An Analogue of P.B.W. Theorem and the Universal R-Matrix for $U_{h} s l(N+1)$

Marc Rosso
Centre de Mathematiques, Ecole Polytechnique, F-91128, Palaiseau Cedex, France

Abstract

One uses Drinfeld's quantum double construction and a basis à la Poincaré-Birkhoff-Witt in $U_{h} n_{+}$to compute an explicit formula for the quantum R-matrix.

0. Introduction

1. Definition: $[1,2] U_{h} s l(N+1)$ is the topologically free $C[[h]]$ algebra generated by $X_{i}, Y_{i}, H_{i}, 1 \leqq i \leqq N$, with the relations:

$$
\begin{aligned}
{\left[H_{i}, H_{j}\right] } & =0, \quad\left[H_{i}, X_{j}\right]=\alpha_{j}\left(H_{i}\right) X_{j} \\
{\left[H_{i}, Y_{j}\right] } & =-\alpha_{j}\left(H_{i}\right) Y_{j}, \quad 1 \leqq i, j \leqq N, \\
{\left[X_{i}, Y_{j}\right] } & =\delta_{i j} \frac{\operatorname{sh}\left(\frac{h}{2} H_{i}\right)}{\operatorname{sh}\left(\frac{h}{2}\right)},
\end{aligned}
$$

$$
\begin{aligned}
& \text { for }|i-j|=1, X_{i}{ }^{2} X_{j}-\left(e^{h / 2}+e^{-h / 2}\right) X_{i} X_{j} X_{i}+X_{j} X_{i}^{2}=0, \\
& \qquad Y_{i}^{2} Y_{j}-\left(e^{h / 2}+e^{-h / 2}\right) Y_{i} Y_{j} Y_{i}+Y_{j} Y_{i}^{2}=0 .
\end{aligned}
$$

It is a Hopf algebra for the coproduct Δ :

$$
\begin{aligned}
\Delta\left(H_{i}\right)=H_{i} \otimes 1+1 \otimes H_{i}, \quad \Delta\left(X_{i}\right) & =X_{i} \otimes \exp \left(\frac{h}{4} H_{i}\right)+\exp \left(\frac{-h}{4} H_{i}\right) \otimes X_{i} \\
\cdot \Delta\left(Y_{i}\right) & =Y_{i} \otimes \exp \left(\frac{h}{4} H_{i}\right)+\exp \left(\frac{-h}{4} H_{i}\right) \otimes Y_{i} .
\end{aligned}
$$

The antipode S is given by: $S\left(H_{i}\right)=-H_{i}, S\left(X_{i}\right)=-e^{h / 2} X_{i}, S\left(Y_{i}\right)=-e^{-h / 2} Y_{i}$. This Hopf algebra is not cocommutative; the non-cocommutativity is measured by the so-called R-matrix, which "intertwines" Δ and the opposite comultiplication $\Delta^{\prime}[1,2]$. The images of R in tensor products of finite dimensional representations play an important role in the construction of representations of the braid group
and of link invariants. Drinfeld has indicated how the existence of this R-matrix comes from the double construction for $U_{h} b_{+}$(see below) and indicated the general form of it; for the case of $s l(2)$, he gave an explicit formula. Our aim is to find such an explicit formula for the general case of $s l(N+1)$, following the same method. We shall introduce a convenient basis in $U_{h} n_{+}$, via the definition of analogues of root vectors, thanks to which the computations are not too complicated. We first need some preliminaries.

Giving to X_{i} (respectively Y_{i}) the degree α_{i} (respectively $\left.-\alpha_{i}\right) U_{h} s l(N+1)$ is naturally Q-graded where Q is the root lattice.

One defines an adjoint representation ad: $U_{h} s l(N+1) \rightarrow \operatorname{End}\left(U_{h} s l(N+1)\right)$ by $\mathrm{ad}=(L \otimes R)(\mathrm{Id} \otimes S) \Delta$, where L (respectively R) is the left (respectively right) representation. Let $U_{h} b_{+}$, respectively $U_{h} b_{-}$, the unital subalgebra generated by the X_{i} 's and the H_{i} 's, respectively by the Y_{i} 's and the H_{i} 's. Before introducing analogues of root vectors in $U_{h} b_{+}$, it is useful to consider the new generators $E_{i}=X_{i} \exp \left((-h / 4) H_{i}\right)$ instead of X_{i}. Then

$$
\Delta\left(E_{i}\right)=E_{i} \otimes 1+\exp \left(\frac{-h}{2} H_{i}\right) \otimes E_{i}, \quad S\left(E_{i}\right)=\exp \left(\frac{h}{2} H_{i}\right) E_{i}
$$

In terms of the new generators, the analogues of Serre's relations can be rewritten as:

$$
\text { for } i \neq j, \operatorname{ad}\left(E_{i}\right)^{1-a_{i j}}\left(E_{j}\right)=0 .\left(a_{i j}\right) \text { is the Cartan matrix. }
$$

Furthermore, ad $\left(E_{i}\right)$ acts as a twisted derivation: for $\xi, \eta \in U_{h} s l(N+1)$ homogeneous of degree β and $\gamma, \operatorname{ad}\left(E_{i}\right)(\xi \eta)=\operatorname{ad}\left(E_{i}\right)(\xi) \eta+t^{2\left(\alpha_{i}, \gamma\right)} \xi . \operatorname{ad}\left(E_{i}\right)(\eta)$, where $t=e^{-h / 4}$.

2. Quantum R-Matrix and Quantum Double Construction

Definition 1. A quasi-triangular Hopf algebra is the data of a Hopf algebra A and of an invertible element $R \in A \otimes A$ such that: $R \Delta(x) R^{-1}=\Delta^{\prime}(x) \forall x \in A$, where Δ^{\prime} is the opposite comultiplication, and $(\Delta \otimes \mathrm{id})(R)=R^{13} R^{23},(\mathrm{id} \otimes \Delta)(R)=R^{13} R^{12}$.

Then R automatically satisfies the Yang-Baxter equation.
The quantum double construction is a procedure allowing to construct a quasitriangular Hopf algebra from any Hopf algebra.

Definition and Theorem 2. Let A be a Hopf algebra and A° be the dual algebra A^{*} with the opposite comultiplication. Then there exists a unique quasi-triangular Hopf algebra $(D(A), R)$ such that:

1. $D(A)$ contains A and A° as Hopf subalgebras;
2. R is the image of the canonical element of $A \otimes A^{\circ}$ by the embedding:

$$
A \otimes A^{\circ} \rightarrow D(A) \otimes D(A)
$$

3. the linear map: $A \otimes A^{\circ} \rightarrow D(A)$ is bijective,

$$
a \otimes b \rightarrow a b
$$

So, as a linear space, $D(A)$ can be identified with $A \otimes A^{\circ}$ and its algebra and coalgebra structures will be completely determined as soon as one knows how to compute a product $\xi \cdot v$, for ξ in A° and v in A as a sum of products $v_{i} \cdot \xi_{i}, v_{i} \in A$,
$\xi_{i} \in A^{\circ}$. In fact, one can give an intrinsic formula for the product $A^{\circ} \otimes A \rightarrow D(A)$ in terms of the map $A \otimes A^{\circ} \rightarrow D(A)$ described in point 3) of the theorem: let $\tau: A^{\circ} \otimes A \rightarrow A \otimes A^{\circ}$ be the permutation $\xi \otimes v \rightarrow v \otimes \xi$ then the sought for product is given by the following composition:

$$
A^{\circ} \otimes A \underset{(\mathrm{tr} \otimes \mathrm{id})\left(S \otimes I^{\otimes 3}\right) \bar{\Delta}}{\longrightarrow} A^{\circ} \otimes A \underset{\tau}{\longrightarrow} A \otimes A^{\circ} \xrightarrow[(I \otimes \mathrm{tr}) \bar{\Delta}]{ } A \otimes A^{\circ} \longrightarrow D(A)
$$

where $\bar{\Delta}$ is the usual coproduct on the tensor product of the Hopf algebras A and A°, and $\operatorname{tr}: A \otimes A^{\circ} \rightarrow C$ is the contraction: $\operatorname{tr}(v \otimes \xi)=\xi(v)$.
Application to the case of $U_{h} s l(N+1)$. The quasi-triangular structure of $U_{h} s l(N+1)$ can be deduced from that of the double of $U_{h} b_{+}$from the following facts:

