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Abstract. We discuss the perturbation of continuum eigenvalues without
analyticity assumptions. Among our results, we show that generally a small
perturbation removes these eigenvalues in accordance with Fermi's Golden
Rule. Thus, generically (in a Baire category sense), the Schrodinger operator
has no embedded non-threshold eigenvalues.

I. Introduction

It is well known [R-Sl] that a one-body Schrodinger operator — A + V(x), where
V is sufficiently well behaved at infinity, cannot have eigenvalues λ embedded in
the continuous spectrum (except possibly at threshold, λ = 0). The situation is quite
different in the JV-body problem where continuum eigenvalues not only can
exist, but do indeed exist in important physical situations: The operator Ho =
-Δ1-Δ2-2/\x1\-2/\x2\ in L2{U6) (describing the Helium atom without
electronic repulsion) has eigenvalues embedded in the continuous spectrum. While
this example has an obvious symmetry, such symmetry is not necessary for the
existence of embedded eigenvalues. An example in [ F - H - H O - H O ] can be
modified to produce an embedded eigenvalue where no symmetry is apparent.

In [Howl, 2] and [SI], analyticity assumptions are made which allow the
treatment of embedded eigenvalues using the perturbation theory developed for
use with isolated eigenvalues. The major idea in this theory is that when a small
perturbation βW is added to the Schrodinger operator H, the continuum eigenvalue
Eo turns into a "resonance," E0(β), which, while not necessarily an eigenvalue of
H + βW, is a pole in the analytic continuation of certain matrix elements
(φ,(H + βW — z)~ιφ) of the resolvent. The function E0(β) is analytic in β for \β\
small. E0(β) has an imaginary part which appears first to second order in β:

τ d2E0(β)
lm'd(F~ (1.1)
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where (H - E0)φ0 = 0, P(E) = EH({- oo, E)\{E0}) and H = J Ad£H(A). Here we have
assumed that φ0 is non-degenerate and normalized. The formula (1.1) is called
Fermi's Golden Rule. The situation is reviewed more thoroughly in [R-Sl].

The purpose of this paper is to examine the perturbation of embedded
eigenvalues in the generalized /V-body problem introduced by Agmon [Ag] (see
also [ F H 1,2, 3]) without making any analyticity assumptions. While resonance
poles have no meaning without some kind of analyticity, one would think that if
Fermi's Golden Rule predicts the disappearance of an eigenvalue from the real
axis (by producing a positive expression in (1.1)), then that eigenvalue should
disappear (for small β). We show that this is indeed the case.

From what has just been said, it appears that embedded eigenvalues are very
unstable, for one need only find W such that (1.1) is nonzero, and then for all small
β, H + βW will not have an eigenvalue near Eo. The major stumbling block to
making this into a theorem is to show that the operator (d/dE)P(E)\E^Eo (which
makes sense between certain weighted spaces) is not identically zero. This is
accomplished only after a rather involved argument. But this argument produces
as a bonus some information about the existence of generalized eigenfunetions and
some new estimates for N-body Schrόdinger operators between exponentially
weighted Hubert spaces.

In Sect. II, we introduce our notation and main assumptions and prove that
embedded eigenvalues cannot suddenly appear under a small perturbation
(Theorem 2.5). (See [K1] for general information about the perturbation of spectra.)

In Sect. Ill, certain estimates are proved for Schrδdinger operators between
exponentially weighted spaces. These estimates can be used to simplify the
arguments of [F-Hl, 2] considerably, although we do not do this here. We use the
estimates in Sect. IV to show that for P(E) as in (1.1), (d/dE)P(E)\E^Eo=£θ.

In Sect. V, it is shown that embedded eigenvalues are unstable and thus
generically absent (Proposition 5.10 and Theorem 5.11), and in the last section we
discuss open problems.

We remark that analogous results have been proved for perturbations of the
hyperbolic Laplacian on a finite volume Riemann surface (see [V] and [Ph-Sa]).

We would like to thank Ulrich Wuller for pointing our an error in a previous
version of this paper.

II. Semicontinuity of the Point Spectrum of H

Let us begin by setting our notation. We assume we are given a family {Xi}fL x of
subspaces of Un with associated orthogonal projection operators πh R a n π ^ X ; .
With each space Xt is associated a real-valued function vi on X{. Our generalized
iV-body Schrόdinger operator is given by

H= -Δ + V{x),

where
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We will always assume that the potentials satisfy

for all /, ι>ι(-4 z + I)""1 and {-Δt+ \)~1xι'Vιvι{-Δι + I ) ' 1

are compact operators on L 2p^), (2.1)

and sometimes it will be necessary to also assume that for each /

{-Δi+ \)~ll2xι yιvι(-Δι-\- I ) " 1 is bounded

and
( - 4 i + l)~ 1 (*i 'V i )

2 i ; z (-4 i + I ) " 1 is bounded. (2.2)

It is convenient to introduce the family of subspaces, if, consisting of {0} and

all subspaces of the form

s p a n l j jU •• u l ί ,

where {it,..., it} c• {1,..., M}. Given Xe&, let

Vx(x)= Σ Vi(*iχ)>
vXtczX

Δx = Laplace operator for the subspace X,

Hx=-Δx+ Vx, inL2(X).

By convention, H{0} = 0 on C. Any μeU which is an eigenvalue oϊHx for some
, X φ M" is called a threshold of H. The set of all thresholds of H is denoted

The basic theorems about the spectrum of H were proved in [P-S-S]:

Theorem 2.1. Suppose (2.1) holds. Then βΓψ) is a closed countable set. All
eigenvalues, /, ofH which are not in <T(H) have finite multiplicity. The only possible
accumulation points of eigenvalues of H lie in $~{H).

The weighted spaces L2

s{Un) = <x> ""4L2(R") will play a role in our discussion.

Here <x> - ^+\x]2 and the norm in L 2 is | |/ | |L2 = (j |<x> hsf(x)\2dx)1/2.

Theorem 2.2 [P-S-S]. Suppose (2.1) and (2.2) hold. Then for any λ which is neither
a threshold nor an eigenvalue of H, the strong limits

lim (H - λ + is)'1 =(H-λ + i0)~1

exist as maps from L2 to L2LS for any s> 1/2. The operators (H — λ + iθ)~~ι are
(norm) Holder continuous in the variable λ.

The proofs of these two theorems are based on a crucial estimate first proved
by Mourre [Ml] and used by him to prove theorems similar to Theorems 2.1 and
2.2 for the 3-body problem. The "Mourre estimate" which follows was proved in
general in [P-S-S]. See also [ F - H l ] . In the following, A=(x D + D x)/2, where
D is the gradient operator.

Theorem 2.3. Suppose (2.1) holds and λφ^Γ(H). Then there is a compact operator
K and an open interval I containing λ so that for some c0 > 0,

EH(I)IH,A]EH(I) ^ c0EH(Γ) + K. (2.3)
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Note that in (2.3), the operator family {EH(β):β a Borel set of U} consists of
the spectral projections of H.

We will need a slight generalization of this result which basically states that
(2.3) is stable under the addition of a small perturbation to H.

Denote by 3$ι the set of all real-valued functions W such that

Lemma 2.4 Suppose (2.1) holds and that λφ.T(H). Then

(a) there is an ε o > 0 and open interval J containing λ so that for any
with \W\1 ^ ε 0 , we have

where c0 is as in (2.3) and Kί is a compact operator independent of W. If K = 0
in (2.3), then K1=0in (2.4).

