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Abstract. We prove that one-point functions of all scaling fields in minimal
left-right diagonal models of conformal field theory are modular covariant.
This consistency condition should allow one to extend these minimal models to
Riemann surfaces of arbitrary genus.

1. Introduction

In recent times, the problem of extending two-dimensional conformal field theory
[1] to higher genus Riemann surfaces has received considerable attention [2,3].
The main reason for this interest lies in the fact that quantum corrections to
classical string theories are given perturbatively in terms of correlation functions
of some conformal field theory on Riemann surfaces of positive genus. On the
other hand, the requirement of modular invariance of the partition function on the
torus has turned out to be a simple but powerful tool to write down candidates for
conformal invariant models [4, 5], giving a recipe for finding universality classes of
statistical systems at the critical point.

In general, however, several important questions remain unanswered. Specifi-
cally, the partition function on the torus gives only the field content of a conformal
invariant theory: Is there a consistent (crossing symmetric) operator product
algebra corresponding to this field content? Can this theory consistently be
extended to higher genus Riemann surfaces? Answering the first question requires
solving the conformal bootstrap equations [1] and checking the consistency of the
solution. These equations have been solved in some models [6,7]. As for the
second question, there is general agreement [8,9] that a necessary and sufficient
condition for a consistent conformal field theory defined on the sphere to admit an
extension to higher genus is that the one-point function of all scaling fields on the
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torus be modular covariant. Although the proof of the sufficiency of this
condition may be cumbersome, depending on the way one constructs higher
genus Green functions, the idea is quite intuitive: using crossing symmetry on the
sphere, one may view a general punctured Riemann surface X of genus g as a
punctured sphere with g tori connected to it by tubes. Summing over all
intermediate states propagating along the tubes gives Green functions on X as
infinite sum over products of Green functions on the sphere times one-point
functions of secondary fields on the torus. Since the modular group is generated by
Dehn twists along the cycles of the tori, it should be sufficient to check the
covariance of one-point functions of all secondary fields under modular
transformation.

In this paper, we study the modular transformation properties of the one-point
conformal blocks for the discrete series of minimal models with central charge
c < 1 [1]. In a recent paper [10], an expression for the conformal blocks on the torus
of minimal models in terms of free field vertex operators was given (see also [11-
14] for related results). It is a generalization to genus one of the Feigin-Fuchs
representation [6] of the conformal blocks. We show here that the one-point
conformal blocks transform linearly into each other under modular transfor-
mations, and we compute the representation matrices of the generators T and S.
Inserting the Dotsenko-Fateev solution for the structure constants, we prove that
the one-point function of primary fields of left-right symmetric models are
modular covariant. We show, using the Eguchi-Ooguri Ward identities, that the
same holds for all secondary fields. Thus left-right symmetric minimal models
should be extendable to higher genus.

Our result for the representation matrices of modular transformations equally
apply to the non-symmetric (A, D) and (A, E) models. The modular covariance of
the corresponding one-point functions in these latter cases could be studied by
inserting the structure constants computed in [15].

2. Conformal Blocks on the Torus

The primary chiral fields φ^M (z) of a minimal conformal field theory with central
charge c = 1 — 6 (p —p')2/pp\ wherep and// are positive relatively prime integers,
are holomorphic operators mapping the irreducible Virasoro highest weight
representation space (IHWS) JfM to the IHWS JTL. An IHWS tfN is labeled by
two indices N=(nf,ή) belonging to the Kac table F= {1 ̂  ή rZLp' — 1,
1 =nύp — I}? a n d has highest conformal weight

h.=h. . = vι*'~'ψ > -w-v) H I )
fίn'n np' -n',p-n Λ „„' ' \^ XJ

{n'p-np')2-(p-p')
App'

The operator φ^M (z) is uniquely determined up to a constant by its commutation
relations with the Virasoro generators,

[Lk, φL

NM (z)] = z' + 1 | ώ (z) + hN(k+\)zk φ'ΛM (Z) . (2.2)
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The primary fields of (left-right symmetric) minimal models are constructed as
linear combinations of chiral fields in the z-variable times chiral fields in the in-
variable:

Φ* (*,£) = Σ D^MφL

NM(z)®φL

NM{z), (2.3)
LMeFo

acting on (J) Jf7 ® Jtifj. Here Fo is the fundamental domain
JeF0

{{n\ ή)eF\pn' <p' n). The coefficients D^M coincide with the structure constants
of the operator product algebra if chiral primary fields are suitably normalized.
We will however choose another normalization.

