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Abstract. One uses Drinfeld’s quantum double construction and a basis a la
Poincaré—Birkhoff-Witt in U,n, to compute an explicit formula for the
quantum R-matrix.

0. Introduction

1. Definition: [1,2] U,sl(N + 1) is the topologically free C [[h]] algebra generated
by X;,Y;, H;,1 £i < N, with the relations:

[Hi,Hj] =0, [Hij] = aj(Hi)ij
[Hia Y]]= _aj(Hi)Yﬁ 1§I>J§N9

sh(%Hi)
[Xia Yj] = 5ij4h,
sh<§>
for li—jl=1,X2X;— (" +e ")X,X; X, + X;X;*=0,

Yi2 Yj _ (eh/2 + e—h/Z)Yin Yi + Yj Yi2 =0.
It is a Hopf algebra for the coproduct A:

A(H,)=H,®1+ 1®H” A(Xl)=Xl®CXp<ZH,> +exp<:4—hH,)®X,

‘A(Y) =Y, ®exp <ZH,-> + exp (%H,-)@ Y.

The antipode S is given by: S(H;) = —H;, S(X;) = —e"?X;, S(Y;)= —e "2Y,.
This Hopf algebra is not cocommutative; the non-cocommutativity is measured
by the so-called R-matrix, which “intertwines” A and the opposite comultiplication
A’ [1,2]. The images of R in tensor products of finite dimensional representations
play an important role in the construction of representations of the braid group
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and of link invariants. Drinfeld has indicated how the existence of this R-matrix
comes from the double construction for U,b , (see below) and indicated the general
form of it; for the case of sl(2), he gave an explicit formula. Our aim is to find such
an explicit formula for the general case of sl(N + 1), following the same method.
We shall introduce a convenient basis in U,n ., via the definition of analogues of
root vectors, thanks to which the computations are not too complicated. We first
need some preliminaries.

Giving to X; (respectively Y;) the degree o; (respectively —a;) U,sl(N + 1) is
naturally Q-graded where Q is the root lattice.

One defines an adjoint representation ad: U,sl(N + 1)— End (U,sl(N + 1)) by
ad =(LQ®R)(Id® S)A, where L (respectively R) is the left (respectively right)
representation. Let U,b ., respectively U,b_, the unital subalgebra generated by
the X;’s and the H;’s, respectively by the Y;s and the H;s. Before introducing
analogues of root vectors in U,b,, it is useful to consider the new generators
E, =X, exp((—h/4)H)) instead of X;. Then

A(E)=E;®1+exp <—ThHi> ®E; S(E)=exp (gHi)Ei'

In terms of the new generators, the analogues of Serre’s relations can be rewritten as:
for i #j, ad (E)' ~“J(E ) =0. (a;;) is the Cartan matrix.

Furthermore, ad (E;) acts as a twisted derivation: for &, ne U, sl(N + 1) homogeneous
of degree B and y, ad (E;)(¢n) = ad (E;)(E)n + t2@VE. ad (E;)(n7), where t = e "4,

2. Quantum R-Matrix and Quantum Double Construction

Definition 1. A quasi-triangular Hopf algebra is the data of a Hopf algebra A and
of an invertible element Re A ® A4 such that: RA(x)R ™! = A'(x) Vxe A, where A’ is
the opposite comultiplication, and (A®id)(R) = R*3R?3, (id ® 4)(R) = R'3R*2.
Then R automatically satisfies the Yang—Baxter equation.
The quantum double construction is a procedure allowing to construct a
quasitriangular Hopf algebra from any Hopf algebra.

Definition and Theorem 2. Let A be a Hopf algebra and A° be the dual algebra A*
with the opposite comultiplication. Then there exists a unique quasi-triangular Hopf
algebra (D(A), R) such that:

1. D(A) contains A and A° as Hopf subalgebras;
2. R is the image of the canonical element of A® A° by the embedding:

A® A° - D(A)® D(A);
3. the linear map: A® A° — D(A) is bijective,
a®b— ab.