(b) // W is a symmetric operator with W(-A + \y1 and ( — A + 1 ) " 1 [A, W~\
( — A + t)~ι compact, there is an open interval J containing λ and a compact
operator Kw so that

W, AJEH + W(J) ^ c0EH + w(J) + Kw. (2.4)

Proof. Assuming that (2.3) holds, let ε0 be small enough so that H + W is
self-adjoint. Let H' = H + W and suppose feC$(M) is one in a neighbourhood of
λ and zero outside /. Then by (2.3)

/(H)[H,/!]/(/*) ^ C o / ί i ί ^ + K!, (2.5)

where K, =f(H)Kf(H). Let ΘH be the left side of (2.5). Then clearly

where
£ = <9H>-GH + co(f(H)2 -f(Hf). (2.6)

We need to show that ||<f||->0 as \W\1-+0. Note that \\(H + W+ i)'1 -
(H -h iyλ II ->0, so that any polynomial in (H H- W + Λ)~1 converges to the same
polynomial with argument (H -f Ay1 (if Λ is sufficiently large). This implies that
\\f(H) — f(H+ W)\\->0. All other terms in 6° can be controlled by this estimate
alone. We omit the details. To prove (b), we need only show that $ in (2.6) is
compact. The fact that for any Cg function g, g(H + W) - g(H) is compact, easily
follows from the same result for polynomials. This in turn follows from the fact
that the difference in resolvents is compact. All other terms in & are easily handled
with this information. •

Theorem 2.5. Suppose λ0φ,9~(H) and that (2.1) holds. Then there is an open interval
J containing λ0 and a number δ >0 so that

(a) if λ0 is not an eigenvalue of H and We^x with \ W\x < δ, then H + W has no
eigenvalues in J.
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(b) If λ0 is an eigenvalue of H with multiplicity m and We^x with \W\1 <δ, then
H + W has, at most, m eigenvalues in J of total multiplicity m.

Proof. Let Po = En({λ0}) and define

H1 — H -f F o .

Then Hi has no eigenvalues at λ0 and ^T{H) — 3/~(Hx). Note that ΛP0 =
cΛ(H + i)~1P0 = cA(H + i ) " 1 < \ χ ) ~ 1 <\χ}Po- Since non-threshold eigenfunctions
of if decay exponentially {[F — H2~]\ <x>P0 *

s compact. Thus AP0 will be shown
to be compact if we can show \\A(H+ i)~\x)~1\\ < oo. Because of (2.1),
[^(iZ + ί)""1] is bounded so that we must only show \\(H + i)~ι Aζ^x}'11| < oc.
This is obvious from the explicit form of A It follows from these considerations
that [_A,PQ] is compact, and thus by Lemma 2.4(b),

EHl(J)lH1,A-]ElIl(J)^c0EHl{J) + K

for some compact K and some open interval J containing λ0. By shrinking J we
can assume \\EHi(J)KEHi(J)\\ ^ co/2 so that

for some open interval J containing Λ0. AS in the proof of Lemma 2.4(a), we can
then find <5>0 and an open interval / centered at λ0 so that for any operator

x with \W\x^δ we have

ι + W,A^EHl + w(I)^jEHl + w(I\ (2.7)

Now suppose H + W has one or more eigenvalues in 1 al with
7 = (/0 — y,/0 + y) of total multiplicity mί>m. Choose an orthonormal set
{φl9...,φm+1} such that

{H+W)φι = λιφι Z = l , . . . , w + 1

^ m+ 1

and / e l Choose a linear combination φ = ^] α^^ with norm 1 such that
7 = 1

Poφ = 0. (We treat the case where Ao is not an eigenvalue of H by taking m = 0.)
Then

so that || (H! + W - λo)φ || g y. Then,

2Re((JHΊ + W - λo)φ, Aφ) £2\\Aψ\\γ.

It thus follows from (2.7) that

(2.8)
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where
E = EHι + w(I) and C = [_H1 + W,Al

Since \\(Hι + W+i)~1C(H[ + W + i)~11| is bounded independently of W for | W
small, and since

l!(l ~E)φ\\ = II(i/, + W-ZoΓ'O -E)(Hί + ^ - 4 ) ^ 1 1 ^ 2 | / Γ 1

we conclude from (2.8) that

2 |M^| | 7 ^^ 0 -/cy 9

where k is a constant independent of W for | H |̂t small. Note that

\\Aψ\\ s'Σ WAψ W^Σ WAiH+w-λj + iV'ζxy'W \\<χ>Ψ,\\
7 = 1 J = l

7 = 1

Thus assuming || < x >0r

J || can be bounded independently of W for \W\1 small
enough, the theorem follows by taking y > 0 and small enough. Thus our theorem
can be deduced from the lemma which follows. •

Lemma 2.6. Suppose (2.1) is satisfied, H = — A + V, and λoφ-T(H). Then there is a
S > 0 and y > 0 such that if W is in 0A{ with \W\ι <δ, and φ is an eigenfunction of
H + W with eigenvalue λe(λ0 — 7, λ0 + 7), we have

where k is independent of W.
This lemma is proved in Appendix A. The proof uses certain uniform estimates

to be given in the next section. These estimates will also be useful in showing that
the expression in (1.1) is not always zero.

We give the following corollary of the proof of Theorem 2.5 which will be of
later use:

Corollary 2.7, In the situation of part (b) of Theorem 2.5, let Pw be the projection
onto the span of all eigenvectors of H + W with eigenvalue in J. Then, ifφERrdnPw

and EH({λ0))φ = 0, we have φ = 0.
The proof is essentially contained in the proof of Theorem 2.5.

III. Estimates

M

We assume at the outset that H = - A + V in L2(Un% where V(x) = £ y f(^x) and
i = 1

(2.1) holds for the real potentials vt. Define

for α,7, r 2:0 and μ > 0. The purpose of this section is to prove estimates of the form

k\\(xyξJ(H+ W-λ)q>\\ i : | | ξ ; φ | | - \\Kξ,φ\\ (3.1)



Perturbation of Embedded Eigenvalues 417

under certain conditions. Here WeB$\ and K is compact. We will later take μ-> oo
so that c j ( x ) f and <ί 2> yfβ ( c / + ) < x >. Thus our estimates need to be uniform in μ.
We have the following result:

Theorem 3.1. Fix ί and α non-negative. Suppose / 0 + α2^«f(//). Γ/î π f/zβn?
positive constants ε, <5, k and a compact operator K so that ifWefMλ, | W\ { + | / — λ01 <
ε,7 ^ (3, αnrf μ ^ 1, f/iew (3.1) holds for all φeC%(Un) if either

(i) 5 = 1, α = 0, and j = 1 or 2, 6>r
(ii) s = 1/2, α > 0, and j = 2.

Proof. Our proof of (3.1) is based on the ideas of [F-H2].
According to Lemma 2.4, there is an εx > 0, and open interval / centered at

λ0 -f α2, a function feC£(R) which is 1 on /, and a compact operator K1 so that
if W is a symmetric operator in ^ ϊ with | H^^ < ε1 ? we have

W) ^ co/(iί -f HO2 + /(// + W)KJ(H + WO (3.2)

Denote ς : or ς2 by c and define F = \nξ. In addition, let

(β = [H+W, Λ\

VF = xg,

G = {x V)2g-{x'V)\VF\2.

