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Abstract. This article is a study of the mapping from a potential q(x) on R3

to the backscattering amplitude associated with the Hamiltonian — A + q(x).
The backscattering amplitude is the restriction of the scattering amplitude
α(0,ω,fc),(0,ω,/c)eS2xS2xlR + , to a(θ,-θ,k). We show that in suitable
(complex) Banach spaces the map from q(x) to α(x/|x|, -x/|x |, |x |) is usually
a local diffeomorphism. Hence in contrast to the overdetermined problem of
recovering q from the full scattering amplitude the inverse backscattering
problem is well posed.

This article is a study of the mapping from a potential on R3 to its quantum
mechanical scattering amplitude. The scattering amplitude associated with a
potential q(x) can be described as follows. One assumes that for each k> 0 and
each ωsS2,

has a unique solution of the form exp (ikω-x) + υ(x9 ω, k) such that v = lim υε9 where
εjO

vε is the square-integrable solution of

- Δvε + qυe ~{k + iε)2vε = - eikωxq. (I.I)

Much work has been devoted to showing that, under general hypotheses on
q,v(x,ω,k) exists and is unique (see Agmon [1], and the references given there).
When qeCo(R3) and hence Δv + /c2t;eQ?(R3), it is an elementary consequence of
(I.I) that

1 eW*-y\
v(x) = - — J" -(A + k2)v(y)dyi and hence

4 π R3 \χ — y\

1)) (1.2)

as [x|->oo. The function a(θ,ω,k) on S2 x S2 x R+ is known as the scattering
amplitude. If we replace functions in (1.2) by their Fourier transforms, we have
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ICI ~(ΛH- ιε)

~ l } i l £ l 2 ( * + i0)2 C' ( }

where g is the Fourier transform of —{A + k2)v. Evaluating (1.3) in spherical
coordinates and using stationary phase in the angular integration to derive
asymptotics as |x | -> oo, we find that

a(θ,ω,k) = g(kθ,ω,k). (1.4)

Given geCg^R3), taking the Fourier transform of (I.I) and the limit εjO,
one arrives at

In this article we will take (1.4) and (1.5) as the definition of the scattering amplitude,
i.e., when the integral equation (1.5) has a unique solution g for (ω,/c)eS2 x R + ,
the scattering amplitude is defined by (1.4).

Since we are dealing with a singular integral equation involving the Fourier
transform of the potential q, we will assume q belongs to one of the weighted
Holder spaces HaN with 0 < α < 1 and N > 1. Spaces of this type have been used
in scattering theory by L. D. Faddeev in [3] and K. O. Friedrichs in [5]. The norm
in H β i N is | | / | | β , * = ||(1 + \ξ\2)N/2fh, where

and HaN is defined as the closure of CJ(R 3 ) in this norm. We do not assume that
q is real-valued, though our main interest is in potentials with small imaginary parts.

As our title implies we are interested in the inverse problem of determining the
potential given the scattering amplitude. This problem is quite overdetermined
and there has been considerable work devoted to characterizing which scat-
tering amplitudes actually arise for given classes of potentials, beginning with
L. D. Faddeev [4] and more recently Newton [11], Beals-Coifman [2], Nachman-
Ablowitz [9], Melin [7] and Novikov-Khenkin [6]. We are concerned here with
the inverse foαcfcscattering problem, i.e. determining q from α(ω, - ω, k). In
dimensions n > 1 the only work that we know of is the numerical study of Bayliss,
Lin and Morawetz [8] using wave equation methods, and the formal solution of
the three-dimensional problem for small potentials by Prosser [13].

For technical reasons we will replace (1.5) by

where now (ξ, ζ, k) ranges over R 3 x R 3 x R+, i.e. k = 0 is now included. Thus (1.4)
becomes

a(θ,ω,k) = h(kθ,kω,k). (1.7)
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Let Hr

aN denote the (real) subspace of HaN consisting of Fourier transforms of

real-valued potentials, i.e. the set of qeHαN such that 4(ζ) = 4( — ζ)' The back-
scattering map is well behaved on HαN and we have the following result which is
proven in Corollary 3.5 and Remark 4 after Theorem 3.1 in the text:

Theorem A. The backscattering map

is a continuously Frechet differentiable function from an open, dense set Θ in HaN

into HaN. Moreover, ΘnHr

a>N is dense in Hr

aN.
Since continuously differentiable functions on complex Banach spaces are

analytic, S is analytic. The set Θ is the set of q such that / -f A(4, k) is injective on
HaN for k g; 0, where

LA(q,k)Π(ξ)-(2π) ^ — 2 _ ( f e + .Q)2-.

The proof that h(ξ, -ξ,\ξ\) belongs to precisely the same space HaN as q(ξ) for
qeΘ, i.e. the proof of Theorem A, is quite technical and takes up about half of this
paper.

Next we prove that the Frechet derivative of S is a Fredholm operator of index
zero for qeΘ (Theorem 4.3) and that Θ n Hr

aN is contained in a connected component
Θ1 of 0 (Proposition 5.3). This leads to the following theorem (Theorem 5.4):

Theorem B. The Frechlet derivative ofSatq is an isomorphism ofHaN for q in an
open, dense subset Θ2 of' Θγ. Moreover, Θ2

nHr^N is an open, dense subset ofHr

aN.
The implicit function theorem then implies:

Corollary C. S is a local analytic homeomorphism in a neighbourhood of each qeΘ2-
This is the main result of this paper. Corollary C implies that (locally) recovering

4 from backscattering data is a well-posed problem, since small changes in
h(ξ, -ξ,\ξ\) will lead to small changes in q(ξ) in HaN norm. Note also that the
results in Theorem B and Corollary C do not depend on the number of negative
eigenvalues oi — Δ + q. This follows from the fact that Θ2 is a subset of the connected
set Θx.

Even the backscattering problem is overdetermined when we restrict the domain
of our mapping to real-valued potentials. Therefore in the final section we consider
a restricted backscattering problem for the case of real-valued potentials. Let Sr

denote the mapping

. Λ h(ξ,-ξ,\ξ\) + h(-ξ,ξ,\ξ\)
άr:q-+ .

Note that ^~1Sr is the real part oί^~ιS. This map is well-behaved on Hr

ay. Sr

is real-analytic with a Frechet derivative which is Fredholm and index zero for
qeHr

aNnΘ, (Theorem 6.1). However, we only know that its Frechet derivative is
an isomorphism on an open dense set Θr

2 of the component Θ\ of Hr

afNn&
containing the zero potential (Theorem 6.2). The component Θ\ does contain all
q such that qeC^R 3 ) and -Δ + q has no bound states with energies E ̂  0 or
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half-bound states at E = 0 (Proposition 6.3). We plan to study other approaches
to the formulation of the restricted backscattering problem in the future.

Section 1. Preliminaries

We will use the weight function Λ{ξ) = (1 + l£ | 2 ) 1 / 2 and the Lipschitz norms

where 0 < α ̂  1 and the supremum is taken over {£eR 3 ,4eR 3 :0 < \Δ\ ̂  1}. The
Banach space of all functions / on R 3 with | | / | | α < oo will be denoted by Cα(R3).
We also use | | / | | 0 to denote the supremum of \f(ξ)\ over R3. The principal
Banach spaces in this paper are /fαJV,0 < α < 1,N > 1, the closures of C^(R 3) in
the norms

While HaN does not contain all functions / on R 3 with || / ||α N < oo, one does have
the following.

Lemma 1.1. HaN contains all functions f on R 3 such that | | / | | α jv '< °° for s o m e

oί > α and N' > N.

Proof. Let j ε be the standard mollifier and choose φeC£(R3) with φ(ξ)= 1 for
| f | < l . Then for R^l

and for fixed R, setting g(ξ) = φ(ξ/R)f(ξ\

\\g-j**βh,N

where the suprema are taken over {ξ,η9Δ:\η\ ^ ε,\Δ\ ̂  1}. Thus

Hence, since \Δ\~«||g{ + Δ) - g( )||α,_^ 31|g||α,,

\\g-Js*9L,N^Cε^-"\\g\\a,. U

We will also deal with functions defined on R 3 x R 3 x R + . For functions on

R + , we define

l i /L = sup(|/(/c)| + l / ( / c + ^ ~ / ( / c ) l

where the supremum is taken over {keR+90<Δ^ 1}. Note that, since we take
the supremum in k and 4, | | / | | α < oo does imply /eC α [0, oo). For 0 < α < 1, we
define a Cα-norm on functions on R 3 x R 3 x R+ by
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, )IU (l.i)

with the supremum taken over (ξ,ζ,k)eR3 x R3 x R + .
Translations of functions will often be denoted by subscripts, i.e. fζ(ξ) = f(ξ — ζ).

In particular we will often use Λζ(ξ) for Λ(ξ — ζ).

Section 2. Estimates of the Operator

We define for qsHa N and

Theorem 2.1. The operator A(q, k) satisfies the following estimate for £eR 3 and k ^ 0,

where 0 < α < l , iV>l, 0gε<α, 0^(5 <min{l,Ar-1}, and y <min{l-(5,
N — 1 — δ}. The constant C is independent ofk9ζ,q andf

Theorem 2.1 is the principal estimate in this article. To prove it we need to
know the asymptotic behavior of integrals of the weight functions.

Lemma 2.2. Define for k>0,N>0and (ξ, ζ)eR6,

Hkrn- f (l + l ^ - ζ l 2 ) ^ 2

l ' ζ ' g

 M

J = i ( l + | ^-/cω | 2 f / 2 ( l + | / c ω - C | 2 Γ 2

Then

I(k,ζ,Q ^ CNmax{(1 + k)~2log(l + fc),(l + k)~N}.

Proof of Lemma 2.2.

I(k)^CN J [(l + lξ-feωl^-^ + ίl + l/cω-ζl 2 )-^ 2 ]^
|ω| = l

^2CJ vsup J (l + \ξ-kω\2)-NI2dω.
ξ |ω | = l

Introducing spherical coordinates with the z-axis in direction ξ,

\ω\ = l

= 2π j (l + \ξ\2-2\ξ\kτ-
- 1

Letting u = \ξ\2-2\ξ\kτ + k2, we have

π (141+H2

f (l + | ξ - / c ω | 2 Λ f / 2 ^ J
ii i

\ξ\k
Λ Γ - :

if N = 2

if
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If I \ξ\ — k\ >jk, we have

J (l + | ξ - / c ω | 2 ) - ] V / 2 d ω ^ 4 π ( l

and, if | \ξ\ — k\ <jk, formula (2.1) shows

2π

\ω\ = l

N-2

In 1 +
25k2

if N>2

if N = 2

if N<2.
2-N\ ' 4

Thus we have the desired estimate (note that for 0 ^ k ̂  1 the estimate is trivial).

•
An immediate corollary of Lemma 2.2 is the following.

Lemma 2.3. For 0 < δ < min {1, JV - 1} let

Then for N > 1 + δ and γ < min {N - 1 - δ, 1 - δ} we have J(k9 ξ9 ζ) ̂  CyιNiδ(ί + k)~y.

Proof of Lemma 2.3. By applying Lemma 2.2 with \η\ playing the role of k and
ω = η/\η\, we see

J<C f (l + \n\2f2\ri\2d\η\2 ( 2 2 )

where β = 2 if N > 2, and β = N - ε, ε > 0, for N S 2. Substituting fcf/' = >j, we have

J < C J c , ( l+fc 2 | ι?Ί 2 ) ( < " W 2 l>?Ί^l '?Ί

For k > 1/2 we have

J^Ckkδ~β J

and, hence for β — δ > 1, we have

For fe < 1/2, we have immediately from (2.2)

\n'\

(2.3)

(2.4)

From (2.3) and (2.4) we conclude
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for any γ < β — δ — 1 when β — δ > 1, which is the desired result for N > 2. Choosing
ε so that N — ε > 1 + δ, when N ^2, completes the proof. •

Proof of Theorem 2.1. We begin by reducing the theorem to the case ε = 0. For
this let Δ(μ) denote the operator (Δ{μ)f)(ξ) = f(ξ + μ) - f(ξ). Then Δ(μ)A(4, k)f =
A(Δ(μ)4,k)f, and assuming Theorem 2.1 in the case ε = 0, we have

For peR the mean value theorem implies

\Δ{μ)Λ>(ξ)\Z\μ\\dζΛ>(ξ%

where | < * ' - f | < | μ | . Since \dξΛ(ξ)\ g 1, and hence Λ(?)/Λ(ξ) and Λ(ξ)/Λ(ξ') are
bounded for \ξ' — ξ\ ^ 1, we have for |μ| ^ 1,

f f 1 ® . (2.5)
As in the proof of Lemma 1.1, we have

Moreover, it is also true (see Proposition 8, Sect. 4, Chap. V in Stein [14]) that
(Il/L + sup|μ|-«||4(μ)/||β.)g l/C| |/ | | β + . . . Thus, using (2.5) we have,

\^Nf\\^C{\\AN

ζA(q,l

+ sup \μ\~"\\Λζ Δ{μ)A(Q,k)ΛiΛΓNf\\a-e).

