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Abstract. We construct the renormalization operation of the expressions
connected with the large field regions. This operation, denoted by R, removes
the main obstacle to prove the ultraviolet stability of four-dimensional gauge
field theories. The proof will be completed in the second part of this paper.

O. Introduction

Let us repeat briefly why it is necessary to renormalize the large field expressions,
and what is a general structure of the operation R. Consider a large plaquette
variable in the first step. The restrictions on these variables are the same as in [16]
(this refers to References in the paper [1]), so we have |U(dp) — 1] = gopo(g,) for a
plaquette peT,, where py(go) = Ao(log g ?)P° with a positive integer p,. The term
in the Wilson action, corresponding to the plaquette p, gives the estimate

1 o 2yp0 1
exp[‘ga[1—RetrU(amJ}éeXp(—po<go>)=g§°(’”°’ SN (Y
0

For d <4 we have g, = g&'/>* %, and the bound above can be estimated by an
arbitrarily large power of ¢. This is enough to control expressions arising in the
large field regions surrounding the plaquette p for all steps of the procedure, i.e.,
until we reach the unit lattice. For d =4 the bare coupling constant behaves
asymptotically as (a + bloge™ ')~ /2, for ¢—0, with some positive constants a, b,
hence the bound does not give any positive power of ¢. It is still small for ¢ small,
and it controls a large number of steps, but this number is a small fraction of the
total number of steps. Thus, for some large field regions there is a difficulty in
continuing the procedure of [16], the small factor arising from large fields in this
region does not control further steps. In such situations we have to change the
procedure in order to improve the small factor, i.e., we have to be able to renormalize
the expression corresponding to the large field region. There are several possible
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ways of doing it, the one chosen in this paper is closest to the method of G.
Gallavotti ctal. in [19,20], and can be described in the simplest way as follows: a
large field expression is replaced by the corresponding small field expression in
such a way, that integrals of the densities are unchanged. Let us elaborate this
description. A density p after some number of steps is represented in the form

= ; p(Z,V), 0.2)

where the sum is over large field regions Z, and V is a gauge field variable. A
region Z is decomposed into disjoint subregions Z', Z", Z = Z' v Z", in the following
way: Z” is a union of components of the region Z, for which the small factors
connected with large field control some number of next steps, Z’ is a union of
remaining components, i.e. components for which the corresponding expressions
require a renormalization. For such a decomposition we take the density p(Z", V),
and we define the operation R as follows:

jdV[/ pZ, V)

=2pz"V) (VL P2 V) (0.3)

We will prove that the densities are positive, and the inegration domains in the
integrals above are nonempty, hence the denominators are positive, and the
operation R is well defined. It satisfies the basic normalization property

[dVRp)(V)=[d Vp(V (0.4)

Consider now the expression on the right-hand side of the definition. It can be
written as a double sum over domains Z’, Z”, Z' < Z"¢, and the summation over
Z' can be applied to the quotients. The quotients are still small, because some
small factors in the regions Z’ are left for the densities in the numerator. We localize
them, trying to decouple components of Z’, i.e., we write a polymer expansion,
and then we exponentiate it. Thus, we obtain the representation

[V p(Z 07", V)
JaVLp(Z"V)

=exp) R(X,V), 0.5)
X

where the last sum is over X such, that X nZ" # (J. Using this representation,
we rewrite the definition of the operation R:

(Rp)(V Z p(Z", V)exp ; R(X, V). (0.6)

Now the advantages of applying such an operation are clear, the densities on the
right-hand side still have enough small factors to control the given number of
steps, and the expression in the exponential can be treated in the same way, as
the small field effective actions are treated in [1], in particular it can be renormalized
in the same way. This renormalization is the necessary renormalization of the
expressions connected with the large field regions, and it makes the whole
renormalization group procedure convergent, i.c., we can apply all the transforma-
tions needed to reach the unit lattice, and we control all the steps of the procedure.