So, as a linear space, D(A) can be identified with A ® 4° and its algebra and
coalgebra structures will be completely determined as soon as one knows how to
compute a product ¢-v, for £ in A° and v in A as a sum of products v;-&;, v,€A4,
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£,€A4°. In fact, one can give an intrinsic formula for the product 4°® A —» D(A4) in
terms of the map A® A°— D(A) described in point 3) of the theorem: let
7. A°® A— A® A° be the permutation £ @v—v® & then the sought for product
is given by the following composition:

A°®A A®RA—>ARA° —> AR A° —> D(A)
i I®tr)d

rRi)EeI1®3Hi

where A is the usual coproduct on the tensor product of the Hopf algebras 4 and
A°, and tr: A® A° — C is the contraction: tr(v ® &) = &(v).

Application to the case of U,sl(N + 1). The quasi-triangular structure of U,sl(N + 1)
can be deduced from that of the double of U,b, from the following facts:

1. (U,b,)° can be identified with U,b_ as a Hopf algebra.

2. So, as linear spaces, we have: D(Ub,)=U,b, ®U,b_=U,sI(N+1)QUH#,
where # is the Cartan subalgebra of sI(N + 1).

3. We shall construct an isomorphism as in 1) for which the isomorphism
D(Ub )= Usl(N + 1)® Us# is an isomorphism of algebras

4. If e Us# — C is the canonical augmentation, a quasi-triangular structure on
U,sl(N + 1) is defined by the image of ReD(U,b,)® D(U,b ) by the composition:
DU )@D(Upb ) = (UpslN+ 1)@ Us#) @ (UpslIN + )@ UH)

S USIN+1)QU,sI(N + 1)
(and this mapping, when restricted to U,b, ® 1 or to 1 ® U,b_ is nothing but the
natural inclusion).
Here duality should be understood in the category of Quantized Universal

Envelopping algebras (Q.U.E. algebras) (cf. Drinfeld [1]). We shall freely use the
formalism of Q.U.E. and Q.F.S.H. (Quantized Formal Power Series) algebras.

1. An Analogue of the Poincaré—Birkhoff-Witt Theorem for U,n .

U,n. is the unital subalgebra generated by the E;’s. Each positive root o of sI(N + 1)
can be written: a =g —¢&;=0a;+ 044 + -+ ®;_;, 1 £i<j<N. One defines by
induction the root vector: E, = ad E;(E,,, , _,)-

1. Commutation Relations Between the E,’s

a) Commutation of a vector of simple root E, with E, _, .

For k=i—1, adE(E, _,,,)=E For k=j+1, EE
adE;_(E;+,E))

=adEi...

&-178&j+1° &iT¢&j+1

Eai-£j+1Ek = ad Ei"'ad Ej“l(EjEj+1)’
SO,
=E

EiEj+2°

2(aj, 05
Esi—£j+|Ej+1 =t @ al+1)Ej+1E

Fer k<i—2 or kzj+2, E\E =E E,. For k=iad E(E,, _,,,,)=

&iT&j+1 & & +1

EiTEj+1
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(ad E))*(E;, ;) =0, and more generally:
ad Ei(Esi"£j+ 1) = (a‘d E-l)z ad Ei+ 1(E£i+z—8j+ 1)

= ((tz + t_z)adEiadEi+1 adEi

—adE;(ad E)*)(E

Ei+27¢&j+ 1)

=0.
For ke{i+1,...,j—1}: ad E\(E,,_,,, )
=adEi"‘adEk_zadEkadEk_ladEk(E£k+l_Ej+z)
=2+t %) 'adE;---ad E,_,((ad E))*ad E, _,
+ad E,_((ad E)*)(E; 1) = 0.

