four dimensional case.

In a recent paper [1], Witten presented a different approach to this problem.
He showed that the Einstein action in three dimensions is exactly equivalent to a
Chern-Simons term for the Poincare group. Using the gauge theory analog, the
quantization was straightforward and the theory was shown to be exactly soluble.
The fact that the theory was three dimensional was used crucially in at least two
different ways. First, the Chern-Simons term is a three form and hence has a well
defined integral only over a three dimensional manifold. Second, the Chern-Simons
term requires an invariant, nondegenerate metric on the Lie algebra. In most
previously studied cases, the Lie group was semisimple and there was a natural
metric to use, namely the Cartan-Killing metric. However the Poincare group is
not semisimple. It is easy to show [1] that there is an invariant invertible metric
only in three dimensions.1

One motivation for the present work is to show that the importance of three
dimensions is (at least in some respects) an illusion. Three dimensions is certainly
crucial for showing the equivalence of gravity and the Poincare Chern-Simons
term. While this is a remarkable and surprising result, it is not needed for solving
the theory. We will construct a class of field theories in arbitrary dimensions which
are all diffeomorphism invariant and exactly soluble. Three dimensional gravity
will be included as a special case. These theories share several common features.
In each case there is no local dynamics. The solution space is finite dimensional
and related to the topology of the underlying manifold. The actions are linear in
time derivatives and so are easily adapted to canonical quantization. Since the
actions are invariant under diffeomorphisms, there are constraints in the canonical
formalism. The theory can be quantized using either the reduced phase space or
Dirac procedure and the results are equivalent.

Another motivation is to explore the program initiated by Atiyah [2] and
Witten [3,4] to relate results in low dimensional topology to quantum field theory.
(See also [5-7].) Some of the theories we will consider have a spacetime metric but
no local dynamics (like three dimensional gravity). However most will not involve
any spacetime metric at all. These may be viewed as examples of "topological
quantum field theories." For instance, we will see that there is a natural quantum
field theory description for de Rham cohomology. There is also a formulation of
Yang-Mills theory in which there is no local dynamics, but the quantum states
include the θ sectors.

Witten has shown that a three dimensional quantum field theory based on the
Chern-Simons action provides a natural framework for studying knot theory [8].
We will see that there is a close connection between this Chern-Simons theory

1 If Pa are the generators of translations and Jab are the generators of Lorentz transformations, the
required metric is εabcPaJbc
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and a four dimensional topological gauge theory. For example, on S3 x R, the
topological gauge theory has a unique quantum state. In canonical quantization
this can be expressed as a function on the space of gauge fields on S3. We will see
that the unique solution to the constraints is ψ(A) = eiθScs(A\ where Scs is the
Chern-Simons action! (g is a parameter which will be discussed.) Given a closed
curve C on S3 one can consider the operator W(C) = Tr Pe&A corresponding to the
trace (in some representation) of the Wilson line integral of the gauge field. W(C)
is a configuration operator in this theory. If k is an integer, matrix elements of
operators of this type between the states ψg and ψg+k yields the three dimensional
Chern-Simons theory and knot invariants.

The physical motivation for studying topological quantum field theories is that
they may describe a phase of unbroken diffeomorphism invariance in quantum
gravity [3,9]. This is very appealing in light of other arguments [10] that the
spacetime metric should be a derived quantity in quantum gravity. In fact it is
tempting to carry this idea one step further. As we have mentioned, some topological
quantum field theories have a small number of quantum states. This can be viewed
as resulting from a very large gauge invariance. One may hope that the fundamental
theory has a sufficiently large gauge group that there is just a single quantum
state.2 This would obviate the need for finding preferred initial conditions or a
physical law governing initial conditions [12]. We will discuss some simple
examples of theories of this type.

Since canonical quantization will be used extensively, we now briefly review
this procedure for systems with constraints. The standard framework (which will
be sufficient for most of the theories considered here) is when the phase space Γ
is the cotangent bundle of a configuration space X. Γ has a natural symplectic
structure, i.e. an invertible closed two form ΩAB. Classically, constraints are real
valued functions Cf on 7". We will mostly be interested in the case when
the constraints are first class, i.e. the Poisson brackets of the constraints are
proportional to the constraints. In this case, there are two standard approaches
to quantization. The first starts by defining the constraint surface to be the subspace
of Γ on which Cf = 0. For each constraint, the vector field ΩABdBCi is tangent to
the constraint subspace. The set of integral curves of these vector fields define the
reduced phase space. A point in the reduced phase space represents a solution to
the constraints modulo gauge freedom. The symplectic structure restricted to the
constraint subspace will in general be degenerate, but pulled back to the reduced
phase space it is nondegenerate. If the reduced phase space is also a cotangent
bundle over a reduced configuration space X', then there is a natural representation
of quantum states in terms of wave functions on X'. More generally, one has to
introduce a polarization which divides the reduced phase space into "position"
and "momentum" variables.

In the second approach, the Dirac approach, one first ignores the constraints

2 The hope that there will be a single quantum state of the universe has been expressed before [11].
Generalizations of topological quantum field theories may offer the first concrete examples of theories
of this type
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and quantizes the unconstrained system. The constraints Ct then become operators
acting on wave functions on the full configuration space X. The "physical states"
are defined to be those annihilated by the constraints.

This paper is organized as follows. In Sect. 2 we begin with the simplest examples
of exactly solvable diffeomorphism invariant theories. They are "free field theories"
in the sense that the action is quadratic. These theories do not involve a spacetime
metric and are closely related to de Rham cohomology. They may be thought of
as examples of "quantum cohomology." In Sect. 3 we generalize to nonlinear
theories. It is here that we will find a connection between topological gauge theories
and knot theory. In Sect. 4 we consider gravity. We will show that Witten's solution
to 2 + 1 dimensional gravity is simply a special case of one of the theories considered
in Sect. 3. Higher dimensional generalizations are also discussed. We conclude in
Sect. 5 with a discussion of these results. A possible generalization of some of the
knot invariants to higher dimensional surfaces is mentioned.

2. Quantum Cohomology

We begin with one of the simplest examples of the theories we wish to consider.
Let M be a four dimensional manifold. Let Fμv be a Maxwell field on M, and
Bμv be a two form "axion" potential whose gauge invariant field strength is
Hμvp = 3d[μBvp}. The action is simply3

S = 6$F[μvBpσ]. (2.1)
M

Note that this action does not involve a spacetime metric. Since the integrand is
a four form, the integral is well defined and invariant under (orientation preserving)
diffeomorphisms. It is also invariant under the usual Maxwell gauge transformation
and the axion gauge transformation δBμv = d[μvv] for any one form vv.

