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Abstract. The partition function of the Thirring model on a Riemann surface
with boundaries is calculated using the method of Freedman and Pilch by
introducing an auxiliary vector potential in the path integral of fermion
representation. The Hodge decomposition on manifolds with boundaries is
used to integrate over the harmonic forms. The result agrees with the bosonized
calculation. The determinants of Dirac operators with mixed Neveu-Schwarz
and Ramond boundary conditions are expressed in terms of the Riemann
θ-functions of the doubled surface.

1. Introduction

The determinants of the Laplacians and the Dirac operators on a closed Riemann
surface have been studied extensively in the Polyakov formulation of the closed
string theory [1, 2], For the open strings, the world sheets are Riemann surfaces
with boundaries [3]. Determinants of the Laplacians with both Dirichlet and
Neumann boundary conditions were calculated and used in the study of open
bosonic strings [4, 5], In this paper, we calculate the determinants of Dirac
operators with Neveu-Schwarz and Ramond boundary conditions. These deter-
minants are useful in the open superstring theory, where the bosonic coordinates of
the world sheet live on a Riemann surface with boundaries.

The determinants of Dirac operators coupled to an abelian gauge field on a
closed Riemann surface with boundaries were calculated by Quillen's method of
holomorphic anomaly [6, 2]. The result was soon used to prove the bosonization
of first order fermionic systems on a closed Riemann surface of higher genus [7, 8].
Recently it was also used in the calculation of the partition function of the massless
Thirring model in the fermion representation by introducing an auxiliary vector
potential [9]. The same method works for the Thirring model on a Riemann
surface with boundaries. We will calculate its partition using the fermion
determinant and show that it agrees with the bosonized calculation.
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This paper is organized as follows. In Sect. 2, the geometry of Riemann surfaces
with boundaries are studied by the doubling or the method of images [4]. In
particular, the moduli of these surfaces can be described by the period matrices of
the doubled surfaces. Hodge decompositions on manifolds with boundaries [10,
11] are applied to study harmonic 1-forms on Riemann surfaces with boundaries.
In Sect. 3, spin structures and boundary conditions on a Riemann surface with
boundaries are discussed and the spinors with Neveu-Schwarz or Ramond
boundary conditions are identified with the parity even sections of spinor bundles
on the doubled surface. The determinant of the Dirac operator is obtained from the
determinant on a closed Riemann surface [2, 9], since the Dirac operator on the
doubled surface is diagonal under the parity decomposition. In Sect. 4, the
partition function of the massless Thirring model on a Riemann surface with
boundaries is computed using an auxiliary vector potential [9]. The fermion
integral is the determinant calculated in Sect. 3. The Hodge decomposition with
absolute boundary condition is used to integrate over the vector potential.
Bosonization is treated in Sect. 5. The fermion determinant is replaced by the path
integral of a circle-valued scalar coupled to the auxiliary potential [12]. Effectively,
the theory is one of a free scalar which takes value in a circle of scaled radius. The
partition function coincides with the fermion calculation after a Poisson
resummation. In the Appendix, zeta-functions of the Laplacians with Dirichlet and
Neumann boundary conditions at zero are calculated using the method of heat
kernel expansion. These values are used in the main text.

2. Geometry of Riemann Surfaces with Boundaries

This section will introduce some machinery used in the calculation of the
determinants of the Dirac operators and the partition function of the Thirring
model.

Consider an oriented Riemann surface M of genus g but with n +1 boundaries
n

dk, (fc = 0,1,...,w), i.e. dM= [j dk, Topologically, M is characterized by two
fc = 0

numbers, g and n. More precisely, M is topologically equivalent to the Riemann
sphere with g handles added but n +1 disks removed. Suppose the homology on
the g handles is generated by abb{ (i=l,2, ...,g). Then

dimH1(M) = 2g + n, (2.1)

where ab bi (ί = 1,..., ή) and dk (k = 1,..., ή) form a basis of H^M). Note that d0 is
homologically dependent on du...,dn.