In [10] it was shown that the spaces 3tfN can be identified with the space of
BRST states in a direct sum of Fock spaces of definite charge, for a suitable BRST
operator Q, and that chiral primary field can be identified with BRST invariant
"screened" vertex operators acting on these Fock spaces. Explicitly,

r' r

Π eia-φMdu'j J ] e^+^duj,
j = 1 ^ (2 4 )

( ) f /

The U(l) charges are [6] <xN = (1 — «')α_/2 + (l —n)ot + /2, with screening charges
α l =p/p', α_α+ = — 1 , and the free bosonic field is normalized as
(φ (z) φ (w)> = — 2 log (z — w). The number of screening charges is determined by
the neutrality condition l=m + n — 2r—\,Γ = n' + m' — 2r' — l. The phase Θ^M

was introduced to simplify further computations.
The Green functions of chiral primary fields (conformal blocks) on the torus

were then computed in terms of traces of screened vertex operators over Fock
spaces, with a suitable projection on BRST states. This construction gives an
integral representation of conformal blocks on the torus. Here we are particularly
interested in the one-point function. The torus is identified with the complex plane
modulo the identification of z with qz, q = exp2τπτ, \q\ < 1, andean be viewed as
an annulus with identified boundaries. The unnormalized one-point function is
then

with conformal blocks given by

J£S(z\τ) = T r ^ M φ%M (z)qL«. (2.6)

In order to study modular properties of conformal blocks it is more convenient to
represent the torus as C\Z + τZ with complex coordinate w, related to z by
z = exp2πήv. Taking into account the term coming from the Schwarzian
derivative in the transformation of the energy momentum tensor, the conformal
block in the variable w is:

/ rh\hN

J (w\T\ — [__\ /arm (7\τ\ ^-c/24 O Ί\
JMN\W\τ) — \~j— j JMΉ\Z\τ)(l ' KZ''J

\ J
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This expression is independent of w, by translation invariance. At this point it is
convenient to introduce the notation of [5]: to every pair N = (ri, ή) in Fwe assign
an integer v:

v = n'p — np'. (2.8)

Sincep and/?' are relatively prime, v determines the pair n\ n in F. There exists a
number ω 0 with ωl = 1 mod 4/?'/?, depending on /? and /?', such that
ω0 v = n'p + np' mod 2///?. In the following we will use both the notations N, M,
.. . and v, μ, . . . , to label the representations. Upon using formula (3.40) of [10]
after some calculations we get

J Π dv>i Π ^ M ^
0 > = 1 1 = 1

Φ β (»ί,...,«;., Vl,...,vr\τ)= Π £(0,« | | τ )- 2 β / ί > ' Π £ ( 0 ' Φ ) 2 " "

• Π EM, V'JIT)2'"' Π £(«„ ̂ Iτ

• Π £ ( 4 ^ , | τ ) - 2 , (2.9)

1 ^ί'^r'

where

= V ^ίπτ(2p'p/ + μ)2/2p'p + ι4πρ^(2p'p/ + μ)/2p'p

' Z \ ( 2 1 0 )

and the prime form on the torus is

The integration contours are all along the α-cycle. The numbers r\ r of screening
charges are related to the representation labels by the formulae r' =\(n'— 1),
r = \{n — 1). Note that if ή or n is even, the one-point conformal block vanishes.
The periodicity μ -• μ + 2p'p is apparent. Thus we can extend the range of μ in
(2.9) to all integers modulo 2p'p.