4 The field
equations obtained by varying with respect to Bμv and the gauge potential Aμ are
simply Fμv = 0 and Hμvp = 0. Recall that the pth de Rham cohomology group Hp

of M is defined to be the space of curl free p forms modulo the curl of a p — 1
form. Thus the gauge inequivalent classical solutions for Aμ and Bμv are precisely
the first and second cohomology groups ofM. If M = jR4, these cohomology groups
are trivial and all solutions are gauge equivalent to Aμ = 0 = Bμv. However on a
general manifold M, there is a finite (nonzero) dimensional space of solutions.

At first sight there appears to be a problem with analysing this theory as an
ordinary field theory. In conventional theories, the space of classical solutions is
always even dimensional. This is because it can be identified with the phase space
of the system which must be even dimensional in order to admit a symplectic

3 As usual, square brackets around n indices denotes the antisymmetrized sum of all n\ permutations
multiplied by l/nl. The factor of 6 is for later convenience. It arises since the wedge product of a p
form and a q form is, by definition, (p + q)\/p\q\ times the product of the forms with the indices
antisymmetrized
4 Strictly speaking this is true only if M is compact without boundary. If M has a boundary, then one
must either add a surface term to (2.1) or require vv to vanish on the boundary
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structure. (Roughly speaking, there must be an equal number of p's and g's.)
However the above theory defined on a general manifold M need not have an
even dimensional space of solutions. For example, if M = S3 x S1 then dimH1 = 1
and dim H2 — 0 so there is only a one parameter family of solutions. However the
identification of the space of solutions with the phase space is through a split of
the field equations into initial data and evolution equations. This restricts the
manifold to be topologically Σ x R, where Σ is a compact three manifold. In this
case, cohomology groups on M reduce to cohomology groups on Σ. Fortunately,
dimHί(Σ) = dimH2(Σ) for every Σ. This is a simple consequence of Poincare
duality which states that on a compact orientable5 n dimensional manifold, the
pth and (n — p)th cohomology groups are isomorphic. Thus in the case where the
canonical formalism can be applied, the solution space is always even dimensional
and there is no inconsistency. We now proceed to canonically quantize this theory.

Since the action is linear in time derivatives it is straightforward to cast the
theory into canonical form. Let M = Σ x R and let t be a coordinate labelling the
different Σ surfaces. Let tμ be any vector satisfying tμdμt = 1. Since the fields of
interest are forms, the appropriate notion of time derivative is the Lie derivative.
Using the fact that

Fμv (2.2)

the action becomes

5 = jΛ^AμB^ - 3F[0Aio + Λ0HiJk9 (2.3)

where the indices /, j, k denote fields on Σ. The canonically conjugate variables are
thus the spatial components of Aμ and Bμv.

6 The time components of these fields
act as Lagrange multipliers enforcing the constraints Ftj = 0 and Hijk = 0. To see
what these constraints generate, let λ and υt be an arbitrary function and one form
on Σ, and set Cl = §λHijk and C2 = $3v[iFjk]. Taking the Poisson brackets one
obtains

δAi = {C1,Ai} = diλ, (2.4)

δBij={C29BiJ} = d[ίvΛ9 (2.5)

which are the usual gauge transformations. (Note that the vanishing of Hijk

generates the gauge transformation for A{ and vice versa.) One can easily verify
that these constraints commute.

One might wonder what happened to diffeomorphism invariance which is also
a symmetry of our action. It turns out that when the constraints are satisfied,
spatial diffeomorphisms are contained in the gauge transformations! To see this,
note that under a diffeomorphism generated by a vector field ξl on Σ

δBtj = LςBtj = - 2d[t(B^) + H ijkξ
k. (2.6)

5 We will assume that all manifolds considered here are orientable
6 To cast (2.3) into more familiar form, one can fix a volume form εijk and define εljk such that εljkεijk = 6.
Then 3A[lBjkί = Al*Blεljk9 where *Bl = %εϊ}kBjk is the dual to Bjk. It is now clear that the momentum
conjugate to A{ is *B*
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The first term is the usual gauge transformation for Btj and the second vanishes
when the constraints hold. The result for A{ is similar. Thus, on the constraint
surface, the constraints generate spatial diffeomorphisms as well as gauge trans-
formations. We will see in Sect. 5 that, in a certain sense, all diffeomorphisms are
represented in the canonical theory.

Even though the original phase space is infinite dimensional, the reduced phase
space is finite dimensional and is simply Hί(Σ)^H2(Σ). The induced symplectic
structure is simply related to the intersection pairing of these cohomology groups.
Since the reduced phase space is a product space, we can take the simplest
polarization and have our wave functions be either functions of At or B^. Thus
the Hubert space of quantum states is simply the space of square integrable
functions on Hl(Σ) (or H2(Σ)). It is worth emphasing that there is no Hamiltonian
and no Schroedinger equation for these wave functions to satisfy. The Hamiltonian
was constrained to vanish (like all diffeomorphism invariant theories on manifolds
with no spatial boundary) and we solved the constraints to obtain the reduced
phase space.

If one wants to impose the constraints as operators on the wave functions, one
starts by choosing a polarization on the full phase space. In the present case, we
can start with arbitrary functions of all ,4/s. The constraint C2 becomes a
configuration operator which acts by multiplication. C2^ = 0 says that ψ has
support only on curl free A?s. The constraint Cl is linear in the variables conjugate
to AI, and hence C^ψ = 0 is a first order differential equation

ί^ = 0, (2.7)

which is the statement that the wave functions are gauge invariant. So the Hubert
space of states is again arbitrary square integrable functions on H1(Σ).

Classical observables in this theory are arbitrary functions on Hl(Σ) x H2(Σ).
A basis for such observables are given by nontrivial one and two dimensional
surfaces in Σ, i.e. elements of the first and second homology groups. For example,
for each two surface S one can consider JjB^ . This is clearly gauge invariant and

gives a linear map from H2(Σ) to the reals. Given a state one can compute
expectation values of these observables in the usual way,

This theory can be generalized in many directions. First let M = Σ x K, where
Σ is a compact n dimensional manifold, and consider a p form A and an — p form
B on M7. We consider the action

S = J dA Λ B. (2.8)

The above analysis goes through essentially unchanged. The space of classical
solutions are the pth and (n — p)th cohomology classes of Σ. The canonical variables
are the spatial components of A and B, and the constraints are the vanishing of

7 For notational convenience, we will drop the indices when discussing higher rank forms. The standard
notation Λ for wedge product and d for exterior derivative (or curl) will be used
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the spatial components of the field strengths H — dB and F = dA. Quantization
can be carried out in either of the two standard approaches and the result is that
the quantum states are the square integrable functions on HP(Σ) (or Hn~p(Σ)).
One can of course consider sums of terms such as (2.8) (with forms of different
rank on the same manifold).