For k=j: E;E =adE;---adE;_,(E;E, _,,,,,)

8= &5+ 1
Eei—aj“Ej:adEi"'adEj—Z(Eaj_l—stEj)-
But, Eej—1_8j+l =Ej°1Ej—t_2EjEj—1’ SO
EE, \~ejy =t Eoy_ oy BEj= =t EE;- + Ej_(EP)+ EiE;_(Ej(1+17%)

=0 according to Serre’s relations.

b) Commutation of E, and Eg, a =& — &, 1, =6 — &4 1.
For j=p+2: E,E;=E4E,. For j=p+1: put o' =¢;—¢,, one has: E,=E,E,—
t"2E,E, and E E; = E4E,. So

E,E;= E, E,E;—t 2E,E,E,,

EjE,=E E4E,—t 2E;EE,,

SO

EE;—t 2EE,=E,E, 53—t *E, ,Ey
go on =
= EIE - t_ZE Ei

i+1 " 8k+1 i+1 " 8k+1

=Ea+ﬂ'

For j < p: Up to exchanging the roles of « and f, one may suppose that i is the
smallest index which appears. Put y=a;+ - +a,; a=0;+ - +o;_; +y and
ﬁ = y + ap+1 + "'dk. Then: EaEﬁ = adEi"'adEj_z(Eaj_l+,yEﬂ),

EﬁEa=adEi"‘adEj_z(EﬂEaj_l.'.y)

Eaj—1+‘)'Eﬁ = ad Ej— 1(E,),Eﬂ) - tz(aj_l’Y)Eanj_l+ﬁ
E4E,, =t ?@-vPadE;_ \(E4E)—E,,_,.4E,)
But Ej,EjH,...,Ep' commute with E, .4, so EE,  .z=E, ,.zE,. Put
y=oa;+ 7" one has in the same way: E E; = E4E,..

EyEﬁ— t_Z('Y,ﬂ)EﬂEv =0,

—2(aj-1+7 _(+2 -2
Eaj-n+vEﬂ_t @ l+Yﬂ)EﬂEaj—1+v—(t —t )Eanj—Mb”
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and
EE;—1*“PEE, =(t* =t )EE, ;... 14,

Remark. This supposes (with notations as above) that i<j— 1 and k= p+ 1. But
for i=j, i.e. « =y, we saw in the course of the proof that: E,E; —t *""PE;E =0
for k=p,ie f=y, E, ,+,E,=adE;---adE, ((E,,_ .,E,),

EE, ,+y=adE;-adE, (E,E, ,+,),

EE, 4, —t @& *ME, E,=0 so EE, ., — 1201t NE E
and E,E,—t*"9EE =0.

We shall put on the set of positive roots R , a total order (1) < f(2) < --- < f(n),
such that the ordered monomials Eg ;)™ --- Eg,y™, (my,...,m,)eN" form a basis
of Uyn, . We record the following computational lemma, which is easily checked
by induction, and which will be useful next.

=0,

aj-1+y

Lemma
—h
A(E8|_£j+l)= Eai_£j+j®1 +(1 - eh)ZEe,—qu.; exp7H8k+1_£j+1 ®E£k+1"€j+1

—h
+CXPTHsl—aj+1®Eei—st- (Sum from k=ito k=j—1).

Put
ul = E&i"&j+ 1 ® 15

u,=E, _, exp(—h/2)H;QE,,
—h
u3 = Eei—s_,'—1expTH8j~1-£j+1®E£j-1—Ej+1’
—h
uj—i+1 = EiexpTHsnl—e]wx®E6i+1—aj+1’

—h
Uj—i+2 =exp—2—H£;‘“‘£j+1®E8i—Ej+l'

Then way = e "uy, for k> 1. As A(E)=u; +(1 — M uy+ - +uj—y 1)+ ty_ 12,
one can compute A(E,)" by the g-multinomial formula:

A(E )n= d)n(e—h)
a = =
n1+---+n_,-—,+z=n¢n,~(e h)"'¢nj-i+z(e h)
(1 - e—h)n2+~--+n,-—i+1u1n1”_uj__i+2nj+i—2
where

dula)=(1 — )1 —g*)---(1 —q"),

—rh
r_ ,(h/4)r(r—1) r r
Uy =6 (Eéi—sj—kﬂ) eXp 2 HEj—k+1_£j+l®(E€j—k+[_£j+1) .