The above description stresses only some general ideas underlying the method
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used in this paper. The actual procedure is more complicated, and it also differs
from the one presented above in some technical aspects, for example in (0.3), (0.5)
we take the denominators equal not the integrals of the whole densities p(Z”, V),
but to the integrals of some parts of these densities. More precisely, we take the
parts localized in neighborhoods of the domains Z’, so they do not depend on the
large field regions Z”, and they are determined by small field effective actions only.
These general ideas are very simple and natural. They have many possible
variations, and they can be realized in many different ways. Let us mention, that
similar ideas were expressed in private conversations by other people, in particular
by G. Gallavotti and G. Benfatto, J. Imbrie and D. Brydges, J. Feldman and J.
Magnen.

1. The Basic Step of the Operation R

In this section we describe in detail the fundamental part of the R-operation. For
simplicity of notation we consider the k'* density, instead of k + 1%'. Each term in
the expansion (2.18) [1I1] has a large field region Aj. It is a union of connected
components. We consider components of almost the minimal possible size. Each
renormalization step adds at least ten layers of MR,-cubes, hence the size must
be greater than 20 MR, Passing to the next step it is usually rescaled by L™ %, but
in some steps the number R, decreases by the factor L', and adding ten new
layers of MR,-cubes we get a region with a size greater than 40 MR,. It is easy
to see that the minimal size is approximately equal to 42(L/(L — 1))MR,. We
consider components of sizes smaller than, or equal to 100 MR,. More precisely,
we consider the class of components such that each satisfies the following two
properties:

(1) it is contained in a cube of the size 100 MR,,

(i) in the preceding N renormalization steps no new large field regions were
created inside this component, and the previous regions contained in it
satisfy the condition (i) on the corresponding scales.

According to our rule of construction of the large field regions, for such a component
all the regions connected with the last N steps are rectangular parallelepipeds. It
will simplify some geometric considerations in the future. Conditions on N will
be formulated in constructions of this section. Let us denote the union of the above
class of components by Z. For simplicity we denote intersections of the regions Z;
with Z by Z; also, hence Z, is identified with Z. We write the intersections explicitly
only if it may lead to a misunderstanding. Thus we write the factorization property
(2.19) (1117,

TZ) = TZn Z)T(Z) = T2, 29) Ul Tu(Xy), (1.1)

m
where Z = () X, is the decomposition into disjoint components. In this section
i=1
we do not make any changes in the operation T ,(Z, N Z¢), therefore we will usually
omit it in the formulas.
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We consider T,(Z)exp A,, and we use the above described simplified notation.
Using the conditions (i), (ii), and the factorization property (2.22) [III], we write

h

T Z)exp Ay = (2 n TV(Z 2 D2\ )T (Z,) exp A4y, (1.2)

where h =k — N, and we have written explicitly the first and the last characteristic
functions in the product of the last N one-step operations. These operations are
given by the formula (2.21) [1I1], in which the functions , y have the simplest form,
namely by the condition (ii) no large field characteristic functions are included in
them. We write these functions now, because we have to compare them with other
characteristic functions. Thus {(25,, " Z; )x(£2;, N Z;. ;)is equal to the product
of the following seven groups of functions:

x({suqu,,D(V,-,@p)— 1< ef(L"“’n)ZD (1.3)
ped

for O (@725 ,)nZ,

({ SUp | U,y (Vi 1.0p) — 1] < g y(LE ‘n)l}) (L4)

peld
for ' < (Q,+1\Q,+2)mZ

KV — 1 <e5}) (1.5)
for ye(273,\ Q73 )V A Z, xeB(y), x # .

1 1
~exp[— —[1 —Retr Vi(y, x)]] (1.6)
z g;

for y6(9j131\gj+ N Z, xeB(y), x # .

X({ sup le(b)(V%)/(b))_1 —1]< 251.}) (1.7)

be(r) “H®"

for ' =(Q;7,\2;, ) Z,

x({ sup |expig; A,V |, (B)(VE () —1|<25,}> (1.8)
be(

Df~2)(k)‘
for ' (@, \A ;L )NZ,

X({ sup IAj(b)|<gf‘5,}> (1.9)
by’ "H®”

for O'c(A7\A; )N Z.