Assume that M satisfies the boundary condition for the world sheet of open
string theory [3], i.e., the boundaries are geodesies on the surface or there is a
tubular neighborhood such that the metric is a product [13]. By the Schwartz
reflection principle, M can be extended to a closed Riemann surface Σ, called the
doubling of M [4], with an anti-holomorphic involution σ: Σ-+Σ, σ2 = l such that
M = Σ/σ. The genus of Σ is 2g + n. As is shown in Fig. 1, in addition to the
generators in H^M), the homology basis of Σ consists of α , b'i9 which are the mirror
images of ab b{ (with the orientation chosen to give the correct intersection
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Fig.1

numbers) and ck, (k = 1,..., n) which intersect two boundaries. The map on HX(Σ)
induced by σ is given by

σ^ = - di9 σj)t = b'b σ*ck = - ck, σjk = dk, (2.2)

and σl = l.
It is more convenient to study directly the geometry of the closed Riemann

surface Σ with an involution σ. Suppose AIf Bj (I = 1,..., 2g + n) form an arbitrary
homology basis of Σ such that their intersection numbers are fixed by

J(AI9 Aj) = J(BJ9 Bj) = 0, J(AJ9 Bj) = - J(BI9 As) = δu. (2.3)

The induced map σ* is given by a matrix Γ e GL(2g + n, Έ\

σ+A^ΓjjAj. (2.4)

σ2 = 1 implies Γ2 = 1. Since σ is orientation reversing, σ^ changes the sign of the
intersection numbers. Hence

σ^B^-Γjβj. (2.5)

If Σ is the doubling of M, we can choose

In this case

Γ = -

0
-Igxg

0

_J
0

0

0
0
J

(2.6)

(2.7)

The period matrix of Σ has some special properties because of the
Z2-symmetry [14,4]. Suppose ω7(J = 1,..., 2g + n) form a basis of the holomorphic
1 -forms on Σ, normalized by J ω7 = <57j. Then f ω ; = Ω7 j is the period matrix of Σ.

Since σ*ω7 is also holomorphic, it can be expressed as a linear combination of ω/s.
I n f a C t * - r /o<n

σ*ωj = Γjjωj. (2.8)
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This follows from a simple calculation

Furthermore,

or equivalently,

Ω=-ΓTΩΓ. (2.9)

If Σ comes from doubling M and Γ is given by (2.7), then

I A B C\

Ω= l-B -A - C , (2.10)

where A = Aτ, B = — Bτ are gxg matrices, C is a g x n matrix and D is an n x n
matrix satisfying ReD = 0 and D = DT.

Finally, we make a useful observation that ImΩ is block diagonalized
according to the projection operators P ± = ̂ (1 + Γ), while ReΩ is nonzero only in
the off-diagonal blocks. To see this, write (2.9) in the following way:

A simple calculation yields

P + ReΩP_+P_ReΩP + ,P + ReΩP + =O,P_ReΩP_=O; (2.11)

= P + ImΩP+ + P _ ImΩP_,P+ ImΩP_ =0,P_ ImΩP+ = 0 . (2.12)

In particular,

(ImΩ)~ 1 =P + (ImΩ)" 1 P + +P_(ImΩ)" 1 P_. (2.13)

The Hodge decomposition

Ωp{M) = dΩp-1®δΩp+1@kerAp,kerAp^Hp{M) (2.14)

on a closed compact manifold M is well known. To generalize it to the case of
manifolds with boundaries, boundary conditions for d or δ should be specified to
make sure that δ is the adjoint oϊd up to a minus sign. There are two ways to do
this, corresponding to two different Hodge decompositions on manifolds with
boundaries. We state the main results of the Hodge-de Rham theory for manifolds
with boundaries but refer readers to the mathematical literature for proof [10,11].

A differential p-form ω e ΩP(M) on a Riemannian manifold with boundary dM
is called tangential at the boundary if any contraction with a vector field normal to
the boundary vanishes. It is normal at dM if it vanishes when contracted with any p
vector fields tangent to the boundary. A form ωeΩp(M) satisfies the relative
boundary condition if both ω and (5ω are normal at the boundary. It satisfies the
absolute boundary condition if ω and dω are tangential at the boundary. The spaces
of forms with these boundary conditions are denoted by ΩP

el(M) and Ωfbs(M)
respectively.
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Hodge Decomposition with Relative Boundary Condition. Let M be a manifold
with boundary dM. Suppose the operators dτel: ΩP~X

 1(M)-+ΩP(M) and Arel = dτelδ
4- δdrel: Ωp

el(M)-+Ωp(M) have relative boundary condition, then

Ωp(M) = drelΩ
P~ι

 ι(M)®δΩp+1(M)®kerAP

el. (2.15)

Furthermore, the space of harmonic forms with relative boundary condition is
isomorphic to the relative cohomology group HP(M, dM).