Of special interest is the case where n = 2p + 1 and p is odd. In addition to the
theories discussed above with two fields A and B, one can now consider a new
theory with a single p forms A. The action is the abelian Chern-Simon term
S = \dA Λ A. (If p was even, S would be a total derivative.) The space of classical
solutions is now just the pth cohomology group of M, HP(M). Fortunately, the
dimension of HP(Σ) (for a compact 2p dimensional Σ) is always even, and there
is a natural symplectic structure on this space8, so it can again be interpreted as
a phase space. Since the momentum conjugate to A is A itself, to construct the
quantum theory one must divide A into "position" and "momentum" variables.
If Σ admits a complex structure, then the choice of complex structure leads to a
natural choice of polarization. On a complex manifold, the decomposition of
the tangent space into holomorphic and antiholomorphic vectors leads to a
decomposition of p forms into (r, p — r) forms with r holomorphic and p — r
antiholomorphic components. If p is odd, one can consider wave functions which
depend on p forms with more holomorphic than antiholomorphic components.
For example, in the three dimensional Chern-Simons theory, the wave functions
would be functions of Az and not A-.

If M has dimension 4m for some integer m and p = 2m, then one can consider
the following generalization of the above theories:

s= J F ΛB-±BΛB, (2.9)

where F = dA and B each has rank 2m. (If the rank of B is odd, the second term
vanishes identically.) S is clearly invariant under δA = dλ for any 2m — 2 form λ.
However the second term breaks the δB — dv symmetry so one might naively expect
there to be more gauge inequivalent solutions. In fact the field equations are now
F — B = 0 and dB = 0. The second equation is a consequence of the first so one
can pick any curl free F and set B = F to obtain a solution. However (2.9) is
actually invariant under a much larger gauge invariance

δA = w9 (2.10a)

δB = dw, (2.10b)

where w is an arbitrary form of rank 2m—I. One can use this invariance to locally
set A to zero. The gauge inequivalent solutions are thus characterized by a rank 2m
form F which is curl free, modulo the curl of a 2m — 1 form, i.e. H2m(M). Now for
the first time we encounter a topological obstruction to canonical quantization.
The problem is that even if M = Σ x R,H2m(M) = H2m(Σ) need not be even
dimensional. This breakdown of the canonical formalism seems to be related to

8 If A1 and A2 are two elements of HP(Σ\ the symplectic structure is simply \Al Λ A2

Σ
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the fact that if H2m(Σ) ^0, then A is not globally defined. For now we consider
only the case H2m(Σ) = 0.

As one might hope, even if one had failed to notice the enlarged symmetry
(2.10), the canonical formalism includes it automatically. The canonical variables
are again the spatial components of B and A. The only change from the canonical
analysis of (2.8) is that the constraint C = J w Λ F (where w is an arbitrary

_ Σ

2m— I form) is replaced by C = J w Λ (F — B). This generates precisely the gauge

transformations (2.10) on the canonical variables.
Since H2m(Σ) = 0, the reduced phase space is just a point. But it is of interest

to see what happens if one imposes the constraints as operators. On the full phase
space we consider wave functions ψ(A) on the space of all 2m— I forms A on Σ.
The constraint dB = Q implies that ψ is invariant under changing A by the curl of
a 2m — 2 form. The constraint Cψ = 0 yields a surprise. The differential equation is

- <2 Π)

The unique solution (up to an overall factor) is ψ = eiScs, where Scs = J/4 Λ a A is
the abelian Chern-Simons action! Since the reduced phase space is a single point,
one expects there to be only one quantum state. But the fact that the Chern-Simons
action arises in this way is somewhat surprising. We will see an analogous result
for nonabelian gauge theories in the next section.

3. Nonabelian Generalizations

The theories we have discussed so far are perhaps the simplest examples of
topological quantum field theories. They are all "free field theories" in the sense
that the action is quadratic in the basic fields. It is therefore perhaps not surprising
that they could be quantized so easily. We now show that this linear structure is
not essential by generalizing to a class of "interacting field theories." For definiteness
we again start with a four dimensional manifold M. Let G be any Lie group. Let
Aa

μ be a gauge field for G on M (i.e. a connection on a principle G bundle over
M). Let Bμva be a two form taking values in the dual to the Lie algebra of G which
we will denote L*. Consider the action

(3.1)
M

where Fa

μv = 2d[μA
a

v] + [Aμ,/lv]
fl is the usual Yang-Mills field strength. As in our

previous examples, no spacetime metric is needed to define this theory. Note that
no metric on the Lie algebra is needed either, so the group G need not be semisimple.
The field equations obtained by extreming with respect to Bμva and Aa

μ are Fa

μv = 0,
and D[μBpσ]a — 0, where Dμ = dμ + [Aμ, ] is the gauge covariant derivative9. The

9 Actually, this is the expression for Dμ acting on a Lie algebra valued field. If the Lie algebra admits

an invariant metric, there is no need to distinguish between the Lie algebra and its dual. If not, then

one defines Dμvb = dμvb — vmC™bA
a

μ, where C™b are the structure constants of the group and vb is an
arbitrary field taking values L*
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first states that Aa

μ is a flat connection, and the second states that the covariant
curl of Bμva vanishes.

In addition to diffeomorphisms, S is invariant under both the usual nonabelian
gauge transformations and also under

δBμva = D[μvv]a, (3.2)

where vva is one form valued in L*. (After integrating by parts, δS vanishes by the
Bianchi identity for Fa

μv.) If one fixes the connection, the field equation and gauge
transformations for Bμva are linear. However for an arbitrary Aa

μ the transformation
δBμva = D[μvv]a does not leave the field equation invariant since applying the
covariant curl twice does not yield zero but rather Fa

μv. When Aa

μ satisfies its field
equation, Fa

μv = 0, and one can use Dμ to define cohomology classes of forms with
values in L*. Thus the space of gauge inequivalent solutions consists of the gauge
inequivalent flat connections together with elements of the second cohomology
group with values in L*. We will see below that if M = Σ x R, this space has the
structure of a cotangent bundle and hence is ideally suited for canonical
quantization.