Thus we only need to consider Theorem 2.1 in the case ε = 0.
To prove Theorem 2.1, we begin by defining h(ξ,η) = Λξ(η)4(ξ — η)f(η). Then,

using (2.5) we conclude

uniformly for (ξ,η)eRβ.
Next we decompose (2π)3A?A(q, k)A7NAδf into three terms:

ΛΪ(ξ)Λ(η) h(ξ,η)

nΛ>ιΛ»(η)ΛN

ξ(η)\η\2-k2 n

AN

ζ{ξ) ΓΛ'(η)h{ξ,η) Λ\kω)h(ξ,kω)Ί

\\Λ<i \η\2-k2lA»(η)AN

ξ(η) Λ?(kω)A»(kω)Ja

f Λ?(ξ)Λ'(kω)h(ξ,kω)

\\Λ\<i (\η\2-(k + i0)2)Λ"(kω)AN

ξ(kω) Ά

where ω = η/\η\ in I2 and I3. In / 3 we introduce polar coordinates and compute

Λ?(ξ)h{ξ,kω) , f (l + fe2)a/2|q|2d|t?|

' 3 sUf(/cωμf(M iι,ι-*|ii.ι,ι>o \η\2-(k + i0)2 '
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Moreover

lim f — ^

o k(Λ (2k + a
2a~~ϊ\ l n \ T i

2\ \2k — a

~πι if k>a

a + k-^ίlnίl+^-πί) if k^a.
(2.6)

Hence
kπi

+ 0(1) as fe-»oo

+ 0(k) as fc->0.

Applying Lemma 2.2 and (2.5) we have | / 3 | ^ ( 1 + k)δ~β~1sup\h(ξ,η)\ and for

|μ| ^ 1, |μΓΊzKμ)/ 3 | ̂  (1 + k)δ~β + ί sup || h{'9η)\\a, where as in the proof of Lemma

2.3 β = 2 for JV > 2 and β = N - ε, ε > 0, for N ^ 2. Taking ε small enough that
N — 1— <3 — ε>y, if JV ^ 2, this shows that / 3 satisfies the estimate of the theorem.
Hence we need only consider lx and l2.

The estimates of lλ follow immediately from Lemma 2.3 and (2.5). We have

(ξ,n)
which again is the estimate of the theorem.

The estimate of | / 2 | is also easy. Once again (2.5) implies for \\η\ — k\<l,

S C M ,ι_ t r _^ω

\n\J \ \η\
Hence by Lemma 2.2

where β is as before. This gives

as desired.
It is the estimate of \Δ(μ)I2\ that presents some problems. For this we need

first to split the domain of integration in the integral into {||^| — fc | < 21 μ |}, getting
Jl9 and {2\μ\ < \ \η\ -k\ < 1}, getting J 2 . To estimate Δ{μ)J1= Jx(ξ + μ)-J1{ξ),
we use \Δ(μ)J1\ ^ \Jx(ζ + μ)| 4- |^i(^) | . Since the procedure used to estimate | / 2 | ,
shows that for |μ| ^ 1,

\JAξ + μ)\ + \Ji(ξ)\ύC f ll»il-fc|-1
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and
J \\η\-k\-ί+"d\η\^C\μ\',

\\Ί\-k\<2\μ\

we have the estimate required for \Δ(μ)Jί\.
To estimate Δ(μ)J2 we must use the special form of h{ξ,η), i.e. h(ξ,η) =

»/)/(»»). We have

f (Δ(μ)Λ»(ξ))ΓΛ\η)h(ξ + μ,η) Λ'(kω)h(ξ +μ,kω)Ί

2iMi<ιιJι-*κi \n\2~k2 I Λ»(η)ΛN

ξ+tι(η) Λ»(kω)ΛN

ξ+μ(kω) J η

%

f ANΛξ) ΓΛδ(η) A / κ , Λδ(kω) A / c

2|μ|<nίι-*ι<i \η\ -kz[_Λ%{η) Λ£(kω) j

ί
2|μ|<nJ,ι-t|<i

We can estimate \KX\ exactly as \I2\ was estimated and, using Lemma 2.2 and
(2.5), one can easily verify that for |μ| ^ 1

| X 4 I ^ C | μ r ( l + fc)^+1|l4IUNll/ll« ί \\η\-kΓ1+*d\η\.
\\η\-k\<l

Hence K 4 also satisfies the required estimate.
In estimating K2 — K3 we need to make the cancellation between q(ξ + μ — η)

and q(ξ — η) as good as possible. For this we replace η in K2 by η + μ. This gives
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:-kω)

?(kω)

ξ + μ- kω)'

ANAkώ)
f(rj)dη

Here ώ = (η + μ)/\η + μ\ and χ+ is the characteristic function of {η\2\μ\<
\\η + μ\ — k\<l and \\η\ — k\ > 1 or \\η\ — k\ < 2 | μ | } and χ_ is the characteristic
function of {*/:2|μ| < | | */ |- fc | < 1 and | \η + μ\ - k\ > 1 or | \η + μ\ - k\ < 2 | μ | } .

The first two terms in the expansion of K2 — K3 are like terms we have already
considered. The integral Lγ can be estimated as Jx was, and L 2 is another term
like X 4 . The remaining three terms require further explanation. Since

we have

- C7 - - - - A - x

- μ | ± k | > i l l » ί l ± k | when \\η\-k\>2\μ\,

By (2.5) we have

Thus, we can estimate L 4 by

|»/|-fcr2d|ι/|(l

r \μ\d\η\

Λδ(η + μ) Λδ(η)

\η\~k\

Λ\η)

2 a

\η\2

:d\η\

Since α < 1, this is stronger than the estimate we need.

The term L 5 must be decomposed again (but this is the last decomposition
we will use):

•dη
(f{η)-f{kω)\
\ M2-k2 )

2|μ|<| | l, |-t |<l

q(ξ-kω) q(ξ + μ-kβ)

'•-k-

Λ?(kώ)

Ί f(kω

} \ η \ 2 -
-dη

Here
kω + μ
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The point of this decomposition is that the mean of the integrand in M2 over
spheres \η\ = c is independent oί\η\, and hence we can estimate the integral \n\η\
accurately. On the other hand ώ — β is so small that we can control M 3 .

We claim that

ikiώ-β^^ClμUlηl-klilηl + ̂ lΓ^Clμl^ik + lμir'+M + lμir^ (2.7)

for all η, k and μ. One can arrive at this estimate in the following way. If k < 2|μ|,
we have

Similarly, if \η\ < 2|μ|, we have

When \η\ > 2\μ\ and k> 2|μ|, we use Taylor series in μ. Thus

\η + μ\ \η\ \ \η\2 \η\2

, μ (μ ω)ω Λ / Ί μ | 2

and, since j? = ώ | | ^ = k ,

Thus

(2.8)

(2.9)

and,

Thus, since 2\μ\<k and 2 | μ | < | > / | , wee see that (2.7) holds. However, since

|μ|2(fc + I μ l Γ 1 ύ l μ | 2 ( M + Iμl)" 1 + |μ | I |ιj | - fc|(|»;| + I μ l Γ 1 , we actually have

I LL\ I \tiI k11 ~r~ I ιi\
|/c(jβ - ω) | ̂  C — — — . (2.10)

\η\ + \μ\

From (2.8) we have for \η\ > 2\μ\

μ {μ-ω)ω ^ / | μ | :

ω-ω = —7 — \-O\ —-
\η\ \η\ \\η\-

Thusfor | ι y | > 2 | μ | ,

\k{ώ-ω)\£Ckι !μ[ ,, (2.11)
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and this estimate also holds (with C = 6) for \η\ < 2\μ\. Finally, from (2.9) we see
forfc>2|μ|,

\k(ω-β)\S2\μ\ + Cl-ψ^C\μ\, (2.12)

and again this estimate also holds (with C = 4) for k < 2\μ\. We will use (2.11) to
estimate M l 5 (2.12) to estimate M 2 and (2.10) to estimate M3. We have by
Lemma 2.2 and (2.11),

as desired.

The integral M2 is given by

M2 = (1 + k2f2P(k,μ, ξ,ζ)

where

The second integral is bounded by 2, and

, (0,

t |>2wlf |- |, k<2|μ | .

Since k Ink is bounded for k < 1, we conclude from (2.13),

which suffices.
By Lemma 2.2 and (2.10) we have

Lemma 2.2 and (2.12) show

|P |gC(l + k ) ^ | μ Π I 4 | | ^ | | / | | 0 . (2.13)

We have

f

™

which suffices.
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In addition to the estimate in Theorem 2.1 we also need control of Lipschitz
norms in the variable k. This is provided by the following theorem.

Theorem 2.2. Let Δ{s), 0 < s < 1 denote operator (Λ{s)f)(k) = f(k + s)- f{k). Then
one has the estimate

<-
Csx

sup IIΛ-δ{ )ΛN

ξ(-)Λ»(•)/(-,ξ,ζ,k)L

with C independent of k for cc,N,δ and y in the set given in Theorem 2.1.

Proof of Theorem 2.2. Here we will write

where f(η) = f(η, ξ, ζ, k) and Δ(s)f{kω) = /((* + s)ω, ξ, ζ, k) - f(kω, ξ, ζ, k).
By Lemma 2.2 for some β>ί + δ, setting h = A"δ(η)Af(η)AN

ξ(η)f{η,ξ,ζ,k),
we have

ξ,ζ

d\η\

\\η\-k\2

(l4-\n\)~p + δ

l ^ ; d\η\

Ί
J ξ,ζ

J
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The last term I 3 is also easy to estimate,

h = ΛN

ζ (ξ)((Δ(s)g) j 2 f((k + s)ω)dω + g J Δ(s)(f(kω))dω\

where (see (2.6))

+/c--(ln(2/c+l)-πθ if

Since g has Lipschitz constant bounded on R + ,

The term / 2 here we decompose to

(f(η)-f(k
2

—(ic + s)\η\ —

Λ?(ξ) ί (f(η)-f(kω))( 2 )k . SΫ ~ ΰJ-j?
2s<||ι?|-k|<i \l^l — (K + s) \η\ —K

Λ»(ξ) J (f(kω) - /((ft; + 5)ω))f 2 ) 2)dη

Here \JX\ and | J 2 | can be estimated in the same way that \Δ(μ)J1\ was estimated
in the proof of Theorem 2.1 with s in place of |μ|. Likewise \J3\ can be estimated
as L 3 was estimated. Finally J 4 is like M2 in the proof of Theorem 2.1. Carrying
out the integration in \η\, we have

J 4 = ( Λf (ξ) J2 (/(fcω) - /((/c + s)ω))dω )P(k9 s),

where

d\η\ (

2 25<ιιJ-fc|<i|ί/|-

As in the proof of Theorem 2.1, this suffices.



Inverse Backscattering Problem in Three Dimensions 183

Section 3. Existence and Regularity of h(ξ9 ζ9 k)

The function h(ξ9ζ9k) on R 3 x R 3 x R + is defined to be the solution of

ίTO$U~««-ft
We will assume that qeHaN for some α and N. We will not assume that q is the
Fourier transform of a real-valued function. In this situation one has the following
existence theorem, considering ζ and k as parameters.

Theorem 3.1. Given (α,ΛΓ), 0 < α < 1, N> 1, for all ζeR3 and k^O, (3.1) has a

unique solution h(ξ9ζ,k) such that Λ%(')h(',ζ,k)eC«(R3), when q belongs to an open

set Θ in HaN. Moreover, the intersection of Θ with Hr

XtN = {qeHaN\q(- ξ) = q(ξ)}

is dense in Hr

aN.

Remark 1. Note that Hr

aN is simply the subspace of HaN (considered as vector
space with real scalars) consisting of Fourier transforms of real-valued functions.
The set Θ in this theorem is actually dense in HaN (see Remark 4 following the
proof), but it is the stated density of Θr\Hr^N in Hr

aN that is important for our
main results here.