2. A Basis a la Poincaré—Birkhoff-Witt for U,n

Definition. Let R, be the set of positive roots, a,...,ay the simple roots. Let’s
consider the following total order on R, :
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0(1,0(1 +0(2,0(1 +O(2+a3,0(1+0(2+oc3+<x4,...,061 + .- +OCN,O(2,
a2+0(3,0(2+0(3+064,...,062+ cee +OCN,OC3,OC3+OC4,
Oy +0g+ 0syenn g+ oo+ 0y, Ugy.n, Oy + Ay, Oy,

and let’s note f(1) < f(2) < --- < B(n) the inverse total order (i.e. f(1) = ay, f(2) =
0N -1 +aN,...,).

Theorem. The set of elements Egyym, ---Egym,, (my,...,m,)eN" from a basis of
Upn,.

Proof.

a) One knows that the monomials in E,,..., Ey, generate U,n,, so a fortiori the
(non)-ordered monomials in E,’s. To see that the set above is generator, it is enough
to prove that each element Eg;,)---Eg,, is a linear combination of ordered
elements as above, with m; + --- +m, < k.

We shall make a double induction: first on k, and for k fixed, on i,.
—The case k=1 is clear.
—Suppose the assertion true for k: we now prove by induction on i, that it holds
for k+ 1. So, let’s consider an element Eg;,, - Egg, |, ,)-

i) For i; = 1, apply the induction hypothesis on k to Eg,) - Egq,, ,)-
ii) If i; > 1, applying again the induction hypothesis on k to Egg, - Eg,, ),
one sees that Eg; Egq,---Eg;,,, is a linear combination of elements
EpanEpiy™ Epv ™' o Egy™ With m; + ---m, < k.

If i; <j: we are O.K.

iy > j: EgeyEpy™Epg+ ™"+ g™ = Egan/EpnEpy™ ' Epg+ ™"+ Egeny™
But we have computed the “commutation relations” between the E,’s and there are
essentially three possibilities: for some non-zero coefficients 1 and u:

0
EgiyEpgy — AEp Epyy = { HEg,)+ 5 ;
#E'yEa’+y+ﬁ’ Where ﬁ(’1)=“’+)’,ﬁ(])=7+ﬁ’
and so: B(i;) >y > B()).
Then:

EpiyEpyEpy™ ™' Epge )™+ Egny™
AEp\Epy Egy™ ™ Eggey™ -+ Egy™
= B EpnEpy™ " Epge )™ Egy™ + BEpayy + 5y Epy™ "+ Epen™
AEp)Epiy Egy™ ™ Epga1y™** o Eggy™ + BE,Egr 1y 1 p Egy™ ™ -+ Egiy™.

In the first case, induction on k allows to reorder Ey;,)Eg;™ ™~ ' Epjjy 1)™* '+ Egy™
as a linear combination of monomials with at most k terms, then as j<i;, one
uses induction on i;.

In the second case: the first term is treated in the same way, and the second
one comes from induction on k.

In the third case: proceed for the two terms as in the first case, as y < f(i,).
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b) Let us prove now that the Eg ;)™ --- Eg,)™ are linearly independent. Let Q be
the root lattice; U,n,, U,sl(N + 1), U sl(N + 1)® U,sl(N + 1) are Q x Q-graded.
For Q-degree reasons, the Ep;, are independent.

A:Uyn, - U,b, @ U,n, preserves the Q-degree and A(E;) has a component
of bidegree («;, f — «;) if and only if § is of the form f = «; + ---. Then the component
of bidegree (na;, n(f — «;)) of A(E)" is proportional to E"exp(—nh/2)Hy_, ®
(Eg—,,)" (See lemma).