3. The Representation of the Modular Group

In this section we compute the behaviour of the one-point conformal blocks under
modular transformations. The modular group is generated by two elements Γand
S acting on the upper half plane as T\ τ -• τ + 1 and S: τ -> — 1/τ. Under T we have
the transformation properties

η(τ+l) = einll2η(τ)9

Aμρ(W\τ + l) = eiπ»2'2p'pAμρ(W\τ), (3.1)

E(υ, w\τ+l) = E(v9w\τ).
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We conclude that

The computation of the result of the S transformation is done in two steps. In the
first step Iμv(— 1/τ) is expressed as a linear combination of expressions with the
same integrand as Iλv (τ), but with screening charges integrated along the έ-cycle
rather than the α-cycle. In the second step the integration contours are deformed
from the b- to the α-cycle using the periodicity properties of the theta functions.
The following formulae are well known:

E(υ/τ, wlτ\-\jτ) = τ-γeiπ{v-w)2lτE{υ, w\τ). '

The modular transformation properties of ΔμQ are calculated in Appendix A. We
have

-l/τ) = (-ίτy/2ei2πρ2w2lτp'p , £ eiπμλ/p'pA_λtΰ(W\τ). (3.4)
yip'p

Inserting these formulae in (2.9), after the change of variables v[ -• υ'Jτ, vt -• vjτ,
gives

"f einWp'pe-iθ>-'<I*\v(τ)9 (3.5)

where Iμ

bJ(τ) is given by the same expression (2.9) as Iμv (τ) = Iff (τ) but the
integration contours are homologous to the Z?-cycle.

We come now to the second step of the computation of the S transformation:
we express the integrals I{b) in terms of the integrals I{a) by deforming one contour
at a time. Since we are dealing with multivalued integrands we must be a little more
precise in the definitions.

The integrand in the definition of Iμv (τ) is a multivalued function in r' + r
integration variables. It is integrated over a simply connected manifold (a product
of paths). Therefore Iμv(τ) is completely defined if we fix a point Po in
M~C'+r— (J {zt = Zj}, where we specify the value of the integrand, and give a

i<j

homotopy class of paths [η] in M going from Po to a generic point P of the
manifold. In this way the integrand is defined as an analytic continuation from Po

along any path in [//]. As Po we choose a point where all variables are ordered on
the negative real axis (v[ < ... < v'r. < vx < ... < υr < 0) so that at Po all arguments
of the theta functions are positive. We fix the value of the integrand at Po by
requiring that it be real at τ = /.

Using this procedure we can define 1$ (τ), Iμ

bJ (τ), and more generally /|fv''
s] (τ),

defined as

(3 6)
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Ύ r! ' 2

Fig.2

Fig. 3

The integration contours of the υ variables are drawn in Fig. 1. The dashed lines
indicate the analytic continuation path η. A similar picture for the υ' variables
should be superimposed. The relative position of v and υ' integration contours
does not play a role [6]. To derive a recursion relation, let us deform the contour of
integration of the variable vs in /^v'

s] (τ) into the sum of three contours as shown in
Fig. 2. After a change of variables we get

' βl(τ) = / £ ^ ^

(3-7)

The integration contours γ2 and γ3 are depicted in Fig. 3. The value of Φ ρ ( . . . ,
υs + 1, ... I τ) at P is the analytic continuation of ΦQ (..., vs, ... \ τ) along the path
ή^1 oη2,η2 and ή2 being the analytic continuation paths in Figs. 2, 3. This path
ή2

 ι o η2 leaves all variables fixed except vs that moves along a straight line joining
vs to υs + 1. The behaviour of the theta function to fractional powers under this
analytic continuation is computed in Appendix B. We obtain

Φ e ( υ ' l 9 . . . , 1>S

-iπ2ΰ/p

(3.8)
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The same applies to the second integrand in (3.7), with the result

Φ ρ ( v ' u . . . , ι ; s + τ , . . . , v r \ τ ) = eiπ{r~1)2pΊp eiπ2ρ/p e2ίπτpΊp + *iπρWIP Φ ρ ( v ' u . . . , ι > r | τ ) .