1. $\left(U_{h} b_{+}\right)^{\circ}$ can be identified with $U_{h} b_{-}$as a Hopf algebra.
2. So, as linear spaces, we have: $D\left(U_{h} b_{+}\right)=U_{h} b_{+} \otimes U_{h} b_{-}=U_{h} s l(N+1) \otimes U \mathscr{H}$, where \mathscr{H} is the Cartan subalgebra of $\operatorname{sl}(N+1)$.
3. We shall construct an isomorphism as in 1) for which the isomorphism $D\left(U_{h} b_{+}\right)=U_{h} s l(N+1) \otimes U \mathscr{H}$ is an isomorphism of algebras
4. If $\varepsilon: U \mathscr{H} \rightarrow C$ is the canonical augmentation, a quasi-triangular structure on $U_{h} s l(N+1)$ is defined by the image of $R \in D\left(U_{h} b_{+}\right) \otimes D\left(U_{h} b_{+}\right)$by the composition:

$$
\begin{aligned}
D\left(U_{h} b_{+}\right) \otimes D\left(U_{h} b_{+}\right) & \rightarrow\left(U_{h} s l(N+1) \otimes U \mathscr{H}\right) \otimes\left(U_{h} s l(N+1) \otimes U \mathscr{H}\right) \\
& \rightarrow U_{h} s l(N+1) \otimes U_{h} s l(N+1)
\end{aligned}
$$

(and this mapping, when restricted to $U_{h} b_{+} \otimes 1$ or to $1 \otimes U_{h} b_{-}$is nothing but the natural inclusion).

Here duality should be understood in the category of Quantized Universal Envelopping algebras (Q.U.E. algebras) (cf. Drinfeld [1]). We shall freely use the formalism of Q.U.E. and Q.F.S.H. (Quantized Formal Power Series) algebras.

1. An Analogue of the Poincaré-Birkhoff-Witt Theorem for $\boldsymbol{U}_{\boldsymbol{h}} \boldsymbol{n}_{+}$

$U_{h} n_{+}$is the unital subalgebra generated by the E_{i} 's. Each positive root α of $\operatorname{sl}(N+1)$ can be written: $\alpha=\varepsilon_{i}-\varepsilon_{j}=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j-1}, 1 \leqq i<j \leqq N$. One defines by induction the root vector: $E_{\alpha}=\operatorname{ad} E_{i}\left(E_{\varepsilon_{i+1}-\varepsilon_{j}}\right)$.

1. Commutation Relations Between the E_{α} 's
a) Commutation of a vector of simple root E_{k} with $E_{\varepsilon_{i}-\varepsilon_{j+1}}$.

For $k=i-1, \operatorname{ad} E_{k}\left(E_{\varepsilon_{i}-\varepsilon_{j+1}}\right)=E_{\varepsilon_{i}-1-\varepsilon_{j+1}}$. For $k=j+1, E_{k} E_{\varepsilon_{i}-\varepsilon_{j+1}}=\operatorname{ad} E_{i} \cdots$ $\operatorname{ad} E_{j-1}\left(E_{j+1} E_{j}\right)$

$$
E_{\varepsilon_{i}-\varepsilon_{j+1}} E_{k}=\operatorname{ad} E_{i} \cdots \operatorname{ad} E_{j-1}\left(E_{j} E_{j+1}\right),
$$

so,

$$
E_{\varepsilon_{i}-\varepsilon_{j+1}} E_{j+1}-t^{2\left(\alpha_{j}, \alpha_{j+1}\right)} E_{j+1} E_{\varepsilon_{i}-\varepsilon_{j+1}}=E_{\varepsilon_{i}-\varepsilon_{j+2}}
$$

Fcr $k \leqq i-2$ or $k \geqq j+2, E_{k} E_{\varepsilon_{i}-\varepsilon_{j+1}}=E_{\varepsilon_{i}-\varepsilon_{j+1}} E_{k}$. For $k=i, \operatorname{ad} E_{i}\left(E_{\varepsilon_{i}-\varepsilon_{i}+2}\right)=$
$\left(\operatorname{ad} E_{i}\right)^{2}\left(E_{i+1}\right)=0$, and more generally:

$$
\begin{aligned}
\operatorname{ad} E_{i}\left(E_{\varepsilon_{i}-\varepsilon_{j+1}}\right)= & \left(\operatorname{ad} E_{i}\right)^{2} \operatorname{ad} E_{i+1}\left(E_{\varepsilon_{i+2}-\varepsilon_{j+1}}\right) \\
= & \left(\left(t^{2}+t^{-2}\right) \operatorname{ad} E_{i} \operatorname{ad} E_{i+1} \operatorname{ad} E_{i}\right. \\
& \left.-\operatorname{ad} E_{i+1}\left(\operatorname{ad} E_{i}\right)^{2}\right)\left(E_{\varepsilon_{i+2}-\varepsilon_{j+1}}\right)=0 .
\end{aligned}
$$

For $k \in\{i+1, \ldots, j-1\}$: ad $E_{k}\left(E_{\varepsilon_{i}-\varepsilon_{j+1}}\right)$

$$
\begin{aligned}
= & \operatorname{ad} E_{i} \cdots \operatorname{ad} E_{k-2} \operatorname{ad} E_{k} \operatorname{ad} E_{k-1} \operatorname{ad} E_{k}\left(E_{\varepsilon_{k+1}-\varepsilon_{j+2}}\right) \\
= & \left(t^{2}+t^{-2}\right)^{-1} \operatorname{ad} E_{i} \cdots \operatorname{ad} E_{k-2}\left(\left(\operatorname{ad} E_{k}\right)^{2} \operatorname{ad} E_{k-1}\right. \\
& \left.+\operatorname{ad} E_{k-1}\left(\operatorname{ad} E_{k}\right)^{2}\right)\left(E_{k+1}\right)=0 .
\end{aligned}
$$

For $k=j: E_{j} E_{\varepsilon_{i}-\varepsilon_{j+1}}=\operatorname{ad} E_{i} \cdots \operatorname{ad} E_{j-2}\left(E_{j} E_{\varepsilon_{j-1}-\varepsilon_{j+1}}\right)$

$$
E_{\varepsilon_{i}-\varepsilon_{j+1}} E_{j}=\operatorname{ad} E_{i} \cdots \operatorname{ad} E_{j-2}\left(E_{\varepsilon_{j-1}-\varepsilon_{j+1}} E_{j}\right) .
$$

But, $E_{\varepsilon_{j-1}-\varepsilon_{j+1}}=E_{j-1} E_{j}-t^{-2} E_{j} E_{j-1}$, so

$$
\begin{aligned}
E_{j} E_{\varepsilon_{j-1}-\varepsilon_{j+1}}-t^{-2} E_{\varepsilon_{j-1}-\varepsilon_{j+1}} E_{j} & =-t^{-2}\left(E_{j}^{2} E_{j-1}+E_{j-1} E_{j}^{2}\right)+E_{j} E_{j-1} E_{j}\left(1+t^{-4}\right) \\
& =0 \text { according to Serre's relations. }
\end{aligned}
$$

b) Commutation of E_{α} and $E_{\beta}, \alpha=\varepsilon_{i}-\varepsilon_{p+1}, \beta=\varepsilon_{j}-\varepsilon_{k+1}$.