Remark 2. One does not have existence for all real-valued geC^(R 3), as the
following family of examples shows. Let u{x) be any positive function in
C°°(R3) such that u(x) = \x\~1 for \x\>R9 and define q = Δu/ueC£(R3). Then
-Δu + qu = 0. Since \Dau(x)\ S CΛ(ί + MΓ 1" 1** 1, for all α,|ώ(ξ)| ̂  Ck\ξ\~k for
\ξ\>i for all k. Moreover, since u = \x\~1+g9g supported in \x\^R,ύ(ξ) =
— 4π\ξ\~2 -hg, and g is entire. We have

\η\2ύ(η) + (2πΓ3 f ξ(η-ξ)ύ(ξ)dξ = O. (3.2)
R3

Assuming that (3.1) has a solution h(ξ9O9O)sHatN for ζ = O,k = Q and taking the
inner product with ύ(ξ) we conclude from (3.2) (note q(ξ -η) = ξ(η - ξ))

O=$ύ(ξ)q(ξ)dξ.
R3

However, by PlanchereΓs theorem

(2πΓ3 j ύ(ξ)q(ξ)dξ - j u(x)q(x)dx = j Δudx =~4π. •
R3 R 3 R 3

Throughout this section we will work with the modified operators and functions,

A(q, C, k) = Λ»A(4, k)Λ[N

9 l{ξ9 ζ9 k) = Λ»(ξ)h{ξ9 ζ9 k\

q(ξ) = ΛN(ξ)q(ξ) and qζ(ξ) = Λ»(ξ)q(ξ - ζ).

We will also frequently suppress some or all of the variables q, ξ9 ζ, k in A and h.
In this notation (3.1) becomes

l(ξ9 K 0 + ίλ(ξ9 ζ9 k)%(-9 ζ9 km) = - qζ(ξ) (3.3)

or, more compactly
h + Ah= -qζ.
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Proof of Theorem 3.1. Theorem 2.1 implies that for qeHaN, 0 < α r ^ α and

\\AΛ*f\\a£C\\f\\a..

Thus, since for α ' < α and <5>0 {g: | |g |(αgl} has compact closure in Cα' * =
{^:||Λ~δgf||αί < oo}, we see that A is a compact operator on Cα(R3). Hence, since
qζ is in Cα(R3) by hypothesis, (3.3) is a Fredholm equation in Cα(R3) for ft. We
will prove the first part of Theorem 3.1 by showing that the set Θ of q such that
I + Ά(4,ζ,k) has trivial kernel in Cα(R3) for all (C,/c)eR3 x R+ is open. For 4eΘ
(3.3) has a unique solution ft in Cα(R3). Since Ciζ)'1 ^ΛNΛ^N^ C(ζ), one sees
that ΛςNh is the unique solution to (3.1) with ΛNheC*(R3).

Theorem 2.1 implies that given qoeHaiN the operator norm on Cα(R3),
|| A(q,ζ,k)||β will be less than 1, for k> k0 and \\q-q0\\atN ^ 1. Thus / + A(q,ζ,k)
is injective for k> k0 and \\q-q0L,N^ 1- Since (C(ζ'))"1 ^ Λ f ^ Λ " ^ C(Q, if
/ + A(q, 0, fe) is injective on CP(R3), then / + Ά(q, ζ9 k) is injective on C^(R3) for all
ζeR3. Applying Theorem 2.2, we have

\Δ(s)Δ(μ)A(4Λk)f\ S Cf\\Δ(μ)4\\a;N\\f\\a>,

where Δ(s) and Δ(μ) are the difference operators in k and ξ, respectively. Hence
arguing as in the initial reduction in the proof of Theorem 2.1, we see for α' = α/2,

||Δ(s)A(490, k)f | |α / 2 ^ Cs«<21| q | |β f N | | / | | α / 2 , (3.4)

uniformly for fc^rO. Thus, as an operator acting on Cα / 2(R3), Ά(q,0,k) is norm
continuous in (q, k) with the topology of HΛN X R + .

Now suppose / + A(qo,ζ,k) has no nullspace in Cα(R3) for (C,/C)ER3 X R + . If
f + A(4o>C>k)f = 0 for some /eC α / 2 (R 3 ) , then Theorem 2.1, implies /eC α (R 3 ) .
Hence / + A(qQ,ζ,k) has no nullspace in Cα / 2(R3) for (ζ,/c)eR3 x R + . Thus by the
remarks in the preceding paragraph / + A(4, (, k) is injective on Cα / 2(R3) for k ̂  fe0

when ||q - q0 | |α i V < 1 and injective on Cα / 2(R3) for 0 ̂  k ̂  k0 when \\q~q0 \\afN < s
for some ε > 0. Thus, the set of q for which / + Ά(q, ζ, k) is injective on Cα(R3) is
open in HaN.

To verify the density assertion in Theorem 3.1 we consider real-valued
qeC£(R3). The Fourier transforms of these q are easily seen to be dense in Hr

aN.
If for k> 0, / + A(4, k)f = 0 has a nontrivial solution with ΛNfeCa(R3), we set for

_

Note wεeL2(R3) for ε > 0 , and, taking the inverse Fourier transform of
/ + A(4,k)f = 0, — Δuo~\- quo = k2uo which implies gw0GCJ(R3). We also have
(— A — (k + ίε)2)uε + qu0 = 0, which implies

iε)\x-y\
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and hence

_ i eik\x-y\
( ) l

Now standard arguments show U 0 E L 2 ( R 3 ) and hence MOΞΞ0. Thus I + A(q, k) is
injective for k> 0, and / + A{$,0, k) is invertible on Cα(R3) for k> 0.

Suppose / + ,4(40,0) has nontrivial nullspace for qeS = {\\q — q0 | |α N < δ}n
//;>N. Let m^dimNulllZ-MO^^O)} be minimal for qeS. Then dim Null {/ +
A(iθ,O)} = m, for all q with \\q-qί\\a,N< δ\ for some δ' > 0. This follows from
the continuity of the projection

P(q)= I (zI + AiqAO^-'dz (3.5)
\z~l\=ε

in ^ on a neighborhood of qt for ε sufficiently small. Moreover, for all /eCα(R3),

for \\q-qί\\(X,N<δ". Let 4(0 = 4i + ̂ 4 ^ / / ^ . For t sufficiently small, one sees
by substituting the power series for (zl + ̂ (^^0,0) + L S ^ O ^ Γ 1 into (3.5) that
P{q(t)) is analytic in t. Differentiating

(I + A(q(t)A0)P(q(t))f = 0

with respect to ί at t = 0, we have

(/ + A(quQ, 0))V = - A(q,0,0)V,

where V = d/dtP(4(t))f\t=0 and V = P(41)f. As in Remark 2, taking the inner
product with V(ξ)\ξΓ2Λ-N(ξ) = w(ξ)\ξΓ2,

where h is the inverse Fourier transform of w(ξ)|ξ|"2. Since we can choose / so
that w Φ 0 and q is arbitrary, this is a contradiction.

Finally we note that, since the Fourier transform R of the set R of real-valued
q6C£ (R3) is dense in Hr

ΛtN, if / + A(4,0,0) has a nontrivial nullspace for all q eR n S
it must have a nontrivial nullspace for all geS. This follows from the compactness
of Ά(q,0,0) for 4e#α,N a n ( l i t s continuity in φ Thus the preceding contradiction
shows that given qx eR there is no δ such that / + A(q, 0,0) has a nontrivial nullspace
for qeRn{\\4~4i L.JV < }̂ Thus we conclude / -f .4(4Cfc) is injective for q in a
dense subset of ^. •

Remark 3. The computations following (3.5) are much more transparent in x-space.
In x-space the equation (/ + A(q,0))f = 0, becomes

where £ 0 is the operator
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Setting q = q(t) and / = fit) and differentiating in ί, we have

{I + qEo)f=-qEof.

Since q is real,

j Eof(I + qE0)gdx = J (/ + ^ o / ) (£o0)<fr = 0
R3 R3

for all g. Thus

0=$q\E0f\
2dx.

R3

We work in ξ-space in the proof of Theorem 3.1 and elsewhere because we have
no simple characterization of the inverse Fourier transform of HaN.

Remark 4. Though our interest here is primarily in potentials with small imaginary
parts, it is not at all difficult to extend the arguments used to prove Theorem 3.1
to show that the set of complex potentials q in CJ(R 3 ) such that qe(9 is large
enough that $nf/α i V is a dense, open subset of HaN. A sketch of one way to do
this follows.

Given qeC$(\x\ < R), iϊ?eHaιN and/ + Aiq,k)f = 0, then feC$(\x\ < R) and
k ύ MII4 I U ) (by Theorem 2.1). Thus, taking s large enough that ||q||βpN ^C\\q | | s,
where || | | s is the norm on the Sobolev space i ί s ( | x | < R\ to show the injectivity
of / + A{q, k) on HaN when k ̂  0 for a dense set of q in HaN, it will suffice to show
that for any RJ + qEz is injective on L 2( |x | < R) for z ̂  0 for a dense set of q in
Hs(\x\<R), where

i piz\χ-y\

Given q0 e C£ (| x \ < R), since q0 Ez is both compact and entire in z as an operator
on L2(\x\<R) and I + q0Ez is injective for z » 0 , (/ + q^E^'1 is meromorphic
with only a finite number of poles k1,..., kM on k ̂  0. Using contour integrals to
define projections on the nullspaces of I — q0Ek as in the proof of Theorem 3.1,
one can get ε > 0 and functions λjiq, z) analytic on Z>7 = {|| q — q0 \\s < ε, |z — kj\ < ε},
j = 1,...,M, such that,for \\q — qo\\s<ε and \z — kj\ < ε, I + qEzfails to be injective
if and only if λj(q9 z) = 0.

For each an argument similar to the one given in the proof of Theorem 3.1
shows λj(q,kj) φ 0. Thus one can choose /zeQf (|x| < R) such that for j = 1,...,M,

dj(w, z) = λjiq0 + wh, z)

is an analytic function on {|w| < ε',\z — kj\ < ε'} such that idpdj/δwp)i0,kj) = 0 for
p < Nj and

for some Nj > 0. By the Weierstrass preparation theorem, for each j

dj(w, z) = (w^ + αx (z)w^-1 + + aNj(z))r(w, z\
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where r(0, kj) Φ 0. Thus the zero set of dj in {|w\ < ε' < ε, \z — kj\ < ε' < ε} n {realz]
is the union of a finite set of curves (wz(fc), k) where either wι = 0 or

with aι Φθ and rz rational. Thus we can choose wn-*0 such that dj(wn,k) φθ for
Ik — kj\ < ε', j = 1,..., M for all n. Since I + q0Ek is injective for fc ^ fe7- and wn-»0,
we see that / + (q0 + wnh)Ek is injective for all /e ̂  0 for n > rc0. •

Our estimates on the regularity and growth of h{ξ, ζ, k) are primarily directed
toward showing that the backscattering amplitude h{ξ, — ξ,\ξ\) belongs to HaN

when q is in the set Θ a HaN of Theorem 3.1. However, the expression we use for
the Frechet derivative of the backscattering map #(£)-• ft(£, — ξ,\ξ\) involves
ft(£,(,|(|), and it is actually easier to treat ξ9ζ9k as independent variables. Thus
our estimate takes the following form.

Theorem 3.2. Let Θ be the open subset ofHaN in Theorem 3.1, i.e. let Θ be the set
of4eHatN such that I + A(q, ζ, k) in injective on Cα(R3) for all (£ /c)eR3 x R + . Then,
for qeΘ, h(ξ,ζ,k) satisfies

Here \\ ||α is the norm on functions on R 3 x R 3 x R+ introduced in (1.1).

