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Abstract. A new proof of I. Sigal’s and A. Soffer’s propagation theorem is given.
This theorem describes a large class of operators which are Kato-smooth with
respect to an N-body Schrodinger operator.

1. Introduction

One can learn a lot about the Schrédinger operator H by studying the asymptotic
behavior of certain observables in the Heisenberg picture as the time goes to
infinity. There exists a number of various results on this subject, which say roughly
that for large times many observables behave to some extent in a semiclassical
way. For example, various estimates that are used in the proofs of the asymptotic
completeness by the Enss method (sec e.g. [El, 2,3, Pe]) belong to this category.

Another class of estimates that describe propagation of observables is related
to the concept of the Kato-smoothness. We say that an operator B is locally
H-smooth on the interval A if and only if the estimate

0

[ IIBe"|*dr < 0

is satisfied for any vector ¢ that belongs to the range of the spectral projection of
H onto A. (In the sequel we will just say “H-smooth” instead of “locally H-smooth”.)
This concept has been introduced by Kato in [Kal,2]. It has been used to prove
various properties of Schrodinger operators such as the asymptotic completeness
and the absence of the singular continuous spectrum. Let us name for instance the
following references which used the H-smoothness (sometimes in a disguised form)
[Pu, Lal,2,3,4, Ar, RS4, IoOC, Ha, HaPe, MS, Sig, SigSofl, Del].

The problem of finding H-smooth operators is especially interesting and
nontrivial in the case of N-body Schrodinger operators. First of all, it can be shown
that in this case, under quite mild conditions on the potentials, the operator
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(14 |x])”"* "¢ 1is locally H-smooth outside thresholds and bound states (see M1, 2,
PSS, CFKS, Ya]). This result can be used to prove the absence of the singular
continuous spectrum.

Another result on this subject is contained in [SigSof1], where I. Sigal and A.
Soffer have been able to describe a very rich nontrivial family of H-smooth
operators. This result, which they called the propagation theorem, was a crucial
step in the proof of the asymptotic completeness of the short range N-body
scattering contained in [SigSof1].

The fact that 1. Sigal and A. Soffer proved says roughly that if Q is a function
on the configuration space homogeneous of degree —1%,¢ is a bounded function
on the momentum space and Q(-)g(-) is supported outside of a certain subset of
the phase space, then g(D)Q(x) is H-smooth on a certain energy interval. The
original proof of this theorem by L. Sigal and A. Soffer is based on very intuitive
and beautiful ideas, although some of its technical details may seem quite
complicated. In this paper we present a somewhat different proof. Our proof
essentially uses ideas and techniques very similar to those employed in the original
proof. Nevertheless, we think it is more transparent. We avoid for instance the
so-called channel expansion, which is one of the technical steps used in [SigSof1].
We also formulate our theorem is a somewhat different way, which seems to be
more convenient.

2. H-Smooth Operators

In this section we introduce the notion of the H-smooth operators and present its
basic properties (see [Kal,?2, RS47).

Let s be a Hilbert space, H—a self adjoint operator on # and B—a bounded
operator on #. We say that B is H-smooth (or Kato smooth with respect to H)
if and only if for every ye#,

o0

[ I Be™Mjr || 2dt < oo,
Let A be a measurable subset of R. Let E ,(H) denote the spectral projection of H
onto A. We say that B is H-smooth on A4 if and only if BE ,(H) is H-smooth.
Let us state the most obvious properties of the H-smooth operators.

Lemma 2.1. a) Let B, and B, be H-smooth on A. Then B, + B, is H-smooth on A.
b) Let B be H-smooth on A and C be bounded. Then CB is H-smooth on A.
¢) Let B, be H-smooth on A and B¥B, = B¥B,. Then B, is H-smooth on A.

Proof. b) and c) are obvious. To show a) it is enough to note that

J (B, + Bo)ep%de < [ [ Buey2de+ [ | Boey |2di

1
2

+2< T 1By n%a)z( T 1By Wz) . QED.

The following criterion for the H-smoothness of an operator is a minor
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modification of the so-called Putman—Kato theorem (see [Kal, Pu, RS4, SigSof1]).

Lemma 2.2. Let B and E ,(H)CE 4,(H) be bounded. Let B; and B; be H-smooth on A
on A for i=1,... k. Suppose also that

k
E ,(H)i[H,C]E ,(H) = B*B + Z B¥B..
i=1
Then B is H-smooth on A.

3. Basic Definitions

Throughout the paper X will denote a fixed vector space isomorphic to R” endowed
with a scalar product. | x| will denote the Euclidian norm of a vector x.
Let xoeX and R > 0. Then B(x,, R) = {xeX:|x — x,| < R} and

. 2
<R}:{xeX: X Xo > 1 —R_}
[x1]xo] 2

B(R) will denote B(0, R) and S will denote the unit sphere in X.

An important role in our paper will be played by a certain fixed family
X, aed/} of subspaces of X. To be consistent with the notation in the literature
devoted to N-body Schrodinger operators (e.g. [Hag, PSS, Sig, SigSof1, RS3, A,
FH1]) we will write a, ca, whenever X, >X,, and a,ua,=a; whenever
X, nX,=X,.X,  wildenote X and X, = {0}. We will assume the following
properties of .of:

1. Gpins Omax €A,

2. ifa,,a,e/ then a,va,ed.

The orthogonal complement of X, in X will be denoted X Dual spaces to
X, X, and X¢ will be denoted by K, K, and K* respectively. 7, will stand for the
projection of K onto K, and n°—the projection of X onto X*°.

It will also be useful to introduce the following symbols:

Za = Xa\U Xb>
bda

ye=X\|J {x: dist<i,xb>§g}.
bt [x]

We fix a certain positive C* function X3x+{x»eR such that for |x| > 1, we
have (x> =|x|. (Similarly, we will use functions {k)», {(x*, etc.).

The Greek latter o will denote a multiindex; |«| will denote the length of this
multiindex.

We define

S™(R") = {QeC™(R"): |Q(x)] £ c{x)™ and |*Q(x)] < x,{x>™ ! for |a| = 1}.

X Xg

x| [xo

Cone(xy, R) = {xeX:

and

Typical examples of functions from S™(R") are C* functions that are homogeneous
of degree m outside B(1).
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We will say that a subset £2 of X x K is conical if and only if for any ¢t >0
(x, k)e 2 implies (xt, k)e£2.
Let £2 be a conical subset of X x K and ¢, > 0. Then

%= {) Cone(x,ée) x B(k,p).

x,ke 2
xF0

D and D, will denote the operators (1/i))V and (1/i)V,. 4, A, and A* will stand
for the Laplacians on X, X, and X* respectively.

An important role will be played by the generator of dilations 4 =3(D-x + x* D),
and the operator y = 3(D+(x/<{x>) + (x/<{x)) D), whose importance was first realized
in [SigSof 17]. It is easy to show that both y and A4 are cssentially self adjoint on
F(X) (the space of Schwartz test functions on X).

If B is an operator then B + hc will mean B + B*. The spectrum of B is denoted
by a(B). If B is an unbounded operator then Z(B) denotes its domain.

4. Hamiltonian

N-body Schrodinger operators arise naturally in the many particle nonrelativistic
quantum mechanics. The reader will find their basic properties e.g. in [RS3,4]. In
our paper we consider operators which are slightly more general than the regular
N-body Schrodinger operators, similar to those considered in [A, FHI,2].

We begin this section with stating the assumptions on the N-body Schrodinger
operators that we will use in our paper. Those assumptions are essentially the
same as in [SigSof1].