For $j \geqq p+2$: $E_{\alpha} E_{\beta}=E_{\beta} E_{\alpha}$. For $j=p+1$: put $\alpha^{\prime}=\varepsilon_{i}-\varepsilon_{p}$, one has: $E_{\alpha}=E_{\alpha^{\prime}} E_{p}-$ $t^{-2} E_{p} E_{\alpha^{\prime}}$ and $E_{\alpha^{\prime}} E_{\beta}=E_{\beta} E_{\alpha^{\prime}}$. So

$$
\begin{aligned}
& E_{\alpha} E_{\beta}=E_{\alpha^{\prime}} E_{p} E_{\beta}-t^{-2} E_{p} E_{\beta} E_{\alpha^{\prime}}, \\
& E_{\beta} E_{\alpha}=E_{\alpha^{\prime}} E_{\beta} E_{p}-t^{-2} E_{\beta} E_{p} E_{\alpha^{\prime}},
\end{aligned}
$$

so

$$
\begin{aligned}
E_{\alpha} E_{\beta}-t^{-2} E_{\beta} E_{\alpha} & =E_{\alpha^{\prime}} E_{\alpha_{p}+\beta}-t^{-2} E_{\alpha_{p}+\beta} E_{\alpha^{\prime}} \\
\text { go on } & = \\
& =E_{i} E_{\varepsilon_{i+1}-\varepsilon_{k+1}}-t^{-2} E_{\varepsilon_{i+1}-\varepsilon_{k+1}} E_{i} \\
& =E_{\alpha+\beta} .
\end{aligned}
$$

For $j \leqq p$: Up to exchanging the roles of α and β, one may suppose that i is the smallest index which appears. Put $\gamma=\alpha_{j}+\cdots+\alpha_{p} ; \alpha=\alpha_{i}+\cdots+\alpha_{j-1}+\gamma$ and $\beta=\gamma+\alpha_{p+1}+\cdots \alpha_{k}$. Then: $E_{\alpha} E_{\beta}=\operatorname{ad} E_{i} \cdots \operatorname{ad} E_{j-2}\left(E_{\alpha_{j-1}+\gamma} E_{\beta}\right)$,

$$
\begin{aligned}
& E_{\beta} E_{\alpha}=\operatorname{ad} E_{i} \cdots \operatorname{ad} E_{j-2}\left(E_{\beta} E_{\alpha_{j-1}+\gamma}\right) \\
& E_{\alpha_{j-1}+\gamma} E_{\beta}=\operatorname{ad} E_{j-1}\left(E_{\gamma} E_{\beta}\right)-t^{2\left(\alpha_{j-1}, \gamma\right)} E_{\gamma} E_{\alpha_{j-1}+\beta} \\
& E_{\beta} E_{\alpha_{j-1}-\gamma}=t^{-2\left(\alpha_{j-1}, \beta\right)}\left(\operatorname{ad} E_{j-1}\left(E_{\beta} E_{\gamma}\right)-E_{\alpha_{j-1}+\beta} E_{\gamma}\right) .
\end{aligned}
$$

But $E_{j}, E_{j+1}, \ldots, E_{p}$ commute with $E_{\alpha_{j-1}+\beta}$, so $E_{\gamma} E_{\alpha_{j-1}+\beta}=E_{\alpha_{j-1}+\beta} E_{\gamma}$. Put $\gamma=\alpha_{j}+\gamma^{\prime}$: one has in the same way: $E_{\gamma^{\prime}} E_{\beta}=E_{\beta} E_{\gamma^{\prime}}$.

Then: $E_{\gamma} E_{\beta}=\operatorname{ad} E_{j}\left(E_{\gamma}, E_{\beta}\right)$ and $E_{\beta} E_{\gamma}=t^{-2\left(\alpha_{j}, \beta\right)}$ ad $E_{j}\left(E_{\beta} E_{\gamma^{\prime}}\right)$ so

$$
\begin{aligned}
& E_{\gamma} E_{\beta}-t^{-2(\gamma, \beta)} E_{\beta} E_{\gamma}=0, \\
& \quad E_{\alpha_{j-1}+\gamma} E_{\beta}-t^{-2\left(\alpha_{j-1}+\gamma, \beta\right)} E_{\beta} E_{\alpha_{j-1}+\gamma}=\left(t^{2}-t^{-2}\right) E_{\gamma} E_{\alpha_{j-1}+\beta}
\end{aligned}
$$

and

$$
E_{\alpha} E_{\beta}-t^{2(\alpha, \beta)} E_{\beta} E_{\alpha}=\left(t^{2}-t^{-2}\right) E_{\gamma} E_{\alpha_{i}+\cdots+\alpha_{k}} .
$$

Remark. This supposes (with notations as above) that $i \leqq j-1$ and $k \geqq p+1$. But for $i=j$, i.e. $\alpha=\gamma$, we saw in the course of the proof that: $E_{\gamma} E_{\beta}-t^{-2(\gamma, \beta)} E_{\beta} E_{\gamma}=0$ for $k=p$, i.e. $\beta=\gamma, E_{\alpha_{j-1}+\gamma} E_{\gamma}=\operatorname{ad} E_{j} \cdots \operatorname{ad} E_{p-1}\left(E_{\alpha_{j-1}+\gamma} E_{p}\right)$,

$$
E_{\gamma} E_{\alpha_{j-1}+\gamma}=\operatorname{ad} E_{j} \cdots \operatorname{ad} E_{p-1}\left(E_{p} E_{\alpha_{j-1}+\gamma}\right)
$$

$E_{p} E_{\alpha_{j-1}+\gamma}-t^{-2\left(\alpha, \alpha_{j-1}+\gamma\right)} E_{\alpha_{j-1}+\gamma} E_{p}=0$ so $\left.E_{\gamma} E_{\alpha_{j-1}+\gamma}-t^{-2\left(\gamma, \alpha_{j-1}+\gamma\right.}\right) E_{\gamma} E_{\alpha_{j-1}+\gamma}=0$, and $E_{\gamma} E_{\alpha}-t^{-2(\gamma, \alpha)} E_{\alpha} E_{\gamma}=0$.

We shall put on the set of positive roots R_{+}a total order $\beta(1)<\beta(2)<\cdots<\beta(n)$, such that the ordered monomials $E_{\beta(1)}{ }^{m_{1}} \cdots E_{\beta(n)}{ }^{m_{n}},\left(m_{1}, \ldots, m_{n}\right) \in N^{n}$ form a basis of $U_{h} n_{+}$. We record the following computational lemma, which is easily checked by induction, and which will be useful next.