Hodge Decomposition with Absolute Boundary Condition. Let M be a manifold
with boundary dM. Suppose the operators δahs: ΩP£S

 ι(M)^Ωp(M) and zlabs = dδΆhs

+ δahsd:Ωp

hs(M)-+Ωp(M) have absolute boundary condition, then

Ωp(M) = dΩp~ \M)®δahsΩ
p+s

 1 (M)φker Ap

hs. (2.16)

Furthermore, the space of harmonic forms with absolute boundary condition is
isomorphic to the absolute cohomology group HP(M).

For a Riemann surface M of genus g with n + 1 boundaries,

dimiί \M9 dM) = dimtf^M) = 2g + n. (2.17)

So the number of harmonic 1-forms with relative and absolute boundary
conditions are both 2g + n. Since the absolute boundary condition appears
naturally in the sections below, we will study it in more detail. A 1-form A can be
written as

A = ds + *dp + h, (2.18)

where seΩ°(M) is a function, hekerAlhs is harmonic with absolute boundary
condition and *peΩlhs(M) or peΩ%(M) is a function satisfying the Dirichlet
boundary condition p\dM = 0.

To construct an explicit basis for the harmonic forms in kerzj^s? w e consider
the doubled surface Σ of M. Since a harmonic form ί i o n l with the property
σ*h = h satisfies the absolute boundary condition when restricted to M, it suffices
to look for harmonic forms invariant under the involution. There are 4g + 2n
harmonic 1-forms αi9 odb βb β'b γk9 δk (i = l,...,g, fe = l,...,n) on Σ9 dual to the
homology basis shown in Fig. 1, such that

J *,= I α}= ί βj= I β'j = δφ J yι= j δ^δu, others=0. (2.19)
Λ, α't bi b't ck dk

The 2g + n linear combinations

α, = α£ - α;, ^ = βt + β'b Sk=]/ϊδk (2.20)

are invariant under the involution σ*9 hence they form a basis of the harmonic
forms with absolute boundary condition on M. Every harmonic form hekevAlhs

can be written as

h = 2πί ί ufii- Σ ViPi- Σ w
\ / = l i = l fc=l /

= 2π[(α, α', y) (7 - (β9 β'9 δ) V]9 (2.21)
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where

U= \-ul V=\ v (2.22)

\ 0 / \]/2w)

satisfy

P+U = U,P-U = O,P_V=V,P + V=O. (2.23)

The norm of h on M is half of its norm on Σ given by [9]

(Kh}Σ = 4π2(UΩ+ V)(lmΩy1 (ΩU+ F). (2.24)

A simple calculation shows
2 . (2.25)

3. Spin Structures and Determinants
of Dirac Operators on Riemann Surfaces with Boundaries

In this section, we will study the spin structures on a Riemann surface with
boundaries and calculate the determinant of the Dirac operator with mixed
Ramond and Neveu-Schwarz boundary conditions.

It is well known that the number of inequivalent spin structures on a compact
Riemannian manifold is equal to the number of the elements of the group
H1(M9Z2) when the second Stiefel-Whitney class w2(M)sH2(M,Έ2) vanishes.
Intuitively, this is because there are two inequivalent choices of sign along each
homologically nontrivial loop. However, there is not a canonical spinor bundle,
except when the manifold is flat, like a torus. More precisely, H1(M,Z2) is in 1-1
correspondence with the set of the differences of the spinor bundles.

Fortunately, for a closed Riemann surface of genus h, there is a more definite
way to describe the 22h spinor bundles, provided that a homology basis is chosen.
To see this, recall the Jacobian map / from the set of divisors of degree zero to the
Jacobi variety J(Σ) = (£h/Έh + ΩΈh defined by

J(D)=fωeJ(Σ), (3.1)
c

where c is a 1-cycle such that dc = D. It is a miracle of two-dimension that the chiral
decomposition of the spinor bundle S = S + @S_ is also a decomposition to the
holomorphic and anti-holomorphic line bundles [2]. Denote Dα the divisor of the
holomorphic piece, where α labels spin structures. There is a 1-1 correspondence
between Da and a symmetric translate [15, 2, 8]

eβ = J - J [ D β - ( f t - l ) P 0 ] (3.2)

of the <9-divisor [16], a complex variety in J(Σ) of codimension one which consists
of the zeros of the Riemann θ-function. Here Po e Σ is an arbitrary fixed point and
A is the vector of Riemann constants in the Riemann vanishing theorem [17,14].
Hence a spin structure Da can be described by two characteristics h
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Γ + l

Fig. 2

defined by ea = ΩE + F. In particular, there is a preferred spin structure Do which
corresponds to E = F = 0.