(3.9)

The properties of Aμρ(W\τ) under translations of the argument are computed in
Appendix A. We have

>/ρ\τ) = e2^pAμρ(W\τ),

. ( ' }

To bring the analytic continuation paths ή2, ή3 to the standard form of Fig. 1 we
get a phase exp(~iπ(s—l)2p'/p), exp( — ίπ(r — s)2p'/p), respectively. The end
result can be put in a nicer form by introducing the quantity ίμ

s^s] (τ) defined by

I^s\z) = e~iπσ{σ-2μ + ε)/2p>p ίμ

s'^v(τ), (3.11)

with σ — s'p — sp\ ε=p—p'. In this notation we obtain, after collecting all the
factors,

2 sin (πμ/p) i^s] (τ) = # J J Γ V

1 ] (τ) - i^r? (τ). (3.12)

A completely analogous calculation can be carried out for the deformation of a υ'
integration contour. The resulting recursion is

2 sin (πμ/p') ifr* (τ) = # 1 ^ (τ) - i ^ 1 (τ). (3.13)

We recall that the one-point conformal block is equal to ί[

μ°/v

0] (τ) - 4°0'μ
0]

v (τ). The
following symmetry properties will be important later:

ί [-V](τ)= C 0 I W , ^ ( τ ) = / ^ ( τ ) . (3.14)

They are obtained by the change of variables υ[-^l —vf

r'-i+ί,vi-^l —vr_i + x and
ι>;->τ-ι£_ ί + 1 , ϋ i ^ τ ~ i ; r _ i + 1 , respectively.

It is a remarkable fact that as a by-product of this construction we can rederive
the fusion rules [1,10], as consequence of the following identities:

then /£β/β](τ) = / ^ v ( τ ) ,

^ ^ then /^β ](τ) = / ^ μ , v ( τ ) . ' *'

The fusion rules arise in the special case [s\s] = [0,0]. In this case we see, using
(3.14) that the one-point conformal block Jffl vanishes if 1 ^ m ^ r, or 1 ̂  m! ^ r'.
Using (3.14) again and the fact that (m! —/?', m—p) and (m\ m) correspond to the
same value of//, we see that J(

μJ also vanishes if 1 ^p — m ^ r or 1 ̂ p' — nί ^r''.
We recover the fusion rule, that in this case states that Jffl can be non-vanishing
only if

n+1^ . n+1
—-z—^m ^p — ,

(3.16)

The proof of (3.15a, b) is by induction onm', m. To prove the claim for m = 1, set
μ — m'p in (3.14). The left-hand side vanishes and (3.15a) results. We assume now
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that the claim is proven up to a specific m and want to prove it for m + 1.
Multiplying the induction hypothesis (3.15a) by sin(πμ/p), and using the
recursion relation on both sides gives

-[s',s-l] _-[s',s-l] _ _(j[s,s-l] _:[s',s~l] \ /o \ η\
ιm' p-(m+ l ) p ' , v ιm'p - ( m - l ) p ' , v V m ' p + ( m - 1) p ' , v ι m ' p + ( m + 1 ) p ' , v J W 1 ' /

The claim follows by using the induction hypothesis for m — ί. The identity
(3.15b) is proven exactly the same way.

We are now ready to give the representation matrix of the S transformation.
The quantity

7?v''5]ω = ί v ' '
5 3(τ)-4 s

0 ' ;, ]

v(τ) (3.18)

coincides with the one-point conformal block if s = s' = 0. Equation (3.5) can be
rewritten as

J V'™ p yίv' r](τ). (3.19)$ ( / ) ( ) Jr Σ yίv()
]/2p p λ = o

Using the symmetries (3.14) we can reduce the sum to the fundamental domain:

P (lΊ)eF0

>r]{τ) (3-20)

The representation matrix of the S transformation is defined as

J$ (- l/τ) = (- iφ 2"t ' Sμλ/<? (τ). (3.21)
λ = 0

The summation is over all λ for which the fusion rules are obeyed. From (3.19) and
the recursion relations (3.12), (3.13), we get