We assume that u is a real number such that 0 < u < 1 and for every ae.oZ we
are given a real function v, on X* such that

a) v (x)(—A*+ 17! is compact on L*(X“), (4.1)

b) {xDHu (x)(—A%+1)7! is bounded, (4.2)

c) XDV (x(—A*+ 1)" ! is bounded, 4.3)
and

d) (x* V2o (x)(—A"+1)7! is bounded. 4.4)

Note that v, (n°x)’s are relatively bounded perturbations of —A with an
infinitesimal bound.
Set V=Y v,(nx). We define H to be the self adjoint operator on L*(X) such

aes/
that Z(H)=%(— A) and H= — A+ V. Define also V,(x)= ) v,(n’x) and [,=V -V,

The so-called “cluster Hamiltonians” H, are defined as bt(flae self-adjoint operators
such that ¥(H,)=%(—A)and H,= —A+V,. Notethat H, =—-Aand H, , =H.
— A will be also denoted by H,. We will often write E , instead of E 4,(H). Note
also that H,’s and H are bounded from below.

In the sequel 4 will denote a fixed real number that lies below the spectrum of
H. (Consequently, by the HVZ-theorem 2 lies below the spectrum of H, for all

ae .o/ —see [RS4] and references therein.)
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If we identify L*(X) with 1?(X,)® L*(X?), then the cluster Hamiltonians can
be decomposed as

Hy= —A,®@1y.+ 1, @H",

where H' = — A® + V, is a self adjoint operator on L*(X*).
Let 7, denote the set of eigenvalues of H* if a # a,,;, and y;,,mm = {0}. We
define also 7 ,= | ] 7 ,. If E€R, then we set

b<ca

EE)={+JE—1 E-120,1¢7,),

and
S(E)y={+/JE—1: E—120,t€7 ,}.

We will often drop a,,,, from T tans 7 z amalE) and X (E). Note that the
elements of { 7 , are usually called the thresholds of H. Thus 7 is the set of

a# amax

all thresholds and bound states of H. Clearly the sets 7 , are bounded from below
and consequently the sets X (E) are bounded.

Now we are going to introduce a definition of a certain family of subsets of
the phase space X x K which will play the central role in our paper. This notion
is a variation of the concept of the propagation set which was invented and studied
in [SigSof1].

Let EeR and let 2 be a conical subset of X x K. We say that there is no
propagation in £ at the energy E, and we write Qe /"% if and only if there exists
an interval A containing E such that if QeS ™ 3(X), ge L*(K) and supp Q(-)g(*) < Q,
then g(D)Q(X) is H-smooth on A.

Let us now state the main result of our paper.

Theorem 4.1. Let E¢J . Define
rs,=J U U {(x,k): keK, n,,k:Mi}.

aet xeX , MeX () x|
x#0

4max? Gmax

Then for any ¢, § > 0,
X x K\(PSp)¥fe VP,

The above theorem, in a somewhat different form, was stated and proved in
[SigSof1]. We are going to present a proof that, we think, is simpler and more
transparent.

Next let us present a number of facts about N-body Schrodinger operators that
we will use in this paper without proofs. The proofs of these facts can be found
in the literature.

We start with two variants of the so-called Mourre inequality. For any ae.o/
define I',(E)= @& if E¢.7 , and I',(E)= {0} if Ee7 ,. Let 0, and p, be the real
functions on R such that

Qa(E)=2inf[Fa(E)u U Zb(E)T,

bcab#u
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and
2
pa(E)=28up[Ta(E)U U Zb(E):l :
bcab#a
(We set inf (¥ = oo and sup ¢J = — oo, moreover we assume that 0-co =0).

Proposition 4.2. Suppose that instead of the conditions (4.1)-(4.4) the potentials v,
satisfy the following hypotheses:

a) v (x)(— A+ 1)~ is compact on L*(X?), 4.5)
b) (= A+ 1) 'x*Vu (x)(—A*+1)" is compact on L*(X). (4.6)

Then for any aeo/, E€R and 6 > 0 there exists an open interval A containing E such
that

(PolE) + O)E o(H*) 2 E J(H*)i[H*, A]E (H*) Z (6,(E) — 0)E 4(H"). (4.7)

Moreover, the sets I , are countable and closed.

The original Mourre inequality is the part of (4.7) which estimates the
commutator from below. It was proved by E. Mourre in [M1] in the 3-body case
and by P. Perry, I. Sigal and B. Simon in [PSS] in the N-body case. Another
proof of the Mourre inequality was given by R. Froese and I. Herbst in [FH1].
The part of (4.7) which estimates the commutator from above is due to I. Sigal
and A. Soffer (see [SigSof1]). See also [CFKS] and [De2].

We would like to rephrase Proposition 4.2 in a form that contains H , instead
of H?. To this end, if k >0 and k,eK ,, we define

O5(E, k) = 21K, + inf {0,(E' — k2): | E — E'| < i},
and
[)Z(E, ka) = 2'Ika|2 + Sup {pa(E/ - kﬁ): IE - E/I é K}

The following corollary is an easy consequence of Proposition 4.2 (see [FH1] and
[Del] for similar statements).

Corollary 4.3. Suppose that the same conditions hold as in Proposition 4.2. Then for
any E€eR and o,1c > 0 there exists an open interval A containing E such that

(pa(E, D) + 0)E 4(H,) 2 E s(H,)i[H,, A1E 4(H,) 2 (05(E, D,) — O)E 5(H,).
Another important property of N-body Schrddinger operators that will find

an extensive application in our paper is the local H-smoothness of (x> ™% ~¢ outside
the thresholds and bound states. This fact is a consequence of the Mourre estimate;
its proof is due to E. Mourre [M1], see also [PSS, CFKS]. There also exists
another interesting proof due to I. Sigal and A. Soffer ([SigSof2]).

A precise formulation of this result is the following:

Proposition 4.4. Assume that in addition to (4.5) and (4.6) the following conditions
are true:

a) (—A+ 1) 2x Vo (x)(— A+ 1) ! is bounded,
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b) (— A+ 1)1 (x* V)20, (x)(—A*+ 1)™ ' is bounded.

Suppose that Ais a compact subset of R such that 7 n A = . Then for any ¢ > 0 the
operator {x) " *"*%is H-smooth on A.

It is easy to see that the hypotheses (4.1)—(4.4) imply the conditions on the
potentials that are imposed in Proposition 4.2, Corollary 4.3 and Proposition 4.4.
From now on we will always assume that the hypotheses (4.1)—(4.4) hold.

5. Approximately Commuting Operators

In this section we study the properties of certain operators that we will extensively
use in our paper. One may look at these operators as noncommutative versions
of functions on phase space. It turns out that in many situations these operators
commute modulo higher order terms (in a sense which will be clear in a moment).
The proof of this fact will be the main subject of this section. The results and
techniques applied here are based on those of [SigSof1].

First let us define what we mean by “the order” of an operator. Let B be
a densely defined operator on L*(X) and let meR. We will write B = 0({x>™) if
and only if for any keR the set Z(B)n2({x)>*)is densein L*(X)and (x> ™ ¥B{x)> ¥
extends to a bounded operator. We will also write

By =B, + 0({x)>™)
if and only if B, — B, = 0({x)™) and
By 2 B, +0({x>™)

if there exists C = 0((x>™) such that B; = B, + C.
Next let us introduce a certain number of classes of functions that we will use
in this section:

BC*(R") = {geC*(R"): |0%g| < ¢, for any o},
B,C*(R") = {ge BC*(R"): g(k)k (k)™ is a finite measure on R" for any m = 0},
B,C*(R") = {ge BC*(R"): k-V§(k)e BC*(R")},
AY

B;C*(R") = {he BC*(R): h(1) = Z (A4; —t) "™+ hy(t) such that i,¢0(H),

=}
n,eN and h eS(R)}.

Let us state the proposition that describes the commutation properties of
various operators of interest to us.