We use the following computations from [F-H2] for φeCJ:

2 Reμc>, ς(H +W- λ)φ) = (ςφ,^φ) + 4 || 6/1/2^C> l|2 - (ίφ, Gςφ), (3.3)

{H+ W-A-\VF\2)ξφ = ξ(H+ W- λ)φ -{D VF + VF-D)ξφ, (3.4)

D Vi7 -f VF D = 2 ^ + x Vg. (3.5)

We now insert (3.2) into (3.3) and find

2Re(Aξφ, ξ(H + W- λ)φ) ^ c0 \\ ξφ \\2

+ 4 II g112 Λξφ \\2 - (ξφ, Gξφ) -£ + {ξφ, K, (W)ξφ) (3.6)

where

<Z = co(ξφ,(\-f(H+W)2)ξφ)

- (ξφ,(\ - f(H + W)Yέf(H + W)ξφ) ~ (ξφ,<(> (1 -f(H + W))ξφ)

(3.7)
^ )and Kλ{W) = f(H

Consider the quantity 3\ Since for small ε1, || (// + W + /) ~1 C6;(H + Ŵ  + /) ~1II
is bounded uniformly in W, we have

I $ \^c\\(H+W+ i)ξφ || || (H + W + 0(1 - / ( # + MK))(ίφ ||.

We now demand that \λ — λo\ <ε2, where ε2 is less than | | / | . This leads to the
estimate

\\(\-f(H+W))ξφ\\ = \\(H + W-λ-ot2)-1 (I - f(H + W))(H + W~ λ-ot2)ξφ\\
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This kind of analysis leads to the estimate,

\£\^c{\\(H +W - λ-0L2)ξφ\\ + \\ξφ\\y\\{H +W ~ λ-a2)ξφ\\

Skco\\ξφ\\2 + c\\(H+W-λ-a2)ξφ\\2. (3.8)

Inserting (3.8) into (3.6) gives

~c\\(H +W - λ-%2)ξφ\\2 -{ξφ,Gξφ) + {ξφ,Kι(W)ξφ). (3.9)

If ζ = ξι, we have

| V F | 2 - ί 2 ( l - < x > " 2 ) < x > - 2 ( l + μ - 1 < x » - 2 ^ r 2 < x > - 2 . (3.10)

G^c(x)-2, \x'Vg\^c(x)'2, g^c(x)'2, (3.11)

while if ξ = c 2 ,

so that

α l x K x ) " 1 ^ | V F | ^ α + y. (3.12)

In addition, for γ £ 1,

(3.13)

(3.14)

(3.15)

We now use (3.4) and (3.5) to bound | | ( ί f+ W-λ-a2)ξφ\\:

- λ - oc2)ξφ\\ ̂  \\ξ(H + W - λ)φ\\ + 2\\gAξφ\\

For the sake of efficiency, we treat the cases ξ — ξλ and ξ = ξ2 together. Let χN be
the characteristic function of the ball <x> < N. We have

| ^ c 7 + c<x>- 2 , |x V.g| £ c<x>~ 1.

In addition

β = XN9 + (1 - χN)g ύ c(χ

We thus have

UH+W-λ-a2)ξψ|| ^ ||ξ(H + W-λ)φ|| + c|

(3.16)

If h is a bounded function with /i(x)->0 as |x| -> oo, then

I! /iζφ || g II hf(H + W)ξψ II + II A(l - 7(H + W))ξψ |j.

Choose /εCJ(IR) so that / = 1 on an interval of length 2L+ 1 centered at λ0 + α2.
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Then, if ε2 is small enough

W-λ-*2y\\ -f(H+ W))(H+W-λ-oc2)ξφ ||

^L-'UH+W-λ-a^ξφl
so that

\\hξφ\\ ^ \\hf(H + W)ξφ\\ + cΓ ' \\(H + W - λ - a2)ξφ\\. (3.17)

Note that the map Wt-+f(H+ W) is continuous in the sense that for \WQ\X

small, as | W- Wo\x ->0, we have \\f(H+W)-f{H+W0)\\-*0. Thus the compact
operator hf(H + W) is also continuous in the variable W.

Let us bound the term \\χN(V(ξφ))\\ in (3.16): If χN is a smooth function with
U we have

= Rt(χ2ξφ,-Δ(ξφ))+\\hξφ\\2

where heC${Un). Thus,

'•£c(\\χN + 1ξφ\\ \\Δξφ\\ + \\hξφ\\2)

Sc(\\χN+ίξφΠ\\(H + W-λ-oi2)ξφ\\ + \\ξφ\\)+ \\hξφ\\2)

^L-1\\ξφ\\2+L-ιUH+W~λ~a2)ξφ\\2+\\K2(W)ξψ\\2, (3.18)

where we have used (3.17). The operator K2(W) is compact and continuous in W.
Putting together (3.16), (3.17), and (3.18), we have

UH+W-λ- a2)ξψ j| ̂  21| ξ(H + W - λ)φ || + cN~ ι'2 \\ gυ2Aξφ \\

+ cγ\\ξφ\\ + \\K3(W)ξφ\\, (3.19)

where K 3( ) is continuous and compact. Using (3.17) again, we find from (3.9),
(3.11), and (3.13),

- cy\\ξφ\\2 ~ c\\(H + W - λ- a2)ξφ\\2 + (ξφ,K4(W)ξφ),

where K4( ) is continuous and compact. Using (3.19) with N large enough, we have

2Re(Aξφ,ξ(H +W-λ)φ)^(ϊco-cy)\\ξφ\\2 + 2\\g1l2Aξφ\\2

~c\\ξ(H+W-λ)φ\\2+(ξφ,K5(W)ξφ), (3.20)

where again K5( ) is continuous and compact.
We now consider two cases. If α = 0, we have

2Re(Aξφ,ξ(H + W - λ)φ)S2\\(x}~1 Aξφ\\-\\(x}ξ(H +W - λ)φ\\

Sc(\\V(ξφ)\\ + \\ξφ\\) Kx)ξ(H + W - λ)φ\\.

An easy estimate gives

\\Wφ)\\2 ^c(\\ξφ\\2 + \\ξ(H + W - λ)φ\\2),
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so that

2Re(Aξφ,ξ(H + W - λ)φ)^c(MH + W - λ)φ\\ + \\ξφ\\y\\(x}ξ(H + W - λ)φ\\

Combining this with (3.20) gives the result that for some c>0,

c\\(x)ξ(H + W- λ)φ]\2 ^&0- cy)\\ξφ\\2 + {ξφ,K5(W)ξφ). (3.21)

If α > 0, we estimate differently:

2Re(Aξφ,ξ(H+W-λ)φ)^2\\g1/2Aξφ\\ \\g-1!2ξ(H+W-λ)φ\\

But from (3.14), g'1/2 ^ oΓ 1 / 2 <x> 1 / 2 , so that

2Re(Aξφ,ξ(H+W-λ)φ)S\

Combining this with (3.20) gives

). (3.22)

Choose ε1 small enough so that \\K5(W)~ K5(0)\\ < i c 0 , and note that from the
inequality

2x^ -β2x2-β~2

we have

K5(0)^-(K5(0))2β2-β~2=-K2-β~2.