S=UA"'Ar, (3.22)

where U is the Fourier transformation matrix

Uμλ= / J e-inμλ/P'p^ (3<23)

and Ar, A are commuting matrices given by

1 (δμ,λ + p, - δμΛ^p) ,

1 ( ^ ^ )

Aμλ -

A more explicit expression can be given for the product A'r' Ar. Let us introduce
the notation

\j] = 2sm(πjp'/p),

[][ l ] [ + l]

Then
(A'rΆ\λ = (- ir'r+mr' (a'r')mΊ,(ar)ml, (3.26)
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where

< 3 2 7 )

if I m — /1 ^ r, ra + / + r = 0 mod 2, and vanishes otherwise. The matrix α""' is given
by the same expression but with [/] replaced by [/]' = 2 sin (πjp/pf). These formulae
can be easily proven by induction on r and r'. Note that it is sufficient to compute
the matrix elements Sμλ for μ, λ obeying the fusion rules. For these values there are
never divergent denominators in (3.27).

4. Modular Covariance of One-Point Functions of Primary Fields

Consider the one-point function of the primary field ΦN, N= (n\n), of the left-
right symmetric models. On the torus C/Z + τZ:

^ΣDNMJΆ(τ) J^N(-τ). (4.1)
M

The partition function Z(τ) is modular invariant. In our normalization, the D-
coefficients read [6,16]

m'+r' m + r

Ku = ΔN Π [/'Γ1 Π [/Γ1, (4-2)
' = m'—r' j = m — r

j ' =t= m' j^m

with an M independent factor AN. As before, r(/) = {n{>) — l)/2. The property of
modular covariance of the one-point function

(ΦN(0))(-ί/τ) = |τ |2^<ΦA,(0)>(τ), (4.3)

is equivalent to the condition ST DS = D. In the notation of the last section, D is
the diagonal matrix

Dμλ = δμλDtfM, (4.4)

and we think of N as fixed in these considerations. This modular covariance
equation could be used to determine the D coefficients in (4.1). Here we verify that
the Dotsenko-Fateev solution, obtained by imposing crossing symmetry on the
plane, gives the right result. Using the fact that S 2 = 1 once projected to the
fundamental domain, we can rewrite this equation in the more convenient form

(4.5)

The matrix SD ~1 can be computed using the explicit formulae derived in Sect. 3.
In the variables x = exp(2πίp'/p), x' = exp(2πip/pf), we have

1 \ _ y f - l t' t ( ]\(nι'+r')(l + r) + (m + r)(l'+r')

_ _ / iyγml/2 TΊ r-| Y vm(/-r/2) ΓΓ + Π Γ'" — Π
11 \J\ L X r 7 7 '

j = i j = o U ~~JΔ L J J
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and the same expression with primes holds for t'm,n.. Thus we have reduced our
problem to the identities tml = tlm, t'm>v = t'Vm.. To prove this identity we notice that
the Laurent polynomial in x

r . Γr + Π Γ r - Π

is the coefficient of f of the series

f χ>»U2-h)/2 th+j2 ΓΓ + Γ | P Γ Π . (4.8)

Using the "^-generalization of the binomial formula" [17]

0 0 Vn~\ °° 1 -L tγj + (1~n)l2

Σ " r = Π I w + d+,)/2, (4.9)
j = 0 L7J ; = 0 j + r x

this series can be brought to the form

^ . o ; — ^ j [ ^ ^ 7 + ( / + r _ m + 1 ) / 2 x , j _ ^ ^ J + ( _ / + f. + m + 1 ) / 2 x , v ^ i U ;

which is manifestly symmetric under the interchange of m and /. Since this identity
of formal power series in / is valid for all x (the product has effectively finitely
many factors), both needed identities are proven. The proof of modular
covariance is complete.