Proposition 5.1.
1. The following operators are 0({x>°):
a) g(D) for ge BC*(K),
b) (H — ) (H, + 1),
) (H—24)""y, »(H~2)""y and (i+7y)" ",
d) (H—7)"'[H,A],
e) h(H) for he B;C*(R),
f) 1) Jor feB,C*(R).
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II. Let QeS™(X). The following operators are 0({x>™" ')

a) <D>""‘“[Q( ) g(D)] forgeS™(K),
b) [Q(x),(H — )~ (H, + 1)1,
¢) [Q(x),(H—24)""y],

d) [Q(x), (H—2)"'[H, A]],

¢) [Q(x), h(H)] for he B,C*(R),
f)y [O(x), f(»)] for feB; C*(R).

II1. Let feB,;C*(R). The following operators are 0({x> ).

a) [f(7),9(D)] for geS°(K),
a) (i+y)” 1[f(?) g(D)] for ge B,C*(K),
b) [f (), (H—4)" (Ho+1)]
o L/, (H=A"1],
d) [f(),(H—72)" 1[H A1,
e) [f(7), h(H)]AfOI he ByC*(R).
The proof of the above proposition is rather standard and lengthy. Therefore
we indicate only its main steps and omit some of the details, which are easy to fill in.
The starting point for the proof is the following easy lemma.

Lemma 5.2. Suppose that Be B(I*(X))and fork=1,..., j=1,...,k and i;=1,...,n
we have

[x;,[...[x;, B]...11e B(L*(X)).
Then B =0({x)>°). Moreover, if |k'| <k, then

n

[ <x> By~ §Ck<[lBH +ok Y . I [xi.,[-'-[xik,B]---]]|l>-

We omit an easy proof of the above lemma and proceed directly to the proof
of Proposition 5.1.

Proof of Proposition 5.1. 1a) follows easily from Lemma 5.2. II a) follows from the
calculus of the pseudodifferential operators (see [HO, Ta and De2]). The proofs of
Ib),c),d) and 1Ib),c),d) are straightforward applications of Lemma 5.2 and the
identity

(B,(H—7)"']=(H—4) ‘[H,B](H -2

To deal with the remaining statements of the proposition we have to develop a
certain technique which was extensively used in [SigSof1]. First we present this
technique in an abstract form. We begin with the following identity.

Lemma 5.3. Let B and C be self adjoint operators on a Hilbert space .

a) Suppose that %, < Z2(B)n2(C), 2 is a core for B, B maps &, into &, and
[B, C] extends from a quadratic form on 2(B)n%(C) to a bounded operator. Then
[B,e'C] extends from a quadratic form on @(B) to a bounded operator, and the
Jollowing identity is true:

1
[B,e“] = [ dre' ~9€i[ B, CJe™™“. (5.1)
0
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b) If @, < 2(B)n%(C) and e maps 9, into itself for all t, then (5.1) is true in
the sense of quadratic forms on 9,.

Proof. The proof of b) is straightforward. We shall show only a).
Let Imz # 0. Let us prove first that [C, (B + z) '] defined as a quadratic form
9(C) extends to a bounded operator equal

(B+2)"'[B,C1(B+2)" " (5.2)

To this end note first that both (B + 2)2, and (B + ")_@ are dense in # because
2, is a core for B. Take ¢pe(B + 2)Z, and ye(B + z)Z,. Clearly ¢,y e2(C). Thus
by definition

(¢.[C.(B+2) "IY)=(Ch,(B+2z) ") —((B+2) '¢,Cy). (5.3)
But (B+2)"1¢,(B+2) YWe2, = 2(B)n2(C). So (5.3) equals

(B+2)(B+2)'¢,C(B+2)" ") —(C(B+2)"'¢,(B+2)(B+2)" )
=((B+2)"'¢,[B,C1(B+2)" ')

This is clearly equal to the matrix element of (5.2).
Now let ¢,y eZ(B)n%(C). Then clearly

(¢,[B,ef01¢)=limwo<¢,[ B e}w)

1+ ieB

By the Stone Theorem we can write

B v i(1—1)C B trC
<¢’[1+i83 J > Qd_<¢e( B w)‘h
‘ 11 7)C B itC
S

1 1
— i(1-1)C itC dt

§<¢e 1+i B[ it "’)

This tends to the right-hand side of the matrix element of (5.1) as ¢ > 0. QED.
It will be convenient to introduce the following definition. We will write
C =06({x)%) if and only if C is a self adjoint operator on L*(X), #(X) = 9(C) and
fork=12,...;j=12,...,k;and i;=1,...,n,
[, -5 [ C1... Je B(LH(X)).

(Note that C itself need not be bounded).
The following lemma follows from Lemma 5.2 by a repeated application of
Lemma 5.3 a) with 2, = ¥(X).

Lemma 54. Let C = 06({x)°), then for any keZ,
[REPNAREOI TN T

The following lemma is the basis for the proof of most of the statements of
Proposition 5.1.

i
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Lemma 5.5. a) Let C=d({x)»° and geB,C*(R). Then g(C) = 0({x>°).

b) Assume in addition that ¥(X)< 2(B)nZ(C) and [C,B]=0({x>™). Then
[9(C), B] = 0({x)™).

c) Assume moreover that B =0d({x)°) and feB,C*®(R). Then [g(C), f(B)]=
0(<x>™).
Proof. To show a) we use the representation

g(C) = (2m)~* {d1g(z)e’, (54

Lemma 5.2 and the fact that

1D [, @1 TS Celle 4+ 1219

(the above estimate is a by-product of the proof of Lemma 5.4).
To prove b) we also use the representation (5.4). We apply Lemma 5.3. b) to
it with 2, = #(X). Thus we can write

[9(C), B] = (2n) " [dtg (1) dre*€i[C, Bl
0

in the sense of quadratic forms on & (X). Now b) follows easily from Lemma 5.4.
The proof of c) is similar. A double application of (5.1) yields

~ tyt2 . . . .~
[9(C). f(B)] = (2m) ~* [ [dt,dty§(t1) f(t5) | [ duydrael el B[C, Blet b
00

in the sense of quadratic forms on #(X). Then we use Lemma 5.4. QED.

Note that in Lemma 5.5 instead of a single operator C we can take k operators
C,,...,C,, assume that they are 6({x>°) and that ge B, C*(R¥). The proof remains
essentially the same.

Now we can return to the proof of Proposition 5.1.

Proof of Proposition 5.1 continued. Note that if he B;C*(R) then we can find h,eC3(R)
such that h,(¢) = h(1/t + 2) for te[0, (infa(H))~']. Clearly h,((H — %)~ ') = h(H).
We easily see that y and (H —A4)" ! are 6({x)°). Thus Ie), ) follow from
Lemma 5.5a). Similarly, Ile), f) and IITa), b), ¢), d) follow from 5.5b). To show
I11e) we use Lemma 5.5¢).
It remains to prove IIIa’). To this end we need the following fact.

Lemma 5.6. Let geB,C®(K). Then there exist B, =0({x)> ') and B, =0({x>"")
such that [y,g9(D)] =vyB, + B,.

Proof. Clearly y = A(1/{x))+ Q(x), where QeS~*(X). Thus

2.9(D)] = D-Vg(D)—— + 4| -2
[1.9(D)] = D-Vg(D) o+ A[ oS ,g(D)} +0(¢x) 7).

Clearly we can write

1 B .
A[@,Q(D)}— 1B, +0(Cx) ),
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where B, = (x> [(1/{x),g(D)]. By Proposition 5.1 1T a) B, = 0({x)> ~'). Itis obvious
that D-Vg(D)(1/<{x>)=0({x>"1). QED.
Proof of Proposition 5.1 I11a’). Let us write:

i+ ') gDT=02m)" fdtf(t)i dte’*™ i +y) "ty g(D) ] (5.5)
By Lemma 5.6 we can write
G+ '[ngD)1=(G+y) 'yB +(i+7) 'B,. (5.6)
It is easy to see that (5.6) is O({x>~!). This implies 11l a"). QED.
Our next proposition is an example of the so-called geometric method, which

proved quite successful in the study of the N-body Schrodinger operators (see
[CFKS], Chap. 4 and the references therein).