In the same way, the component of bidegree ((m+m, + --- +m,)a;,...) of
A(Eg s vae " (Bt v ggap )" (B by )" E,™) 1s proportional to:

—h m
(Ei)m+"u+ +mrexpTH®(E¢i+1+--~+ai+r)mr"'(Eai+1) !

and the monomial on the right of ® is already well ordered. More generally,
consider the component of bidegree (pa;, . .. ) of A(Egy)™ -+ Egy™), with p maximal:
it is proportional to Eexp(—h/2)H® Epy)™ -+ Eg,y™, with (k) = (k) — o; if
B(k) = o; + --- and B(k)' = B(k) if not. When reordering Eg;)™ -+ Eg™, the only
commutations than one has to do are between two vectors of the form E,
these commutations are of the type: E, E; = AE;E, for a non-zero /. So, the sought
for component is proportional to a monomial

—h , ,
Efexp—-H®Esq)""  Egy™ "

Consider now a linear relation between the Eg;)™ --- Eg,)™: one can assume they
all have the same Q-degree: X' m, f(i) is fixed. We prove by induction on this degree
that the relation is trivial.

—we saw that if this Q-degree is f(i).

—Among the monomials of the relation, consider the biggest integer i such that
there appears a E, ... with a non-zero exponent. Let n be the biggest total
exponent at which all E, , ... appear. Only the monomials in which this total
exponent is exactly n will have a component of degree (no,...) after applying A.
From the relation we started with, we deduce a relation between the monomials
Epyy™* - Ep,y™n which appeared on the right of ®, and if the Ep)™ --- Ej,)™ are
two by two distinct, it is the same for the Ep;)™" -+ Eg,™ ™. (The p(k) of the form
«; + --- are replaced by a;, ; + -+, or 1 if f(k) = «;, and the others are unchanged.)
As the Ep,)™* - Eg,y™ have a Q-degree strictly smaller than the one we started
with, this new relation is trivial. But the coefficients of this relation are non-zero
multiples of the coefficients of the initial relation (see remarks made above): so the
coefficients of all the monomials in which E,_, ... appears with exponent n should
be zero; this contradicts the choice of n.

Remark. U,n, is a (non-homogeneous) quadratic algebra, generated by the Es,
and the existence of the P.B.W. basis implies that it is a Koszul algebra in the
sense of Priddy. [3,4].

The choice has the following interest:

Proposition. Let (Uyn.); be the subspace of Uyn ., with basis Ep;)™ -+ Eg ;)™ with
(my,...,m))eN.. Then:
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a) (Uyn.); is a subalgebra of Uyn. .
b) (Uyn,);is a sub- U,b . right-comodule of Uyn.,, ie.

A((Uyny))) = Upb, @ (Uyn.);

II. Computation of the Universal R-Matrix

1. Construction of a Basis of the Q.F.S.H. Dual to U,b,

From the previous theorem, we deduce that Eg ;)™ --- Ege,™ H," ---Hy"", is a basis
of U,b, . Let’sintroduce linear forms &,,..., &y and #,, yeR ,, defined by: §;(H,) = 1;
zero on the other monomials; #,(E,) = 1, zero on the other monomials.

Lemma 1.

i) CEMLHMYy=n!and & is zero on the other monomials.
B , n 1 — e—kh
i 5= [ (T o
i) {Mpay™ -+ g™ 4" "'f-zv'", Epy™* - Egey™"H,"" - Hy"™ )

_T Y Om™)  Pple™)
= L Omt L Do 2 i g

Proof.
i) is immediate.

ii) <n, E;" > =<n,""1®mn,, A(E,”)>

B D,(e”") - —h
— n—1 n Enr-1 _ E
(o g o Bt 5 08,
l—e™ . .
=1 {n,”"',E,” ") and the result follows by induction on n.

iii) One checks immediately:

Mgay™ = Mgy ™ Ex" - EN™, Epigy™ o+ Egiy™ "H "1 - HY"™)
= Mgey™ = Npe™s Epey™ -+ Epen™ "D [ [0r s
Put X = {npy™ = g™, Epy™* -+ Epeny™ >
= o)™ = Mpey™ ' @ piays AEp(y™ -+ Egu— 1)) A(Eginy™ ™) -
But A(Ep)™* -+ Egu—1)"""1)eU,b . ®(Uyn ), ~, and n, is zero on (Uyny ), .