Proof From Theorem 3.1 we know that (I + Ά(φ9ζ9k))~1, and hence ft exist for
qeθ. However, here we want to show that sup ||ft( ,£,fc)||α< oo. For this we will

show that

^ 2 ^ 5 / 2 - 1 | | α / 2 < o o . (3.6)
/

ζ,k

Note that Theorem 2.1 implies that if f + Λ-δ/2AΛδ/2f = 0 and /eC α / 2 (R 3 ) ,
then Λδ/2feCa(R3). Hence I+ Λ"δ/2ΆΛδ/2 is injective on Cα / 2(R3) for qeθ.
Moreover, Λ~δl2ΛΛδ/2 is compact on Cα / 2(R3) by the argument used in the
proof of Theorem 3.1. Thus I + Λ-δ/2A(q,ζ,k)Λδ/2 is invertible on Cα / 2(R3) for
(C,/c)eR3 x R + for qeΘ. Using^Theorems 2.1 and 2.2 as in the proof of (3.4), one
has uniformly for (£,/c)eR3 x R+,

||Λ-δ'2(A(q,ζ9k + s)- A(49£k))Aδl2 | |α/2 ^ Cs*'2. (3.7)

Moreover, simply by using (2.5) we can extend (3.7) to

q,ζ + μ,k + s) - A(4,ζ,k))Ad>2 | | α / 2 ^ C(sα/2 + |μ | ) , (3.8)

where C is independent of ζ and k.
Since Theorem 2.1 implies that \\A-*I2A{49 ζ, k)Aδl2 | |α/2 ^ 1/2 for k > k(q) for all

ζGR3, we can use the Neumann series representation of (/ + A~δ/2A(q, ζ, k)Aδl2)~x

to conclude that

) - 1 ^ ^ C (3.9)

for £eR3, k ^ k(q). Since for any invertible operators I + B and / + Bo,
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the estimate (3.8) implies

for \k — kQ\ + IC — Co I < ε o Thus, for any R < oo,

% 2 ^ C Λ (3.10)

for 0 ^ k ^ k(q\ \ζ\^R.

To bound || (/ + Λ-δ/2A(q, ζ, k)Λδ/2yx ||α/2 as |C| -> oo, we will begin by showing
that

\\Λ~δl2(Ά(q,ζ,k)- A(q,k))Λδ/2\\a/2-+0 (3.11)

as \ζ\ -> oo, uniformly in k and q on bounded sets of q.
Given φeCo'ίR3) with φ(ξ)= 1 for |ζ | ^ 1, one sees easily that the operator

norm of multiplication by (1 - φ{ξ/R))Λ~δl2(ξ) on Cα/2(R3) tends to zero as R -> oo.
Since Theorem 2.1 implies || Jϊ(4,ζ, k)Λδ ||α/2 ^ C || q ||βfJV for (ζ, /c)eR3 x R + , we see,
letting φΛ(ί) = φ{ξ/R),

and

as R -> oo uniformly in (ζ, /c) on bounded sets of 4
To obtain the estimate || A(q, k)Aδ ||α/2 ^ C || 4 ||βfN, we must repeat the derivation

If (ξ)/Λ%
p

of the bounds on |/x |, |/ 2 | and |/ 3 | without the weight factor /If (ξ)/Λ%(η). We have

and as in the proof of (2.2), this implies

« ί , | ; , 2 | \n?d\n\
\\n\ k I

δ. Hence|/1|^C||/|toll4tlo>2¥ For/ 2 we have

so that |/2 |^C||/| |α / 2M\\a l 2,N. Likewise,

Thus we conclude sup|[^(4,fc)ylδ/](ξ)| ^ C||/||^211411^^. Then, since Δ(μ)

(A(q,k)f) = ̂ (/l(μ)4,k)f, we have

uniformly in k as desired. Thus

Uί-φR
and
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as R -* oo uniformly in k on bounded sets of #.
Next we consider

φRΛ-*2(A(q,ζ,k)-A(q,k))Λδl2φR.

We view this as a modification of the operator A(q, ζ, k) in which the weight factor
ω(ξ,η9ζ) = Λ"(ξ)ΛςN(η) has been replaced by

ωR{ξ9η,ξ) = φΛ(ξ)Λ-'l\ξ)(l-Λ?{η)ΛϊN(^

Since for any M,Λ%(η)ΛςN(ξ)^l uniformly on {|ξ| <M,\η\ <M} as |( |-»αo,
given ε, we have ωR{ξ,η, ζ) g εω(ξ,77, ζ)ϊoτ\ζ\> C{R). Likewise, letting Δ(μ) denote
the difference operator in ζ or η,(l/\μ\)Δ(μ)(Λ"(η)Λ^N(ξ))->0 uniformly on
{\ξ\<M,\η\<M} as |f|->oo, and we have \Δ{μ)ωR(ξ,η,ζ)\<ε\μ\ω{ξ,η9ζ) for
\ζ\ > C(R). In the proof of Theorem 2.1 we only used

and

Thus for |ζ|>C(R)

δ l 2 δ l 2 φ A « , 2 ^ £ M h , N (3.12)

Combining (3.12), with the previous estimates on terms with factors of (1 — φR)
yields (3.11).

From (3.11) we conclude that Λ~δ/2A(q,k)Λδ/2 is a compact operator-valued
function on Cα / 2(R3) which is norm continuous in (k,q). Thus to conclude
that \\(I + Λ-δl2Ά(q,ζ,k)Λδl2)-1\\a/2 is uniformly bounded for O^k^k(q) and
\ζ\>R,R sufficiently large, we only need to show that / + Λ~δl2A(q,k)Λδ/2 is
injective on Cα / 2(R3) for 0 ̂  k ̂  k(q). Note that / + Λ~δl2A(q,k)Λδ/2f = 0 implies
/ + Λ-δ/2A(qAk)Λδ/2f = 0, where f = ΛNf Hence, since qeΘ, to complete the
proof of (3.6) we only need the following.

Lemma 3.3. Assume f + Λ~δ'2A(q,k)Λδl2f = 0, /eC α / 2 (R 3 ) and qeH^N. Then
ΛN+δ/2f is in Cα / 2(R3). Here 0 ̂  δ < min {1,N - 1} as before.

Proof of Lemma 33. W e o n l y n e e d c o n s i d e r f{ξ) w h e n \ξ\>k + l. T h e n w e h a v e

, Λ-"2(ξ)4(ξ-η)Λ«2{η)f(η) '
C\\q\\Of

OfN

J (1 + \η - ξ\2ΓNI2(l
k+l<\η\<oo

We have 1^ | ^ C(l + | ξ | 2 ) " w / 2 ~ a / 4 , since ||ylw4 ||β < oo, and the proof will proceed
by repeated application of the inequality

h + C{\ + \ξ\2yNi2~sl\ (3.13)
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Assume that we have shown \f(ζ)\ ^ C(l + \ξ\2)'r/2 for some r ̂  0. Then

hue J (l + \η - ξ\2ym(i + \n\2)dl*-rl2-\\ + |ξ|
t+l<|i)|<oo

We divide the region of integration into

fc+l<|»,|<il£| and i | ξ | < | i f | < o o ,

getting Jlt and J2 We have

jC(l + \ξ\
1 = \C{\ + \ξ\2)-Ni2-dl\ r> 1 + 5/2.

Since

ί2, iV>2,

(see proof Lemma 2.2), and 0 < δ < min {1, JV — 1}, we have

J2^(l + \ξ\ψ2-(r+β)>2,

where /? is defined as in the proof of Lemma 2.3. Thus repeated use (3.13) gives

To show that

one merely notes that

and uses the preceding estimates with r = N + δ/2. •

Continuation of the Proof of Theorem 3.2. Since from (3.3) one has

Λ-*ΐ2%= -(I

(3.6) implies

where C is independent of (£,/c)eR3 x R+. Now, writing ft = —qζ — AΛδ/2Λ~δl2h,
and using Theorem 2.1, we have

sup II M ,ζ,fc) L ̂  CII « ζ | | β = 011411.^. (3.14)

Since ft = A%h, sup || ft( , ζ, k) ||α is the first of the three norms in (1.1) whose sum is

II Afh || β. Note that, if we replace <Jζ by an arbitrary element of Cα(R3), (3.14) shows

/ + i(4C,fe))"Ίl α <oo, for qeΘ. (3.14')

Since Theorem 2.1 fails for α = 0, we cannot obtain estimates on ||ft(ξ, ,fc)||α
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and ||ft(ξ,C?')L by applying difference operators to (3.3). Instead we use the
following procedure. Since q can be approximated in || ||α>Λr by q^ G C Q ^ R 3 ) , we have

with || ̂ i ||α,Λ̂  < ε0, β0 to be chosen small enough that the Neumann series for

(/ + Λ^x.ζyk))'1 converges. Then we set

so that (3.15) becomes

The extra regularity of q^ and the explicit representation of (/ + A(q1, ζ, k))~1 via
Neumann series will permit us to get regularity results for g by applying difference
operators to (3.16), and then pass to h via

ζ,k)y1(g-qζ). (3.17)

The Neumann series expansion of (/ + A(q, k))"ιf is given by

Σ (-l)M"te,fc)/,

where

LΛ'Π(ξ,k)= J

Expanding Δ{s)Anf = \_Anf~\(ξ,k + s)- [Anf~\(ξ, fc) by Leibnitz' formula, we have

Wf = Σ I
where for p> 1,

n r? \ f

Π(l
7 = 1

and for p < n

Rp(ηP)= J — r dηp+1" dηn

Π (\ηj\2-(k + ί0f)

with Q1=q(ξ-η1) and Rn = f(ηn). Applying Theorem 2.2 with δ = 0 and then
Theorem 2.1 with δ = 0, we have

sup \Λ?{ξ)s-*Δ(s)A"f\£C Σ W»tQp\\JA%Rp\\a£C(nC')\\A«4\\l\\Aff\\a,
0<s<1 p—1

(3.19)
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where C is the constant from Theorem 2.1. Combining (3.19) with the direct estimate
from Theorem 2.1,

we conclude that, given geCα(R3), the Neumann series expansion of

converges in Cα(R3) to a function which is Cα in k when || q \\ΛtN < ε0.
Now, given ήeiία>JV, we choose g ^ ε C ^ R 3 ) so that qx= q — q^ satisfies

\\4ι\\*,N<εo' τ h u s w e h a v e E c l ( 3 1 6 ) for g = h + A(quζ,k)h + qζ. Our next
objective is to show that

for | v | < l , 0 < s < l .
Since

it follows from the uniform boundedness of (/ + Ά(q,ζ,k))~1 and Theorem 2.1
applied to A{4l9ζ9k) that

sup ||(/
ζ,fc

Thus (3.16) shows that sup \\g(',ζ9k)\\Λ< °° Applying the difference operator in
ζ,k

k,Δ(s\ to (3.16) we have

(3.20)

Viewing (3.20) as a linear equation for Δ(s)g9 we need to show that the
inhomogeneous term in this equation, r(ξ), is bounded in Cα(R3) by a multiple
of sα uniformly in (ζ, k). To do this we will substitute the Neumann series for
(/ -I- A(q1, C, k))~1 into (3.20) and consider δf r. The terms in the resulting expansion
for δβ

ξr are precisely those in (3.18) with q(ξ~rjι) in each Qp replaced by
d\(/If (£)<U£ - fix)), all other <f s in Qp and Kp replaced by ^'s and f(ηn) = Λ^N(η)
{g(ηn9 ζ, k + 0 - qζ(ηn)). Thus (3.19) implies

fr(£,C,M|^C5α. (3.21)

Hence, using supί \r(ξ)\ + Y \dβ

ξr(ξ)\ ) to bound ||r( ,£,/c,s)||α, we conclude
ξ \ 101 = 1 /

sup ||§( , ζ, fc + s)-0(.,ζ,fc) | | α ^Cs α

for 0 ^ 5 ^ 1.
To get the analogous result in ζ we let 4(v)/ = f(ζ + v) - /(ζ) for functions

depending on ζ. The analogue of (3.20) is
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Δ(v)g +1(4^,^^(1+ A(41,ζ,k)Γ1Λ(v)g

ζ,k)rHΔ(v)qi) = r1+r2. (3.22)

Since

it f o l l o w s d i r e c t l y f r o m (2.5) a n d o u r b o u n d o n \\g(;ζ,k)\\a t h a t

To estimate r2 we again substitute the Neumann series for (I + A(4ι,ζ,k))~1

and consider dβ

ξr2- The n th term in the resulting series for δβ

ξr2 is

R3"

(2π) 3"

-dη1—dηn.
We have

ϊ ^ - C - v).

If we think of ζ as the variable for which we expect functions to be Ca and ξ as a
parameter (note that yiζ(ξ) = Λξ(ζ)\ Theorem 2.1 and (2.5) imply

| / Λ ( ί , C, Λ, v)| ̂  C | v | « C " | | Λ ^ ILII ^ ^ 4 1 IIS" x ( II ̂ ( 0 ^ - ^ ( 0 5 ? ( y l f ( © ^ ^ ( ί - -)) I!)Λ-

Thus

^ (3.23)

and, using this to bound Ik2( ,(,/c,v)||α as before, we conclude

ζ,k

for |v| ^ 1.
Now we are ready to go back to h via the relation

h = (I + Aiq^^k))-1^ -(I + A(quζ,k)r1qζ^h1-h2.