If Σ is a torus with moduli parameter τ, J(Σ) is holomorphic equivalent to Σ.
Choose Po = 0, i*ii = -2+iτ, Pιo~h ^io = i τ a s shown in Fig. 2. The vector of
Riemann constants is Δ = P0P\v The preferred spin structure isD0 = jPίί —^Po,
the spinor bundle of anti-periodic conditions along both homology loops.
Nonzero symmetric translates of the <9-divisor Θ = {Pu} correspond to other spin
structures ίP 1 0 -iJ\>, iΛ>i—έΛ>, °

To describe boundary conditions of spinors, choose an orthonormal frame
{eω a = 1,2} near the boundary such that on dM, eγ is tangent to the boundary and
e2 is the outer normal direction. Choose a spinor basis such that the representation
of the Clifford algebra is given by two Pauli matrices σί9 σ2. Then the chiral

operator y5 = σ3 is diagonal. If the spinor ψ=i + ) satisfies ip+=y)_ or

ψ+ = —ψ- on the boundary, we say it satisfies the Ramond or Neveu-Schwarz
boundary condition respectively. Since the relative phase of ψ+ and φ_ is not yet
fixed, we can always require ψ to be Ramond on one of the connected components
of dM, say d0. These boundary conditions are necessary to make sure that the
boundary terms from the variation of the action vanish to get the correct equations
of motion [18]. Mathematically, it turns out that the Dirac operators with these
boundary conditions are self-adjoint.

Next, we define a spinor bundle 9> on the doubled surface Σ = MuM', where
M' = σ(M), using the spin structure and the boundary condition on M. The map
σ: M-^M' defines a pull-back bundle S' = σ*S on M\ In fact σ*S'± = S+, since σ is
orientation reversing. If the spinor bundle £f on Σ satisfies Sf\u = S and £f\M, = S\
then its characteristics must have the form

(3.3)E=\-ε\, F= κ\,
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where &,κe{\ΊίjΊL)9, λe(^Z/Z)n describe the spin structure of S over M, while
δ e(^Έ/Έ)n describes the spin structure along the new loops ck9 which depends on
how the two spin bundles S and S' are glued together on the boundary dM.

The glueing is done according to the type of boundary conditions. If the spinor

ψ is Ramond on dh we identify ψ = ί + \eSandψ'= ( ,+ \eS' ondkiΐϊψ±=ψ'±.

If ψ is Neveu-Schwarz on dk, we identify them iff ψ± = —\p'±. Thus the spin
structure along ck depends on the type of boundary conditions on dM. For
example, if M is a cylinder with two boundaries d0 and du then Σ is a torus with
homology basis cu dv Ramond boundary condition is required on d0. If the spinor
is Neveu-Schwarz on dί9 then it is anti-periodic along cu hence δ = 0. On the other
hand, if the spinor is Ramond on du then δ = \. In general, if dM has n + \
connected components dk,k = l,...,n, then δk = 0 or \ depending on whether the
boundary conditions on dfc_x and dk are of the same type or not.

The motivation for the above construction of 9* is that we can identify spinors
on M satisfying the desired boundary conditions with the spinors on Σ which are
even under parity. The parity of the spinors makes sense because the pull-back
bundle σ*^ is isomorphic to 9, as we show below. Consider a holomorphic line
bundle L with a divisor D of degree r over a Riemann surface Σ with an involution
σ. Then σ*L is also holomorphic, with divisor σ*2λ Here bar means complex
conjugation. The images under the Jacobian map are related by

/(σ*D - rσ(P0)) = f ω = f σ*ώ = J Γ[ ω = ΓT/(D - rP0). (3.4)
σ*c c c

If y is a spinor bundle of characteristics £, F given by (3.3), then the symmetric
translate of Θ corresponding to σ*y is

(3.5)

where

(3.6)