The cubes [ in (1.3) are the LM ,R;-cubes of the partition of the lattice T, -,
or the L™*7/LM,R-cubes of the lattice T, and the cubes [J" in (1.4), (1.7)-(1.9)
are the LM,R; ., ;-cubes of the partition of the lattice T;-u+v.

As a first step of the R-operation we try to do a part of the integrations in the
operations TY(Z)) in (1.2), namely the integrations with respect to the variables
localized in a neighborhood of the boundary 0Z;. There are two reasons for doing



Large Field Renormalization 179

this. The first is that the functions (1.5)—(1.9) are not gauge invariant with respect
to gauge transformations of the variables V;, and we would like to choose a
convenient gauge fixing for the integration with respect to V; restricted to I in
(1.2). The second, more important reason, is that we would like to get a new, much
smaller large field region Z, in order to be able to fit the constructions of this
section to the inductive assumptions on the effective action. To specify the
integrations we define a new sequence of the large field regions. Let us recall that
the domains ;" are unions of L™ * /MR -cubes of the lattice T,. Take the
smallest positive integer N, such, that L™ *'MR, _y ;= M. It is easy to see
that either there is exactly one such integer, or there are two. We assume that
N > N, in fact it will become clear later that N is much greater than N,. Define

Zi=(Zi-y) " = (25,01 N2,

y ~ ~7
;c/~No+1 =(Zk~1vo) =(Qk—NU+1)CmZ,

"

and complete these two sets to a sequence Z;, Zy _y,...,Z; _no+2> Zi—ny+1 i such
a way that the complements of these sets form an admissible sequence of domains

"

based on partitions into M-cubes in the corresponding scales. Thus Z;, Z\Z; _,
are unions of M-cubes of the lattice T,, and Z}°, Z} _, are separated by one layer
of M-cubes. Similarly, Z; _,, Z;_{\Zj; -, are unions of L™ !M-cubes of this lattice,

and Z;° ,, Z; _, are separated by one layer of L™ ' M-cubes, and so on. Next, define

(1.10)

Z/=(Q7°¥nZ for j=k—Ng, k—Nog—1,....k—N+1=h+1,

1.11
Zi=2, for j=hh—1,...,1 (L11)

J
This is the new sequence of the large field regions. We define new domains 27 by
Qi=(ZnZ)u(2;nZ) for j=k k—1,....,h+1,
Q7=0, for j=hh—1,...,1

J

(1.12)

The sequence {£27} is an admissible sequence, and the corresponding generating
set is denoted by B;. Thus

By ={I}), I'j=@Q\Q27.)% j=k-1..,1,
Iy =@)o, I'j=Q. (1.13)

By the definition all components of the domains Z] are also rectangular
parallelepipeds for j=h, h+1,...,k.

We would like to do the integrations in TY(Z;, ,) with respect to the variables
localizedin Z;, \\Z/,,,j=h,...,k— 1. It is most convenient to do the integrations
successively in this order, starting with j = h, because then we have almost the
same situation as in the one-step renormalization transformations, and we can use
the results of the third section. In fact, the situation is simpler than there, and we
have to make only few comments.

Each integration gives a new background field, connected with some deter-
mining sets. We describe now this sequence of determining sets. We start with B,,
which we write as

B =B, = (B, (20 Z)) (T 1s s Tyi OB Q5N Z). (1.14)
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Here, and in the subsequent formulas, the symbols I'; mean the intersections of
these sets with the region Z. The first integration is with respect to the variables
localized in Z,, \Z, . ;. The relevant part of the integration is with respect to the
variables V, on (2%, \Z,, )N Z, restricted by the conditions ¥V, = V, . ,. In effect,
the set I, is resplaced by the two sets (I,nZ;5 )Y, I,nZ;, ;. The first set is
combined with I}, and the union can be written as (24,,\Z,, )" *". Hence
the next determining set is defined by

Bg(l)z(Bkm(QkUZC))U{Fk—1,~~~>rh+2,(Q§.+z\Z;:+1){hH), I AN VAT
u(B,nQ25n2), (1.15)