That the Cα-norm in (ξ, ζ, fe), || h2 \\ β, is finite follows by substitution of the Neumann
series exactly as in the derivation of (3.21) and (3.23). That || h1 \\z < oo also follows
by substitution of the Neumann series but first we separate terms:

1 ^ 1 | ^ M (3.24)

where p = s or v and g is g with p added to the appropriate variable. The first
term on the right of (3.24) is estimated by (3.19) with f = g when ρ = s and is
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estimated trivially when p = v. The second term can be estimated directly by (3.14')
since \\Δ(p)gUM\*ύC\p\\ •

From the proof of Theorem 3.2 one can see that the mapping

Ψ:q->h

is analytic from 0 to Cα(R3 x R3 x R + ). To do this, given qoeΘ, we consider for

h(ξ, ζ, k, z) = - (/ + A(q0 + z& C, kTHqo + Re-

writing

Theorem 2.1 and (3.14') imply that for δ sufficiently small we can expand the first
factor on the right of (3.25) in a Neumann series which converges in Cα(R3) for
all (ζ,/c)eR3 x R+. Thus for some δ independent of (ξ, ζ, k) we have for || q ||αJV ^ 1
and \z\ < δ,

fan \ 1 x hUXw),h{ξ,ζXz) = — § dw9

2πιlwμδ w-z

and hence for all k ̂  0,

δ"/ί p! h(ξ,ζ,k,w)dW{ ξ ζ k 0 ) l
Since Ψ(q0 + zή) = Λ(ξ, ζ, fe, z), to conclude that ^(^o + z^) can be expanded for
|z|<(5 in a power series in z convergent in Cα(R3 x R 3 x R + ) uniformly on
|| q \\ΛfN ̂  1, we only need to show that

for |w| = δ. However, this is just the statement that the estimate in Theorem 3.2
is locally uniform in q. This uniformity is clear from the proof. Thus we have shown
that Ψ satisfies one of the definitions of analyticity (see Poschel-Trubowitz [12],
Appendix A, or Nachbin [11]) and have

Corollary 3.4. The mapping Ψ'.q^h considered as a function from Θ to Cα(R3 x
R3 x R + ) is analytic in q.

Analyticity in the sense above is equivalent to the fact that Ψ has a continuous
Frechet derivative with respect to q (see references above), as one can easily verify.
In what follows we will often make use of the continuous differentiability of Ψ. If
we restrict to the backscattering map on Θ

S:q-+h(ξ, - ξ,\ξ\) = ΛZN

ξ(ξ)h(ξ, - ξ,\ξ\l

Theorem 3.2 implies ||S(4)||αJv< °° Moreover, choosing qneΘnC£(R3) con-
verging to q in || \\aN, it follows from the analyticity and hence continuity of Ψ
that \\Ψ(qn)-Ψ(q)\\a-*0. Thus \\S(qn)-S(q)L,N^0. Since \\S(4n)\\^<co for
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all N' > 1,0 < a' < 1, it follows by Lemma 1.1 that S{qn)eH^Ή and hence S(q)eH^N.
This gives:

Corollary 3.5. The backscattering map S:q->h(ξ, — ξ,\ξ\) is an analytic function
from Θ to # α N.

Section 4. The Derivative of the Backscattering Map

Since by Corollary 3.4 Ψ\q-+h is a continuously Frechet differentiable function
on Θ9 we may compute its derivative. To do this we will differentiate Eq. (3.3)
with respect to q. Note that Theorem 2.1 implies A(q)h(q) is the composition of a
bounded operator valued function linear in q with a continuously differentiable
function, and is hence continuously differentiable. We have for υeH*'N,%eΘ,

dh(v) + A(q)dh{v) = - vζ - A(v)h,

and hence

dh(υ) = (I + A(q)Y\- h- A{υ)h). (4.1)

Lemma 4.1. The operator (I + Ά(q)y1,qeΘ, has the following form:

4, c, k)Γ vitf) - /(θ + (2,)- 31 ^ f f ; " ' ^ . y ("} *,. (4.2)

Proof Let / + 5/denote the right-hand side of (4.2). Then we have from (3.3)

Thus / + D is a right inverse for / + Jϊ(4). Since / + A(q) is invertible, it follows
that / + /) = (/ 1

Substituting (4.2) into (4.1) we have

1

Changing variables so as to get integrals of v(η) in all integrals in (4.3) and
cancelling Λζ(ξ) in all terms, one arrives at
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Since / + D is the left inverse of / + A(q\ we have

Sending ξ-> — ζ,ζ-> — ξ and η -> — rj, we have

- J ^ - ^ dη. (4.5)

Comparing (4.5) and (3.1) one sees that for qeΘ,

h(-ζ,-ξ,k) = h(ξ,ζ,k) (4.6)

for ( ξ , ζ , f c ) e R 3 x R 3 x R + . Hence, setting (ξ,ζ,k) = (ξ,-ξ,\ξ\) in (4.4), sending
η->2η and using (4.6), we have

's lξ-2η\2-(\ξ\ + i0)2 '

h(ξ,t,\ξ\Mt-2η,-ξ,\ξ\)v(2η)dη \

(4.7)

From (4.7) one sees that the Frechet derivative of the backscattering map
S is given by

and

= 2 π

Since S is an analytic function, ί/S is continuous on 0 as a function with values
in <£{HaN\ the space of bounded linear operators from HaN to itself. Since we
need to know that B and F are individually continuous functions from Θ to
oSf (i/αJV)? we prove the following.

Lemma 4.2. J5($) is an analytic function from Θ to

Proof As in the proof of Corollary 3.4, the analyticity will follow from the local
boundedness of the operator norm || \B(q)\\ |α J V on Θ.

From (3.17) we have the representation

As in the proof of Theorem 3.2 we will substitute the Neumann series for
(/ + A(qu\ξ\))~ι in h and hence in B(q). This gives
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where

3 ( + l )

Setting ηo = ξ — 2η, we have

These are precisely the terms which arose at the end of the proof of Theorem 3.2
with one factor of q, replaced by / , £ = — ξ and k = \ξ\. Hence, the argument
given there shows that

M*B(<z)/L^C||/|U (4.8)

for feHxN, where C is locally uniform in 4 on &.
To prove analyticity we proceed as follows. Defining h(η, ζ, k, z) as in the proof

of Corollary 3.4, we have

and we know that Λ*ίξ{η)h(η, —ξ,\ξ\,z) is an analytic function from |z|^<5 to
Cα(R3) for each c^eR3 and q with | | 4 | | α , N ^ 1. Thus Theorem 2.1 implies that for
each ξsR3 and feHaN we can represent [£($ 0 + ^4)/](ί) a s a Cauchy integral
over \z\ = δ/2 with (5 independent of ξ and ^ when ||4llα,jv= l Now analyticity
follows from (4.8) just as in the proof of Corollary 3.4.

To see that the range of B(q) on HaN is contained in i/α i v, we approximate q
by 4 neQ?(R 3) as in the proof of Corollary 3.5. •

The main result of this section j s that, for qeΘ, the operator dS(q) is Fredholm
of index zero on HaN. To prove this we will show that B2 and F are compact on
HaN. To see that this is sufficient, note that for 0 ^ ε :g 1,

T ~1 (1 - εB) (I + εB + F) T = / + K γ,

(/ + εB + F)T~ι{I - εB)) = I + K2,

where i ^ and K2 are compact if B2 and F are. Hence, (/ + εB + F) T is Fredholm
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for 0 ^ ε ^ 1, and for ε = 0 it is a compact perturbation of an invertible operator,
and hence of index zero. Thus, to conclude that dS(q) is a Fredholm operator of
index zero on HaN for qeΘ, we only need the following:

Theorem 4.3. The operators B2(q) and F(q) are compact on HaN for qeΘ.
To prove Theorem 4.3 we will first take advantage of the fact that operator

norm limits of compact operators are compact to replace B2 and F by the operators:

"AW^W^m^WW^W^M^W)dηdt (49)

and

- f

respectively, where gh i = 1,2, satisfies

(i) ^ G C ° ° ( R 9 ) and all of its partial derivatives are bounded,
(ii) gi(ξ9η9ή = 0 for \ξ\ + \η\ + | ί | < δ for some 5 > 0, and

(iii) gff(ξ, ?/, t) = 0, if I ξ — η | > M or 17/ — t \ > M for some M < oo.

Then the proof proceeds by analysis of the singularities of the kernels t^,t)
and t2(ξ, t) of 7\ and T2. For this we will use estimates modelled on the following
simple lemma.

Lemma 4.4. Assume that g(ζ,η) is supported in \η — η(ζ)\ < M and that \\g\\a < oo
for some αe(0,1). Assume that h(ξ) satisfies \h(ξ + μ)- h(ξ)\ ̂ C\μ\for\μ\^U ξeRn.
Let

/or any a' < a.

/. Changing variables we have

Letting /(ξ,ί/) = gf(ξ,ί/ + ft(ξ)^i)> w e s e e / satisfies the same hypotheses g did.
Expanding (4.10) we have, letting η = (ηl9η

f),

s{ξ)= i fJMdη+ j /(^)-/(W)^+ i ^ M ) , , = / l + / 2 + / 3 .
lml>i '/l | , 1 | < i Vi kil<i ^ i - ί ϋ

Carrying out the integration in ηι in J 3 ,

/3 = πi f AξΛη'W.
R « l

Since | |/( ,?/)-/( ,0,//') | |α '^ 3|τ/ 1 |α"α ' | |/ | |α, the αr-norm of I2 is easily estimated,
and (4.11) follows directly from the representation of s(ξ) as Iλ + I2 + / 3 . •
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The problem of obtaining (4.11) for singular integrals with more general
denominators can be reduced to Lemma 4.4 by change of variables as long as the
gradient in η of the denominator is bounded away from zero near the surface
where the denominator vanishes. In what follows we will leave such reductions to
the reader and simply refer to Lemma 4.4.

Proof of Theorem 4.3. Lemma 4.2 shows that B(q) is analytic in q, and hence, since
dS(q) is analytic, F(q) is also an analytic function of q. Thus, making a change of
arbitrarily small norm in B2(q) and F(q\ we may assume g e Q ? ( R 3 ) n 0 , and hence
by Theorem 3.2

Mp*IL'<°° (4 1 2)
for all JV'> 1 and α'< 1.

The operators B2(q) and F(q) are given by

Γ B 2 Π m = 4 " 6 f h(ξ-2Ί>-
1 nKQ) π ie(\ξ-2η\2-(

and

Λ - 3 -β f h(-η,-ξ,\ξ\)h(η-2t,-ξ,\ξ\)f(t)2 π i
By the argument used in the proof of Lemma 1.1, (4.12) implies that, given
α 1 , α < α 1 < l , we can choose hn(ξ,ζ)eC™(R6) such that hn(ξ,ζ) = O for \ξ + ζ\
sufficiently large, d^hn is bounded for all β and

ΛN(ξ + Q(hH(ξ,Q-h(ξ,-ζ,\ζ\))

tends to zero in C α i (R 6 ) . Replacing the ft's in B2 and F by ftπ's with the appropriate
arguments, we get B2 and Fn. We claim that || \B2 - B21| \βtN and || \Fn - F | | | Λ j v go
to zero as n -> oo. Expanding B2~B2 = Bn(Bn -B) + (Bn - B)B and making the
analogous expansion of i7,, — F, one sees by the estimates on \IX\,\I2\ and | / 3 | in
the proof Theorem 2.1, that || \B2-B2\\ |O f N and || \Fn-F\\ | 0 J V go to zero. To
estimate Δ(μ)(ΛN(B2 - B2)) and Δ{μ)(ΛΉ(Fn - F)) we first change variables in η
and t so that when ξ appears in the denominator of an integrand it is in a factor
of t h e f o r m ( \ η \ 2 -{\ξ\ + ίθ)2) o r ( | ί | 2 - (\ξ\ + z θ ) 2 ) . T h e n LΔ(μ)(ΛN(B2 - B 2

n ) Π ( ξ )
and [Δ(μ)(ΛN(F — Fn)f](ξ) can be expanded into sums of terms where the difference
operator acts on(|/?|2-(|<ί;|-r- iθ)2)~ \ β = ηort, which we estimate by Theorem 2.2;
terms where the operator acts on /(/(£, η, t)\ I a linear function, which we estimate
by Theorem 2.1 with / playing the role of q, and terms where the operator acts
on ΔN,h,hn or h - hn, which we again expand as /x + 1 2 + / 3 and then estimate
|/ i l , |/ 2 | and | / 3 | as the proof of Theorem 2.1. It is estimating terms of the last
type that we use α1 > α and this makes all estimates substantially easier. Thus,
making a change of arbitrarily small operator norm, we can replace B2 and F by
operators 7\ and T2 as in (4.9) with gγ and g2 satisfying (i) and (iii).