Since the action (3.1) is linear in time derivatives, it is again easy to cast into
canonical form. Let M = Σ x R. The only fields with time derivatives are the spatial
components of Aa

μ. The conjugate momenta are the spatial components of Bμva

and the time components again act as Lagrange multipliers. The action becomes10

S = J dt 3 f AftBfij. - F?,,.βWΛ + AlD{ίBjk}a. (3.3)
Σ

The constraints are

f?. = 0, DpB^O. (3.4)

To see what these constraints generate, let τα and via be arbitrary fields on Σ and set

(3.5)

The Poisson brackets yield

δAΐ = Of, δBίja = D{ivna + [% τ]β. (3.6)

Thus the constraint Ct generates the usual nonabelian gauge transformations for
A" and Bija and the constraint C2 generates the gauge transformation (3.2) for Bίja.
Just as in the abelian case, spatial diffeomorphisms are again included in the gauge
transformations when the constraints are satisfied. To see this, let ξ* be a vector
on Σ. Then

LξA
aj = dj(Aΐξl) + 2?d{iA'ji = Dj(Aΐξl) + ξ'F?,. (3.7)

10 The dot denotes Lie derivative as before. The Lie derivative of forms taking values in a vector space
can be defined just as for ordinary forms. This is because the Lie derivative is local so one can choose
a basis in the vector space and reduce it to a collection of ordinary forms
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The first term is the usual gauge transformation with the gauge parameter τa = Aa

tξ\
and the second is proportional to the constraint.

From Eqs. (3.4) and (3.6) one sees that the reduced phase space consists of the
space Jf of gauge inequivalent flat connections on Σ together with elements of
the second cohomology class with values in L*. This space is precisely the cotangent
bundle of JΛ To see this, consider first the cotangent bundle of the space of all
connections. The fiber over A" is the set of all linear maps from infinitesimal
connections to the reals. This is just the space of all Bίja via the map ^δA^Bj^.

Σ

In passing to the reduced phase space, we first require that A" is flat. This implies
that Bija and Bija + D^v^ (for any vja) give the same linear map and must be
identified. Next we require that two A°'s are equivalent if they are related by gauge
transformations. In order for Bija to have the same action on gauge equivalent
jlf's it must satisfy D[tBjk]a = 0. These are precisely the field equations and gauge
transformations for Bija. Since the reduced phase space is a cotangent bundle, there
is a natural symplectic structure and a natural polarization defined by the fibers.
The quantum Hubert space consists of square integrable functions on the space
of gauge inequivalent flat connections J f .

Alternatively, one can quantize using the Dirac procedure. One starts with
functions of all connections ψ(A"). The constraint C2^ = 0 implies that ψ has
support only on flat connections and the constraint C1ψ = Q implies that ψ is
invariant under gauge transformations. So one again obtains the same quantum
Hubert space.

Classically, gauge invariant observables in this theory are again functions on
the reduced phase space. One class of configuration observables are the Wilson
lines (holonomy) of the gauge field around noncontractible loops Tr Pe*A. It turns
out that one cannot obtain a gauge invariant object by integrating Bίja over a two
dimensional surface since the path ordering is not well defined [13].

There is a subtlety in the above discussion which we now pause to explain.
We have seen that the reduced phase space is the cotangent bundle of the space
Jf of gauge inequivalent flat connections on Σ. In most cases N is disconnected
for two distinct reasons. Gauge inequivalent flat connections are characterized by
their holonomy around non-contractible loops. This is equivalent to specifying
homomorphisms from n^Σ) into G (up to conjugation by G). The space of such
homomorphisms is in general disconnected. For the particular case Σ = S3, the first
homotopy group is trivial so one might expect the reduced phase space to consist
of a single point. However there is a second consideration which must be taken
into account. The constraints generate infinitesimal gauge transformations. When
one takes the quotient to obtain the reduced phase space, one is only including
gauge transformations which are connected to the identity. For most manifolds
and most gauge groups, there are large gauge transformations which cannot be
continuously connected to the identity. In these cases the reduced phase space
becomes disconnected. The number of disjoint pieces is just the number of connected
components of the space of maps from Σ into G. For Σ = S3 this is π3(G) which
for every simple Lie group is the integers Z. Thus rather than a single point, the
reduced phase space becomes a countably infinite number of points which can be
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labeled by the winding number k. The quantum Hubert space consists of complex
valued sequences which are square summable. Since one can view these sequences
as Fourier coefficients for functions on a circle, a natural basis is

φΘ(k) = eikθ. (3.8)

These are just the usual θ states of Yang-Mills theory. (Under a large gauge
transformation which maps k to k + 1, \l/e goes to eiθψθ.) Thus on S3 x R, the theory
described by (3.1) can be viewed as a form of Yang-Mills theory in which all local
dynamics has been removed and only the θ states remain.

If Σ is a homology sphere, i.e. Hl(Σ) = 0, then the set of gauge inequivalent
flat connections is discrete. The number of such connections counted with
appropriate signs, yields Casson's invariant [14] which is analogous to the Euler
number for Floer cohomology [15]. Witten has constructed a topological gauge
theory in which the quantum states are precisely the Floer cohomology groups
[3]. His theory is certainly not equivalent to the one considered here since e.g.
each flat connection in the theory (3.1) is accompanied by the corresponding θ
sectors.

One can again generalize the theory described by (3.1) to n dimensional
manifolds. However unlike the abelian case, where both A and B could become
higher rank forms, in this case the nonlinearity of the action in A (and its geometric
interpretation as a connection) requires that A must remain a Lie algebra valued
one form. Thus the n dimensional generalization consists of a gauge field A and
a n —2 form B taking values in the dual to the Lie algebra. The canonical
quantization is essentially unchanged. The Hubert space is square integrable
functions on the space of gauge inequivalent flat connections on a n — 1 dimensional
manifold Σ.

In three dimensions, B is a one form and (assuming there is a metric on the
Lie algebra) one might be tempted to identify B with A. However this does not
lead to a gauge invariant action. Under the usual Yang-Mills gauge transformation,
B transforms covariantly and A does not. However one can of course modify this
action so that it is gauge invariant,

Scs = jTrμ Λ F-$A Λ A Λ A\ (3.9)

where Tr denotes contraction with the Lie algebra metric. This is just the
Chern-Simons action. The entire reduced phase space is now just the space of
gauge inequivalent flat connections. If G is compact, this space is also compact
since (as we have mentioned) the connections can be characterized by their
holonomy which takes values in G. This is a significant difference with the theories
we have discussed above. In the case of (3.1), if G is compact, then jV is compact,
but the reduced phase space is the cotangent bundle of Jf which is always
noncompact. Canonical quantization of the Chern-Simons action requires extra
care since a polarization cannot be defined on a general compact manifold. This
has been analysed in detail by Witten [8].