Proposition 5.7. Let ac.o/, ¢ >0, QeS°(X) and supp Q = Y. Then

a) Q(X)(h(H) — h(H,)) = 0({x) ") for he B;C*(R),

b) QX)((H —2)"H(Ho + 1) = (H,— A" (Ho + 1)) = 0({x) %),

©) Q(x)([H, A]( -t [HU,A](H[,—/1)”1)=0(<X>““),

d) Q(x)[g(D).(H — )~ ] =0({x> "1 7#) for ge BiC*(K,),

e) Q) [g(D,),(H — )" (Ho + )] =0(<{x) ™1 7*) for geB,C™(K,).
The proof of the above proposition is based on the following lemma.

Lemma 5.8. Suppose that the assumptions of Proposition 5.7 hold. Then
a) Q(x)la(Ho + 1)' L 0(<x>*u),
b) QLOVI(Hy+ 1)1 =0(<{xy 174,

Proof. Letbd a. Then hypotheses (4.2) and (4.3) imply that {n°x)*v,(nx)(H, + 1)~
and (n"x>' Vo, (r®x)(H, + 1) ' are 0(<x)>°). Moreover it is easy to see that for
any vy,

Q)< xy = 0({x> ™).
This implies immediately the statement of the lemma. QED.
Proof of Proposition 5.7. First let us show that

QX)(H =24~ ~(H,— A7) =0({x> 7). (5.7)
In fact, the left-hand side of (5.7) equals
[(H =)L Q) U(H,~ A7 = (H =27 Q0 (H,— 4) ™" (5.8)

Clearly, the first term of (5.8) is 0({x) ~!); the second is 0({x> ~#) by Lemma 5.8. a).
Next introduce the function h, exactly as in the proof of Proposition 5.1. We
can write

Q(x)(h(H) — h(H,)) = 2r) " ! [dth, () Q(x)(e"" =7~ — e P71
=(2n)” 1jdth [jdre‘“" ATHEA0(x)(H — 1)~
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t T1 . L
. (Ha . ;L)_ l)et(lla—,t)“r + (2713)’ ljd‘fl j‘ d_cze:(H—A) Lt—11)
0 0

TOX), (H — A~ '] ™=z, — ) (H — A)~!
‘(Ha _ /’L)ﬁle)i(Ha‘i)il.

Now the first term of the above expression is 0({x)> ~#) by (5.7) and the second is
0(<x> ™).
The proof of b) is similar to that of (5.7). ¢) follows easily from Lemma 5.8.b).
In the proof of d) we proceed as follows. We write

0()[g(D,),(H—4) "= (2n)“)§ g*(y)dyQ(x)g dre't7OPaY[D -y, (H — /)~ e,
‘ (5.9)

We commute Q(x) through ¢* ~9P«¥ ysing (5.1). Thus we get a term containing
[D, y,Q(x)], which is of the order 0({x)> ). This is still unsatisfactory, so we
commute [ D, y, Q(x)] further to the right. In effect we obtain

1
J deQ()elt = PI[D, -y, (H — ) 1]l
0
1
= (j)drei(l “OPayQ(x)[Dyy, (H — 4)~ 1 JeiPe
t T1
+ [dr, | deye™ 2Pi[D, y, Q) ][ Dy, (H — 7) 7 Je2Pe
0 0

-, gdfz j dry e PID -y Dy, Q(x)]]

'ei(tz—r3)D”'y[Da'y, (H _ ft)_ l]eif‘iDa',V‘

Now we easily see that the first term of the above expression is 0({x)» ! ~#), the
second is 0({x)> %7 #) and the third is 0({x)> ~2). Thus (5.9)is 0(<{x> " !#). QED.

By Proposition 5.1 and 5.7, if we are given a product of various operators
studied in this section we can very often change the order of factors producing an
error of a smaller order. It will be convenient to systematize various possibilities
of changing this order.

Proposition 5.9. Let aeof and ¢>0. Let QeS™(X) for i=0,1,...,N,
m=my+my + - +my and supp Q, < Y5.

a) Let B, be the product of the operators Qo(x), Q1(x),...,(H — )~ ! and a certain
number of operators belonging to the following classes:

1) f(y) where feB,C?(R),
2) g(D,) where ge B,C*(K,),
3) G(D) where GeS°(K),

4) h(H) where he B;C*(R),
5 (H—A) 'Hy+ 1),

6) (H— ) '[H,A].
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(The order of the factors in this product is arbitrary). Moreover, suppose that B, is
a product of the same operators as in B, except that H is replaced by H, in the classes
4), 5) and 6) and the order of the factors may be permuted without changing the order
of the operators of the classes 3), 4), S) and 6). Then

By =0({x>™), (5.10)
and
B, =B, +0({x)>™""#). (5.11)

b) Let C, be a product of the operators Qo (x), Q,(X),...,Qn(X),(H—4)"* and a
certain number of operators of the following classes:

1) f(y) where feB,C*(R),

2) g(D,) where ge B, C*(K,)n B,C*(K,),
3) (D) where GeSYK),

4 (H—72)"",

S) (H—2)"'(Ho +1).

(The order is arbitrary.) Suppose also that C, is a product of the same operators as
in C except that the order of the factors is permuted without changing the order of
the operators of the classes 3), 4) and S). Then

Cy =0({x>™), (5.12)
and
Cy=C, 4+ 0({x)OmH), (5.13)

Proof. Clearly all the factors of B, and C, are 0({x)»°) except that Q,(x) = 0({x>™).
This implies (5.10) and (5.12). Proposition 5.1.IL. shows that commuting Q;(X) in
B; and C, produces errors of the order 0({x>™ ). Let us show now how one can
commute g(D,) with the operators containing H. This is done in a different way
in a) and in b). Consider first a). First we move Q,(X) to a position adjacent to
any of the operators of the class 4), 5) or 6) and replace H with H,. By Proposition
5.7a), b), ¢) this produces an error of the order 0({x>™ *). Now ¢(D,) commutes
with thus modified operators of the class 4), 5) or 6). In the case b) we move Qy(x)
to a position adjacent to any of the operators of the class 4) or 5). Now by
Proposition 5.7 d) or e) if we commute g(D,) with them we get an 0({x>™"17#)
error. Now if we take into account Proposition 5.1.IIT we know how to move
freely g(D,) and f(y) in B; and C| producing errors of a small enough order except
that we do not know how to commute g(D,) with f(y). To do this we move those
operators in such a way that one of them becomes adjacent to (H, — 4)~* (in the
case a)) or to (H—4)~! (in the case b)). Now we can commute g(D,) with f(y)
producing an 0({x>™ ') error because by Proposition 5.1.1c) and IIIa’) we have:

(H,— A 'gDo), f()]=LH, = A+ DIL0 + )79, S]] =0({x)> ™).
QED.

6. Proof of the Propogation Theorem

In this section we fix E¢.7 and prove Theorem 4.1 for the energy E. The proof is
broken into a number of steps. In cach step we consider a different class of operators
and prove that they are H-smooth on a certain vicinity of E.
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The general strategy of the proof is to show that the commutator of a certain
observable with H is positive around the energy E modulo some “higher order
terms” and then to use Lemma 2.2. An additional technical device that turns out
to be helpful is using observables that are equal to g(D)Q(x) times a function of y.

The commutator of H and of a function of y has an especially nice from which
is the subject of our first lemma in this section.

Lemma 6.1. Suppose that F, feC®(R), f'eC¥(R) and F' = f?. Then
(H—A)"Y[H, F())J(H - A"
1

VXD

+0({x>72). (6.1)

SOYH — )7 HH, AYH — A7 f()

1
VLTS
1

1
/{x) NESY

The proof of this lemma is contained in Sect. 7. Now, following [SigSof1] let
us study the propagation for large |7|.