This is the same as ΩE + F modulo the period lattice LΩ =
because

ΓτA = A(modLΩ), (3.7)

which follows from

§(ϊ \Ω) (3.8)

and the Riemann vanishing theorem. This proves σ*£f = £f, hence σ* maps
sections of Sf to themselves. Since (σ*)2 = 1, the bundle decomposes into the parity
even and odd parts, $f = ̂ e v 0 ^ o d , where

{ =-\p}. (3.9)

This decomposition is different from the chiral decomposition.
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The local frame {ea} on M near dM can be extended continuously to a frame
defined on a tubular neighborhood dM x (— ε, ε) of dM on Σ, e2 being the inner
normal direction of M' on dM. Locally, the parity operator σ* is given by

σ*ψ(p,y)= ±<Tiψ(P, -y),pedk9ye(-ε,ε). (3.10)

The ± sign is chosen depending on whether there is a twist when the spinors are
glued on dk, or equivalently whether the spinor is Ramond or Neveu-Schwarz on
dk. In both cases, the boundary condition is equivalent to

σ*ψ(p,0) = ψ(p,0),pedk. (3.11)

Hence the spinor on M with the desired boundary condition is equivalent to a
parity even spinor on Σ, i.e. a section of y e v .

Finally, we study the Dirac operator on a Riemann surface with boundaries.
Recall that the determinant of the non-chiral Dirac operator coupled to a 1/(1)
gauge field on a closed Riemann surface Σ is given by [2, 9,19]

(3.12)

where Ω is the period matrix of Σ9 E, F are characteristics of the spin structure and
p, U, V appear in the Hodge decomposition of A

A = ds + *dp + 2π(oc-U-β V). (3.13)

To calculate &QtpM(A) with the required boundary condition, we should study
more closely the boundary condition and choose the appropriate type of Hodge
decomposition for the potential A. Since p is the infinitesimal generator of a local
chiral transformation, which changes the relative phase of ψ+ and φ_, the
boundary condition on spinors requires p\dM = 0. Thus we shall use the Hodge
decomposition with absolute boundary condition. On the other hand, s is the
infinitesimal generator of a local gauge transformation, which only changes the
overall phase of ψ. We will make a technical assumption to be justified later, that
the 1-form A satisfies the absolute boundary condition on <3M, or equivalently, the

ds
function s satisfies the Neumann boundary condition - = 0. In this case, A can

be extended to a smooth 1-form on Σ satisfying σ*A = A. Moreover, the Dirac
operator lpΣ(A) commutes with the parity operator σ*, hence it is diagonalized
under the parity decomposition £f = i

(3.14)

where

Both pey and ψoά are self-adjoint operators and have well-posed eigenvalue
problems. Hence

det$>od. (3.16)

The chiral operator y5 anti-commutes with both the parity σ* and the Dirac
operator ψΣ{A). This implies that γ5: y e v - » y o d is a bundle isomorphism and that
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the spectrum of pey is exactly the negative of that of ψoά. Up to a possible sign, we
have

det$>ev = d e t | ) o d . (3.17)

Hence

detpev = (detpΣ(A))112. (3.18)

Notice that the choice of signs in (3.17) and (3.18) is only a matter of convention;
this is different from the sign ambiguity in Witten's SU(2) anomaly [20] due to
non-trivial global gauge transformations.

If Ω is the period matrix of the Riemann surface with involution, U, V come
from a harmonic form with absolute boundary condition and £, F are character-
istics of a parity invariant spinor bundle, then the Riemann ^-function in (3.12) is
real. In fact,

Ί

Since the spinors on M with the required boundary condition are identified with
the parity even spinors on Σ, detpM(A) = det]j)ey, our final result is

(3.20)

The modular invariance of dQtpM(A) follows from that of det lf)Σ(A). It is also

easy to see directly. Under a modular transformation I I e Sp(4g -f 2n, ΊL), the
θ-function transforms as [21,2] ^ '

e)det(CΩ + D) 1 / 2#Γ^+^Γ|(O|Ω), (3.21)

where U', V given by

(3.22)

are the coefficients of the harmonic form under the new basis and E\ F'
depend only on £, F and the modular transformation. The factor after the phase is
canceled by the contribution from the change in det(ImΩ)1 / 4. Finally, Ό\ V satisfy
the same property (2.23) as U, V if the modular transformation commutes with σ^
on the homology basis. In this case, the phase and the determinant in (3.21) are
separately real.