Lemma

$$
\begin{aligned}
\Delta\left(E_{\varepsilon_{i}-\varepsilon_{j+1}}\right)= & E_{\varepsilon_{i}-\varepsilon_{j+1}} \otimes 1+\left(1-e^{h}\right) \sum E_{\varepsilon_{i}-\varepsilon_{k+1}} \exp \frac{-h}{2} H_{\varepsilon_{k+1}-\varepsilon_{j+1}} \otimes E_{\varepsilon_{k+1}-\varepsilon_{j+1}} \\
& \left.+\exp \frac{-h}{2} H_{\varepsilon_{i}-\varepsilon_{j+1}} \otimes E_{\varepsilon_{i}-\varepsilon_{j+1}} . \quad \text { (Sum from } k=i \text { to } k=j-1\right) .
\end{aligned}
$$

Put

$$
\begin{aligned}
u_{1} & =E_{\varepsilon_{i}-\varepsilon_{j+1}} \otimes 1, \\
u_{2} & =E_{\varepsilon_{i}-\varepsilon_{j}} \exp (-h / 2) H_{j} \otimes E_{j}, \\
u_{3} & =E_{\varepsilon_{i}-\varepsilon_{j-1}} \exp \frac{-h}{2} H_{\varepsilon_{j-1}-\varepsilon_{j+1}} \otimes E_{\varepsilon_{j-1}-\varepsilon_{j+1}}, \\
u_{j-i+1} & =E_{i} \exp \frac{-h}{2} H_{\varepsilon_{i+1}-\varepsilon_{j+1}} \otimes E_{\varepsilon_{i+1}-\varepsilon_{j+1}}, \\
u_{j-i+2} & =\exp \frac{-h}{2} H_{\varepsilon_{i}-\varepsilon_{j+1}} \otimes E_{\varepsilon_{i}-\varepsilon_{j+1}} .
\end{aligned}
$$

Then $u_{k} u_{l}=e^{-h} u_{l} u_{k}$ for $k>l$. As $\Delta\left(E_{\alpha}\right)=u_{1}+\left(1-e^{h}\right)\left(u_{2}+\cdots+u_{j-1+1}\right)+u_{j-i+2}$, one can compute $\Delta\left(E_{\alpha}\right)^{n}$ by the q-multinomial formula:

$$
\begin{aligned}
\Delta\left(E_{\alpha}\right)^{n}= & \sum_{n_{1}+\cdots+n_{j-i+2}=n} \frac{\phi_{n}\left(e^{-h}\right)}{\phi_{n_{i}}\left(e^{-h}\right) \cdots \phi_{n_{j-i+2}}\left(e^{-h}\right)} \\
& \cdot\left(1-e^{-h}\right)^{n_{2}+\cdots+n_{j-i+1}} u_{1}^{n_{1} \cdots u_{j-i+2}}{ }^{n_{j+i-2}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \phi_{n}(q)=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right) \\
& u_{k+1}^{r}=e^{(h / 4) r(r-1)}\left(E_{\varepsilon_{i}-\varepsilon_{j-k+1}}\right)^{r} \exp \frac{-r h}{2} H_{\varepsilon_{j-k+1}-\varepsilon_{j+1}} \otimes\left(E_{\varepsilon_{j-k+1}-\varepsilon_{j+1}}\right)^{r}
\end{aligned}
$$

2. A Basis à la Poincaré-Birkhoff-Witt for $\boldsymbol{U}_{\boldsymbol{h}} \boldsymbol{n}_{+}$

Definition. Let R_{+}be the set of positive roots, $\alpha_{1}, \ldots, \alpha_{N}$ the simple roots. Let's consider the following total order on R_{+}:

$$
\begin{aligned}
& \alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}, \ldots, \alpha_{1}+\cdots+\alpha_{N}, \alpha_{2} \\
& \alpha_{2}+\alpha_{3}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \ldots, \alpha_{2}+\cdots+\alpha_{N}, \alpha_{3}, \alpha_{3}+\alpha_{4} \\
& \alpha_{3}+\alpha_{4}+\alpha_{5}, \ldots, \alpha_{3}+\cdots+\alpha_{N}, \alpha_{4}, \ldots, \alpha_{N-1}+\alpha_{N}, \alpha_{N}
\end{aligned}
$$

and let's note $\beta(1)<\beta(2)<\cdots<\beta(n)$ the inverse total order (i.e. $\beta(1)=\alpha_{N}, \beta(2)=$ $\alpha_{N-1}+\alpha_{N}, \ldots$,).

Theorem. The set of elements $E_{\beta(1)} m_{1} \cdots E_{\beta(n)} m_{n},\left(m_{1}, \ldots, m_{n}\right) \in N^{n}$ from a basis of $U_{h} n_{+}$.
Proof.
a) One knows that the monomials in E_{1}, \ldots, E_{N}, generate $U_{h} n_{+}$, so a fortiori the (non)-ordered monomials in E_{α} 's. To see that the set above is generator, it is enough to prove that each element $E_{\beta\left(i_{1}\right)} \cdots E_{\beta\left(i_{k}\right)}$, is a linear combination of ordered elements as above, with $m_{1}+\cdots+m_{n} \leqq k$.

We shall make a double induction: first on k, and for k fixed, on i_{1}.
-The case $k=1$ is clear.
-Suppose the assertion true for k : we now prove by induction on i_{1} that it holds for $k+1$. So, let's consider an element $E_{\beta\left(i_{1}\right)} \cdots E_{\beta\left(i_{k+1}\right)}$.
i) For $i_{1}=1$, apply the induction hypothesis on k to $E_{\beta\left(i_{2}\right)} \cdots E_{\beta\left(i_{k+1}\right)}$.
ii) If $i_{1}>1$, applying again the induction hypothesis on k to $E_{\beta\left(i_{2}\right)} \cdots E_{\beta\left(i_{k+1}\right)}$, one sees that $E_{\beta\left(i_{1}\right)} E_{\beta\left(i_{2}\right)} \cdots E_{\beta\left(i_{k}+1\right)}$ is a linear combination of elements $E_{\beta\left(i_{1}\right)} E_{\beta(j)}{ }^{m_{j}} E_{\beta(j+1)}{ }^{m_{j+1}} \cdots E_{\beta(n)}^{m_{n}}$ with $m_{j}+\cdots m_{n} \leqq k$.

If $i_{1} \leqq j$: we are O.K.
If $i_{1}>j: E_{\beta\left(i_{1}\right)} E_{\beta(j)}{ }^{m_{j}} E_{\beta(j+1)}{ }^{m_{j+1}} \cdots E_{\beta(n)}^{m_{n}}=E_{\beta\left(i_{1}\right)} E_{\beta(j)} E_{\beta(j)}{ }^{m_{j-1}} E_{\beta(j+1)}{ }^{m_{j+1}} \cdots E_{\beta(n)}{ }^{m_{n}}$. But we have computed the "commutation relations" between the E_{α} 's and there are essentially three possibilities: for some non-zero coefficients λ and μ :

$$
E_{\beta\left(i_{1}\right)} E_{\beta(j)}-\lambda E_{\beta(j)} E_{\beta\left(i_{1}\right)}=\left\{\begin{array}{l}
0 \\
\mu E_{\beta\left(i_{1}\right)+\beta(j)} \\
\mu E_{\gamma} E_{\alpha^{\prime}+\gamma+\beta^{\prime}} \quad \text { where } \beta\left(i_{1}\right)=\alpha^{\prime}+\gamma, \beta(j)=\gamma+\beta^{\prime}
\end{array}\right.
$$

and so: $\beta\left(i_{1}\right)>\gamma>\beta(j)$.
Then:

$$
\begin{aligned}
E_{\beta\left(i_{1}\right)} & E_{\beta(j)} E_{\beta(j)}^{m_{j}-1} E_{\beta(j+1)}{ }^{m_{j+1}} \cdots E_{\beta(n)}^{m_{n}} \\
& =\left\{\begin{array}{l}
\lambda E_{\beta(j)} E_{\beta\left(i_{1}\right)} E_{\beta(j)}^{m_{j}-1} E_{\beta(j+1)}{ }^{m_{j+1}} \cdots E_{\beta(n)}^{m_{n}} \\
\lambda E_{\beta(j)} E_{\beta\left(i_{1}\right)} E_{\beta(j)}^{m_{j}-1} E_{\beta(j+1)}^{m_{j+1}} \cdots E_{\beta(n)}{ }^{m_{n}}+\mu E_{\beta\left(i_{1}\right)+\beta(j)} E_{\beta(j)}{ }^{m_{j}-1} \cdots E_{\beta(n)}{ }^{m_{n}} \\
\lambda E_{\beta(j)} E_{\beta\left(i_{1}\right)} E_{\beta(j)}^{m_{j}-1} E_{\beta(j+1)}^{m_{j+1}} \cdots E_{\beta(n)}^{m_{n}}+\mu E_{\gamma} E_{\alpha^{\prime}+\gamma+\beta^{\prime}} E_{\beta(j)}^{m_{j}-1} \cdots E_{\beta(n)}^{m_{n}} .
\end{array}\right.
\end{aligned}
$$

In the first case, induction on k allows to reorder $E_{\beta\left(i_{1}\right)} E_{\beta(j)}^{m_{j}-1} E_{\beta(j+1)}{ }^{m_{j+1}} \cdots E_{\beta(n)}^{m_{n}}$ as a linear combination of monomials with at most k terms, then as $j<i_{1}$, one uses induction on i_{1}.