S0, X = {r1py™ - Mp™ ™" @ Mpys Epty™* -+ Epn—1y™ "™ @ 1A(Ey™ "))

l—em
my—1 m' my—1
T1- —r<’7ﬁm’ Mgy > Egay™ e Egy™ )
(e“h) —1 ] -
T(l-e h)m': o gy Npm—1) s Epay™ + Egn—1)" "7 D5

and applying the same argument, one gets the result.
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2. Commutation Relations and Coproduct in (U,b . )*
We note #; =1, for a; a simple root.

Lemma 2.

i) §i§j=§j§b

. h
ii) [&,n;]= —577;5;‘,',
i) 7 — e mi=(1— eh)”lawa“ 1
[Mim]=01f [i— jl =2

iv) For ;> o, one has: n;n, — e#2®%y p. = (1 — ey, , ,if o; + 2eR , and 0 if not.
Proof.

i) is immediate.

ii) #;¢; is non-zero only on E;H; where its value is 1. £;#; is non-zero only on E;H,
wh;/re itsvalueis 1,and if i=j, on E; where its values is {;®#;, exp— (h/2)H;Q E;) =
—h/2.

iii) For our order, o;,; <, SO ;, ,#; is non-zero only on E,, , E;; where its value
is 1. On the contrary, #;n;,; may be non-zero also on E

@itai+1*

h
MiMir1,Eiv 1 ED = <’7i®’7i+1aexp—"?:Hi+1Ei®Ei+1> =e"?,

h
MiMis 15 Bitny ) = <'li®’li+1’(1 _eh)Eiexp—EHi+1®Ei+1> =(1 ‘eh)-

iv) #,7; s non-zero only on E, E; where it is 1.

One shows then that 7,7, is zero on each monomial of degree = 3 in the E,’s. The
only monomial of degree 2 on which it is not zero is E,E; and its value on it is
e"P@%) Tt can be non-zero on E, only if ¢ =0,y + -+ + o;, y=0a; +« and then
{NaMi, By =1

Corollary. As an algebra; (U,b.)* is generated by the &’s and n;’s. Furthermore,
one has from iii) and iv) the analogues of Serre’s relations:

mn; =MN;N; if li—jlz2,

12021 — ("2 + e "2t 0+ i 17 = 0.

Lemma 3.

) A¢)=¢®1+1®¢;,

i) A)=n,®@1+exp(— & +2&— &4 ,)®n,; with the evident modification for
i=lori=N.

Proof.

i) is immediate.
ii) As the operation of “commuting” two root vectors can never give a simple root
vector, a priori A(y;) will be non-zero only on: E;®1 (where it is 1) and
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H/ ' Hy"Q®E,.
{A(m),H{" - -HyYQE;> =<{n;, H," - Hy'VE;)
=My, Ey(Hy + oy(Hy))" -+ (Hy + o(Hy)Y™ )
so; we must have r; =0 for j¢{i —1,i,i+ 1}.
CAMm) Hy— " HV Hy " QE; ) =y, Ey(Hy - — D) (H + 2)(Hyy  — 1)
=(=Dr2n(=1)ye
An)=n@1+ ¥ (—1pindlypling, e
sar p' T ¢q r!
Am)=m®@1+exp(—&i-1 +25— &) O
For the identification with the Q.F.S.H. associated with the Q.U.E. algebra (U,b ., )°,
it is useful to introduce: {; = &, — 3¢&,,

G=6—36io +&ivy) 2Z5iSN-1,

sz:CN—%éN—v
Then: A(()=(;®1+1®¢;
[(i.4;1=0,

[Cin1=0 if je{i—1,4i+ 1},

h
[Ci,ﬂim]::"hiu

h
ond=—5m;

2
and A(g;) =n,® 1 +exp(2L;) @ ;.
Remark. 2{{;, H;) = (0o, ).