4. Calculation of the Thirring Model Partition Functions

The determinants of Dirac operators on closed Riemann surfaces were used in
calculating the partition functions of the massless Thirring model in the fermion
representation [9]. An auxiliary vector potential was introduced in the fermionic
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path integral. The functional integral over the fermion field is the determinant of
the Dirac operator coupled to the gauge potential. The integral over the auxiliary
field was calculated using the Hodge decomposition, integrating separately over
the exact, coexact as well as the harmonic components. In an earlier work [22], a
similar method was used to calculate the partition function of fermions coupled to
gauge fields in superstring theory. However, a sum over integer and half-integer
harmonic components is used and the partition function obtained there was rather
different from [9].

In this section, we compute the partition of the Thirring model on a Riemann
surface with boundaries. Consider the following path integral

where gaβ is the metric on M and Λa is an auxiliary vector potential. The partition
function of the Thirring model with coupling constant Q

Z{Q) = J ΘψΘψ e M L 2 J (4.2)

can be recovered if one performs the integral over Aa after a Gaussian shift A(X-^Aa

— ίnQψyΛψ. Because of the Neveu-Schwarz or Ramond boundary condition on the
fermion ψ, the shifting —iπQψy^dσ01 is a 1-form satisfying the absolute boundary
condition. Hence we only have to integrate over such A in (4.1), which justifies an
assumption we made before.

Changing the order of the integrations, the integration over the fermion ψ is

J^ψe^'^^'^detJ)^), (4.3)

the determinant of the Dirac operator (3.20) calculated in Sect. 3. The integral over
Aa can be transformed, via Hodge decomposition (2.18), into the integrations over
the non-zero modes of s e Ωχ(M), p e Ω°D(M) and the harmonic forms h e ker J*b s, or
equivalently, over u, v, w in (2.21). The Jacobian involved in this transformation is
independent of the integration variables and therefore cancels between the
numerator and the denominator in (4.1). Thus

Z(Q) =

\ l(ds, ds}M +(dp, dp) M + 2π2(U Ω + V) (Im Ω)~1 (ΩU+ V)~]}

I 2πQ 1

J 9s9pdudvdw expi - - * - [<<fc, ds)M + (dp, dp}M + 2π2(UΩ+ V)(ImΩ)-ι (ΩU + V)]

2det(Imί2)vol(M)Y/4

/2det(ImΩ)vol(M)Y

Λ det'Jx

L/4

1 \ 1/2
det — An

d e t l - .

(4.4,
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KN= $dudvdwexp\ - ^-(UΩ+V)(lmΩ) 1(ΩU+V)

+ iπ(N +U + E)Ω(N +U + E) + 2πi(N + U + E)(V + F) I,

and

- -(UΩ+ V)(lmΩy1 (ΩU + V) \.

(4.5)

(4.6)

The determinant of the Laplacian with Dirichlet boundary condition was
calculated in [4, 5], but we only need the following property from the zeta-function
regularization [23].

U ( 0 ) , (4.7)

( 4 . 8 )

where ζA(s) is the zeta-function of a self-adjoint operator A. Therefore,

V det'zl^

The value ζAJO)= — \(2g + n — 1) is derived in the Appendix. A straightforward
calculation shows

VN= $dudυdwexp \—π[ —1-1

e
xexp

U+-
1

-(N + E) P+ImΩP + U+- -(N + E)

Γ—ί_

L 1 + e
, (4.9)

(4.10)

The finite dimensional Gaussian integrals on u and v, w over the subspaces imP+

and imP_ cancel between the numerator and the denominator up to some scaling
factors. Thus

x Σ exp [iπ(N + £) Ω(iV + E) + 2πi(N + E)F]

_ /2det(ImΩ)vol(M)γ/4
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where

+ ImΩP++i(l + β)P_ImΩP_ (4.12)

is the period matrix Ω rescaled differently on the two subspaces imP±. When
Q > — 1, Ω remains in the Siegel upper half space, hence the infinite sum over N
converges. This agrees with the observation in [9].

The modular invariance of the partition function can been seen from (4.4).
Since the norm of the harmonic form is not changed under modular transforma-
tion and the Jacobian from changing the variables u, v, w cancels between the
numerator and the denominator in (4.4), the same argument for the modular
invariance of detpM(A) applies here.