To see that we can make the integrands in B2 and Fn vanish for | ξ \ + \ η \ + 11 \ < δQ

so that gλ and g2 will satisfy (ii) in (4.9), we proceed as follows. Given any
φ e Q ? ( M < l ) a n d <5>0, let
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hn(δξ - 2η9 δξ)φ2 K l hn{n ~ 2t9η)φ2 ( - \f(t)

= fcB(g{ - 2<5J?, <^)φ(>?)M^ - 2δt, δη)φ2(t)f(δt)

ϊβ(\ξ2η\2(\ξ\ + i0)2)(\η2t\2(\η\ + i0)2) %

Thus, by Theorems 2.1 and 2.2,

II φ(ξ)lRnΩ(δξ) L,N ύ Cδ2 || φ(t)f(δt) \\a,N.

Thus, since \\g(ξ)\\aύS^\\g{δξ)\\a for <5<1, we see that \\\φ{ξ/δ)RH\\\a,N£Cδ.
Thus, making an arbitrarily small norm change in B2, we can assume that its
integrand vanishes for \ξ\ -f \η\ + | ί | < <50 for some <50 > 0. This argument applies
to Fn as well. Thus we may replace B2 and Fn by the operators 7\ and T2 in (4.9)
with g1 and g2 satisfying (i),(ii) and (iii).

We will now study 7\. The analysis of T2 is very similar and somewhat easier,
and we will sketch it at the end of the proof.

In terms of η the integral defining 7\ is singular on the sphere (if ξ Φ 0)

and the plane (if t Φ 0)

We will see that the kernel t^ξ.ή of T1 is most singular at points (ξ, t) for which
Σ and Y\ are tangent. This happens when

i.e. when ξ't±\ξ\\t\—2\t\2 = 0. With these facts in mind we will break up
the integration in η by summing over a partition of unity generated by px =
p(\ξ-2η\-\ξ\) and p2 = p(\t\ - f a Ό U Γ 1 ) , where peQ>(R) satisfies p ( s ) = l for
|s | < ε x and p(s) = 0 for |s | > 2 ε ! . Since g1=0 for |ξ | + \η\ + | ί | < 5 , choosing εx

sufficiently small, we can assume that \ξ\> δ/4 on the support oϊ pιp2g1.
We will also need cutoffs in t near the most singular set,

a n d

\ξ\ J r z Λ \ξ\
where βeQ?(R) satisfies β(s) = 1 for \s\ < ε2 and β(s) = 0 for |s | > 2ε2. The constants
ε1 and ε2 are chosen small enough that on the support of p1p2βi0iJ= 1,2, the
component of ξ — 2η orthogonal to t has length less than ί/2\ξ\. Note that on
support p1p2βi9i,\ξ-'2η\ <\ξ\ + 2εu

~'(ξ-2η)>\ξ\-2ε2\ξ\-4εu and \ξ\>δ/4.

Now we replace gx in the definition of Tt by (1 — p1)g1 to define S l 5 by
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(1 -Pi)P\Qι to define S2, by p1p2{l - βi - β2)θi to define S3 and by ρiρ2βi9i
5

to define S3+i. Thus 7\/ = £ S J .

Letting s^^ ί ) denote the kernel of S l 5 we have

where /*! = ( 1 — P i ) # i ( | ξ — 2η\2 — l ^ l 2 ) " 1 . Applying Lemma 4.4, we conclude
1*1 UNCOIL' i s bounded in t for all α ' < l . Since we also have s1(ξ,t) = O for
I £ — ξ I > 2M, we conclude

\\ΛN+1S1f\\a.£CN\\ΛNf\\0.

Thus Si is a compact operator on HaN.
Letting s2{ξ9t) denote the kernel of S2, we have

where h2 = (1 — p 2 )Pi#i( — 4η-t + 4 | ί | 2 ) x. Hence, changing variables

» 2 ,

Since |ί|Λ2(ξ,(?7 + ζ)/2,t) is bounded, vanishes for |ξ — ̂ | > 2M, and has Lipschitz
constant in (£,77) uniformly bounded in ί, it follows that | ί | | |s2( ,ί)llα/ i s uniformly
bounded in t for some α' > α. To verify this one can write

where φeC^(R 3 ) satisfying φ(η) = 1 for \η\ < 1. Then ||s2>1( , ί) ||α/ can be estimated
using Theorem 2.2 and the early steps in the proof of Theorem 2.1 and || s2>2( , ί) ||α'
can be estimated directly by Lemma 4.4. Since s2 (ξ, t) = 0 for | ξ — t \ > 2M, it follows
that S2 like Sx is compact on HaN.

Letting s3(ξ,ή denote the kernel of S3, we have

4ί*\ξ-2η\2-(\ξ\ + i0)2)(η t-\t\2 + i0) "

where 7ι3 = PiP 2 ( l — jffi —β2)ΰi Since | ξ | > δ / 4 on support h3, by taking εx

sufficiently small we can assume that \ξ — 2η\ does not vanish on the support of
h3. Thus all partial derivatives of h3 with respect to ξ and η are bounded on R9.

We want to use the coordinates μ1 = \η — ξ/2\ andμ 2 = (η — ξ/2)-t/\t\ onf/-space
to study 53, since the singularities of the integrand are on level surfaces of μx and
μ2. To see that these coordinates are independent on support h3 and estimate
derivatives with respect to μx and μ2, it is convenient to introduce cylindrical
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coordinates (p, θ, z) with origin ξ/2 and axis in the direction of t. Then we have

P = >/μ? - μ | and z = μ2.
The factor P!/02(l ~ βi ~ βi)in h3 insures that

(

{

I

ξ ' 1 \t\
2\t\ W

ξ\
2

) (

) {
lίl\

ξ-t

2|ί|

^c2

η

1

I £ 1

•t

t\

ξ't

2\t\ ltl

on support fc3. Thus, choosing εγ sufficiently small once ε2 has been fixed, we have

on support /i3. Setting

«.!«- I
2πhj ξ,- + z-f-+ p cos θέ^ή + p sin Θέ2(t)j

^ V,

where (t/\t\9έ1(t),έ2(t)) is an orthonormal frame, we see that \ξ\m3 is bounded
together with its derivatives in p, z and ξ. We have

m3pdpdz

and, since d(μ1,μ2)/d{p,z) =

,„ , 1

4|ί|

Since m3 is supported in

J

we have μj —μl>ε3\ξ\μ1>ε3(2μ1 — 2εί)μ1 on support m3. Thus all partial
derivatives of p with respect to μί and μ2 are bounded on support m3, and μ1m3

and its derivatives in μ and £ are bounded. Thus, applying Lemma 4.4 twice, one
sees that | ί | | |s3( , ί)L' ^s bounded on R 3 for α ; < l , and, since s3(ξ, ί) = 0 for
| ί —1\ >2M, it follows that S3 is compact on HaN.

The kernels s4 and s5 of S 4 and S5 require a more detailed analysis. We have
for i = 4,5,

where ht = p1p1βigι. Thus, as for /ι3,/iί has bounded derivatives with respect to
(ξ,η) of all orders. Moreover, writing t in spherical coordinates, one sees that
ht, ί = 4,5, as bounded derivatives of all orders as a function on R 3 x R 3 x R+ x S2.
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We let μ1 be the ί-component of 2η - ξ, i.e. μί = ((2η - ξ)t)\t\~ι, and μ2 be the
projection of 2η — ξ on the plane orthogonal to t, i.e.

By our choices of εx and ε 2 , |μ 2 | < lβ\ζI o n support hh and, since ht = 0 if
\ξ — η\ > M or |ί — η\ > M, we also have \μ2\ < 2M on support ht.

We set μi(ξ,t) = 2\t\-(ξ t)\tΓ\ expand Si(ξ,t) as

. 1 f K\μ,=μgξ,t) , ,
2l3(μ2+\μ\2-(\ξ\ + i0)2)(2\t\)(μ(ξj)-μ-ί0) μ i

where dm is Lebesgue measure on t-η = O. We consider siΛ as a function
of the form (4.10) with

Although g is not supported in a bounded set, it has bounded support in μ2 and
the expansion used in Lemma 4.4 shows that (4.11) holds for s = | φ u . Thus, since

s . χ (£ t) = 0 for I ξ - ί I > 2M, sί} x is the kernel of a compact integral operator on HxN.
We evaluate sU2 by computing the integral in μx by residues (there is a simple

pole in Imμ x > 0 at μγ = y/{\ξ\ + iθ)2 - | μ 2 | 2 ) . This gives

R

where

πi

On the support of Λ 5,2 | ί |-(ξ ί ) | ί Γ 1 < - | ξ | + 2ε 2 |ξ | , |ζ |>5/4 and |μ 2 |<min{|ξ |/2,
2M}. Thus the integrand defining s 5 2 is smooth in ξ with bounded support in μ2.
Since one has |ί|\dβ

ξs5f2(ξyt)\ bounded for all β and s5a(ξ,ή = 0 for \ξ-t\>2M5

the integral operator corresponding to s5t2 is compact.
To simplify the study of 5 4 2 we use polar coordinates in the plane η-t = Q and

2π

set m 4 ( |μ 2 | 2 ,ξ, t)= J /c4(|μ2 |cosθ,|μ2 |sinθ,ξ,t)dθ. It is important that m4 is a

smooth function of | μ 2 | 2 on R+-note that only homogeneous functions of
(cos θ, sin θ) of even degree survive the integration. Thus m4(s,ξ,t) is smooth in
(s,ξ) on R+ x R 3 and its partial derivatives with respect to s and ξ are bounded
on R + x R 3 x R3. It also remains true that, if we write t in spherical coordinates,
m4 is smooth on R+ x R 3 x R + x S2.
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We now have

1 1 0

and integrating by parts gives

4 ' z " ' ; \t\

1

"ίίί
Note that the integration in ι;42 is over 0 < s < (2M) 2 and \2\t\-(ξ t)/\t\-\ξ\\<
2ε2\ξ\ on support m 4 . The kernel υ±2 is superposition of the kernels

, t) =

for 0 rg α ̂  α 0 , where m(α, ξ,rω) is smooth on R + x R 3 x R + x S 2 with bounded
derivatives in ξ and r and m = 0 for \ξ — t\>2M and for |<ί;|2 <max{4α,(5 2/16}.
The kernel v4Λ is wo(£, t) with m(0, ξ, ί) = — m 4(0, ξ, ί). Thus to complete the proof
that T1 is compact it will suffice to show for Wa with kernel wa,

JW^CJΛ^L (4.13)

for all α > 0 with Cα uniform o n 0 ^ α ^ α 0 .

We have

\ΛN+Hξ)WJ(ξ)\^C J | ln(2 | ί | - ( ί -0 l ί | " 1 - > /m^ Γ ^- i0) |Λ | | y lVl lo
\ξ-t\<2M

and, since the integral is bounded uniformly for (α,ξ)e[0,αo] x R3, this gives

sup\ΛN+1(ξ)WJ(ξ)\^C\\ΛNf\\0. (4.14)

To estimate the Lipschitz norm oϊΛN+1 (ξ) Waf{ξ)9 we use φ(s)eC00 (R), satisfying
φ(s) = 1 for |s | < 1 and φ(s) = 0 for \s\ > 2, to write

WJ(ξ)= J
3

In /i we will use spherical coordinates, t = rω. Since m(a9ξ9rω) is smooth in r
uniformly in (α, ξ, ω), extending rm(α, ξ9 rω) to be zero for r < 0 gives a Lipschitz
function of r uniformly in ω, which we denote by rh(a, ξ9 r, ω). Thus

/ x= J dωf φ(r)mln(2r-(^ω)-y|ξ|I^--i0)/(r,ω)ιir,
S 2 R

where for r ̂  0 / ( ± r, ω) = /(rω). Expanding /x as in the proof of Lemma 4.4, one
sees that for / e C α , α > 0, J x is differentiable in ξ with
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J dω Jφ(rAn(2r-(ξ-ω)

dω)
i2 R 2r- ί£ α>)-.