If M is four dimensional and there is a metric on the Lie algebra of G, one can
consider the following action:
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S = 6 Fa

[μvBpσ]a -B*[μvBpσ]a. (3.10)

This is the nonabelian generalization of the theory (2.9) discussed at the end of
Sect. 2, with a parameter g added. The field equations are gFa

μv — Ba

μv = Q and
D[μBpσ]a = O The second equation is clearly a consequence of the first. The action
is invariant under diffeomorphisms, the usual nonabelian gauge transformations,
and the nonabelian generalization of (2.10)

<5Λ* = w«, δBa

μv = gD[μw
a

v], (3.11)

where wa

μ is a Lie algebra valued one form. (Note that even though Fa

μv need not
be zero, there is no contradiction between the gauge transformation δBa

μv = gD^w^
and the field equation D[μB

a

pσ} = 0 because the gauge transformation now also
changes Aa

μ.) This gauge invariance allows one to locally set Aa

μ to zero. More
precisely, given a principle G bundle over M, any two connections in this bundle
can be related by a guage transformation of the above type. Since Ba

μv is uniquely
determined by Fa

μv, there is precisely one classical solution for each principle G
bundle over M.

This action is similar to the gauge invariant actions for Witten's topological
gauge theory. If one substitutes the solution Ba

μv = gFa

μv into (3.10) one obtains
J Tr F Λ F which is the gauge invariant action proposed [6] for Witten's theory.
In addition, the gauge transformation (3.11) is precisely the one used to reproduce
Witten's theory. An alternative action proposed by Labastida and Pernici [7] used
a two from Ba

μv which is very similar to the one above.
As usual, in the canonical form of this theory, the constraints are the spatial

components of the field equations. Thus one constraint is identical to Ct given in
(3.5) and the other is

(3.12)

One can easily verify that they generate the spatial components of the gauge
transformations. The reduced phase space thus consists of a collection of points,
one for each G bundle over Σ. Note the difference with the theory (3.1). In the
previous case, large gauge transformations resulted in different points in the reduced
phase space. In the present theory, this is not the case. The enlarged gauge
transformations (3.11) now connect the different winding numbers. For example,
consider Σ = S3. Principle G bundles over S3 are characterized by π2(G). But this
is trivial for every G. So the only bundle is S3 x G. Thus the reduced phase space
now consists of a single point rather than a countably infinite number of points.
The theta sectors have disappeared.

Of particular interest is the result of Dirac quantization. As before, the
requirement that Cl\l/g(A) = 0 implies that φg is invariant under the usual
Yang Mills gauge transformation. The requirement C2ψg(A) = 0 yields a first order
differential equation whose unique solution (up to an overall constant) is

(3.13)

where Scs is the three dimensional Chern-Simons action! One can clearly choose
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the overall constant independently for each topologically distinct G bundle over
Σ. Thus, if there are N different bundles, the Hubert space is N dimensional.

The form of the solution to the constraints (3.13) has a particularly striking
consequence if one views different values of g as labelling different sectors of the
same theory rather than different theories. To motivate this, first note that in the
abelian theory (2.9), if one had added an analogous parameter g it would have no
effect, since it would be absorbed by a simple rescaling B-^B/g112 and A -+gί/2A.
In the nonabelian theory one of course cannot remove g in this way. Also note
that g does not take values on a circle, but is an arbitrary real parameter. Indeed,
the wave functions ψg are not invariant under g and go to g -f s for any constant
s. In Yang-Mills theory, one often considers different values of the theta angle as
labelling different sectors of the same theory rather than different theories. This is
largely a matter of choice since the different theta sectors are completely
independent. There are no gauge invariant operators which relate one value of θ
to another. A similar feature holds if g and g' do not differ by an integer. This can
be seen by computing the inner product between the two states ψg and \l/g>. The
inner product involves an integral over all gauge fields which can be divided into
an integral over sectors differing by large gauge transformations11. Under a large
gauge transformation, the Chern-Simons action changes by 2π times an integer.
If we denote the integral over one sector by V9 then the inner product is

<ψgWgy = $DAei(9-9ΊScs = Σe2πίn(9~9ΊV = δ(g-gΊV. (3.14)
n

However, if g — g' is an integer, then the inner product is nonzero and the sectors
can communicate.

For each closed curve C in Σ, consider the operator W(C) = Tr Pe$cA. This is
a configuration operator in the theory (3.10) which acts by multiplication. The
matrix elements of products of such operators between the states ψg and ψg+k

(k integer) is

(3 15)

The right-hand side can be viewed as a functional integral in a three dimensional
quantum theory described by the Chern-Simons action. This is precisely the starting
point for Witten's recent discussion of the Jones polynomial for knot theory! One
of the main motivations for that work was to provide a three dimensional
description for topological invariants characterizing knots. We have seen that the
Chern-Simons theory that Witten starts with arises naturally from a four
dimensional topological quantum field theory.

4. Gravity

We now consider the special case of the action (3.1) when the manifold M is three
dimensional and G is the Lorentz group 50(2,1). The action becomes

11 Since the space of connections is an affine space, these sectors are not disconnected. One can define
the wth sector to consist of connections for which 2πn < Scs < 2π(n + 1)
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S = 3fΛj*¥Bp]rt, (4.1)

where we have replaced F by the more suggestive variable R and expressed the
Lie algebra in terms of the fundamental representation of antisymmetric tensors
on a three dimensional space. Ra

μv is the curvature of a Lorentz connection ωf
and Bpab is a one form with values in the dual to the Lorentz Lie algebra. But Bμab

is equivalent to a triad of vectors through ea

μ = εabcBμbc. It now becomes clear that
(4.1) is precisely the Einstein action in first order form. Note how the spacetime
metric enters this theory. The general theories we have considered until now do
not involve a spacetime metric. Three dimensional gravity does. The difference is
that since Bμab is equivalent to a triad of vectors, if they are linearly independent,
one can define a metric such that ea

μ is an orthonormal basis.
Let us apply the general canonical quantization of the previous section to this

theory. As always, let M = Σ x R, where Σ is a compact two manifold. The
canonical variables are the spatial components of ea

μ and ωf which are subject to
the constraints

Λ# = 0, rnj = 2dίi<% + 2ωffejv, = 0. (4.2a,b)

The reduced phase space is the space Jf of gauge inequivalent flat SO(2,1)
connections on Σ together with elements of the first cohomology class taking
values in the dual to the SO(2,1) Lie algebra. From the general argument of the
previous section, we know that this space is just the cotangent bundle to Jf. The
quantum Hubert space thus consists of square integrable functions on Jf.

This is precisely the result obtained by Witten in his solution to 2 + 1
dimensional gravity. Although the mathematics is the same, his interpretation was
completely different. Witten interpreted (e,ω) as a connection for the Poincare
group. With the appropriate choice of metric on the Lie algebra, the action (4.1)
is the Chern-Simons term for this connection. The constraints (4.2) imply that the
curvature of this connection vanishes. The reduced phase space is thus the space
of gauge inequivalent flat Poincare connections. Witten notes that this space is
the cotangent bundle to the space of flat Lorentz connections Jf. Thus the Hubert
space is again the space of square integrable functions on Jf.