As an interesting check of the main result (4.11), we consider two special cases.
First, if M is a closed Riemann surface of genus g, then Σ is the disconnected union
of M and its conjugate. There are no relations between the harmonic forms on one
connected component and those on the other. Thus the period matrix of Σ is

r -°J < 4 1 3 )

where ΩM is the period matrix of M. Furthermore,

E=( S \ F=[\ P± = U1 j , N=(m\ (4.14)

where m, n e 7Lg. Using

j 2 , (4.15)

one can check (4.11) reproduces

Z(β) = 2"* l^ltψMp^l ( 1 + β )V det ΔM )

+ (l+Q)(m-n)ImΩM(rn-n) I +2πi(m-n)κ\9 (4.16)

which agrees with formula (23) in [9] up to some numerical factors.
Next, let M be a cylinder, i.e., g = 0, n = l. Ω = iτ2 (τ2>0) is the moduli

parameter of the torus and Ω = (l+β)iτ 2 . The following determinant is well
known

det'ΔΣ = τ2

2\η{τt. (4.17)

Thus

( 4 1 8 )
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where λ describes the spin structure along the closed loop, δ = \ or 0 depending on
whether the boundary conditions on the two circles are of the same type or not.

We now return to the general case and sum over spin structures when δ = 0.
The sum over K and λ in 2πί(N + E)F = 2πi[(m — n)κ + lλ] gives the factor

Π (H-(-l) m i - R i ) Π ( l + ( - l ) λ k ) , which implies that only m-ne(2Zf, le{2Έ)n

i=ί k=l

terms contribute. Let m ' = ^ e f f , nf = m + n + 2εeZ9 and /'= -eZ π , then

NlmΩN

-π{l+Q)MImΩM + iπNRcΩM , (4.19)

where

\ (4.20)

Again, if M has no boundaries, the above result agrees with [9].

5. Bosonization

In two dimensions, certain fermionic and bosonic theories are equivalent in the
sense that there is a (non-local) transformation from fermionic to bosonic field
such that interesting physical quantities like the partition function and correlation
functions are the same in the two theories. This idea is called bosonization and was
first discovered in the massive Thirring model [24]. Bosonization of first order
fermionic system on a Riemann surface of arbitrary genus has been studied in
detail [2, 7, 8]. In this section, we start with a bosonized theory on a general
Riemann surface with boundaries and show that its partition coincides with that of
the massless Thirring model of fermion computed in Sect. 4.

We replace the fermionic determinant in (4.1) by [12]

l9φc-*<'* + Λ '* + A> '=l9φe-*'f'fi«βA+Ai»*+A> , (5.1)

where φ: M-+S1 is a circle valued scalar field on the Riemann surface M. As in the

fermionic theory, φ has to satisfy the Neumann boundary condition — = 0
dM

such that the boundary terms from the variation of the action vanish [18]. The
action is invariant under local gauge transformations A-+A' = A + ds, φ-+φf
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= φ — s. If the boundary condition on φ is preserved, the Neumann boundary
condition on s implies once more that the vector potential A can be chosen to
satisfy the absolute boundary condition.

The partition function is

Z{Q) =

7ί + 1 ~:+l

. (5.2)

After a Gaussian shift A-+A-Y dφ in the numerator, the integral over A is

simple,

Z(Q)=

det-zV

d e t ' ^ + 1 , ^

Effectively, this is equivalent to the theory of a free scalar field which takes its value
on a circle of radius shifted by a factor of (1 + Q)~1/2 [12].

The precise meaning of being S1-valued is the decomposition of φ into the
fluctuation and the soliton part [2], i.e.,

dφ = dφ'+ Σ {θL-a')'n-{β + β') m-δ U (5.4)
m,ne(iZ)<Ue(£Z)n

where the R-valued function φ' e Ω^(M) is the nonzero mode of the fluctuation and
the sum is the soliton part. Therefore,

where

(5.5)

(5.6)



148 S. Wu

The factor (vol(M))1/2 is the contribution of the zero mode. The determinant of the
Laplacian with Neumann boundary condition is [4, 5]

£)"' 2 . (5.7)

The sum over m and / can be rewritten using the Poisson summation formula (see,
e.g. [25]),

Σ e x P
|

-τ77^^M/(Imί2)-1M'-2M'(Im0Γ1Re0ΛΓ
|_ 4 ( * + Q) J

g + n

^xplNRQΩilmΩy1 ReΩJV]

x Σ exp[-π(l+β)MImΩM + iπiVReΩM], (5.8)

where

Π
M= m . (5.9)

\2//

So the partition function of the bosonized theory is

— — L

2det'AΣ J

x Y exp - - -NlmΩN
m,nekleZ» ^l 4(1+0

J.
This agrees with the fermionic calculation (4.19) up to factors which depend on
neither the moduli parameters nor the coupling constant.