We choose y < δ. Then

^co\\ξφ\\2-\\Kξφ\\2,

if δ>0 is small enough and β is large enough. Combining this with (3.21) and
(3.22) gives the desired estimates. •

We will need the following corollary of Theorem 3.1 in the next section:

Corollary 3.2. Let Q be a finite-dimensional orthogonal projection and βeU. Suppose
||βαo|χ|Q|| < QQ j Q γ s o m e α Q > o ^7^ i ancι α non-negative with λ0 + oc2φέF(H) and
α < α 0 . Then there exist positive constants ε and δ so that for each We^ί with
\W\1 < ε and λ0 not an eigenvalue of H + W + βQ, the estimate

j \\ξjφ\\ (3.23)

holds for all φeC£(Mn) if either

(i) s = 1, α = 0, and j = 1 or 2, or
(ii) s = 1/2, α > 0, and j = 2.

Here 0^γ ^δ, μ^l, and k is a constant depending on W and β.

Proof We first show that given ε > 0 there is a compact operator Kε such that

Φll 5 (3.24)
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where Kb is independent of μ and γ. It is enough to assume Q is one dimensional

so that Qφ = (φ9 φ)φ. Then

if δ is small enough so that a + y < α 0. Let //0 = — Zi, and suppose /GCJ ) ( [R) . Then

| | < x > ^ β φ | | ^ c | | ( l - / ( H 0 ) ) < A I I \\φ\\+c\(f(H0)ψ,φ)\.

Now

It is easy to see that \\(H0 + \){%y ξjι f (H 0)φ \\ is bounded independent of μ ̂
and y ̂  δ (say by M) so that

^c'Ul-f{HΌ))ψ\\ \\ξjφ\\+cM\\Kξjφl

We obtain (3.24) by choosing / so that d || (1 - f{H0))φ \\ < ε.
From (3.1), we now obtain

Q-λ0)φ\\^\\ξjφ\\-\\Kξjφ\\ (3.25)

under the stated conditions. Now suppose that for some sequence φmeC™9

Oύymύ δ, and μm ̂  1, we have || ξjφm || - 1 and

| | < x > 5 ί " ( ^ + ^ + i8β-^o)Φmll-0. (3.26)

Here ξj corresponds to μm and ym. We can assume that ym~+y and μm-^μ, where
possibly μ = oo, in which case ζ™-+ζj uniformly on compact sets. Since λ0 is not
an eigenvalue of H 4- W + βQ, and since (3.26) implies (H + W + βQ - λo)φm->0,
we learn that <pm-»0 weakly. Since for each

we see that (φ, ̂ φ m ) - ^ 0 , and since H^Φmll = 1, we learn that ξ™φm-*0 weakly.
But, since K is compact, KξJφm->0 in norm which contradicts (3.25) and (3.26).
This implies the result. •

ΪV.

In this section we will always assume that (2.1) and (2.2) are satisfied and that
H = - A + V in L2(Un). We also suppose λoφ^(H) but that λoeσQSS(H).

If λ0 is an eigenvalue of H, we will want to study the continuous spectrum in
which λ0 is embedded. Let Po = EH({λ0}). The operator H = H + Po has only
continuous spectrum in a neighbourhood of λ0 and is therefore a convenient object
to analyze.

Lemma 4.1. For some a0 >0, exp(α o | x | )P o is bounded and the operators [>4,P0]
αnrf [X, [/ί, P o ] ] are compact.

Proof. The first statement follows from [F-H2] which gives the additional result
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that &l can be any number less than the distance from λ0 to the next highest
threshold.

If ^ e R a n P 0 , we claim that φ is in the domain of A2. Note that

so we need only show that B is bounded. We can compute

Using (2.1) and (2.2), it is not difficult to show that the first two terms above are
bounded. The third term can be handled by elementary means. This implies that
AP0,P0A,A2P0,AP0A, and P0A

2 are all bounded. These operators are compact
because they are finite rank. •

From the estimate (2.7) and the proof of Theorem 2.2 ([P-S-S]) we learn that
the strong limits

lim (H - λ0 + i£)~x =(H-λ0T iOy1

εjO

exist as maps from L2 to L2^ for any 5 > 1/2.
Let

The operator δ(H — λ0) is a bounded operator from L2 to L l s for any 5 > 1/2. In
order to understand the perturbation of the eigenvalue λ0, it is important to know
that this operator is not identically zero. For this purpose, we introduce the
following condition:

For each i= 1,..., M, v{ has the decomposition

v. = tf. + υf9 (yyl2v\(y)(- At + I ) " 1 is compact, and

v^eCHXi) with lim (\vΠy)\ + \y\'\Vvf(y)\) = O. (4.1)
|y|-oo

Theorem 4.2. Suppose, in addition to the assumptions at the beginning of this section,
that {4.1) holds. Then δ{H - / 0 ) Φ 0.

Remark. This result will be needed in Sect. V. As an aside, we note here
the fact that δ(H — λo)φO implies the existence of nonzero solutions u of
(-Δ+V-λo)u = 0 with ueLls(Un), s> 1/2. Just set u = δ(H-λo)φ for suitable
φ. (From Eq. (5.18), we see that Poδ{H — λo)φ = O.) For the existence of generalized
eigenfunctions for a.e. value of the spectral parameter, see [S2, Ki, J-Ki].

Proof. According to [M2] and [P-S-S], the operators

are bounded. Here P+ is the spectral projection, χ[0,oo)(~^X P- = 1 —
5 > 1. Suppose δ(H — λ0) = 0. Then

iO)- 1
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Formally R(x)~s = (P_ + P+)R(x)~sis also bounded if s > 1. We prove this in
Appendix B. Suppose φeL2. Then, if

40

since Q? is a core for H, R<x> ~sφ is in the domain of H — λ0 and (H — ?,0)R(x) ~sφ =
(x)~sφ. Thus (x)~sφ is in the domain of (H — AQ)" 1 and

We thus learn that (H — λo)~ ̂ x ) " 5 is a bounded operator if s > 1.
Let ξ = (<x>(l + μ~1(x))~1)t with t ̂  0 and μ positive. We will estimate

Note that N(μ)< oo because ξ and (J"1 are bounded. Suppose ψeCQ(Un\ and

Φ = ( H - A 0 ) " 1 < x > ' 1 Γ 1 ( l + μ ~ 1 < ^ > ) ~ V We have

= \\ξφ\\/\\(l + μ-\x})ξ(x>(H - λo)φ\\

ύ\\ξφ\\/\\ξ<x>(H-λo)φ\\. (4.2)

According to Corollary 3.2, we have

k\\ξ<ix>{H-λo)φ\\^\\ξφ\\ (4.3)

for all φeCg)([R"). Equation (4.3) easily extends to φ in @(H) with compact support,
so if η<=CQ(Mn) with η(x) = 1 for |x| < 1, define ηm(x) = η(x/m) and let φ m = f/mφ. Then

|. (4.4)

We have

(x)(H-λo)φm = ηm(xXH-λo)φ-(x)ίΔ,ηJφ + β(x)[Po,ηm]φ. (4.5)

Now, [Δ9ηm~] = 2Vηtn D + Ληm so that the middle term is given by

/ x \
- (2/m)<x>Vw(x/m) Vφ - -^—f-Λη(x/m)φ.