In the second case: the first term is treated in the same way, and the second one comes from induction on k.

In the third case: proceed for the two terms as in the first case, as $\gamma<\beta\left(i_{1}\right)$.
b) Let us prove now that the $E_{\beta(1)}{ }^{m_{1}} \cdots E_{\beta(n)}^{m_{n}}$ are linearly independent. Let Q be the root lattice; $U_{h} n_{+}, U_{h} s l(N+1), U_{h} s l(N+1) \otimes U_{h} s l(N+1)$ are $Q \times Q$-graded. For Q-degree reasons, the $E_{\beta(j)}$ are independent.
$\Delta: U_{h} n_{+} \rightarrow U_{h} b_{+} \otimes U_{h} n_{+}$preserves the Q-degree and $\Delta\left(E_{\beta}\right)$ has a component of bidegree $\left(\alpha_{i}, \beta-\alpha_{i}\right)$ if and only if β is of the form $\beta=\alpha_{i}+\cdots$. Then the component of bidegree $\left(n \alpha_{i}, n\left(\beta-\alpha_{i}\right)\right.$) of $\Delta\left(E_{\beta}\right)^{n}$ is proportional to $E_{i}^{n} \exp (-n h / 2) H_{\beta-\alpha_{i}} \otimes$ $\left(E_{\beta-\alpha_{i}}\right)^{n}$. (See lemma).

In the same way, the component of bidegree $\left(\left(m+m_{1}+\cdots+m_{r}\right) \alpha_{i}, \ldots\right)$ of $\Delta\left(\left(E_{\alpha_{i}+\cdots+\alpha_{i+r}}\right)^{m_{r}}\left(E_{\alpha_{i}+\cdots+\alpha_{i+r-1}}\right)^{m_{r-1}} \cdots\left(E_{\alpha_{i}+\alpha_{i+1}}\right)^{m_{1}} E_{\alpha_{i}}{ }^{m}\right)$ is proportional to:

$$
\left.\left(E_{i}\right)^{m+m_{1}+\cdots+m_{r}} \exp \frac{-h}{2} H \otimes\left(E_{\alpha_{i}+1}+\cdots+\alpha_{i}+r\right)\right)^{m_{r}} \cdots\left(E_{\alpha_{i+1}}\right)^{m_{1}}
$$

and the monomial on the right of \otimes is already well ordered. More generally, consider the component of bidegree $\left(p \alpha_{i}, \ldots\right)$ of $\Delta\left(E_{\beta(1)}{ }^{m_{1}} \cdots E_{\beta(n)}{ }^{m_{n}}\right.$), with p maximal: it is proportional to $E_{i}^{p} \exp (-h / 2) H \otimes E_{\beta(1)}{ }^{m_{1}} \cdots E_{\beta(n))^{\prime}}{ }^{m_{n}}$, with $\beta(k)^{\prime}=\beta(k)-\alpha_{i}$ if $\beta(k)=\alpha_{i}+\cdots$ and $\beta(k)^{\prime}=\beta(k)$ if not. When reordering $E_{\beta(1)^{\prime}}{ }^{m_{1}} \cdots E_{\beta(n))^{m_{n}}}$, the only commutations than one has to do are between two vectors of the form $E_{\alpha_{i+1}+\ldots}$, these commutations are of the type: $E_{\gamma} E_{\delta}=\lambda E_{\delta} E_{\gamma}$ for a non-zero λ. So, the sought for component is proportional to a monomial

$$
E_{i}^{p} \exp \frac{-h}{2} H \otimes E_{\beta(1)^{m^{\prime}}} \ldots E_{\beta(n)} m^{m^{\prime}} .
$$

Consider now a linear relation between the $E_{\beta(1)}^{m_{1}} \cdots E_{\beta(n)}^{m_{n}}$: one can assume they all have the same Q-degree: $\Sigma m_{i} \beta(i)$ is fixed. We prove by induction on this degree that the relation is trivial.
-we saw that if this Q-degree is $\beta(i)$.
-Among the monomials of the relation, consider the biggest integer i such that there appears a $E_{\alpha_{i}+\ldots}$ with a non-zero exponent. Let n be the biggest total exponent at which all $E_{\alpha_{i}+\ldots}$ appear. Only the monomials in which this total exponent is exactly n will have a component of degree $\left(n \alpha_{i}, \ldots\right)$ after applying Δ. From the relation we started with, we deduce a relation between the monomials $E_{\beta(1)}{ }^{m^{\prime} 1} \cdots E_{\beta(n)}{ }^{m_{n}^{\prime}}$ which appeared on the right of \otimes, and if the $E_{\beta(1)}{ }^{m_{1}} \cdots E_{\beta(n)}{ }^{m_{n}}$ are two by two distinct, it is the same for the $E_{\beta(1)}{ }^{m^{\prime} 1} \cdots E_{\beta(n)}{ }^{m_{n}^{\prime} n}$. (The $\beta(k)$ of the form $\alpha_{i}+\cdots$ are replaced by $\alpha_{i+1}+\cdots$, or 1 if $\beta(k)=\alpha_{i}$, and the others are unchanged.) As the $E_{\beta(1)}{ }^{m^{\prime}{ }_{1}} \cdots E_{\beta(n)}{ }^{m^{\prime} n}$ have a Q-degree strictly smaller than the one we started with, this new relation is trivial. But the coefficients of this relation are non-zero multiples of the coefficients of the initial relation (see remarks made above): so the coefficients of all the monomials in which $E_{\alpha_{i}+\ldots}$ appears with exponent n should be zero; this contradicts the choice of n.

Remark. $U_{h} n_{+}$is a (non-homogeneous) quadratic algebra, generated by the E_{α} 's, and the existence of the P.B.W. basis implies that it is a Koszul algebra in the sense of Priddy. [3, 4].

The choice has the following interest:
Proposition. Let $\left(U_{h} n_{+}\right)_{j}$ be the subspace of $U_{h} n_{+}$with basis $E_{\beta(1)}{ }^{m_{1}} \cdots E_{\beta(j)}{ }^{m_{j}}$ with $\left(m_{1}, \ldots, m_{j}\right) \in N^{j}$. Then:
a) $\left(U_{h} n_{+}\right)_{j}$ is a subalgebra of $U_{h} n_{+}$.
b) $\left(U_{h} n_{+}\right)_{j}$ is a sub- $U_{h} b_{+}$right-comodule of $U_{h} n_{+}$, i.e.

$$
\Delta\left(\left(U_{h} n_{+}\right)_{j}\right) \subset U_{h} b_{+} \otimes\left(U_{h} n_{+}\right)_{j}
$$

II. Computation of the Universal \boldsymbol{R}-Matrix

1. Construction of a Basis of the Q.F.S.H. Dual to $U_{h} b_{+}$

From the previous theorem, we deduce that $E_{\beta(1)}{ }^{m_{1}} \cdots E_{\beta(n)}^{m_{n}} H_{1}{ }^{r_{1}} \cdots H_{N}{ }^{r^{N}}$, is a basis of $U_{h} b_{+}$. Let's introduce linear forms ξ_{1}, \ldots, ξ_{N} and $\eta_{\gamma}, \gamma \in R_{+}$, defined by: $\xi_{i}\left(H_{i}\right)=1$; zero on the other monomials; $\eta_{\gamma}\left(E_{\gamma}\right)=1$, zero on the other monomials.