5. Modular Covariance of One-Point Functions of Secondary Fields

The unnormalized one-point function of a secondary field is

Ύrίch^} (Ύ v\nL*aLΛ — V ΠM τik}ann (71 r\ τ{k}'άnn(y\ fΊ ΓS 1Ί
lV\ψN \Z'>z)Cl q ) — /^JJNMJMN \Z\τ)JMN VZI τ)-> W U

M

with conformal blocks

J{^nn(z\τ) = Ύr^M[(L_kl L_ksφ%M){z)qL»}. (5.2)

By Ward identities, the right-hand side can be represented in terms of a
differential operator acting on the conformal block (2.6) of the primary field
ΦN(z,z). In the coordinate w on C/Z + τZ:

J$N(w\τ) = D^JMN(w\τ). (5.3)

Due to translation ίnvariance, the above is independent of w and D\k) is a
differential operator in τ only. In this section, we show that

4 ^ + 1) = e-iπ/i2 + iπ^2p'pJ$N(τ), (5.4)
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4SU-1/T) = (-iτ)k"τκ £ SMLJ^(τ), (5.5)
L

s

with the matrix S as in (3.22) and K = £ fcf. The modular covariance of (5.1) then

follows from the results of Sect. 4. In particular, the one-point function is
invariant under T and

( Φ ^ V / τ , H>/τ)>(-l/τ) = <<*» + * τh> + * (Φ^} (^ *)> (τ). (5.6)

Identity (5.4) is an immediate consequence of the fact that the eigenvalues of Lo on
J>ί?M are equal to hM modulo one, and (5.5) follows from (3.21) and from the
transformation properties of the differential operator D\k\ To compute the latter
we generalize the Eguchi-Ooguri [3] Ward identities on the torus to an arbitrary
number of energy momentum tensor insertions. We prove these identities in the
operator formalism, using the KMS property, as in [18].

Let us consider a product of (not necessarily primary) fields F(z1, . . . ,
zn)==ψί(zί) ••• ψn{zn). By using the cyclic property of the trace and the
commutation rule Lkq

Lo = qLo + k Lk, we obtain

^ ^ z u . . . , z n ) ] q L \ (5.7)

for k Φ 0. For k = 0,

^ ^ 9 . . . 9 z H ) q L o (5.8)

To find the expectation value of T(u)F(z1, ..., zn) = £ u~k~2 LkF(z1, . . . , zn),
keZ

we first represent the commutator on the right-hand-side of (5.7) in the usual form
(2π/)~1 §dzzk+1 T(z)F(z1, ..., zn), with the contour γ encircling the points

y

zγ,..., zn and homologous to the trivial cycle of the torus. Then we note that

<5 9>

where z = e2πίw, u = e2πiv; ζ(w) = θ[(w\τ)/θί(w\τ) + 2ηί w is the Weierstrass
zeta function, and η1=ζ(l/2). Finally, we transform to the coordinates on

, with the result

ΎτT(υ)F(wί9 ...9wn)qLo-c'2* = 2πi-Hi

(w-v)-πi)ΎrT(w)F(w1,...,wn)qL°-cl2\ (5.10)
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Consider the case where the first s fields in Fare energy momentum tensors and the
remaining m = n — s are chiral primary fields. Using the operator product
expansion to perform the contour integral in (5.10), we obtain the recursion

Tr T(v) T(vx) • T(vs)Vl (wx) • • φm(wJqL°-c/24

U L 7 = 1

m Γ r) ~Π

• T r Γ ^ O ••• Tivjφ^w^ ••• φm(wm)qL°-c/24

where ^(w) = — ζ'(w) is the Weierstrass ^ function, and ~ denotes omission. In
the case s = 1, 2, we recover the Eguchi-Ooguri identities on the torus.

Using the well known transformation properties ζ(v/τ\—l/τ) = τζ(v\τ),
ηx ( — 1/τ) = τ2ηί (τ) — π/τ, we can deduce recursively from this Ward identity the
modular transformation properties of one-point conformal blocks with s
insertions of the energy momentum tensor:

T I > M
 T i~) ' T ( 7 ) <PNM ( 7 ) e2πii~ 1 / τ ) ( L o " c / 2 4 )

= (-ίφτ2s YJ

SML^πLT{υι) ••• Γ ( ί ; s ) ^ L ( w ) e 2 π / τ ( L o " c / 2 4 ) . (5.12)
L

This identity is equivalent to (5.5) as can be seen by representing the secondary
fields as multiple integrals of expressions (5.11) [1].