mL

Clearly this is bounded uniformly in m by an L2 function and converges pointwise
to zero. Thus we get L2 convergence by Lebesgue's dominated convergence theorem.
The last term in (4.5) is easily seen to converge to zero. Since ΦECQ, (X}(H — λo)φ
has compact support, and thus the first term in (4.5) converges. We conclude that

ξ(x>(H-λo)φm->ξ(xXH-λo)φ,

and thus by (4.4),

k\\ξ(x)(H-λo)φ\\^\\ξφl

From (4.2), it follows thai N(μ)^k. For φ1,φ2eC%>, we thus have
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Taking the limit μ|oo, we thus have

This implies

(xyiH-λoΓ^xy1-* (4.6)

is a bounded operator for t ̂  0. We now use Corollary 3.2 again to show that for
some small y0 > 0,

(4.7)

is bounded by repeating the argument above with ξ = ξ2,oc = 0.
Let

for Reze[0,1]. Matrix elements of F between vectors in C£ are analytic in a
neighborhood of {z:Reze[0,1]}. Thus, by interpolation using the boundedness
of (4.6) and (4.7), we find F(l/2) is bounded. Thus for all ί ̂  0 and α = yo/2,

<x> ί^>(/ί-Λ0)-1β-^><x>-1- ί (4.8)

is bounded. We now improve (4.8) by using Corollary 3.2 with ξ2 =
g«o>(l 4. μ~1/y<x>)μ for small enough α and y. We find that for some yx > 0,

β i< x>(H-A 0)- 1β"^< x><x>- 1 / 2 (4.9)

is bounded. Let

G(z) = < x > - 1 / 2 ( 1 " z ) e 2 w - ^

Again, by interpolation, we find G(l/2) is bounded so that

| i < x > - 1 / 4 ( H - 2 0 ) ~ 1 < x > - 1 / 4 | | < o o . (4.10)

We claim that if λ0 < 0, then there is an I e ^ with X Φ W such that Hx

has an eigenvalue μ0 < λ0 with μ0 < inίσQSS(Hx). Assume the contrary. Since
infσess(/J)e«^(ff), there is a subspace Ύγe5£, Y1φUn, so that infσess(H) is
an eigenvalue of HYr Since mϊσcss(HYί)e.T(HYχ\ there is a subspace Y2e<£'9
Y2<z.Yx,Y>1Φ Yi such that inϊσQSS(HYί) is an eigenvalue of HYl. Continuing in this
way, we have a chain of subspaces

no two of which are equal. This chain can only terminate if Y; = {0} for some j ,
but this is impossible, for then λ0 > mϊσess(Hγ ) = 0.

Assuming Λ O < 0 , we will show that (4.10) is false, thereby obtaining a
contradiction.

Applying the operator <x>" υ\H ~ λoy\xyλl* t o / - <x>1/4(// - λo)u with
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ueC£{Mn) and using (4.10), we find the estimate

\\(x}- ^u\\ ^c\\(x)ιl\H - λo)u\\ + \\K(xy^u\\ (4.11)

for some compact operator K and all ueC^IR"). Let X' be a subspace in S£ with
X' Φ Un such that Hx has an eigenvalue μ0 < λ0 with μ0 < inϊσess(Hx>). Fixing X'
we set Y = (X')L. We denote generic points in X' and Y by x' and y respectively.
Note that I f φ Γ means that YnX[- is a proper subspace of Y. It follows that
there is a point yoeY with \yo\ = 1 such that

πj>0 ^ 0 for all ϊ with Xf φ X'.

Thus there is an open cone Γ containing y0 and a δ > 0 so that for all i with Xt φ X',

|TU£X| ^δ |x | , XGΓ. (4.12)

Define

and

Let χB be the characteristic function of the set B. Using (4.11) we obtain

| | < x > - 1 / 4

W | | ^ c | | < x > - 1 / 4 ( / / - ^ - A 0 ) ι / | | + | |^<x>- 1 / 4 ι/ | |

+ c | | K 1 < x > - 1 / 4 ( / / - ^ - A 0 + ί>| | (4.13)

for all UECQ(Γ), where

It is easily seen from (4.1) and (4.12) that Kx is compact. For any compact operator
K we have

lim | | X * Γ j J = 0 ,
R^oo

and thus we obtain for R sufficiently large

| |<x>- 1 / 4 t ί | |^D| |<x> 1 / 4 (f/-^ s -A 0 )w| | (4.14)

for all ueC%{ΓR).

Let φeL2(Xr) be a normalized eigenfunction of Hx> with eigenvalue μ0. Define

P^L(x)= X ^(π.x),

and fix ί0 > 0 so that

for xeΓto. For each ί ^ ί0 choose f/,e Y" such that

\η,\2 = λ0-μ0-WL{ty0),
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and define

φt(x) = ψ(x') exp (iηt y\ x = (x\ y).

It is readily checked that φt satisfies the equation

(-Δ + V(x) - W\x) - λo)φt(x) = (WL(x) - WL(ty0))φt(x). (4.15)

Choose ζeC^{Un) so that ζ{x) = 1 if |x| ^ 1/2 and ζ{x) = 0 if |x | ^ 1. Set

χr(x) = ί{r7 ι{x-ty0)\ ut = φtχt,

where rt will be chosen later. For now we only specify that

(i) limrf/ί = 0,

(ii) lim rt = GO.

f-» 00

From (4.15) we obtain

(_ A + V{x) _ ^ W __ ; w o ) M t ( χ ) = {WL{χ) __ ^ ( ί j ; o ) ) M f W

so that with m = dim Y

L{λx + {\-λ)tyo)ix - ^oK(x) ! 2 ^

Let

ε

Then for large ί,

|| <x >1 / 4(H - VΓS - λo)Mt || ^ crΓ / 2 ί 1 / 4 fer t r
x + r t"

x).

On the other hand, given any R, for large enough t we have supp ut a ΓR. It is
thus easy to see that we can use (4.14) with u = ut for sufficiently large t. We have

ί \Ψ(x')\2dx'dy- J

for some c0 > 0 and β > 0. Thus for large t

c\\(x}-1/Aut\\^Γll4-rT12.

From (4.14)

r i/4rm/2 ^ c1yl*tV\Etrtt-
x + rΓ1)

or

Ji J ' ( 4 1 6 )
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Set

Then (i) and (ii) above are satisfied while (4.16) implies

which is a contradiction for large t.
The proof in case λ0 > 0 is even simpler. Here we get a contradiction to the

estimate (4.10) by using u = ut with

in (4.14), where ηteU\ \ηt\
2 = λ0- WL(ty0). We omit the details. •

V. Instability of Embedded Eigenvalues

In this section we assume (2.1) and (2.2) are in force and H = — A + V in L2(Un).
We also assume that λoφ^~(H) but that λ0 is an eigenvalue of H in σess(H).

Let J*2 be the space of all real-valued functions, W, such that

\W\2= \\W(-Δ + I)" 1 II + U-Δ + 1)-1I2IA,W](-Δ + I)"1!!
1 4 + I ) " 1 |l < oo.