In the second integration we integrate with respect to the variables V,,; on
(Q5,,,\Zy )" Z. In effect, the set (Q4,,\Z, )" *" is replaced by the two sets
Q5 N\Zy )" (2 N2y )Y =Ty, . The first set is combined with I, 5,
and the union can be written as (€24, 3\Z,,,)"*?. This determines the set B{®.
In general, the set BY ™" is defined by

BY P =B Q0 ZNA T 1y iy, (5 \ZDD Ty Dy D0 Zy 1

J

u(B,nQ25n2), (1.16)

forj=h+1,...,k— 1. For j = k we replace the sequence in the curly bracket above
by (QN\Z)W, Ty _,....T .1, I'wnZ, .. The first set in this sequence is equal to

«n Iy, and we combine it with the set I, in B, N (£, Z°). The union is equal
to I'}, hence

BEM =BM =By (1.17)

Take any of the determining sets defined above. The gauge field V; is defined on
the whole j™ component of the set, therefore the collection of the restrictions of
these fields defines a gauge field on the determining set, analogously to the field
V defined on B,. We denote these fields by V also, in fact they are defined by the
same equality in (2.10) [1I1]. The determining set B{ and the gauge field V define
the function

U = UPY) = U@, V). (1.18)

These configurations are background fields in the successive integrations.

We need also a sequence of determining sets, and the corresponding sequence
of functions, localized in the region Z. The determining sets B{"(Z) are defined as
above, by the equalities (1.14)—(1.17), but the set B,n(2,uZ°) is replaced by
B(Z)n Q,. Thus, according to the definition (2.14) [III], they may be defined as

B™(Z) = BY U B,(Z). (1.19)

The corresponding functions are defined by the gauge fields V restricted to 027,
and by My, ,,(Q% V) restricted to Z N, thus

Uy = U, (V)=UBPZ), (M(QFVIl 200, Vznay)): (1.20)

These functions play an important role in subsequent definitions of characteristic
functions, and in other constructions. For the last functions in the sequences
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(1.18)~(1.20) we introduce the following notations
UM =Uy, UN=U;,. (1.21)

We do the first integration with respect to the variables A4,, V, restricted to
Zy.\Z} .. We follow the procedure of Sect. 3 [III], so we introduce at first new
characteristic functions in such a way that the function restricting the fluctuation
field does not depend on the background field. We start with the decomposition
of unity 1 = %9 + (1 — £{?), where

X£°’=X<{ UiHap) — 1] < (1 = B3)el(L*"n)* for pth\QhH}) (1.22)

More precisely, we introduce this decomposition in each component of Z separately.
In components with the function 1 — ¥\ we have introduced new large fields,
therefore they do not satisfy the condition (ii), and we exclude them from the region
Z. They are not changed by the subsequent operations, and we treat them in the
same way as the remaining large field regions. We denote the union of components
with functions ¥\*’ by Z again. The restrictions in the function (1.22) imply that
the characteristic functions (1.3) for j=h and [J =(£2,.,)\Z, are equal to 1.
Thus the function y,(2,\2,. ) in (1. 2) is replaced by "7 Z, N 2,). We introduce
the next decomposition of unity 1 =y + (1 — x{’) in components of Z, where

11
= x({lUif%(ﬁp)— 1< (1 - ﬁ(i+27>>8h(ﬂ‘"’n)2 for peZy. N Q,,

UL ©0p) — 1] < (1 = BR)ey. o (" n)? for pe§ 5\ Zj ., }) (1.23)

We redefine Z again removing these components, for which the functions 1 — y{!)
were introduced. For components of Z the restrictions in (1.23) imply that all the
functions (1.4) for j = h are equal to 1. To remove ¥\*, and the other characteristic
functions in (1.5)~(1.8), we have to introduce restrictions on the fluctuation field.
This, and the other operations connected with the integration, will be discussed
in a general case.