-2

H=2""L2o*H-2)""

Proposition 6.2. Ler w>supX(E), feC*(R), f'eCJ(R), f=0 and supp f =
(— o0, —w]u[w, ). Then there exists an open interval A containing E such that

(1//<{x>)f(y) is H-smooth on A.
Proof. Define

F(t)= — ifz(s)ds.
0

Set w, = sup X (E). Choose a positive number § such that 0 < 2w? — 2wZ — §. Clearly
Pa....(E)=2w3. Thus by Proposition 4.2 we can find an open interval A, containing
E such that

E, i[H,ATE 5, < (W3 + 8)E .. (6.2)

Let A be an open interval containing E such that A c 4, and AnJ = J. Now
Proposition 6.2 will follow easily from the boundedness of F(y)E 4, the H-smoothness
of (x> 'E,, Lemma 2.2 and the next lemma. QED.

Lemma 6.3. These exists ¢, and ¢ >0 such that
1
(x

Proof. Let heCg (R) such that h=1 on A and supph < A,. By (6.1) multiplied
from both sides with h(H)(H — 1), we can write

ELi[H, F()JE 2 cEAf(7)

SOEf—ciE4 (6.3)

1
_<x>2EA'

h(H)i[H, F(7)]h(H)

- FO)R(H)I[H, A1h(H) f (v)—1

S Jxy



New Proof of Propagation Theorem for N-Body Quantum Systems 217

1 1
+ 2h(H)(H — 4) H—=2" 2 ow*H -7 (H — A)h(H)
VO NEED
+0(<{x>72). (6.4)
By (6.2) the first term of (6.4) is greater than or equal to
1 1
—(Q2w§ + 0) === (H) [ () —===.

NS

Thus (6.4) is greater than or equal to

NZED

1
(2w? — 2w2 — Oh(H) f (7) ———— f(h(H) + O({ x> 2).
w” — 2w — 0)h( v)\/<x> (h(H) + O({x> %)

This implies immediately (6.3). QED.

The above proposition is the only place in our paper where we use the reverse
Mourre inequality. Our next propositions are based on the regular Mourre
inequality. More exactly, we will need the following consequence of it.

Proposition 6.4. Let ac.o/ and &x,v,0>0. Let FeC®(R), feCF(R) such that
F' = f?. Suppose that geB,C*(K,) and QeS°(X) is a function homogeneous of
degree zero outside the unit ball such that supp Q < Y. Define 6% to be the function
on R x (X\{0}) x K such that if xeZ, and keK, then 0"(E, x, k) = 0 (E, n, k). Let

X

0= inf{()"(E, x, k): xesupp Q, n,kesuppgand dist< k, supp f> < v}

|x]

and

¥ = ¢(D,) /00 ]2173 £6)

Then there exists an open interval A containing E and a number ¢, such that

LEA(H — DILF (), (H — )7 1Q(x)g* (D) (H — DE 4 + he
(0 —05—2sup {12: tesuppf})EA Y*WE,~c, EA<X>~1¥“EA.

The proof of the above proposition is given in Sect. §.

To facilitate our study of the propagation of observables it will be convenient
to introducc the following definition. Suppose that M, EeR and I is a conical
subset of X x K. We will say that I'e A"2 ,, if and only if there exists an open
interval A containing E and an open interval A containing M such that if feCZ(R),
fz0,supp f < 4, QeS™4(X), geL*(K) and supp Q()g() = I, then g(D)Q(x) () is
H-smooth on A.

The rest of this section is devoted to finding a sufficiently rich family of sets
from A%y, for various values of M. We start with the easiest case (equivalent
to Theorem 7.1 of [SigSof1]).

Proposition 6.5. Let M¢ X (E). Then X x Ke V' Py 5.
Proof. Let w,,({,€2(E) such that (wy,{,)NX(E)= < and Me(wy,{,). Note that
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since E¢J, both w, and {, are nonzero. Choose w, { such that wo <w < M < { < {,.
t
Let feCF(R), f 20 and supp f = [w,(]. Set F(tr)= [ f?(s)ds. Proposition 6.5 will

be proven if we show that there exists an open interval A containing E such that

(1//<{x>)f(y) is locally H-smooth on A. This will follow from the following
lemma. QED.

Lemma 6.6. There exists an open interval A containing E, ¢, and ¢ >0 such that

. 1
E4i[H, F()]E 42 cEAf(v)@f(?)EA~01EA<X>'1"‘EA- (6.5)
Proof. The lemma will follow from Proposition 6.4 with Q =g=1 and a = a,,,.
First assume that w, and {, are of the same sign, e.g. 0 <w, < {,. Choose

positive numbers v, k and d such that wi + k < (w —v)? and 0 < 2{23 — 2Kk — & — 2{2.
Then

@;inf{@"(E,x,k): (k) eX x K, w~vg!i'~k§¢+v}
X

> inf {05 (E, m k). beof, keK, (w—v)* <|m,k|?}
=inf {05(E, k,): beot, kyeK,, Wi+ K <|k,|*}

=202 -2k

If wy and {, are of a different sign, then w, = — {;, and we can assume that w = — (.
Moreover:

O = inf {05(E, x, k): (x.k)e(X\0) x K} =202 — 2.

In any case, Proposition 6.4 implies that (6.5) holds with ¢ = 2{3 — 2x — § — 2{*.
QED.

Next we are going to study the propagation for ye X (E). [SigSog1] also contains
results about this that are sufficient to prove the asymptotic completeness (see
Theorem 8.1 of [SigSof 17). Our analysis is somewhat different and leads, we think,
to a better understanding of the propagation for N-body Schrodinger operators.

It turns out that even if ye X (E), then in some directions of the configuration
space there is no propagation. This fact is described in the following proposition.

Proposition 6.7. Let ac.of, M¢ X (E)and yeZ,nS. Then there exists ¢ > 0 such that
Cone(y,e) x Ke AN Py

To prove the above proposition we will analyze separately the propagation in
two regions of phase space. This analysis is the subject of the following proposition,
which immediately implies Proposition 6.7.

Proposition 6.8. Let a, M and y satisfy the hypotheses of Proposition 6.7. Set
o=sup{(x/|x|)y: x#0, x¢ Y2}
a) Let 1 >0~ >0 and .~ <Mo~. Then

Cone(y, /21 —07)) x {keK:k'y <A™ }eN' Py .
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b) Let 1 > >0 and A* > Mc™*. Then

Cone(y,/2(1—c*)) x {keK: k'y> A" e N Py .

Proof. Let wy,{,€2,(E) such that (wy,{,)n X, (E) = ¢ and M e(w,,{,). Note, that
we may assume that both w, and {,, are positive. Using the fact that X (E) is closed
and countable we can choose w,, w,, {;, {,, A{ and ¢f such that:

Wo<wy <w,<M<{,<{ <,
[wy, Wy INZ(E) = &,
[L. 4L InZ(E)= O,
1>0*>0f >0,
AT <A{ <wyoy,
and AT >Af > 0",
Let f_, f, and f, be nonnegative CZ (R) functions such that

supp - = [wy,w, ],
supp fo = [w,, (51
supp f+ <[5, 001,

and Of F2 (s)ds = Of F2(s)ds = j 12 (9)ds.

Define F (1) = f {2 (s)ds and Fo(t) = j f3(s)ds

We fix also gieCw(R) such that 1 =g, :0, g-=1on(—o0,A7 ], suppj_ <
(——00711—]> g+ =1on [i+9 OO) and Suppg+ - [’1;’9@) We set gi(ka):gi(ka.y)'
Finally We choose G, eCg(R) such that §, =0 and suppd, = [of,0%]. We

set Q4 ()= f 1(9)ds, 9. (x) =g ((x/<{x))-y) and Q. (x) = Q. ((x/<x))y). Note

that fiwf()_a_F‘i’FOs VEWFEL = Fo)eB CH(R), g,eB,C*(K,)nB,C(K,) and
qi—aQis \/QiESO(X)

Define also

D, =3F(0)Q+ (9% (D) +3F - ()1 = Qs (x)g% (D)) + he

and

H

¥, =9:(D,)/Qs+(X) ==

Lemma 6.9 that we state and prove below implies that there exists an open

interval A containing E such that ¥_ are H-smooth on A. Proposition 6.8 follows
easily from this fact by an application of Lemma 2.1¢). QED.