Note that there is no difficulty in quantizing this theory using the Dirac
approach. In direct analogy with theories in the previous section, if one starts with
wave functions on the space of all connections ψ(ω), imposing the constraint that
RIJ annihilate ψ says ψ has support on flat connections and requiring Tf annihilate
ψ implies that ψ is invariant under gauge transformations. So the result is the
same Hubert space as before.

As we have discussed, the space of gauge inequivalent flat connections is
disconnected for two reasons. The first is due to different classes of homomorphisms
from n^Σ) into G. Witten argues that only one of these classes should be included
corresponding to the one for which spacetimes contain only "tame" singularities.
The second reason is that the constraints only generate gauge transformations
connected to the identity. Large gauge transformations correspond to homotopy
classes of maps from Σ into SO(2,1). Since S0(2,1) is topologically S1 x R2, if
Σ = S2 there are no large gauge transformations. However, for all other Riemann
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surfaces there are. These are the analogs of the θ sectors for three dimensional
gravity.

We have seen two different interpretations of the constraint (4.2b). One is that
the covariant curl of the one form ef vanishes and defines certain cohomology
groups. The other is that part of the curvature of the Poincare connection vanishes.
Actually, the most common interpretation of (4.2b) is neither of these. It is just
that the connection is torsion free. This will be important when we now generalize
to higher dimensions.

We will consider the four dimensional case with a manifold of the form Σ x R.
The generalization to higher dimensions is straightforward. Let ea

μ be a basis of
one forms and ωa

μ

b be a Lorentz connection. The Einstein action, again in first
order form, is12

S = 6$RUve
c

pe
d

a]sabcd. (4.3)

In the usual approach, one takes ea

μ and ωa

μ as independent variables. The variation
with respect to ωa

μ implies that the connection must be torsion free, and the
variation with respect to ea

μ yields Einstein's equation. This action is again in a
form linear in time derivatives and hence ideally suited for canonical quantization.
Only the spatial components of ωa

μ enter with time derivatives. However ωf and
ea

t are clearly not canonically conjugate variables in more than three dimensions.
The momentum conjugate to ωf is

Pijab = ec

{ie
d

nεabcd. (4.4)

So the higher dimensional Einstein action is subject to an extra constraint that
pijab can be expressed in terms of a collection of one forms e\ as in (4.4).

For the moment, let us drop this extra constraint and quantize the theory

S = 6$RfivPp<T]ab. (4.5)

But this is precisely of our general form (3.1) with G = 50(3,1). In particular, one
of the constraints says that the full 50(3,1) curvature (restricted to Σ) must vanish.
This may seem puzzling since we have dropped a constraint and are thus considering
a theory which is less restrictive than Einstein's. Yet we have obtained a con-
straint which says that the full curvature must vanish rather than the Ricci
curvature. The resolution is that we have ignored the torsion. Flat Lorentz
connections do not correspond to flat spacetimes. Even on Rn, there is an infinite
number of spacetimes with flat connections. In fact, given any metric, one can pick
an orthonormal basis at each point and define a connection by requiring that its
components vanish in this particular frame. The result is a flat metric compatible
connection. But of course the torsion is in general nonzero. These connections are
called teleparallel [17]. So in this sense, the theory (4.5) includes all spacetimes as
solutions. However, in terms of the canonical variables (ω,p), the space of solutions
is finite dimensional (as in all the theories considered here). Canonical quantization
proceeds as before, and the Hubert space is square integrable functions on gauge
inequivalent flat SO(3,1) connections.

This is often called the Einstein-Cartan theory. For a review of its canonical quantization see [16]
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Of course general relativity in four dimensions is not an exactly soluble theory
(as far as we know). Nevertheless, it is intriguing that it can be expressed in a form
which is closely related to one that is. To make this connection more explicit, we
start with the action (4.5) in canonical form

S = 3 j dt J ώgpw* - R$pk]0ab + ωa

0

bD[iPjk]ab. (4.6)
Σ

One must now pick a tetrad ea

μ, and a Lagrange multiplier λf. If one adds to (4.6)
the constraint

(4.7)

and restricts the Lagrange multiplier pk0ab to be of the form ec

ke
d

0εabcd, the theory
is equivalent to general relativity. Note that in this approach e" is not a canonical
variable. Its dynamics is determined as follows. The constraint (4.7) does not
commute with the other constraints. (These are second class constraints.) The
requirement that they be preserved in time is

C^{C,H}+^ = 0, (4.8)

where H is the canonical Hamiltonian constructed from (4.6) and (4.7). This
determines the evolution of e° (and λ°b). Note that our previous theories have
only had commuting (first class) constraints. These are always preserved under
evolution and the (unrestricted) Lagrange multipliers are the generators of gauge
transformations.

Although solutions to the theory (4.5) do not correspond to flat spacetimes,
one can easily quantize a theory which is based on flat spacetimes. This can be
achieved by considering our previous action (3.1) with G = Poincare group.13

Decomposing in terms of the Lorentz and translation parts the action becomes

S = 6 f R&p^w, + Ta

[μvMpσ]a, (4.9)

where Ta

μv is the torsion defined in terms of the tetrad ea

μ (the translation part of
the connection) in analogy to (4.2b). The field equations now require the connection
to be both flat and torsion free. Hence these are flat spacetimes in the usual sense.
In addition there are extra degrees of freedom associated with the cohomology
classes of pμvab and Mμvα. The canonical variables are the spatial components of
both the connection and the tetrad as well as their conjugate momentum. The
reduced phase space is the cotangent bundle to the space Jf' of gauge inequivalent
flat torsion free connections restricted to Σ. The quantum states are square
integrable functions on ΛΛ

The above considerations can easily be generalized to any dimension, but in
four dimensions it is of particular interest to add a cosmological constant term.
The Einstein action is now

S = 6f (OX, - 2/le βyχtew. (4.10)

13 Recall that no metric is needed on the Lie algebra to construct this theory
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The momentum conjugate to ωf is again given by (4.4). If we drop this constraint
as before, then the action becomes

S = 61 Ra

{

b

vPpσ]ab - ^Pϊb

μvp
c

p

d

σ]εabcd. (4.11)

This is just a special case of the theory (3.10) discussed at the end of Sect. 3 with
G = 50(3,1). The cosmological constant A plays the role of the parameter g. Note
that we are not using the Cartan-Killing metric for SΌ(3,1). In any dimension,
given two Lorentz generators Lab and Mαb, one has the inner product LabMcdgacgbd.
In four dimensions, there is a second invariant, invertible metric given by
LabMcdεabcd. It is clearly this metric which is being used in (4.11). Since the previous
discussion held for any Lie algebra metric, the canonical quantization proceeds as
before. Using the Dirac approach, one finds a unique quantum state which is
ψ(ω) = eiScs/Λ, where Scs is the Lorentz Chern-Simons action (with the above Lie
algebra metric). The theory (4.11) may be related to recent discussions of topological
gravity [18].