Lemma 5.1. Let P0 = EH({λ0}), and H = H + P0. There is a δ>0 so that if
\λ — λo\ + \W\2<δ, then the strong limits

l im(H+ W-λ + iεΓ1 = (H + W- λ + I Ό ) " 1 (5.1)

exist as maps from Lf to L2LS for any s > 1/2. The operators (H + W — λ± iO)'1

are norm Holder continuous in the variables (λ,W) for \λ — λo\ + \ W\2 < δ. If
λ — λo\ 4-1 W\2 < δ, and λ is not an eigenvalue of H+W, (5.1) also holds with

H replaced by H. The Holder continuity is also valid for the operators
[H+ W-λ±iO)~1.

Proof As in the proof of Theorem 2.5, we find for some c0 > 0,

W{I) £ c0EH, w(l) (5.2)

for some open interval / containing λ0 and all W with \W\ι < δ1 if δt is sufficiently
small. The proof of [P-S-S] then shows that the limits (5.1) exist and are Holder
continuous in / if WeίM2 The Holder continuity in W (in the norm | |2) is proved
by exactly the same technique. We do not repeat the argument here. The Mourre
estimate also holds for H -f W (see Lemma 2.4) so that if λ is not an eigenvalue
of H + W, the proof of [P-S-S] again shows that boundary values exist as maps
from hi into h\s(s > 1/2) and that they are Holder continuous in (/, W). •

We now present a result using a formalism which has proved very useful in
the study of eigenvalues [K2, Howl, 2]:

Proposition 5.2. There is an open interval J containing λ0 and a δ > 0 so that the
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following holds: Define Po = EH{{λ0}) and H = H + P0. For λeJ and \ W\2 < δ, (5.1)
holds. Define

Q+(λ, W) = P0(H +W-λ- iθy ^ o .

Then λeJ is an eigenvalue of H + W if and only if the operator 1 — Q+(λ, W) is not
invertible. (Note that Q+ is well defined since all functions in R a n P 0 decay
exponentially.)

The proof of this result is very similar to that of similar results found in the
literature. We sketch it mainly to establish notation: For Im z > 0, we have

(H + W - z)'1 =(H + W - z)-1 +{H + W - z)- *> P0(H Λ-W-z)'1. (5.3)

Multiplying by Po, we find

(H+W-z)1P0(\-P0(H+W-zΓ1P0) = (H+W-zΓ1P0. (5.4)

Letting z = λ + iε and taking ε | 0 gives (for λ not an eigenvalue of H + W)

(H+W-λ- iOΓ^oίl -Q+(λ, W)) = (H+W-λ- iO)"^. (5.5)

Suppose t//eRanP0 and (1 - Q+(λ, W))φ = 0. Then from (5.5),
(H + W — λ — iθ)~1φ = 0, which implies φ = 0, so that since on
R a n P 0 ? l — Q+(λ,W) is just a finite dimensional matrix, l — Q+(λ,W) is invertible.
Conversely, suppose 1 — Q+(λ, W) is invertible. Let

Q(z,W) = P0(H+W-z)~1P0

for Im z > 0. It is easy to see from (5.4) that 1 — Q(z, W) is invertible, and thus from
(5.4),

(H+W-zYlPQ = (H+W- z)~ιP0(\ - Q(z, W)Y\ (5.6)

Substituting (5.6) into (5.3) gives

(H -f W - z) -ι = (H + W - z)" *

+ {H + W- z)~ XPO(\ - β(z, W)Γ1P0(H +W- z)-\ (5.7)

From (5.7), it follows that the limit

Yιm(H+W-λ-iε)-γ

exists strongly as maps from Ls

2 into lλ.s for s > 1/2. Thus the projection

EH + w(W) = s - lim - iε(H +W-λ- is)'1 = 0,

and λ is not an eigenvalue of H + W. •

Lemma 5.3. There is an open interval J containing λ0, an η > 0, and a δ > 0 such
that if W is in @t2 with \W\2<δ, and λeJ, then with y(λ) = λo + \-λ

(5.8)
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Proof. We use the resolvent formulae

(H + W - zΓ1 =(H - z)'1 -(H - zΓιW(H + W - zy1

= (H-zy1-(H+W-z)~1 W(H ~z)-\ (5.9)
Thus

Q(z9W) = γ(zy 'Po-yizΓ 2P0WP0

+ y(zy2P0W(H +W- z)'ιWP0. (5.10)

We have

P0W[(H +W-λ- iOy1 -(H-λ- iOy'

If 1 > s > 1/2, the expression in curly brackets is bounded in norm by c\W\η

2 for
some η > 0, while

Taking z = λ + iε and ε J,0 in (5.10) thus gives (5.8). •

Lemma 5.4. Let J be as in Lemma 5.3. Suppose We^2

 and (μ/7 = 1,2,...} is the
set of eigenvalues of P0WP0. Then, λeJ is an eigenvalue of H +W,

j \l) for somej.

Proof. Let ξ = y(λ)(λ — / 0 ) . Then we calculate using (5.8),

o + 0{\W\l)}. (5.11)

/ V1

Now IKξ-Po^oΓΊl = Minlξ-^-l so that
\ j J

is invertible if

( Min|ξ-μ;Λ ||O(|^||)|| < 1/2.

or, in other words, for some c > 0

-μj\^c\W\l all j . (5.12)

There exists a constant cι > 0 so that if

iλ-λo-μjl^c^WH for all j , (5.13)

then (5.12) is satisfied. Thus, in view of Proposition 5.2, if λ is an eigenvalue of
H + W, we must have |/l — λ0 — μ}\ < c11 W\j for some j . •

Lemma 5.5. Suppose dim Ran Po = m. Then there is a real-valued function WeC^(Un)
such that P0WP0 has m distinct eigenvalues as an operator on Ran Po.

Proof. We first show that if m > 1, we can find W^eC^ such that P0WίP0 is not
a multiple of Po. Let {φi}T=i be an orthonormal basis for R a n P 0 . lϊ(ψuφψ2) = 0
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for all φeCo, clearly φίφ2 = O a.e. H (φ1,φφ1) = (φ2,φφ2) for all φ e C J , then
l*Ail2 = \Ψ2\2 a e These two statements imply ψϊ = ψ2 = 0 a.e. and we have proved
our claim.

Suppose we have found a real W2eC§ such that P0W2P0 has m2<m distinct
eigenvalues. We will show how to construct a real W3ECQ with at least m2 + 1
distinct eigenvalues. This will complete the proof.

Suppose {Ψi}Γ=i is a n orthonormal basis for Ran P o so that

where / ̂  2. Find a real φeC^ such that {(φh φψj)}i^ij^ι is n o t a multiple of the
identity. By making a unitary change of basis we can assume

where μxφμ2. Let

and let FF(ε) =W2 + εφ. The projection onto the eigenspace of eigenvalues for W(ε)
near μ is for small ε

^ = ^ 7 f ( z - W ί ε ) ) - 1 ^ .

If the eigenvalues near μ were all equal, we would have ({eJΓ=i is t n e standard
basis in Um)

But a simple calculation gives for 7 = 1,2,

( ^ ^(ε)P(ε)^)/(^ , P(β)ej) = μ + εμ,- + O(ε2).

Thus the eigenvalue μ splits into at least 2 eigenvalues. If ε is small enough, the
number of other distinct eigenvalues cannot decrease. Thus, for small enough ε > 0,
the number of distinct eigenvalues of W(ε) is at least m2 + 1. •

Lemma 5.6. Let P o , J, ami (5 be as in Proposition 5.2 and suppose m = rank(P0).
Then there exists a real WeC^(Un) and a ί0 > 0 such that

mnk(l - Q+(λ,

for all λeJ and all t with 0 < | ί | g ί0.