Lemma 6.9. There exist an open interval A containing E, ¢ >0 and operators B,
B: that are H-smooth on A such that

k
ELi[H, ®,]E = cE,YX W, E,+ Y BfB,
i=1

Proof. Clearly
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(H—2) Y[H, @ J(H = A) "' =3i[Fo(y),(H — )10 (x)g% (D,) + he
+3i[F (), (H = 2711 = Q4+ (x)g% (D,)) + he
+3(Fo(n) = F 1 ()ilQ+ (x),(H — A~ '1g3(D,) + he
+3(Fo(y) = F (7)Q + (0)ilg3 (D), (H — 2)~ ]+ he.
(6.6)

Lemma 5.7d) implies that the fourth term on the right-hand side of (6.6) is
0({x>™ 1),

By methods employed in the proof of Proposition 6.4 we easily show that the
second term is greater than or equal to

|>—-

c\B¥B, + ¢, B5B, + 3 E (x> ' TFE,,
where

B, =(H— [+ (),

\/<x>
By=g.(D,)/0.()(H A" mfim

and ¢, ¢, and c; are some numbers. Clearly, by Proposition 6.5 the operators B,
and B, are H-smooth on some neighborhood of E. To deal with the first term we
use Proposition 6.4. We choose some positive numbers v, k and 6 such that
w2 + Kk <(w, —v)* and 0 < 2(% — 2k — & — 2(*. We note also that supp @, < Y7 for
some ¢ > 0. Thus both in the + and — cases we have

@ginf{QK(E,x,k): (x,k)e Y: x K, wzﬁvgﬁ-k§lz +v}
X
> inf {05(E, m,k): b = a, keK, (w, —v)* < |mpk|*}
=inf{O5(E,k,): b= a, k,eK,, wi+k<|k,|?} 2208 —

Now Proposition 6.4 guarantees that we can find an open interval A containing
E and a number ¢, such that

SEH = DilF (). (H = 2) 105 (993 (D) (H — E 5 + he
2205 —2k—0—203)E WX W, Ey—c E (x> ' T1E,.

It remains to handle the third term of (6.6). This is the subject of our next lemma,
which completes the proof of Lemma 6.9. QED.

Lemma 6.10.
3(Fo()) = Fo(0)i[Qx (x),(H = 2) "' 193 (D) + he Z 0(<x) 2). (6.7)
Proof. We easily compute that

qﬂﬂ%y—mﬁw§y>m—bl

i[Qi(X),(H‘)»)“]=(H—/t)“< : (xy?

x>
+0({x) ).
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First consider the “—" case. By the methods of Proposition 5.9 b)

LF_() = FoW)(H — 2) " 19¢% ()25 (H — 1)~ g2 (D,) + he

(x)?

equals

X
_ _1'* _ — L'y _)L -1
g_(D)g_(x) < >2 (H—=2)" "9(F_(y) = Fo()(H — 2) ﬂx

i q4-()g_(D,)

plus 0({ x>~ ?). This is greater than or equal to

wig-(Da)q-(x) Z-?(H_)) HF-() = Fo)H— A /< >2q (x)g - (Dq)-

Now the above term equals

wig-(D)H — 1) JF_(y) — Fo(1)g* (x)- JF (7) — Fo()(H — )" g_(D,)

plus O({x)~?). This is greater than or equal to

1
w10 g-(D)H =)' /F_(y)—Foy)q (X)U\/F-(“/)—Fo(?)(H—ft)‘lg-(Da)-
(6.8)

Next consider the expression

—2(F-() = FoMH =D g2 (x)D, y(H — 2)"'g2(D,) + he.  (6.9)

1
{x)
Instead of D, y(H — )~ ' we can write

(D, y(Ho+ 1) JIHe + )(H—A)"1]

and apply Proposition 5.9 b). Thus (6.9) equals

— JF_0) = Fo) =2 (H = )7 1D, yg? (D) (H —

VG “ Jx

plus 0({ x> ~?). This is greater than or equal to

JP )~ Foy)

—?~IJ1”—J?)im\/%(H—/) L2 (D)(H —7) % F_ ()~ Foly)

By another application of Proposition 5.9 b) the above expression equals

=i g-(DYH—A '/F Y a- F_(y)—Fo(y)(H—2)""g_(D,)

(6.10)

plus 0({x>2).
Thus, the left-hand side of (6.7) in the “—" case is greater than or equal to the
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sum of (6.8) and (6.10) plus O({x>~?). But w,o; —4; >0. Consequently, the
left-hand side of (6.7) in the “—7 case is greater or equal than 0({x)> ~?).

To prove the “+” case we proceed in a very similar way. We show that in this
case the left hand side of (6.7) is greater than or equal to

(A =807)g (DYH =)' /Fo(y) = F L ()43 (%)

! —— -
o VFo) = FL0)(H =279, (D)
plus 0(<x)> %), which immediately implies the desired statement. QED.
Classical intuition suggests that a particle moving with velocity k after a long
enough time will travel within an arbitrarily small cone around the direction of k.

This intuition motivates our next proposition which describes the propagation for
threshold values of 7.

Proposition 6.11. Let MeR, ac.o/, yeZ,NS and > 0. Then there exists ¢ > 0 such
that Cone(y,¢) x {keK: |nk—yM|= eV Py \.

The following elementary lemma is an important step of the proof of the above
proposition
Lemma 6.12. Suppose that the assumptions of Proposition 6.11 hold. Let o> 0.

Then there exist vo>0 and e, >0 such that if b < .o/, xeCone(y,e,)NX,, kek,
(x/Ix) k>M —v,, and |n,k — yM| = By, then b = a and |m k| =2 M + v,,.

Proof. To simplify the notation we drop the subscript from f,, v, and ¢,. Clearly
if we assume that ¢ is small enough then xeCone(y, &) X, implies b = a. Then we
can write

2

nbk—M|% =|7rbk|2—2&-kM+M2§|nbk|2—M2+2Mv, 6.11)
x |? X

ik = MyP? = |mk = M | < 2M I Y| S Mk, (612)
X X

P =lnk— My)? < |mk — Myl (6.13)

We add up (6.11), (6.12) and (6.13) and get
B2 <|mpk|* — M? + 2Mv + 2Me|m,k|.

Thus

k| = — Me + /M2 + B2 — 2My + M2, (6.14)

If e >0 and v—0, then the right-hand side of (6.14) goes to \/M?* + 2. Thus we
will find ¢, v > 0 such that the right-hand side of (6.14) is greater than M +v. QED.

Let us fix f, such that 0 <, < f§ (recall that § is the number that appears in
Proposition 6.11). Assume also that v, and ¢, are determined by Lemma 6.12.
As in the proof of Proposition 6.7, to show Proposition 6.11 we will analyze
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separately two regions of the phase space. Our next proposition describes the two
regions that we have in mind. It implies immediately Proposition 6.11.

Proposition 6.13. Let M, a and y be as in Proposition 6.11. Let ¢, be as described
above. ‘
a) Let 1 >0~ >1—(e3/2) and .~ < Mo ™. Then

Cone(y,\/2Al —07)) x {keK: k-y <A™, |nk—My|= BleN Py .
b) Let 1 >6%>1—(2/2) and i* > Mc*. Then
Cone(y,\/2(1 =0 ")) x {keK: k'y> A%, [k — My| = B} e N Py .
Proof. Choose w,,w,,(;,{5,4F and ¢¥ such that:

M—vo<w,<w,<M<{,<{,<M+v,,
1>0% >0 >1—(e3)2),
AT <A <w,07,
and A" > A7 >{0".
Choose fo, f4, Fos F4,G+,0+,9+,0+,7+ and g, in the same way as in the

proof of Proposition 6.8. Also fix a function §, e C*(R) such that 1 = §, =2 0,§,(t) = 1
for ¢ > § and supp g, = [Bo, ). Set G (k) = g (k) (Ik, — My|). Define

@, =3Fo(0)Q+(X)GL(D,) +3F ()1 — QL (x)GL(D,)) + he

and

v, = Gi(Da>\/Qi(x>71x§fom.