5. Discussion

In this section we will discuss some implications and speculations concerning the
above theories. The first is related to the choice of canonical variables for general
relativity. In Sect. 1 it was pointed out that in terms of the usual spatial metric
and conjugate momentum, the constraint equations of three dimensional gravity
are no simpler than the four dimensional case. As we have discussed, the key
observation which allows one to quantize three dimensional general relativity is
not that it is equivalent to the Chern-Simons term for the Poincare group, but
rather that one should take the basic canonical variables to be the full Lorentz
connection restricted to a spacelike surface. It is clear why the use of the Lorentz
connection simplifies the canonical approach. The spatial metric and extrinsic
curvature are highly dependent on the embedding of the spatial surface into the
spacetime. Even in flat spacetime there are "wiggly" surfaces for which these
quantities do not take a simple form. The constraints associated with these variables
must be complicated enough to admit all of these possibilities. The connection is
less dependent on the choice of surface and the constraints simplify. This is the
key idea behind Ashtekar's new variables for four dimensional general relativity
[19]. He uses the self dual part of the Lorentz connection as the fundamental
canonical variable. This choice of variables arises naturally from an action which
is a chiral version of (4.3) [20]. Although the full space of solutions to the constraints
is not yet understood, some solutions have been found which, interestingly enough,
are closely connected to knot theory [21].

How do the theories described here compare with previously studied diffeo-
morphism invariant theories? In most previous discussions of theories with a
dynamical metric, one introduces a lapse function N and a shift vector Nl to
describe the surfaces used to set up the canonical theory [22]. However in the
absence of a spacetime metric, this is not possible. Indeed, N and Nl represent
certain components of the spacetime metric. Another way to see this is that in the
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absence of a metric, one cannot decompose the vector tμ (connecting one surface
to the next) into normal and tangential components.

However topological quantum field theories are still invariant under changing
ones choice of surfaces. To see this, one can use the following observation14. Given
any action S(α, β) depending on two fields α and β, one has an invariance

δa = εδS/δβ9 δβ=-εδS/δa. (5.1)

This is clearly trivial when the field equations are satisfied. In fact one can show
that (5.1) is the most general invariance which reduces to the identity on shell.
Since this invariance is present even in theories with no local gauge invariance, it
is not associated with constraints. Two symmetries which differ by (5.1) are
effectively equivalent.

Now consider for simplicity the action (2.1), S = JF Λ B in four dimensions.
The general invariance (5.1) applied to this action yields

δAμ = ξ*Fvμ9 δBμv = ξ»Hpμv (5.2)

for an arbitrary vector field ξμ. Under a diffeomorphism

δAμ = dμ(ξ*Av) + ξ*Fvμ, (5.3)

and similarly for Bμv. So modulo the transformation (5.2) this is precisely a gauge
transformation. In the canonical formalism, we have seen that the constraints
generate the spatial components of the gauge transformations. The transformation
properties of the Lagrange multipliers are obtained by demanding that the action
be invariant under the transformations generated by the constraints. This recovers
the time components of the gauge transformations. Thus the full gauge invariance
is included in the canonical theory, and hence the full diffeomorphism invariance
as well. Although we have illustrated this for the theory (2.1), similar results hold
for all theories discussed here.

Other finite dimensional models for general relativity have been considered.
The most well known are perhaps the minisuperspace models [23]. In the usual
canonical approach to quantum gravity, one considers wave functions on the space
of all three metrics. By imposing symmetries, one can reduce the space of all three
metrics to a smaller space called minisuperspace. A standard choice is to consider
only homogeneous spacetimes. In this case the classical field equations reduce to
ordinary differential equations which have a finite dimensional space of solutions.
(The dimension of this space depends on the amount of anisotropy and number
of matter fields one wishes to include.) However, even with this restriction, the
constraints cannot usually be solved exactly (neither classically nor quantum
mechanically) and one is forced to resort to semiclassical approximations. Although
one reason for this is undoubtedly that these models include nontrivial dynamics,
part of the complication may be removed by using a new choice of canonical
variables. Another significant difference is that for minisuperspace models, the
finite dimensionality arises from an ad-hoc restriction on the fields rather than
from constraints derived from the theory.

I thank Mark Henneaux and Claudio Teitelboim for explaining this to me
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The theories described in the previous sections have only been quantized using
canonical quantization. The next step is clearly to consider functional integrals.
The partition function for many of these theories has been studied by Schwarz
[24]. Other functional integral expressions may be related to topological invariants.
For example, given an n dimensional manifold M, and submanifolds U, V of
dimension p and n — p — 1 respectively, one could compute

, (5.4)

where the integral is over all p forms A and n — p — 1 forms B and S = \dA Λ B.
The result will in general depend on the boundary conditions chosen for the
functional integral. However, if M is compact without boundary, the result should
be a topological invariant related to the surfaces U and V. This may yield
information about the linking of p and n — p—l dimensional surfaces in the n
dimensional manifold M. More general expressions including a product of
operators of the above type for a collection of surfaces (or perhaps exponential of
such operators) might be related to other topological invariants of these surfaces.
Similar expressions can be constructed for the other theories described earlier. In
the analogous calculation for the three dimensional Chern-Simons theory [8], an
important role was played by the fact that if one splits M into two appropriate
pieces, the Hubert space associated with the boundary is one dimensional. We
have seen that this is also true for the theories discussed here. (For example, in
the theory described by (2.8) this holds whenever H*(Σ) = Hn-p-l(Σ) = Q.) So
some of the techniques given in [8] may be applicable to evaluate expressions such
as (5.4).

It has often been argued that a fundamental theory of quantum gravity will
not involve a spacetime metric. Topological quantum field theories are interesting
models of theories of this type. They show that a theory without a spacetime metric
can be formulated in a well defined way and the states are topological. These
theories are too simple to show how a metric might arise "dynamically." String
theory may be different. Classically it can be formulated without a spacetime metric
[25]. There is a natural solution which does not introduce any metric. Quantizing
about this solution can be viewed as constructing an infinite dimensional
topological quantum field theory. Since classically there are other solutions with
a nonzero spacetime metric, one may hope that the full quantum theory will show
a transition from a state with no metric to the approximate classical spacetime we
see today.