3. The Identification of (U,b.)* with the Q.F.S.H Associated with U,b_ with the
Opposite comultiplication. Let A’ this opposite comultiplication and S’ the related
antipode. With these, one can define another adjoint representation ad’ = (L® R)
(I®S)A. In U,b_, one introduces the new generators F;= Y;exp(h/4)H; and
ad'(F,) has the same properties with respect to U,b_ as ad(E;) had with respect
to Ub,.

In particular, for each positive root « = a; + --- + a;, one defines the analogue
of the root vector F, as: F, = ad'(F;)(F,,,, + - + «;). From the computations made
above, one easily gets:

Proposition. For every A,(h),...,Ay(h)eC[[h]], with h-valuation 1, the map

¢,:(U,b, . )—->QFSH.(U,b_),
h
Ci_)ZHh
n;—~> Ai(h) F;

defines an isomorphism of Hopf algebras.
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We shall see that there is a unique choice of 4,’s such that the Hopf algebra
structure of D(U,b ) induces the one of U,si(N + 1).
An easy computation gives that, in U,sl(N + 1),

sh (gH,-)
[Eiﬁ F_]] = 5”—7——8}‘/2.
h{ —
»(3)

We compare it with [E;, ;] computed in D(U,b . ) thanks to the intrinsic formula
given in the introduction. One has: (tr ®id)(S® I®*)A(n;® E;) = — d;;exp (2(;) ®
1+n;®E,, so:

CEu] = exp (L) —exp 3, )
The image by ¢,:[E;, F;14;(h) = 6;;2sh((h/2)H,).
So, 4;(h) = (1 —e™"). One also checks that, in D(U,b,),[H;,n;]1= — (&, 0;);.
Corollary. The map: D(U,b,)— U,sl(N + 1)
E,—E;
i~ (1 —e™™F,
H,—»H,

h
Ci—’ZHi

defines a (surjective) morphism of Hopf algebras. So, the image of the canonical
element of D(U,b,)® D(U,b ) defines a quasi-triangular structure on U,sl(N + 1).

4. The Canonical Elements of D(U,b,)® D(U,b. ) and the Universal R-Matrix of
U,sl(N +1). In terms of the P.B.W. basis of U,b, and of its dual basis, the
canonical element is given by:

(1 _ e—h)mx (1 _ e-—h)m,.

... —

CporpeN” 1 Loyl @, (e7") D, (e7")
Hy e Hy™ @1py™ g &0 SN

This can be written in a more compact way by using the g-exponential:

Ep1y™ -+ Eggy™

un

e(u;q)=Zd,(q)~

With these notations, one has:
R= ne((l - e_h)Ep(i)®’7ﬁ(i); e ")exp (ZHj® éj)a

where the product is made in the order 1 <2< --- <n.
Now:—the image of ) H;®¢; in U,sl(N + 1)@ U,sI(N + 1) is (h/2)t,, where
to toeH# ® # corresponds to the scalar product ( , ).
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—from 71,1 — sy M= (1 — ) yiq,,,, ONE haS 7y, =—e " (1—e7")
F, +4.,» and by induction on the length /() of the root o
Ne = (_ e_h)l(a)——l(l - e_h)Faz'
Theorem. The universal R-matrix of U,sl(N + 1) is given by:
. h
R= l—le(( - e—h)l(ﬂ(l))— 1(1 - e_h)zEﬁ(,)®Fﬂ(,); e—h)'exp <'§ to).

with the same convention as above for ordering the product.
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