Now our proposition will follow from Lemma 6.14 that we present below by
an argument similar to the one used in the proof of Proposition 6.8. QED.

Lemma 6.14. There exists an open interval A containing E, ¢ > 0 and operators B, B:
that are H-smooth on A such that

k
ELi[H,®,]E,>cE Y% W.E,+ Y BB,
i=1

Proof. The proof is most of the time similar to that of Lemma 6.9. We start with
an analog of equality (6.6) with G, replacing g, . We deal with the second, third
and fourth terms of this equality exactly as in the proof of Lemma 6.9. To handle
the first term we use Proposition 6.4 in the following way.

We choose positive numbers v,k and d such that (M — vy)* <(w, —v)* and
0<2(M +vy)*— 23 Now:

o= inf{@"(E, X, k): (x,k)eCone (y,1/2(1 — %)) x K,

Ik —Myl> o, wz—V§|x—|'k§Cz+V}
X
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> jnf{HK(E,x’ k): (x,k)eCone(y, o) x K, |,k — My|> 5, M — v, é%k}

> inf{05(E, mk): b = a, ke K, |m,k|> 2 (M + vo)?} = 2(M + vy)*.

Thus by Proposition 6.4 there exists an open interval A containing E and a number
¢, such that

E A(H = Di[Fo(y), (H—2)""1Q + (\)GL(D,)(H — A)E 4
Z(2M +vo)* =0 =203)E WL WLE s~ Ex(x) 7 T E,

This implies the statement of our lemma which ¢ =2(M + v,)? — 6 — 2{3 > 0.
QED.

Propositions 6.5, 6.7 and 6.11 provide us with a lot of information on A" 2 ;.
We can put this information together and formulate the following proposition.

Proposition 6.15. Let MeR. Define

PSpu= U U{(x,k): keK,nak:M—x~}.

acol xeXa | XI
suchthat MeX (E) X# 0

Let ¢,>0. Then
X x K\(PS; p)P eV Py .

Proof. Let ge L*(K)and QeS™ *(X) such that supp Q(-)g(*) = X x K\(PSy »)"". For
any ae./ and yeZ,nS let ¢, Zy and A, be determined in the obvious way by
Proposition 6.7 in the case M ¢ X' ,(E) and by Proposition 6.11 in the case M e X (E).
We may assume that 0 <&, <& The sets Cone(y,e,)nS for yeS form an open
cover of S. We can choose a finite subcover labelled by y,,...,yy. We can

also choose a partition of unity j,,...,jy such that j,eS%x), 0<j, <1, i Jji=1
and suppj; B(l)qune(yi, e, ). (See a similar construction in Lemma 8‘21).:\1)\76 set
A= (N\ ﬁyl and A= ﬁ A,.. Now let feCF(R), f =0 and supp f = A. The pro-
posiii:oln will be provlezd1 if we show that g(D)Q(x)f(y) is H-smooth on A.

To this end we write

N
g(D)Q(x)f(y) = ; 9(D)Q(x)jy, () f (7)- (6.15)

Let us fix our attention on a certain y;. Let y;,€Z, for some ac.o/. If M¢ X ,(E) then
supp Q(")jy,(1)g(+) = Cone (v;, &) x K,
and if MeX (E) then
suppQ()Jy,()g() = Cone(y;, ¢,) x {keK: [k — My|> B}.

Thus all the terms of the sum on the right-hand side of (6.15) are H-smooth either
by Proposition 6.7 or by Proposition 6.11. QED.
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Now we are ready for the proof of the propagation theorem

Proof of Theorem 4.1. Let geL*(K) and QeS™*(X) such that suppQ(-)g(:) <
X x K\(PSy)"*. For any MeR let A, and Ay be open intervals containing M and
E respectively determined by Proposition 6.15. Let wy = sup Z,(E) and w > w,,.
The sets 4,, for MeR form an open cover of [ —w, w]. We can choose a finite
subcover labelled by M,,...,My. Let fo, f1,..., fx, [n+1 be @ partition of unity
N

such that [,eC*(R), f,=20, Y fi=1, supp fo=(— oo,w], suppf;c A, for
i=1

i=1,...,N and supp [y, = [w, o0).

By Proposition 6.2 1f i =0, N + 1 then g(D)Q(x) f,(y) are H-smooth on a certain
open interval A containing E.

Clearly PSy , < PS;. Consequently X x K\(PSy )" > X x K\(PSg)**. Thus
the operators g(D)Q(x)f(y) are H-smooth on 4,, for i=1,...,N by Proposition
6.15. Hence

APIO) =Y. DIOW)1()

i

N
is H-smooth on An () A,,. QED.
i=1

7. Proof of Lemma 6.1

In this setion we are going to show Lemma 6.1 that describes the commutator of

a function of y with H. A very similar fact is also proved in [SigSof 1]. Our proof

follows that of [SigSof 1] and we have included it for the convenience of the reader.
Let us start with the following lemma.

Lemma 7.1

1
a) i[y.,(H—2)""] —T:(H—A)* i[H, A] _2V2)(H-/1)‘1:/‘<—;—>'+0(<X>‘2)>
b) [3.(H—7)"'"]=0({x>""),
o) [n.[y,(H=A""]1=0({x)>?).

Proof. Note that y = A(1/{x>) + Q(x), where QeS~1(X). Thus
1

[y, (H—2) "=H—-A)" "HAH-/)"1-—
(x>
+A(H—Z)‘H[HO,AI—}(H~/1)"‘+0(<x>’2). (7.1)
(x>

Clearly the first term of the right-hand side of (7.1) equals

N A1 e

\/—<_X—>‘ , RV, <X>

plus 0({x)» ). Next note that A4=<{x>y+0({x>% and [H,,(1/{(x))]=
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29{x>7? 4+ 0({x)> 3. Thus the second term of (7.1) equals
2{x)YH = 27 y<x) " HH -7 (7.2)
plus 0¢ x> 2. This implies immediately b). Next we note that (7.2) equals
249 (H =)™ (H =) {xy 72 (7.3)
plus 0(<{x>~2). Using b) to commute y and (H — A)~*! we obtain that (7.3) equals
2¢x)TVHH = AT WAHH = A7) T2+ 0(<x) ).

This ends the proof of a).
The proof of ¢) is left to the reader. Let us remark only that in the proof of c)
we use the boundedness of [[H, 4], AJ(H —4)~!. QED.

Next we will need the following lemma (which is also taken from [SigSof1].)

Lemma 7.2. Let B and C be self adjoint operators. Suppose that B, [C, B] and
[C,[C,B]] are bounded. Suppose also that FeC*®(R) and F'eB,C*(R). Then
[B, F(C)] is bounded and

[F(C),B]=F(C)[C,B] + R, (7.4)
where R =(2m) " | F(t)tdt} dset=9[C,[C, B]]e™.
0

Proof. If Fe#(R) then we easily compute (7.4) in the sense of quadratic forms on
2(C?). Next we apply the density argument. QED.

Now we proceed directly to the proof of Lemma 6.1. We apply formula (7.4)
to B=(H—/)"!and C=7. By Lemma 7.1 ¢) R =0({x >~ 2). Thus

(H = A" HLH, FO)I(H =2 =ilF@),(H =A™ T =f20)ily, (H—2) 11+ 0(<x>72).