ίθ)f(r,ω)dr

dr==J1+J2.

One has

by the reasoning that gave (4.14) and

for any α' > 0 by Lemma 4.4 applied to the integral over R. Since | ξ | is bounded
on support φ(\t\)m9 we have

| ^ + 1 ( ξ ) / i ( ^ α ) | ^ C | | / | | α . (4.15)

for any α' > 0.
Since all functions are smooth in ί for |ί | ̂  1, the expansion used in the proof

of Lemma 4.4 can be used to show that I2 is differentiate in ξ with
dIl f ^\t\-ι^ξM\2-a)-ιl2){l

and, since ξ and t have comparable magnitudes on support (1 — φ(|ί|)m),
Lemma 4.4 shows

sup (4.16)

for any a' > 0. Combining (4.14)-(4.16) gives (4.13), and completes the proof that
7\ is compact on HaN.

In terms of η the integrand defining T2 is singular on the spheres (for ξ Φ 0)

and

= {η:\η-2t\ = \

At t = 0 these spheres coincide but the most singular part of the kernel t2(ξ, t) of
T2 is the set corresponding to tangency of Π^^ and Π2, i.e.

As in the proof of the compactness of T1, we introduce a partition of unity adapted
to these sets generated by

Pi=p(\η\-\ξ\) a n d p2 = p(\η-2t\-\ξ\%

where p(s) = 1 for \s\ < εx and peQ?(|s| < 2εx). Again for εx sufficiently small one
has |ξ|><5/4 on the support of PiP2g2, and PιP2g2 is smooth. The cutoffs
corresponding to the more singular parts are
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where β(s) = 1 for |s | < ε2 and β e C ^ ( | s | < 2ε2). Note that for ε2 sufficiently small
βί and j82 are smooth on support pxp2g2.

Next we define Sl9...,S5 precisely as in the proof for Tί. Thus the integrand
of St vanishes on a neighborhood of Πί9 the integrand of S2 vanishes on a
neighborhood of 772, and on the support of the integrand of S3 we can introduce
coordinates for which Π1 and Π2 are level sets. These three terms are treated
exactly as before: in place of | ί | the weight factor in the denominator is | η — 2ί | + | ξ \.

For S4 we introduce spherical coordinates in η,η = rω, \ω\ = 1,r > 0. Then

\η -2t\2 -\ξ\2 = r2 -4rω t + 4\t\2 -\ξ\2

= ( r - 2 ί ω -

( r - 2 ί ω +

and for ε2 sufficiently small \ξ\2 — 8|ί |2 > l/2\ξ\2 on support /z4. Thus, the kernel

s4(ξ,ί) of S 4 given by

sjξ,t)= f dω f — 9. ' ? = dr,
Λ ϋ \j — I ς I — l\J)\Γ — ZΓ'(

where

is a smooth function on R 3 x R + x S2 x R 3 .

Expanding in the usual manner, we have (with A = \ξ\2 + 4(ί ω ) 2 — 4 | ί | 2 )

s4(ξ,ή= I dω I 7 = dr
* o(r-\ξ\)(r-2t-ω-JA-iO)

The main point here is that, since the integral in s4 2 is the limit as ε J,0 of the same
integral with lΌ replaced by z'ε, we can deform the integration on [0, oo) to a contour
in the upper half plane—for instance z = r(l + ί). Since \ξ\> δ/4 and \ξ — t\< 2M
on support fc4, this shows s 4 2 (ξ,ί)eCJ ) (R 6 ). Since

r-\ξ\

is a smooth function supported on

it follows that s4Λ(ξ9ή also has compact support, and it has enough regularity in
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ξ that the corresponding integral operator is compact on Ha N . Thus S 4 is compact.
For S5 we introduce the ί-component of η μγ = η-t/\t\, and set μ2 = η — {ψt/\t\2)t.

Since \t — η\<M on support h5, we have | μ 2 | < M on support h5. Moreover,
since we also have

| | f | - | ί | | < 2 β 2 | α \\η\-\ξ\\<2εl9 \\η-2t\-\ξ\\<2ε1

and \ξ\ > δo/4 on support /ι5, it also follows that, choosing εx and ε2 sufficiently
small we can make \μ2\ < l/2\ξ\ on support h5. The kernel of S5 is given by

= j ks(ξ,η,t)dη

where

Note that, since for εί and ε2 sufficiently small one has \μί - \t\ \ < l/4|ξ| and
| ί | > 3/4|£| on support h5,k5 is a smooth function satisfying (1 + I £ I)21 ̂ , ^ 5 1 ^ C
for all β.

Expanding s5 (ξ, ί), we have

s5(ξ,t)= f (M&q,fl-fc5)r,.,-vni'-iι.2i' _ d
3 0 V l ξ | 2 - | / i 2 l 2 ) ( μ i - 2 | ί 1 + J\ξ\2\μ\2 + »Ό)

f dμ2 f
 fe5rμi = vκp- | . 2 P d

2 ( / / / l ^ l 2 | ^ l 2 / 0 ) ( / i 2 | ί | + / K | 2 | / / | 2 + i 0 )

From the restrictions on the support of h5 one sees that s5Λ is a smooth function
supported in \ξ — t\<2M, satisfying sup(l + |<?|)|δfs5>1(^,ί)| < oo, for all β. Thus
the integral operator corresponding to s5Λ is compact on HxN.

Calculating the integral in μt in s 5 2 by residues, we have

55 2(ξ, t) = πi f

Multiplying numerator and denominator by ^/ |^ | 2 - | μ 2 | 2 + |ί | , which is smooth
on support h5, we have

. f Is(ξ9t,μ2)S πιl dμ

2π

where /5 = (J\ξ\2 - \μ2\
2 +\t\)k5 \μt = J\ξ\2 - \μ2\

2. Note that m5 = πi/2 J l5dθ

is a smooth function of (ξ, r2, t) supported in {11 — ξ | < 2M} n {r < M}, satisfying
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sup(l + \ξ\)\dβ

ξ,,tm5\ < oo. Thus

uu

io,+ j
|ί|2)2 ) 1 / 2 - | ξ | -

= i^ + v2 +1; 3 + ι;4,

The kernels t;3 and u4 are supported in | ξ — t \ < 2M and they satisfy || Λs( )^( , ί) II i <
C,ίeR3, ί = 3,4, for s + 1. Thus the corresponding integral operators, V3 and K4,
are compact on HaN.

The remaining terms in T 2/, F x / and F 2 / , are super positions of the operators

ίVaΩ(ξ)= ί m5(ξ,a,t)\n((a + \t\ψ2-\ξ\-i0)f(t)dt
R3

for 0 ̂  α ̂  M.
Since t and £ are bounded away from zero on the support of m5, the expansion

used in the proof of Lemma 4.4 again shows that V1f is differentiable and

Thus, since ξ and t have comparable magnitude on the support of m5, Va satisfies
the estimate (4.13), i.e.

for any αr > 0. Thus Va is compact on Hα>N. •

As we showed earlier, Theorem 4.3 has the following corollary.

Corollary 4.5. The Frechet derivative of the backscattering map, dS(q), is a Fredholm
operator on HaN of index zero for qεΘ.

Section 5. Local Invertibility of the Backscattering Map

In this section we present the consequences of the results of Sects. 3 and 4 for the
inverse backscattering problem. The extent of the connected component of Θ
containing the zero potential is of interest here. We can show that the intersection
of Θ with Hr

aN is contained in a connected component of Θ. The proof of that fact
requires the following pair of lemmas.

Lemma 5.1. For some α',α < α' < 1, let q(t) be a curve in H^ N continuous in the
topology ofHa,jN, such that q(t) is a real-valued function in CJ(R 3 )/or all t. Assume
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that I + Λ(q(0), 0) has a one-dimensional nullspace, and that I + A(q(t), 0) is invertible
for t φ 0. Then, given δ>0, there is a curve qί (t) in CQ (R3) continuous in the topology
of Ha> N, such that

(i) qΛή = q(ήfor\t\>δ,and
(ii) / + A(41(t)9 k) is invertible for all t and k^ 0, i.e. 41(t)eΘ for all L

Proof Let f(q, k) Φ 0 be an element of the range of the projection:

mfc) = ~ J (A(49k)-ωί)-1dω. (5.1)
^TEl | ω + l | = c

Since α' > α, for q in HΛ, N, A(q,k) is continuous in (q,k) in operator norm on HaN

and compact on HaN by Theorems 2.1 and 2.2 (see 3.4). Thus it follows that for
c sufficiently small P has 1-dimensional range and is continuous in (q,k) on
{U-4Φ)\\a\N<Ci,0^k^c1} for c1 sufficiently small. Moreover, P(q,k) is
differentiable in q and dP/dq is also continuous in (q, k).

We have

(/ + A(4, k))M k) = λ(4, k)M k\ (5.2)

where λ(q, k)eC and λ has the regularity of P. Evaluating (5.2) at (q, k) = (zq(0\ 0),
differentiating with respect to z, evaluating at z = 1, and taking the inner
product with [/(4(0),0)](ξ)|£Γ2, we have (see Remark after Theorem 3.1)

dλ{z4{0)90)
= - 1 .

z=ldz

We split Hx, N into the direct sum of span 4(0) and

R 3 R 3

where/o =/(4(0), 0).
Let λ(4'9 z, k) = λ(qf + zq(0\ k). We consider λ as a function on # ' x {| z - 11 < 8) x

{0 ^ /c ̂  (3}. By the implicit function theorem there is an ε > 0 such that for
II4' \\a',N < ε, 0 ^ fe ^ ε the unique solution to λ(q', z, k) = 0 in 11 — z | < ε is given by
z = z(q\k) and z(q\k) is continuous in {q\k). Note that A(^,z,/c) = 0 means

Now suppose g(ίt ) = q[ + z^(0), i = 1,2, with t1 < 0, t2 > 0, || 4; || α%Λr < εr < ε and
| z f - 1| <ε'. By hypothesis this will hold for | ί f | <δ, δ sufficiently small. Also by
hypothesis zteR and z(qf

h0)Φzi. Since q(t) is real valued, q\ and q'2 are real, and
hence z((l — s)q\ + sq'2,k) does not intersect the real-axis for (s,fc)e[0,1] x (0,ε].
Thus we may choose z(t) with z(tί) = z1 and z(ί2) = z2 with z(ί) for ίe(ί i , ί 2 )
lying in the half-plane, {Imz>0} or {Imz<0}, which does not intersect
{z((l - s)q\ + s4'2, k):(s, fc)e[0,1] x [0, ε]}. Then we define

for te{tut2\. Finally, we note that we may construct qx(t) so that
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for [ ί i , ί 2 ] Thus, taking ε' sufficiently small, we will have / -f A(q1(t\k) invertible
for fc^ε,ίe|A,ί2]. For ί £ [ ί l 9 ί 2 ] we set q1(t) = q(t). •

Lemma 5.2. Suppose that I + Λ(qo,0) has a kernel of dimension m > 0 , for some
40eHr

afN. Then for some ε > 0 , the set of q in Hr

afNn {||q — 4o II«,JV < ε} SM<^ ^ f l ί

/ 4- ̂ 4(4,0) ftαs α kernel of dimension m is contained in a smooth surface of codimension
m in Hr

aN. For all q on this surface (I + A(q,0)) has a kernel of dimension ^ 1.