Proof. Let Ŵ  be as in Lemma 5.5. Then according to Lemma 5.3,

β+(λ, ίWO = y ^ P o - y~2tP0WP0 + O(ί2),

and with ξ = γ(λ)(λ - λ0)

where py = P0]/FP0. Choose a basis so that we can write (with some abuse of
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notation)

.0 μm

If ξ = tμ1 — tζ, where |£| ̂  cjί j, then

(ξ-ίW^ + O(ί2))= - ί + 0 ( ί )

Since the μt are distinct, the matrix in brackets clearly has rank ^ m — 1 for small
ί. This conclusion also holds if ξ = ίμ^ — ί£ for any j if |£| ̂  cx |ί|. According to
Lemma 5.4, unless ξ = tμ} + 0(ί2), the operator 1 - Q+(λ9 tW) is invertible for λeJ
and thus has rank m. This proves the result. •

Lemma 5.7. VKίί/i P^ as in Lemma 5.6, any eigenvalue ofH + tWinJ has multiplicity
one for 0 < |ί | ^ ί0.

Proof. Multiplying (5.4) by Po and defining

QHz) = PΌ(H + tW-zΓ1P09

we obtain

βf(z)(l - β(z, ίWO) - β(z, ίWO (5.14)

Suppose λeJ is an eigenvalue of H + ίP^. Set z = / + iε in (5.14) and note that

s - lim(H + tW - A - ie)" \ - iε) = EH+tW({λ}) = P 1 .

We obtain from (5.14),

PoP1PΌ(l-Q + (λ,tW)) = 0. (5.15)

Since rank(l — Q+{λ, tW)) ^ m — 1, clearly (5.15) implies

rankί iVΊJ 'o)^ !- (5 1 6 )

From (5.16), it follows that P1(P0P1P0)P1 = (P^QPJ2 has at most rank 1, and thus

VM^l. (5.17)

Suppose φx and φ 2 are two linearly independent vectors in RanP t . We can find
a non-zero vector φ = aιφι+ oc2φ2 withP1PoPιφ = 0. But this implies H P Q P ^ H 2 =
(φ,P1PoPίφ) = 0, or P o φ = 0. This contradicts Corollary 2.7 so that

We are, of course, heading toward a result which says that not only can one
split a degenerate eigenvalue, but remove it completely. Before we prove this, we
need to know a bit more about δ(H — λ0) in addition to the fact that it is not the
zero operator.

Lemma 5.8.

Poδ(H-λo) = 0. (5.18)
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Proof. With convergence in norm as maps from L2

S to L\s, s > 1/2, we have

2πι

= lim δt(H - λo\
40

where

δε(H - λ0) = -j^- \ 2 . (5.19)

But H = H + Po so that

Poδε(H-λo) = ~~-2Po.

This proves (5.18). •

At this point, in order to learn more about the eigenfunctions of H we need
to make further regularity assumptions about the potentials Vj, in addition to (2.1)
and (2.2).

Assumption R:
(a) The potentials Vj belong to the Kato class K1^ [A-S, S2], where dj = dim Xjm

(b) If {x}~sφe^(Λ) for some s and if ( - Λ + V + W-λ)φ = 0, where W is
a real function in CJ(lRn), and i/r vanishes in an open set, then ψ = 0.

It has been conjectured [S2] and proved for low dimension [Saw], that (a)=>(b).
At this point, however, theorems guaranteeing (b) are not optimal for N-body type
potentials (see, for example, [J-K] and [G]).

Lemma 5.9. Suppose, in addition to the assumptions (2.1) and (2.2) in force in this
section, that assumptions R and (4.1) hold. Then if Ω is an open set in Un and ψ is
a (non-zero) eigenfunction ofH with eigenvalue λ0, there is a real function
such that

Proof If (Wφ,δ(H-λo)Wφ) = 0 for all real WeC$(Ω)9 the Schwarz inequality
for non-negative quadratic forms implies that

(W1 \jj, δ(H ~λo)W2φ) = 0 (5.20)

for all W1 and W2eC$(Ω). Let

ψ' = δ(H-λo)W2ψ.

According to (5.18),

(-Δ+V-λo)φ' = 0. (5.21)

From assumption R(a) and [A-S], we can assume that φ and φ' are continuous.
Thus, from (5.20) we obtain

φ(x)φ'(x) = 0, XEΩ.

From R(b), it follows that {xeΩ:φ(x) # 0 } is dense in Ω so that ι^;(x) = 0 for
xeΩ. From (5.21) and assumption R(b), it then follows that φ' = 0.
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Choosing ηeC^iM"). We have

(η,δ(H-λo)W2φ) = 0

for all W26CQ(Ω). Thus, repeating the arguments above, we obtain that

Since this holds for all ηeCo(Un), we have a contradiction to Theorem 4.2. •

Remark. The unique continuation property R(b) does not guarantee that
{x:φ(x) = 0} has measure zero. Thus {Wφ'.WeC^} is not known to be dense in
L2 (for any s). For this reason the proof of Lemma 5.9 is somewhat involved.

Proposition 5.10. Suppose the assumptions of Lemma 5.9 are satisfied. There is an
open interval J containing λ0 so that, given any ε > 0, we can find a real CJ function
W with HI W||| < ε such that H + W has no eigenvalues in J. Here ||| ||| is any norm
on Cg\

Proof. Choose W1 as in Lemma 5.7 so that any eigenvalue of H + tWγ in J(J is
the closure of J, an open interval containing λ0) has multiplicity one for 0 < 111 rg t0.
Choose ^6(0, ί0) so that \\\t1 Wx \\\ < ε/2. We can assume (by shrinking J if necessary)
that In 3Γ(ΐί) = 0. We will now remove the eigenvalues of H1= H + t1 W1 which
are in J, one at a time. For simplicity of exposition, suppose there are just two
such eigenvalues, λγ and λ2. Suppose then that (H1 — λί)φ1 = 0 where || ψί \\ = 1.
Note that the results of this section apply equally well to Hι(&'(Hι) = &~(H) so
λ^.T(Hγ)\ Choose a real function W2eC^ so that

-λ1)W2ψ1) = a1>0. (5.22)

Here Hί =Hί+P1,Pί ={φu-)φ1. If

it follows from Lemma 5.3 and Proposition 5.2 that for λ in some open interval
J\ containing λl9

ImQ\(λ,tW2) = πγ1{λy2P1W2δ{H1-λ)W2P1t
2 + O{t2 + η). (5.23)

and for small enough |ί |, Hι-\-tW2 has no eigenvalues in J x if and only if
l-Ql(λ,tW2) is invertible. Here y1($ = λ+ \-λ1. Since P1 W2δ{H1 - λ) W2P1

is continuous in Λ, we can assume (by virtue of (5.22) and (5.23) that for small
111 > 0, 1 — Q\ (/, tW2) is invertible for all λe Jt (we may have to shrink Jγ again).
Thus H1

J

ΓtW2 has no eigenvalues in Jt for small non-zero t, say 0 < | ί | ^ t!. For
each λeJ\J1 there is an open interval J(λ) containing λ such that (by Theorem
2.5) if | ί | ^t(λ) (ί(/)>0), the following is true: If λ2eJ{λ\ there is at most one
eigenvalue of Hί + tW2 in J(λ) and this eigenvalue has multiplicity one, while if
λ2φJ{λ), then H1 + tW2 has no eigenvalues in J(λ). A finite family {Jffly.i =1,...,N}
covers J\J1. We can assume that only J(λλ) contains λ2. Let

t'2 = Min(f9t{λ1)9...9t(λN)).