Lemma 1.

i) $\left\langle\xi_{i}{ }^{n}, H_{i}{ }^{n}\right\rangle=n$! and $\xi_{i}{ }^{n}$ is zero on the other monomials.
ii) $\left\langle\eta_{\gamma}{ }^{n}, E_{\gamma}{ }^{n^{\prime}}\right\rangle=\prod_{k=1}^{n}\left(\frac{1-e^{-k h}}{1-e^{-h}}\right) \delta_{n, n^{\prime}}$.
iii) $\left\langle\eta_{\beta(1)}{ }^{m_{1}} \cdots \eta_{\beta(n)}{ }^{m_{n}} \xi_{1}{ }^{r_{1}} \cdots \xi_{N}{ }^{r_{N}}, E_{\beta(1)}{ }^{m^{\prime} 1} \cdots E_{\beta(n)}{ }^{m^{\prime}{ }_{n}} H_{1}{ }^{r^{\prime}{ }_{1}} \cdots H_{N}{ }^{r^{\prime} N}\right\rangle$

$$
=\prod_{i=1}^{n} \delta_{m_{i}, m^{\prime}} \prod_{i=1}^{N} \delta_{r_{i}, r^{\prime} i} \frac{\Phi_{m_{1}}\left(e^{-h}\right)}{\left(1-e^{-h}\right)^{m_{1}}} \cdots \frac{\Phi_{m_{n}}\left(e^{-h}\right)}{\left(1-e^{-h}\right)^{m_{n}}} r_{1}!\cdots_{N}!
$$

Proof.
i) is immediate.
ii) $\left\langle\eta_{\gamma}{ }^{n}, E_{\gamma}{ }^{n^{\prime}}\right\rangle=\left\langle\eta_{\gamma}{ }^{n-1} \otimes \eta_{\gamma}, \Delta\left(E_{\gamma}{ }^{n^{\prime}}\right)\right\rangle$

$$
\begin{aligned}
& =\left\langle\eta_{\gamma}{ }^{n-1} \otimes \eta_{\gamma}, \frac{\Phi_{n^{\prime}}\left(e^{-h}\right)}{\Phi_{n^{\prime}-1}\left(e^{-h}\right) \Phi_{1}\left(e^{-h}\right)} E_{\gamma}^{n^{\prime}-1} \exp \frac{-h}{2} H_{\gamma} \otimes E_{\gamma}\right\rangle \\
& =\frac{1-e^{-n^{\prime} h}}{1-e^{-h}}\left\langle\eta_{\gamma}{ }^{n-1}, E_{\gamma}^{n^{\prime}-1}\right\rangle \text { and the result follows by induction on } n .
\end{aligned}
$$

iii) One checks immediately:

$$
\begin{aligned}
\langle & \left.\eta_{\beta(1)}{ }^{m_{1}} \cdots \eta_{\beta(n)}{ }^{m_{n}} \xi_{1}{ }^{r_{1}} \cdots \xi_{N}{ }^{r_{N}}, E_{\beta(1)}{ }^{m^{\prime} 1} \cdots E_{\beta(n)}{ }^{m_{n}^{\prime}} H_{1}{ }^{r^{\prime} 1} \cdots H_{N}{ }^{r^{\prime} N}\right\rangle \\
& =\left\langle\eta_{\beta(1)}^{m_{1}} \cdots \eta_{\beta(n)}{ }^{m_{n}}, E_{\beta(1)}{ }^{m_{1} 1} \cdots E_{\beta(n)}^{m_{n}^{\prime}}\right\rangle \prod \delta_{r_{i}, r_{i}^{\prime} i} r_{1}!\cdots r_{N}! \\
\text { Put } X= & \left\langle\eta_{\beta(1)}{ }^{m_{1}} \cdots \eta_{\beta(n)}{ }^{m_{n}}, E_{\beta(1)}{ }^{m_{1}^{\prime} 1} \cdots E_{\beta(n)}{ }^{m_{n}^{\prime}}\right\rangle \\
= & \left\langle\eta_{\beta(1)}{ }^{m_{1}} \cdots \eta_{\beta(n)}^{m_{n}-1} \otimes \eta_{\beta(n)}, \Delta\left(E_{\beta(1)}{ }^{m^{\prime} 1} \cdots E_{\beta(n-1)}{ }^{m_{n-1}^{\prime}}\right) \Delta\left(E_{\beta(n)}{ }^{m^{\prime} n}\right)\right\rangle .
\end{aligned}
$$

But $\Delta\left(E_{\beta(1)}{ }^{m^{\prime} 1} \cdots E_{\beta(n-1)}{ }^{m^{\prime} n-1}\right) \in U_{h} b_{+} \otimes\left(U_{h} n_{+}\right)_{n-1}$ and $\eta_{\beta(n)}$ is zero on $\left(U_{h} n_{+}\right)_{n-1}$.

$$
\begin{aligned}
\text { So, } X & =\left\langle\eta_{\beta(1)}^{m_{1}} \cdots \eta_{\beta(n)}^{m_{n}-1} \otimes \eta_{\beta(n)}, E_{\beta(1)}{ }^{m^{\prime} 1} \cdots E_{\beta(n-1)^{m_{n-1}}} \otimes 1 \Delta\left(E_{\beta(n)}^{m^{\prime} n}\right)\right\rangle \\
& =\frac{1-e^{-m_{n}^{\prime} h}}{1-e^{-h}}\left\langle\eta_{\beta(1)}^{m_{1}} \cdots \eta_{\beta(n)}^{m_{n}-1}, E_{\beta(1)}{ }^{m^{\prime} 1} \cdots E_{\beta(n)}^{m^{\prime} n-1}\right\rangle \\
& =\frac{\Phi_{m_{r}}\left(e^{-h}\right)}{\left(1-e^{-h}\right)^{m_{r}}} \delta_{m_{n}, m_{n}}\left\langle\eta_{\beta(1)}{ }^{m_{1}} \cdots \eta_{\beta(n-1)^{m_{n}-1}}, E_{\beta(1)}^{m^{\prime} 1} \cdots E_{\beta(n-1)}{ }^{m_{n-1}^{\prime}-1}\right\rangle
\end{aligned}
$$

and applying the same argument, one gets the result.

2. Commutation Relations and Coproduct in $\left(U_{h} b_{+}\right)^{*}$

We note $\eta_{i}=\eta_{\alpha_{i}}$ for α_{i} a simple root.

Lemma 2.

i) $\xi_{i} \xi_{j}=\xi_{j} \xi_{i}$,
ii) $\left[\xi_{i}, \eta_{j}\right]=-\frac{h}{2} \eta_{j} \delta_{i j}$,
iii) $\eta_{i} \eta_{i+1}-e^{h / 2} \eta_{i+1} \eta_{i}=\left(1-e^{h}\right) \eta_{\alpha_{i}+\alpha_{i+1}}$ $\left[\eta_{i}, \eta_{j}\right]=0$ if $|i-j| \geqq 2$.
iv) For $\alpha_{i}>\alpha$, one has: $\eta_{i} \eta_{\alpha}-e^{(h / 2)\left(\alpha, \alpha_{i}\right)} \eta_{\alpha} \eta_{i}=\left(1-e^{h}\right) \eta_{\alpha_{i}+\alpha}$ if $\alpha_{i}+\alpha \in R_{+}$and 0 if not.