Proof Let P{q) = l/2πi J μ ( 4 , 0 ) - ω / ) ~ 1 d ω , as in (5.1). Here P has an
|ω+l|=c

m-dimensional range for c sufficiently small, and is differentiable for \\q — q0 \\a,N < ci
for cx sufficiently small. Since ^4(^0) leaves Hr

aN invariant when ^eHr^N, as one
sees taking inverse Fourier transforms, P(q) inherits this property. By construction
/ -h A(4,0) has an m-dimensional null space if and only if (/ + A(q9 0))P(q) = 0. Let
/i> >/m be a basis for range P(4o) Note that, since (joGi/^jy, we may choose

. Let

f (E)
dM) = (2π)" 3 J ^ [ ( / + A{qiϋ))P{q)fi-]{ξ)dξ

R3 IS I

by PlanchereΓs theorem, where gi is the inverse Fourier transform of P(q)fi, see
Remark 3 after Theorem 3.1. The set of q for which I + A(q, 0) has an m-dimensional
nullspace intersected with \\q — q0 \\ΛtN < c1 is contained in

and d{ is real-valued on Hr

aN. Taking Frechet derivatives at q =

since gi(q0) = f. Since —ΔEoft + qoEofi = 0, unique continuation implies no £ 0 / f

can vanish on an open set. The linear independence of {/t }Γ=i implies the linear
independence of {EQfί}^=ί. Thus we conclude {(£o/i)(^o/i)}Γ=i is linearly
independent as well. Thus we may choose real-valued φ7 eCJ(R 3), j = 1,..., m such
that

$(Eof1)(Eofι)φjdx =

Now we restrict d1,...,dm to Hr

aN and let Hf be a closed complementary
subspace to span {φJJLi in Hr

aN. By the implicit function theorem the system of
equations

where qeH' and s = (s1,...,sm)eRm can be solved for s(qf) when qf + Σ 5j Φj ^s n e a r

4o Now we are ready to prove,
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Proposition 5.3. The set Θ n Hr

aN is contained in a connected component of Θ.

Proof. Since Θr\Hr

afN is an open dense set in Hr

aN by Theorem 3.1 and the density
of C£ in HaN implies the density of Fourier transforms of real-valued CQ in Hr

a N,
it will suffice to show that we can connect any pair of functions qx and q2 i n ^
when q1 and q2 are real-valued functions in Q?(R3). Given two such functions, let
q(t) = tqx -f (1 — t)q2, ίe[0,1]. Since A(q(t), 0) is real-analytic as an operator-valued
function of t on H α N , and / + ,4(4(0), 0) is injective, / + A(q(t),0) has a nontrivial
nullspace for at most a finite set S of t in [0,1].

Suppose that toeS and

dim Null (J

is maximal for ίe[0,1]. If m > l , we choose ε0 small enough that
dim Null (/ + A{q(t),0)) < m for 0 < \t - to\ < ε0. Taking ε0 smaller if necessary, we
may assume || q{t) - q(t0) \\ ^N < ε1, where by Lemma 5.2 the set of q in || q - q(t0) | |αJV <

m

εί such that dim Null (/ + A(q, 0)) = m is contained in the set of qr + ]Γ Sj(qf)φj with

q'eH', a closed complement of span {φj}J=1 in Hr

αN. Then, ^(ί) = q'(ή + J] ^

for I ί — ί01 < ε0, where q'(t) and r(ί) are affine linear in t. Since m > 1, the set in R m +

^ ^ { ( ^ s J e R - + ̂ l s - s M ' ί ί o W ^ ^ l M - ί o l ^ ε,sφs(q'(u))}

is connected for all δ and ε. For (5 sufficiently small

m

Σ sjφj:\s-s(q'(to))\<δ and \\q' -4f{t0)\\Λ,N<ε1/2
7 = 1

is contained in 114-4(^)11 < ε i Likewise for ε sufficiently small (£,r(ί))e£ for
δ,ε

\t — ίo| = ε. Hence, we can replace (ί,r(ί)) by a piecewise linear function (α(t),f(ή)

for I ί — ί01 = ε s u c h ώ a t Kto ± ε) = K̂ o ± ε)' ̂ o ± ε ) = fo ± ε and W0» ^( ί)) eΣ N o w

δ,ε

we set

Λ J4(ί) for \t-to\>ε

l Σ for \t-to\£ε.Σ j j
7 = 1

The function q^t) is piecewise linear, and, since ΘrλΉ.r^N is dense in Hr

αN, we may
assume its corners are in Θ.

Continuing in this way, we arrive at a piecewise linear function qN(t) with
corners in 0 such that dim Null (/ + A(qN(t\ 0)) < m for ίe[0,1], 4^(0) = qlf 4NW = 42>
and ^ ( O e Q ^ R 3 ) for ίe[0,1]. Since the set of t in [0,1] such that dim Null (/ +
A(qN(t),0)) > 0 is again finite, we can repeat the preceding argument until we have
a piecewise linear qM{t) with corners in 0 such that 4M(O) = 4I>4M(1) = 42><?M(0
is a real-valued function in C?(R3) for ίe[0,1], and dim Null (/ + A(qM{t%0)) < 2
for ίe[0,1]. Since (/ + A(qM(t\0)) can have a nontrivial nullspace for only a finite
number of t in [0,1], and / + ^4(4MW> &) does not have a nullspace for k > 0, we
complete the proof with a finite number of applications of Lemma 5.1. •
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We are now ready to prove the main result of this work. Let Θx be the connected
component of Θ containing ΘnHr^N. Recall that ΘnHr

N is dense in Hr

aN.

Theorem 5.4. The Frechet derivative of the backscattering map at q is an isomorphism
of HaN when q belongs to an open, dense subset Θ2 of'Θx. Moreover, Θ2r\Hr^N is
dense in Hr

aN. By the implicit function theorem the backscattering map is an analytic
homeomorphism on a neighborhood in HaN of any qeΘ2.

Proof The zero potential belongs to Θx. Moreover, the Frechet derivative of the
backscattering map at the zero potential is [Tf~\(ξ) = — f(2ξ) which is an
isomorphism. Thus, letting Θ2 be the subset oίΘ^ for which dS(q) is an isomorphism,
Θ2 is nonempty. Since dS(q) is analytic in q and Fredholm, Θ2 is open. If Θ2 is not
dense in Θl9 then, since Θί is open and connected, the boundary of the interior
of Θc

2r\Θί must be nonempty. Choose q0 in this set. Then any ball Bε =
{II4 — 4o \\<X,N = £} must contain points in the interior of Θ2 n Θ 1 and in Θ2. Choose
ε small enough that Bε<=Θί9 and pick q1e(92nBε and q2e(intev\or Θc

2nΘί)nBε. Let

t)q2 ίe [0, l ] .

Since dS(q) is analytic in q on Θ and Fredholm of index O,dS(q(t)) can fail to be
an isomorphism for only a finite number of t in [0,1], This contradicts q2e interior
Θc

2nΘl9 and hence Θ2 is dense in Θγ.
Now suppose that we have qoeHr

(xNnΘί such that dS(q) has a nontrivial
kernel for $£#«,# with \\q-q0Ljv < δ, for some δ > 0. Introducing a finite rank
operator K such that dS(qo) + K is invertible and taking the determinant of
(dS(q) + K)-\dS(q)) = 1- (dS(q) + K)~ 1X, we get a C-valued analytic function λ(q)
on HaN such that for || q — q0 | |αJV < δf < δ, dS(q) has a nontrivial kernel if and only
if λ(q) = 0. As the Fourier transform of a space of real-valued functions, Hr

aN is a
real subspace of H α J V , i.e. given feHaN, f = fι +if2, / i a n d f2eHr

aN. It is a
standard result that an analytic function vanishing on an open subset of a real
subspace vanishes identically. One can see this by checking that complex Frechet
derivatives of all orders must vanish on such a subset—as in the proof of this
result for functions of one complex variable. Thus we conclude that dS(q) has a
nontrivial kernel for q in a neighborhood of q0 is HaN. This contradicts the density
oϊ(92inΘ1. M

Section 6. Real Potential and the Restricted Backscattering Map

When we restrict the backscattering map to Hr

aN n Θ, we cannot expect its range
lie in Hr

aN. Since Hr

aN is the Fourier transform of a space of real-valued functions,
one natural way to proceed is to take the projection of backscattering which is
the Fourier transform of taking the real part. Thus, we define the "restricted
backscattering map":

Thus Sr maps all of HatNnΘ into Hr

aN. When we restrict Sr to Hr

ajNnΘ, it is a
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real-analytic function with Frechet derivative given by (see (4.7)),

-π

2

_ 3 Γ | h(ξ-2n,-ξ,\ξ\)υ(2n) t h(-ξ-2η,ξ,\ξ\)ϋ(2η)

, A β C Γ Γ K
J

3

 J

3 ( | τ | 2 _
R R |_ VI I

h(ξ,τ,\ξ\)h(τ-2η,-ξ,\ξ\)v(2n)

-(\ξ\ + i0)2)(\2η~τ\2-(\ξ\ + i0)2)

U-ξ,τ,\ξ\)Kτ-2η,ξ,\ξ\)ϋ(2ή)
dηdt.

^(\τ\
2-(\ξ\-i0)2)(\2η-τ\2-(\ξ\-i0))2_

If we make use of the identity t>( — ξ) = ϋ(ξ) and change variables in the appropriate
integrals, this becomes

h(ξ-2η,-ξ,\ξ\) h(-ξ + 2η,ξ,\ξ\)
_3

-4π-6 r fl h(ξ,τ,\ξ\)h{τ-2η,-ξ,\ξ\)

h(-ξ,τ,\ξ\)h(τ + 2η,ξ,\ξ\)

Thus dSr = (I + B + B + C + C)T. The proof of Theorem 4.3 can be repeated
without change to show that B2,B2, C and C are compact on HaN. The proof
applies to BB as well after one notes that changing + ίO to — ιΌ in one factor of
the denominator of 7\ (see (4.9)) does not invalidate the proof: it merely
interchanges the arguments for 5 4 and S5. Thus we conclude:

Theorem 6.1. Sr is a real-analytic mapping ofHr

aNnO into Hr

aN and its differential
is a Fredholm operator of index zero.

Analogue of Theorem 5.4 here is the following theorem. Its proof coincides
with the first paragraph of the proof of Theorem 5.4.

Theorem 6.2. Let Θ\ denote the component ofHr

aNnΘ containing the zero potential.
Then the set Θr

2 of qeΘ\ such that dSr(q) is an isomorphism of Hr

aN is open and
dense in Θ\. Hence, the implicit function theorem implies that Sr is a real analytic
homeomorphism on a neighborhood of each qeΘr

2.
The set Θ\ is certainly not dense in Hr

aN. However, one does have the following.

Proposition 6.3. The set Θ\ contains all q such that I + A(ξ,0) injective, geCJ(R 3 )
and — A + q has no negative eigenvalues as an operator on L2(R3).

Proof It will suffice to show there is a curve q(t) of real-valued functions in C^(R3)
with g(0) = q and q(t0) = 0 such that / + A(q{t\0) is injective for ίe[0, ί o ] .

Let Eof = (4π)~1 J \x-y\~ιf{y)dy. If q is a real-valued function in Q?(R 3)
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and —Δ + q has no negative eigenvalues, we claim

f (EJ)if + qEof)dx ^ 0 (6.1)
R3

for all / G C ^ ( R 3 ) . Let φ be a smooth function satisfying φ(x) = 1 for |x| < 1 and
φ(x) = 0 for | x |>2. Let φR(x) = φ(x/R). Given feC$(R3)9 let u = Eof and
uR = φRu. By assumption

Since |M| = 0(|x|~1) and |Vu| = 0(|x|"2) for |x| large, one checks easily that

lim J ΰR( — ΔuR + quR)dx = j ΰ( — Δu + qu)dx,

which implies (6.1).
If we now assume that / + A(q,0) is injective on HaN, it follows that / + qE0

is injective on CJ(R3). Since (6.1) implies that

^ ί (Eog)(g + qEog)dχ J (βj)(f + qEof)dx
R 3 R 3

for all f,geC$(R3\ if f (£^/)(/ + qEof)dx = 0, then f (β^g){f+ qEof)dx = 0
R 3 R3

for all geCQ(R3). Hence/ + qEof = 0, which contradicts the injectivity of / 4- qE0,
if / # 0 . Thus

ί (6.2)
R 3

for all nonzero /eCJ(R 3).
Let χeCg^R3) be a nonnegative function which is identically 1 on the support

of q. We define

w h e r e tx is c h o s e n large e n o u g h t h a t q + txχ is n o n n e g a t i v e . N o w

l(Eof)(f + q(t)Eof)dx>0 (6.3)
R3

for all nonzero feC%>(R3). For ίe[0, ίx ] (6.3) follows from (6.2) and for te\tx, tx + 1]
it follows from the strict positivity of J" fEofdx. If / + A(q(t\0) had a null vector

R 3

fsHaN for some te[O,tί +1], then one would have dβ

ξfeHaNr for all N' and
jS by Lemma 3.3. Thus f + q(t)Eof = 0 and £0/eC°°(R3). Hence / G C ? ( R 3 )

contradicting (6.3). •
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