One of the characteristic features of topological quantum field theories is that
they have a very large gauge group. The solution space is reduced from an infinite
dimensional space to a finite dimensional one. In fact we have seen examples where
there is so much gauge invariance that there is a unique quantum state (up to
overall scale). It should be noted that a "miracle" is not required to find a theory
for which the quantum state is uniquely determined. To illustrate this, consider
an arbitrary scalar field theory described by a (Euclidean) action S(φ) on n
dimensional flat space. We will construct an n 4-1 dimensional theory for which
the only quantum state is ψ(φ) = eis(φ\ We start with the action



436 G. T. Horowitz

(5.5)

where F(φ) = δS/δφ. The momentum p conjugate to φ is clearly F(φ). So the action,
in canonical form, is

(5.6)

where λ is a Lagrange multiplier which enforces the constraint p — F. Classically
this constraint generates the gauge transformations δφ — /, δp = — fδF/δφ, where
/ is an arbitrary function. So all values of φ can be connected by these gauge
transformations. Using the Dirac procedure, quantum states must satisfy

The unique solution is ψ(φ) = e

ίs(φ}15.
It is very appealing to imagine that the ultimate theory of the universe will

have such a large gauge group that there is only one state. A metric and local
dynamics might arise as some form of "symmetry breaking". This would seem to
be an attractive alternative to finding natural boundary conditions for the wave
function of the universe. In a theory of this type, no boundary conditions would
be needed.

Acknowledgements. It is a pleasure to thank Jonathan Halliwell, Jim Hartle, Joe Polchinski, Andy
Strominger, Karen Uhlenbeck, and Don Witt for discussions. This work was supported in part by the
Alfred P. Sloan Foundation and the National Science Foundation under Grants PHYS5-06686 and
PHY82-17853, supplemented by funds from NASA.

Note Added. It has recently been shown that expression (5.4) does yield the linking number of the p
and n — p — 1 dimensional surfaces U and V. See G. Horowitz and M. Srednicki,: "A Quantum Field
Theoretic Description of Linking Numbers and Their Generalization," Santa Barbara preprint
UCSB-TH-89-14; and M. Blau and G. Thompson,: "Topological Gauge Theories of Antisymmetric
Tensor Fields," Trieste preprint SISSA 39/89/FM

References

1. Witten, E.: Nucl. Phys. B311, 46 (1988)
2. Atiyah, M.: New invariants of three and four dimensional manifolds, to appear in the Symposium

on the Mathematical Heritage of Hermann Weyl. Wells, R. et. al, (eds.). (Univ. of North Carolina,
May 1987)

3. Witten, E.: Commun. Math. Phys. 117, 353 (1988)
4. Witten, E.: Commun. Math. Phys. 118, 411 (1988)
5. Baulieu, L., Grossman, B.: Phys. Lett. B212, 351 (1988); Phys. Lett. B214, 223 (1988); Yamron, J.:

Phys. Lett. B213, 325 (1988)
6. Baulieu, L., Singer, L: Topological Yang-Mills Symmetry, to appear in the proceedings of Conformal

15 From a functional integral viewpoint, the fact that there is a unique quantum state follows
immediately from the fact that since the action (5.5) is a total derivative, the amplitude for a given history
is independent of the history and depends only on the endpoints. I thank Steve Martin for pointing
this out



Exactly Soluble Diffeomorphism Invariant Theories 437

Field Theory and Related Topics (Annecy, France, March 1988); Brooks, R., Montano, D.,
Sonnenschein, J.: Phys. Lett. B214, 91 (1988)

7. Labastida, J., Pernici, M: Phys. Lett. B212, 56 (1988)
8. Witten, E.: Commun. Math. Phys. 121, 351-399 (1989)
9. Tseytlin, A.: J. Math. Phys. 15, L105 (1982)

10. See e.g. Penrose, R.: In Magic without magic. Klauder, J. (ed.). San Francisco Freeman 1972
11. See e.g. De Witt, B.: Phys. Rev. 160, 1113 (1967)
12. Hartle, J., Hawking, S.: Phys. Rev. D28, 2960 (1983); Hartle, J.: In: 13th Texas Symposium on

Relativistic Astrophysics. Ulmer M. (ed.). Singapore: World Scientific 1987; Vilenkin, A.: Phys. Rev.
D33, 3560 (1986)

13. Teitelboim, C: Phys. Lett. B167, 63 (1986)
14. Taubes, C.: Casson's Invariant and Gauge Theory. Harvard Univ. preprint (1988)
15. Floer, A.: Commun. Math. Phys. 118, 215 (1988)
16. Isenberg, J., Nester, J.: In: General relativity and gravitation Vol. 1, Held, A. (ed.). New York:

Plenum Press 1980; Hehl, F., von der Heyde, P., Kerlick, G., Nester, J.: Rev. Mod. Phys. 48,393 (1976)
17. Hayashi, N., Shirafuji, T.: Phys. Rev. D19, 3524 (1979)
18. Witten, E.: Phys. Lett. B206, 601 (1988); Labastida, J., Pernici, M.: Phys. Lett. B213, 319 (1988)
19. Ashtekar, A.: Phys. Rev. Lett. 57, 2244 (1986); Phys. Rev. D36, 1587 (1987); New Perspectives in

Canonical Gravity. Naples: Bibliopolis 1988
20. Samuel, J.: Pramana 28, L429 (1987); Jacobson, T., Smolin, L.: Phys. Lett. B196, 39 (1987); Class.

Quantum Grav. 5, 583 (1988)
21. Rovelli, C., Smolin, L.: Loop space representation of quantum gravity. Rome preprint; Phys. Rev.

Lett. 61, 1155(1988)
22. For a review see Kuchar, K.: In: Quantum gravity 2. Isham, C., Penrose, R., Sciama, D. (eds.).

Oxford: Oxford University Press 1981
23. For a reviews, see Hartle, J.: In: High energy physics. Bowick, M., Gursey, F. (eds.). Singapore:

World Scientific 1985; Misner, C.: In: Magic without Magic. Klauder, J. (ed.). San Francisco:
Freeman 1972

24. Schwarz, A.: Lett. Math. Phys. 2, 247 (1978)
25. Horowitz, G., Lykken, J., Rohm, R., Strominger, A.: Phys. Rev. Lett. 57, 283 (1986); Hata, H., Itoh,

K., Kugo, K., Kunitomo, H., Ogawa, K.: Phys. Lett. B175, 138 (1986)

Communicated by S.-T. Yau

Received December 9, 1988; in revised form May 12, 1989