Proof.
i) is immediate.
ii) $\eta_{j} \xi_{i}$ is non-zero only on $E_{j} H_{i}$ where its value is $1 . \xi_{i} \eta_{j}$ is non-zero only on $E_{j} H_{i}$ where its value is 1 , and if $i=j$, on E_{j} where its values is $\left\langle\xi_{i} \otimes \eta_{i}, \exp -(h / 2) H_{i} \otimes E_{i}\right\rangle=$ $-h / 2$.
iii) For our order, $\alpha_{i+1}<\alpha_{i}$, so $\eta_{i+1} \eta_{i}$ is non-zero only on $E_{i+1} E_{i}$; where its value is 1 . On the contrary, $\eta_{i} \eta_{i+1}$ may be non-zero also on $E_{\alpha_{i}+\alpha_{i+1}}$:

$$
\begin{aligned}
& \left\langle\eta_{i} \eta_{i+1}, E_{i+1} E_{i}\right\rangle=\left\langle\eta_{i} \otimes \eta_{i+1}, \exp -\frac{h}{2} H_{i+1} E_{i} \otimes E_{i+1}\right\rangle=e^{h / 2}, \\
& \left\langle\eta_{i} \eta_{i+1}, E_{\alpha_{i}+\alpha_{i}+1}\right\rangle=\left\langle\eta_{i} \otimes \eta_{i+1},\left(1-e^{h}\right) E_{i} \exp -\frac{h}{2} H_{i+1} \otimes E_{i+1}\right\rangle=\left(1-e^{h}\right) .
\end{aligned}
$$

iv) $\eta_{\alpha} \eta_{i}$ is non-zero only on $E_{\alpha} E_{i}$ where it is 1 .

One shows then that $\eta_{i} \eta_{\alpha}$ is zero on each monomial of degree $\geqq 3$ in the E_{γ} 's. The only monomial of degree 2 on which it is not zero is $E_{\alpha} E_{i}$ and its value on it is $e^{(h / 2)\left(\alpha, \alpha_{i}\right)}$. It can be non-zero on E_{γ} only if $\alpha=\alpha_{i+1}+\cdots+\alpha_{i}, \gamma=\alpha_{i}+\alpha$ and then $\left\langle\eta_{\alpha} \eta_{i}, E_{\gamma}\right\rangle=1$.

Corollary. As an algebra; $\left(U_{h} b_{+}\right)^{*}$ is generated by the ξ_{i} 's and η_{i} 's. Furthermore, one has from iii) and iv) the analogues of Serre's relations:

$$
\begin{aligned}
& \eta_{i} \eta_{j}=\eta_{j} \eta_{i} \quad \text { if } \quad|i-j| \geqq 2, \\
& \eta_{i}^{2} \eta_{i \pm 1}-\left(e^{h / 2}+e^{-h / 2}\right) \eta_{i} \eta_{i \pm 1} \eta_{i}+\eta_{i \pm 1} \eta_{i}^{2}=0
\end{aligned}
$$

Lemma 3.

i) $\Delta\left(\xi_{i}\right)=\xi_{i} \otimes 1+1 \otimes \xi_{i}$,
ii) $\Delta\left(\eta_{i}\right)=\eta_{i} \otimes 1+\exp \left(-\xi_{i-1}+2 \xi_{i}-\xi_{i+1}\right) \otimes \eta_{i}$ with the evident modification for $i=1$ or $i=N$.

Proof.
i) is immediate.
ii) As the operation of "commuting" two root vectors can never give a simple root vector, a priori $\Delta\left(\eta_{i}\right)$ will be non-zero only on: $E_{i} \otimes 1$ (where it is 1) and

$$
\begin{aligned}
& H_{1}{ }^{r_{1} \cdots H_{N}{ }^{r_{N}} \otimes E_{i} .} \begin{aligned}
\left\langle\Delta\left(\eta_{i}\right), H_{1}{ }^{\left.r_{1} \cdots H_{N}{ }^{r_{N}} \otimes E_{i}\right\rangle}\right. & =\left\langle\eta_{i}, H_{1}{ }^{r_{1}} \cdots H_{N}{ }^{r_{N}} E_{i}\right\rangle \\
& =\left\langle\eta_{i}, E_{i}\left(H_{1}+\alpha_{i}\left(H_{1}\right)\right)^{r_{1}} \cdots\left(H_{N}+\alpha_{i}\left(H_{N}\right)\right)^{r_{N}}\right\rangle
\end{aligned}
\end{aligned}
$$

so; we must have $r_{j}=0$ for $j \notin\{i-1, i, i+1\}$.

$$
\begin{aligned}
&\left\langle\Delta\left(\eta_{i}\right), H_{i-1}{ }^{r_{i-1}} H_{i}^{r_{i}} H_{i+1}{ }^{r_{i+1}} \otimes E_{i}\right\rangle=\left\langle\eta_{i}, E_{i}\left(H_{i-1}-1\right)^{r_{i-1}}\left(H_{i}+2\right)^{r_{i}}\left(H_{i+1}-1\right)^{r_{i+1}}\right\rangle \\
&=(-1)^{r_{i-1}} 2^{r_{i}}(-1)^{r_{i+1}} . \\
& \Delta\left(\eta_{i}\right)=\eta_{i} \otimes 1+\sum_{p, q, r}(-1)^{)^{\prime}} \frac{\xi_{i-1}^{p}}{p!} 2^{q} \frac{\xi_{i}^{q}}{q!}(-1)^{r} \frac{\xi_{i+1}^{r}}{r!} \otimes \eta_{i}, \quad \text { i.e. } \\
& \Delta\left(\eta_{i}\right)=\eta_{i} \otimes 1+\exp \left(-\xi_{i-1}+2 \xi_{i}-\xi_{i+1}\right) \otimes \eta_{i} .
\end{aligned}
$$

For the identification with the Q.F.S.H. associated with the Q.U.E. algebra $\left(U_{h} b_{+}\right)^{\circ}$, it is useful to introduce: $\zeta_{1}=\xi_{1}-\frac{1}{2} \xi_{2}$,

$$
\begin{aligned}
\zeta_{i} & =\xi_{i}-\frac{1}{2}\left(\xi_{i-1}+\xi_{i+1}\right) \quad 2 \leqq i \leqq N-1 \\
\zeta_{N} & =\xi_{N}-\frac{1}{2} \xi_{N-1}
\end{aligned}
$$

Then: $\Delta\left(\zeta_{i}\right)=\zeta_{i} \otimes 1+1 \otimes \zeta_{i}$

$$
\begin{aligned}
{\left[\zeta_{i}, \zeta_{j}\right] } & =0, \\
{\left[\zeta_{i}, \eta_{j}\right] } & =0 \quad \text { if } \quad j \in\{i-1, i, i+1\}, \\
{\left[\zeta_{i}, \eta_{i \pm 1}\right] } & =\frac{h}{4} \eta_{i \pm 1}, \\
{\left[\zeta_{i}, \eta_{i}\right] } & =-\frac{h}{2} \eta_{i}
\end{aligned}
$$

and $\Delta\left(\eta_{i}\right)=\eta_{i} \otimes 1+\exp \left(2 \zeta_{i}\right) \otimes \eta_{i}$.
Remark. $2\left\langle\zeta_{i}, H_{j}\right\rangle=\left(\alpha_{i}, \alpha_{j}\right)$.
3. The Identification of $\left(U_{h} b_{+}\right)^{*}$ with the Q.F.S.H Associated with $U_{h} b_{-}$with the Opposite comultiplication. Let Δ^{\prime} this opposite comultiplication and S^{\prime} the related antipode. With these, one can define another adjoint representation $\mathrm{ad}^{\prime}=(L \otimes R)$ $\left(I \otimes S^{\prime}\right) \Delta^{\prime}$. In $U_{h} b_{-}$, one introduces the new generators $F_{i}=Y_{i} \exp (h / 4) H_{i}$ and $\operatorname{ad}^{\prime}\left(F_{i}\right)$ has the same properties with respect to $U_{h} b_{-}$as $\operatorname{ad}\left(E_{i}\right)$ had with respect to $U_{h} b_{+}$.