Appendix. Calculation of the Zeta-functions at Zero

We compute the values of £^(0) and ζA]D(0) which are used in Sects. 4 and 5.
Recall that for a non-negative self-adjoint operator A acting on a Hubert space,

the zeta-function of A is defined by [11, 26]

where prime means summing over the nonzero eigenvalues λn Φ 0 only. The zeta-
function regularization of the determinant [23]

det'A = e-ζ'Ai0) (A.2)
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implies property (4.7). If A is an elliptic pseudodifferential operator of degree m on
a compact manifold of dimension d, the above sum is absolutely convergent when

Res > —, hence ζA(s) is holomorphic in that region. It was shown [27] that the ζA(s)

can be extended analytically to a meromorphic function on the whole complex

plane, with poles which can be situated only at the points s7- = J = 0,1,..., or

at the negative integers. In particular, ζA(0) is finite. m

The zeta-function can be computed using the heat kernel. In fact,

l~itTfQ~tAdt9 (A'3)
i.e., ζΛ(s)Γ(s) is the Mellin transform of the heat kernel trfQ~tA [11, 26, 23]. The
inverse Mellin transform is

tr'e-"1 1 i t->ζΛ{s)Γ(s)ds
£711 Res = c

= Σ Res{rsUs)Γ(s);p}
Rep<c

= U 0 ) + Σ ί-RepRes{Us)Γ(S);p}. (A.4)
pΦO

The above formula makes sense for sufficiently large c>0 because of the
distribution of the poles of ζA(s) and Γ(s).

If we know the heat kernel expansion of the operator A,

t r ' e - ^ - Σ α / 1 , as t ~ 0 + , (A.5)
n

then

ζA(0) = ao. (A.6)

Therefore ζA(0) is a topological invariant (see, e.g. [28]). Notice that although ζA(s)
depends on the scaling of the manifold, its value at s = 0 is not, just like the
^-invariant in the index theory on manifolds with boundaries [13, 28]. For the
Laplacian on a compact Riemannian manifold Σ of dimension d, the heat kernel
expansion is [29, 30, 28]

* ^ ^ J, as f~0 + , (A.7)

where R is the Ricci curvature scalar. If Σ is a Riemann surface of genus h, then
applying the Gauss-Bonnet theorem,

, as ί~0 + . (A.8)t r e ^ ^ ( f t
4πί 3

Hence

U(0)=-i(Λ-l)-l . (A.9)
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Let M be a Riemann surface of genus g with n +1 components of boundaries.
AN and ΔD are the Laplacians acting on the functions with Neumann and Dirichlet
boundary conditions on M. These spaces Ω%{M) and Ω°D{M) can be identified
respectively with the spaces of functions on the doubled surface Σ which are even
and odd under the parity σ*. Hence

(0) = coefficient of t° in t r ' e " ^

and

CAJP)-£AJP) = coefficient of t° in t r V * e ' ^ . (A.ll)

Now

tτσ*e~tAΣ = f d2z/z|σ* J dw|w\<w|e"^|z>

= J d2zrf2W(5(2)(z-σw)<w|e~ίzl2:|z>

= J d2z<z|e-M E |σz>

J rf2z<z|e-'Js|σz> + o(ί). (A. 12)
zedMx(-ε,ε)

In the last step, the integral over Σ is changed to one on a tubular neighborhood of
dM because only pairs of points close to each other have significant contribution
to the heat kernel at small t. For the same reason, the integral can be rewritten as
one on dM x R.

= f d 2 z<z|e" ί / 1 ^ x

dxdy(x\e-tAdM\x> (y\e~tΔ*\-
xedM,yeΊR.

= f
xedM

0( ί) ( A 1 3 )

Therefore,

CjN(0)-CdD(0) = ΐ{coefficient of ί° in t rσ*e- '^ M }- l

= - 1 . (A. 14)

Here we have used
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where ζ(s) is the Riemann zeta-function. Finally, from (A. 10) and (A. 14), we get
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