Then if 0 < | ί | ^ ί'2, Ht + tW2 has no eigenvalues in J, except perhaps one, of
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multiplicity one, in J(λ1). Choose t2 in (0,ί'2) so that || t2 W2 || < ε/4. Then the
operator H2 = H + tιWί+ t2W2 has at most one eigenvalue in J, and this
eigenvalue has multiplicity one. If this eigenvalue indeed exists, denote it by μ2.

Choose W3 eC£ such that

P2W?)δ{H2-μ2)W3P2 = a2P2, α2 > 0,

where P2 is the orthogonal projection on the eigenfunction associated with μ2.
We proceed to remove this eigenvalue in the same way we removed the previous
eigenvalue of Hί. If t is non-zero and small enough, H2 + tW3 will have no
eigenvalues in J. We choose such a non-zero t,t3, such that | | ί 3 W 3 | | <ε/4. Then
the proposition holds with

w = tιwί + t2w2+ t3w3. m

This proposition and Theorem 2.5 are the main ingredients in the genericity

result to follow.

Let @ be the closure of the set of all real WeCo(W) in the nom \-\r.

Theorem 5.11. Suppose, in addition to the assumptions (2.1) and (2.2) in force in this
section, that assumptions R and (4.1) hold. Then the set of all We^J such that H + W
has no eigenvalues in σess(H)\^~(H) is a dense Gδ.

Proof. Let A be a compact subset of σ^h(H)\3~(H). If WeM and H + W has no
eigenvalues in Λ, then by Theorem 2.5 (and a compactness argument) there is an
open ball B (in ^) with center at 0 such that if WEB, H + W +W has no eigenvalues
in A. Hence

DΛ= {WE^\H + W has no eigenvalues in A)

is open. If WeC£, according to Proposition 5.10, we can find WmeC^ with
I W/Ji -^0 so that H + W Λ- Wm has no eigenvalues in A. Since C^ is dense in 0S
in the norm | | 1 ? it follows that D Λ i s also dense. Choose a sequence of compact
sets Am with ΛmTσess(if)V^(/ί). We see that if

then H + W has no eigenvalues in cress(H)\^~(ii). G is a Gδ and is dense by the
Baire category theorem. •

Remark. Suppose that the potentials vt satisfy (2.1) and (2.2). Then our discussion
shows that the following weak form of Theorem 5.11 holds.

Theorem 5.12. The set of all We & such that H + W has only simple eigenvalues in
σess(H)\^(H) is a dense Gδ.

This theorem should be compared with results for the Dirichlet problem in [U].
To emphasize the local nature of our results, we will state another theorem.
For a compact set K czUn with non-empty interior, we denote by &κ the set

of all real functions in C^([RΠ) with support in K. Equipped with the family of
seminorms

sup {\D*φ{x)\:xeUn, |α| g w}; m = 0,1,...,
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S)κ is a Frechet space. We then have

Theorem 5.11'. With the same assumptions as in Theorem 5.11 and with &κ as above,
the set of all We<3k such that H + W has no eigenvalues in σess(H)\^(H) is a dense Gδ.

Proof. The proof of Theorem 5.1 Γ is almost exactly the same as that of Theorem
5.11 if one observes that under the additional assumption R, Lemma 5.5 through
5.7 and Proposition 5.10 hold for some WECQ(Ω), where Ωa interior (K). •

We end this section by giving a simple set of potentials for which all of our
results are valid:

Suppose that for each ΐ = 1,2,..., M,

X^ with / ^

and for all α with |α| g 2,

lim|j/| | α | i)αt;t (j/) = 0 as y-^oo in Xi9

then (2.1), (2.2), (4.1), and the condition R all hold. The unique continuation result
implicit here is given in [G].

VI. Concluding Remarks

We would like to mention two open problems not considered in this paper.
The first problem involves the treatment of more general perturbations of H.

The perturbations treated here are not completely natural for the N-body problem
(but are quite natural for the generalized iV-body Schrδdinger operator). A more
natural class of perturbing potentials in the JV-body problem would involve only
a sum of two-body potentials. One would still believe that, generically, embedded
eigenvalues are absent. But, in this case, the set of vectors Wφ, where W is the
perturbation and φ is an eigenvector of H may not be sufficiently large to achieve
(Wφ,δ(H — λo)Wφ) φQ with our present state of knowledge of the operator
δ(H — / 0 ) . Thus, either one needs further knowledge about the operator δ(H — λo\
or a different method is required to show that eigenvalues disappear under small
perturbations.

The second problem involves the determination of the set of potentials which
do produce embedded eigenvalues. There are indications that given a negative
embedded eigenvalue λ0 of — A + K, there may be curves W(U') with FK(0, x) = 0
such that Ht = — A -f V + W(t, •) has an eigenvalue λt near λ0 for t small. It would
be quite interesting to see if this were true in a general context.

Appendix A: Proof of Lemma 2.6

Suppose \W\λ gε 5 \λ — λo\Sε> andyrgό are so small that Theorem 3.1 applies with
α = 0. By Lemma 2.4, we can assume that the Mourre estimate holds for each /
with \λ — λo\^ε. Suppose by the way of contradiction that
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where \Wm\1 ^ ε, \λm — ΛO| g ε and || <x>ιAm|| -* °° According to [F-H2], for each
m,eβ<x)ψmeL2 for some β>0. Given this fact, it is easy to see that the estimate
(3.1) applies to φ — ψm so that with α = 0, ξ = ξ2, μ = 1, 7 = y0 ^ <5; we have

||£i^m | | g ||Kζψm\\. (A.I)

But *Fm = ξφm/1| <^m || converges weakly to zero because, for any bounded set B,

II XB Ψm II -^0. This contradicts (A.I). •

Appendix B: Boundedness of R(xy ~'\s > 1

Under the assumptions (2.1) and (2.2) and λoφ^~(H), we will show that if
δ(H — λo) = 0, then i?<x>~s is bounded for s > 1.

According to [M2] and [P-S-S], the norm limits

lim (A )~S(H - λ0 ± i£)~ι(Ay\ (B.I)

and
lim Pτ (H - λ0 + iβ)~! < A > " 2 s (B.2)
40

exist in L2(ίR") for any s> 1/2. Here (A) = (l + |Λ| 2 ) 1 / 2 . It easily follows from
5(// — / 0 ) = 0 that the limits in (B.I) are equal. (Note that δ(H — λ0) is an operator
from L2 to L l s so that this is not immediate from the definition.)

We will show that for s > 1/2,

for all φe6f(Un), the Schwartz space of rapidly decreasing functions. This will
prove the result.

Using the resolvent equation we find

εjO

where

By the proof of Lemma 4.1 and interpolation (O g s g 1), one easily proves that
|| φf || ^ c || φ ||. Thus, to prove (B.3), we need only show that for all φe^iU") and

We have

ε | 0
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εjO

εjϋ

φ, lim P _ (if - λ0 ~ iε)'1 < A > ~ 2 s ψ

< c
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