In particular, for each positive root $\alpha=\alpha_{i}+\cdots+\alpha_{j}$, one defines the analogue of the root vector F_{α} as: $F_{\alpha}=\operatorname{ad}^{\prime}\left(F_{i}\right)\left(F_{\alpha_{i+1}}+\cdots+\alpha_{j}\right)$. From the computations made above, one easily gets:
Proposition. For every $\lambda_{1}(h), \ldots, \lambda_{N}(h) \in C[[h]]$, with h-valuation 1 , the map

$$
\begin{aligned}
\phi_{\lambda}:\left(U_{h} b_{+}\right)^{\circ} & \rightarrow \text { Q.F.S.H. }\left(U_{h} b_{-}\right), \\
\zeta_{i} & \rightarrow \frac{h}{4} H_{i}, \\
\eta_{i} & \rightarrow \lambda_{i}(h) F_{i}
\end{aligned}
$$

defines an isomorphism of Hopf algebras.

We shall see that there is a unique choice of λ_{i} 's such that the Hopf algebra structure of $D\left(U_{h} b_{+}\right)$induces the one of $U_{h} s l(N+1)$.

An easy computation gives that, in $U_{h} s l(N+1)$,

$$
\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{\operatorname{sh}\left(\frac{h}{2} H_{i}\right)}{\operatorname{sh}\left(\frac{h}{2}\right)} e^{h / 2}
$$

We compare it with $\left[E_{i}, \eta_{j}\right]$ computed in $D\left(U_{h} b_{+}\right)$thanks to the intrinsic formula given in the introduction. One has: $(\operatorname{tr} \otimes \mathrm{id})\left(S \otimes I^{\otimes 3}\right) \Delta\left(\eta_{j} \otimes E_{i}\right)=-\delta_{i j} \exp \left(2 \zeta_{i}\right) \otimes$ $1+\eta_{j} \otimes E_{i}$, so:

$$
\left[E_{i}, \eta_{j}\right]=\delta_{i j}\left(\exp \left(2 \zeta_{i}\right)-\exp -\frac{h}{2} H_{i}\right)
$$

The image by $\phi_{\lambda}:\left[E_{i}, F_{j}\right] \lambda_{j}(h)=\delta_{i j} 2 \operatorname{sh}\left((h / 2) H_{i}\right)$.
So, $\lambda_{j}(h)=\left(1-e^{-h}\right)$. One also checks that, in $D\left(U_{h} b_{+}\right),\left[H_{i}, \eta_{j}\right]=-\left(\alpha_{j}, \alpha_{i}\right) \eta_{j}$.
Corollary. The map: $D\left(U_{h} b_{+}\right) \rightarrow U_{h} s l(N+1)$

$$
\begin{aligned}
E_{i} & \rightarrow E_{i} \\
\eta_{i} & \rightarrow\left(1-e^{-h}\right) F_{i} \\
H_{i} & \rightarrow H_{i} \\
\zeta_{i} & \rightarrow \frac{h}{4} H_{i}
\end{aligned}
$$

defines a (surjective) morphism of Hopf algebras. So, the image of the canonical element of $D\left(U_{h} b_{+}\right) \otimes D\left(U_{h} b_{+}\right)$defines a quasi-triangular structure on $U_{h} s l(N+1)$.
4. The Canonical Elements of $D\left(U_{h} b_{+}\right) \otimes D\left(U_{h} b_{+}\right)$and the Universal R-Matrix of $U_{h} s l(N+1)$. In terms of the P.B.W. basis of $U_{h} b_{+}$and of its dual basis, the canonical element is given by:

$$
\begin{aligned}
& R=\sum_{\substack{\left(\begin{array}{l}
\left(1, \ldots, r_{n}\right) \in N^{N} \\
\left(m, N_{n} \\
n_{n}\right.
\end{array}\right.}} \frac{\left(1-e^{-h}\right)^{m_{1}}}{r_{1}!\cdots r_{N}!\Phi_{m_{1}}\left(e^{-h}\right)} \cdots \frac{\left(1-e^{-h}\right)^{m_{n}}}{\Phi_{m_{n}}\left(e^{-h}\right)} E_{\beta(1)^{m_{1}} \cdots E_{\beta(n)} m_{n}} \\
& \cdot H_{1}{ }^{r_{1}} \cdots H_{N}{ }^{r_{N}} \otimes \eta_{\beta(1)}{ }^{m_{1}} \cdots \eta_{\beta(n)}{ }^{m_{n}} \xi_{1}{ }^{r_{1}} \cdots \xi_{N}{ }^{r_{N}} \text {. }
\end{aligned}
$$

This can be written in a more compact way by using the q-exponential:

$$
e(u ; q)=\sum \frac{u^{n}}{\Phi_{n}(q)}
$$

With these notations, one has:

$$
R=\prod e\left(\left(1-e^{-h}\right) E_{\beta(i)} \otimes \eta_{\beta(i)} ; e^{-h}\right) \cdot \exp \left(\sum H_{j} \otimes \xi_{j}\right)
$$

where the product is made in the order $1<2<\cdots<n$.
Now:-the image of $\sum H_{j} \otimes \xi_{j}$ in $U_{h} s l(N+1) \otimes U_{h} s l(N+1)$ is $(h / 2) t_{0}$, where to $t_{0} \in \mathscr{H} \otimes \mathscr{H}$ corresponds to the scalar product (,).
-from $\eta_{i} \eta_{i+1}-e^{h / 2} \eta_{i+1} \eta_{i}=\left(1-e^{h}\right) \eta_{\alpha_{i}+\alpha_{i+1}}$, one has $\eta_{\alpha_{i}+\alpha_{i+1}}=-e^{-h}\left(1-e^{-h}\right)$ $F_{\alpha_{i}+\alpha_{i+1}}$, and by induction on the length $l(\alpha)$ of the root α

$$
\eta_{\alpha}=\left(-e^{-h}\right)^{l(\alpha)-1}\left(1-e^{-h}\right) F_{\alpha} .
$$

Theorem. The universal R-matrix of $U_{h} s l(N+1)$ is given by:

$$
R=\prod e\left(\left(-e^{-h}\right)^{\iota(\beta(i))-1}\left(1-e^{-h}\right)^{2} E_{\beta(i)} \otimes F_{\beta(i)} ; e^{-h}\right) \cdot \exp \left(\frac{h}{2} t_{0}\right) .
$$

with the same convention as above for ordering the product.

References

1. Drinfeld, V. G.: Quantum Groups. vol. 1, 798-820. Proc. I.C.M. Berkeley 1986
2. Jimbo, M.: A q-difference analogue of $U(g)$ and the Yang-Baxter equation. Lett. Math. Phys. 11, 247-252 (1986)
3. Manin, I. Y.: Some remarks on Koszul algebras and quantum groups. Ann. Inst. Fourier 38, 191-205 (1988)
4. Priddy, S. B.: Koszul resolutions. Trans. A.M.S. 152, 39-60 (1970)

Communicated by A. Connes
Received January 30, 1989