(7.5)
We insert the formula of Lemma 7.1 a) into (7.5). Now clearly
1
) (H—2)"'i[H, Al(H —
y\/<x> l f o
1
— H— A Y[H,A|(H— 1)~ * =+ 0 -2
\/— JO)H = 4) " ilH, A1( ) f(v)\/<—x>+ ((x>77)
and
) [~ 2 1 BH = ) ]
QTS o

1 1
- LH =A™ 91 20D H — 5] +0(<x>72).
NS )" 1A xS x

(The square parentheses suggest the way we commute the factors). QED.
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8. Proof of Proposition 6.4

The proof of Proposition 6.4 is based on a careful analysis of the commutator
[H, A]. Tt is closely related to the proof of Theorem 7.1 of [SigSof 1], nevertheless
we think that our approach is simpler and more transparent.

By Lemma 6.1

FILF (), (H = 2)” " 1Q(x)g*(D,) + he
equals

1 1
H—-)"t[H, A H-—i)!

S O =AY A7)
L oy o -y 0Dyt he 1)

2/ JEx

plus O(<x)>~2).
It is easy to handle the second term. First note that the second term of (8.1)
plus its hermitian conjugate equals

1 1
—(H=)"" = )9(Do) f H)2029(D,) \/O(x) ———(H — 1) !
(H—2) <>C>\/Q(xg( )f*(7)27%9(Da) \/ Q(x e

0(x)g*(D,) + he

plus O(<x>~2). This is greater than or equal to

—sup{2e%: tesuppf }(H— ) lﬁ«/Q(x)g(Da)fZ(v)g(Da)

N \/27>(H—A>-1. 82)

Finally, (8.2) equals
—sup {2¢%: tesuppf}(H—4) 'W*¥Y(H - 1) !
plus 0(< x>~ ?).
Now it remains to deal with the first term of (8.1), which is much more difficult.
To this end we need a lemma saying that functions of y can be approximated by

differential operators if we localize them in a sufficiently small cone in the
configuration space.

Lemma 8.1. Let yeS and ¢ >0. Let je L*(X),suppj = Cone(y, ) and feB,C*(R).
Then there exists a number ¢ that depends only on f and there also exists a bounded
operator B such that

JONS@)=f (DYDY~ =j(x)B+0(<x) ™) (8.3)
and | B|| < ec.

Proof. Let j be the characteristic function of Cone (y,¢). Clearly j commutes with
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7. Thus the left-hand side of (8.3) equals

X)Q2m) " [dif (1) — eV PY(D Y = j(x)(2m) " [dif (¢ fdse”sy y-D)ey D=9

o] sudajocnol )

.D<D>~1ew‘v<f~”] +0(¢x> 7.

Now the integral in the square bracket defines a bounded operator with norm less
than

efdt| f(el|D<DY '|. QED.

The next lemma contains a construction of a partition of unity that we will
need in our proof.

Lemma 8.2 Let ¢ > 0. Then there exist ¢, > 0, a finite collection {y;:i=1,...,N} of

points of Svsupp Q and a family of functions {j;:i=1,...,N} such that j,€S%X),
N

0<j,=<1, > ji=1 on suppQ, suppj;< Cone(y,e)uB(l) and if y,€Z, then
i=1

suppji < Y.

Proof. For every bes/ and every yeSnsuppQnZ, we can fix &, >0 such that

¢,<eand Cone(y,¢,) < Yp. The family of sets SnCone (y, (¢,/2)), where yeSnsupp Q

is an open cover of the compact set Snsupp Q. We can choose a finite subcover

labelled by y,,...,yy. Let {y;;i=1,...,N} be a family of functions on S such that

1€C™(S), 0y, <1, supp y; < Cone(y;,e,)nS and ;=1 on Cone(y;, (¢, /2))NS.
Let neC*(R) such that n(t)=t for t>1 and #(t)>max(t,3) for t<1. Set

y):Xi(y)/ﬂ<‘Z e (y))~ Now choose j,eC*(X) such that j(x)=7J(x/|x|) for
Ix|>1. QED.

Now we proceed directly to estimating the first term of (8.1). First we fix an
open interval A containing E such that for any b < a we have

0
E,(Hy)i[H,, AJE, (H,) = <9b(EDb) ) (Hy). (8.4)

Let A be an open interval containing E such that A = A,. Choose he CZ (R) such
that supphc A,, 0<h<1 and h=1 on A Fix also feB, C*(R) such that
supp [ < {t: dist(t,supp f) < v} and f=1 on suppf. Let {j:i=1,...,N} be a
partition of unity described in Lemma 8.2 where ¢ will be fixed later on. For
shortness we will denote /Q(x) j;(x) by J;(x).

We begin our calculations with multiplying the first term of (8.1) from both
sides with h(H)(H — 2). The expression that we get is the sum of the following terms:

1 .
WH)(H — 2) === f()(H — 2) il H, AN(H = 27 ()

VXD
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JH(x)g*(D,)(H — A)h(H), 8.5)

1
VXD
where i=1,...,N.
Let us fix our attention on a certain i such that y;eZ,. Now we can apply
Proposition 5.9a) to the above expression with J;(x) playing the role of Qg(x).
Thus (8.5) equals

fﬂ (1)g(D,)Ji(x)f (7)h(H,)i[Hy, ATh(H,) f(7):(x)g(Dy) f (7) \/(5

plus 0(<{x>~'7#). By Lemma 8.1 this is equal to

TS Ji(x) 7 h(H,)i[H,, AJh(H,) f(y;" D)f()———
5 S(0)g(Da)Ji(x) f(yi- DYh(H,)i[H,, ATh(H,) f (y;" D)J:(x)g( )f()\/<7>
1

1
+ == f(1)9(D,)Ji(X)B; J{(x)g(D,) f () — == (8.6)
NZED SO
plus 0(< x>~ ?), where || B;|| < ¢ ¢ and ¢, is independent of ¢. The second term of
(8.6) is greater than or equal to

1 1
D,)J(x)g(D —
mf(v)g( )i (X)g( a)f(v)\/(x>

In the first term of (8.6) we can commute g(D,) to the middle and obtain

—c

! —— f()J:()9(D,) J (- DYh(H,)i[Hy, ATh(H,) F (- D)g(D,)J () f ()~ :

JE NS,

(8.7)

plus 0({x)»~?). Now there comes the most crucial step of our estimate. Due to
the inequality (8.4), the definition of © and the location of the support of
g(D,) f(y;" D) the expression (8.7) is greater than or equal to

5) 1 - ~ 1

O — 5 |—=—==f(Ji(x)g(D,) f (v D)h*(H,) f (v D)g(Da) J (%) £ (7) :
( YNLED NAC Y,
Arguments similar to the ones applied above show that (8.8) is greater than or
equal to

5 1 ~ 1
@,_v —— h2 e ——
( 2>f<x‘> T CTONR )T (DG

(8.8)

e 2 !
ng\/a—>f(y)g(Da)Jx (X)g(Da)f(y)\/Z;S

plus 0({x )~ ?) where ¢, does not depend on &. The first term of (8.9) equals

(8.9)

D) 1
O — |h(H) %f() (Da)JE(x)g(D,) () —=—=h(H
( ) 5 g (x)g(Da) f(7) NS (H)
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plus 0({x >~ ' 7#). Eventually, we multiply our estimations from both sides by E 4,
use the fact that E jh(H) = E 4, add up all the terms with i=1,..., N and do some
commuting. Having done this we can conclude that there exist numbers ¢, ¢, and
¢5 such that

1
NACY
1

\//<—x'>Q(x)g2 (Da)(HHAA’)EA*_ hC

0
g<@~§*cls—c28>EA‘P* VE ,—c3E (x> TFE

3EA(H—17)

JO)H—=2)" i[H,ANH—=2)""'f()

Since ¢ was an arbitrary positive number and ¢; and ¢, did not depend on ¢ we
may assume that ¢, ¢+ c,e < /2. This ends the proof of Proposition 6.4.

Acknowledgement. 1 am very grateful to L. Sigal for helpful conversations.
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