Appendix A. Properties of Δμp(W\τ)

The function

AμQ(W\τ)= X eiπτ(2p'pl + μ)2/2p'p + UπρW(2

leZ

is a generalization of Jacobi's theta function studied by Hermite (see [19]). It is
periodic in μ: Aμρ(W\τ) = Aμ + 2p,pJW\τ) and Aμρ(W\τ) = A__μρ(-W\τ).

For l̂ Fas in (2.10), translations of the arguments vt (or v[) along a cycle a or b
correspond to translations of Why multiples ofp'/ρ,p'τ/ρ (orp/ρ,pτ/ρ). A simple
calculation yields

26 (A.2,

with λ integer. For λ = 2p' we get (3.10).
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Under the modular transformation Γ,

13

Δ(W\τ). (A.3)

To prove the transformation property under S, we consider the Fourier transform
oΐAμQ(W/τ\-l/τ):

ΔλJWIτ\-\lτ) = -7±=2Pί V™'*zf

2p'p-\

ΛM(W\τ-λβq\-\\τ)

V - iπn2/2p'pτ + i4-πρ(W — λτ\2ρ)n\2p'pτ

Ίp P neZ

where in the second step we use (A.2), and in the third the explicit form of
Λm(W\τ — λ/2ρ\ — 1/τ), for n — 2p'pl + μ ranges over all integers as /ranges over
Z and μ over one period. The last expression can be computed by Poisson's
summation formula, with the result

Δλa{Wlτ\-\\τ

Finally, inverting

Λ (Λλ/ IT 1 1 /T
LLQ\ 1 \ 1

= (-/τ) 1 ' 2

the Fourier

eί2πρ2W2/p'

transform

pτ A - λ ρ (

, we get

\/2p'P

leZ

2p' p

I
- 1

eίπμλ/p'

(A.4)

Appendix B. Analytic Continuation of Fractional Powers of θι(w\τ)

Consider the torus C/Z + τZ, described by the coordinate w = x + τy (x and y
real), and the many-valued function θ1 (w \ τ)α. We want to determine the phases φa

and φb in the equations

ί (w + τIτ) α - eα - eiaφb e~iπaτ~2iπaw
(B.I)

We define θγ (w + 11 τ)α (or θ1 (w + τ | τ)α) as the analytic continuation of θ1 (w \ τf
along a straight path going from w to w + 1 (or w + τ). Note that θ1 (w \ τ) vanishes
only at the lattice points wmn = rn + nτ, m,neZ, and we have

j e/

1(ιv|τ)/β1(>v|τ)Λv = 2π/, (B.2)

as γm + nτ encircles one lattice point with positive orientation.
To compute the phase in the first of Eqs. (B.I), we assume 0 < y < 1 and

consider the integral
θ'Λv\τ)

iφa= j d\ogθι(υ\τ)= J do (B.3)
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C0,ε

0

Fig. 4 α

ε

1

along the straight path joining wtow+l. The path can be deformed to the path

depicted in Fig. 4a. Thus

The second integral vanishes due to the symmetry θι(w\τ) = Θ1(ί — w|τ),

whence the first is given by half of (B.2), with the result φa= —n. Similarly,

for the second equation in (B.I), we introduce the function

θί (w I τ) = exp (ίπw2/τ) θγ (w | τ), antiperiodic as w -» w + τ. We assume 0 < x < 1

and consider the change of phase of θγ (w \ τ) along the straight path from w to

w + τ, that we deform as in Fig. 4b. Since Cτ ε has positive orientation we obtain

φb = π. For general w, we can deform every straight path from w to w + 1 (or w + τ)

to the one in Fig. 4a (or Fig. 4b) by making use of (B.2). The result for the phases

in (B.I) is then

Γ—π, n y n + \,

π, 2n-\<y<2n\

_f π, 2m<y<2m + \,

~\-π, 2m-ί<y<2m.
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