We assume, that after »n integrations the only characteristic functions which
remain, and which are connected with these integrations, are y\"y,(Z,£,). The
definition of y{" is rather complicated, and it has a different form forj=h +n <k, =
k — Ny, and for j > k,. In the first case the integration regions are disjoint, and
the functions are defined by generalizations of (1.22) and (1.23). In the second case
some integration regions overlap, more exactly the regions with indices greater
than k,, and for these we change the regularity conditions by a factor, which is a
power of some number, the power being proportional to a number of overlapping
regions. We write the definition in the second case,

W= X({l UH0p) — 1] < (1= B(1 =27 Y7 D))y (LF~Py)? for peZjs N L2y,

UL 0p) — 1 <(1 = B(L =279y, (L )2 for peZis,\ 23y,
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U (0p) — 1 < (1~ Bl =277 T D)), (L™ *on)? for peZy, .\ Z,,
JUR0p) = 1 < (1= B(1 = 2797 N)Jey, oy (L7507 )2 for peZyys 2\ ki1
UR(0p) — 1 < (1= B(1 =27 97F 7 D)) L3ey, 4 o (LF07 2)? for peZy, s 3\Zio 2

U @p) = 11 < (1 = Bl = 27 LEIH0 ey (L7 1)? for peZ\Z)-.,
TUE@p) = 11 < (1 = BYLII ™ Ve, (L~ m? for peti, . \Z,
TUEH@p) = 11 < (1 = BYLEI Ve, (L) for pelyy i\ Buy .

TUEAOp) — 1 < (1= BH Lie;, (L n)* for pef2; 5\,
JUEAOp) — 1] < c(1 — B3)e; (L /n)* for pGQj—l\-QjH}), (1.24)

where ¢ =1 for j <k, and ¢=3 for j=k. We choose the number f satisfying
0 < p =<1/2, but not too small, e.g., we can take ff = 1/2. The number L, satisfies
2=<L,<1/2L, e.g, we can take L,=(1/2)(L —1). The definition (1.24) is so
complicated because of the needs of this inductive construction, but basic properties
of ¥\ are simple. They will be described for n= N, i.e., for j=k.

We assume further that the effective action 4\, obtained after the nintegrations,
depends on the background field U{", and has the form (2.23) [II1], with some
new boundary terms only, i.e., some new terms in B,. Now we will analyze the
next, n + 1* integration. We integrate with respect to the variables 4;, V; localized
in Z;.;\Zj,,. It is a part of the operation TY(Z;,,), and we have to consider
the following integral

j‘dA I_ZJ+1P.Q

i+ 1
jdVI—Q +1\ 2y

where n =j— h, and the quadratic form in the exponential is written explicitly in
(2.21) [1I1]. In this integral we introduce the decomposition of unity 1 =%"*V +
(1 — 1) for each component of Z, and we exclude from Z the components with
the large field functions 1— y"*?. The function x{"*" does not depend on
integration variables, and we have to consider the integral (1.25) multiplied by
¥+ 1) 1In this integral the gauge fixing terms (1.6) were introduced on the domain
Q;jl \£2;, ,, and they constitute a part of the function {(£29, ,). All the expressions
and the functions in (1.25) are invariant with respect to gauge transformations v
defined on the set ((277,)\Z},1)nT?, and equal to 1 on the intersection of
this set with TU* 1Y, Using the Faddeev--Popov procedure we introduce the gauge
fixing terms (1.5), (1.6) on this set, thus we get the gauge fixing terms on the whole
integration region (2,,\Z},)nTY. Next, we introduce restrictions on an

approximate fluctuation field. Define the configuration

VY = MAUYLTP), (1.26)

WZj 1R y)exp[—3{A;, C*A fAJ-);-+1CAj>]
SV, )25 ) exp AP, (125)

and the characteristic function

7= {1V ()" — 1] <28 for be(5.\Z], )"}), (1.27)
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where &;=g;4,p,(g,), p1(g;) = (logg; *)**, and p, < p,; other conditions on p, will
be formulated later. Introduce the decomposition of unity 1 =y, + (1 — x}), for each
component of Z, under the integral (1.25), and exclude from Z the components
with the large field functions 1 — y;. In the remaining region, which we denote
again by Z, we obtain the integral (1.25) multiplied by %{"* ), and with the function
yj inside. Finally, let us recall that the functions y¥), given by (1.9), are present
iny(Z;s;nQ2,,) for ' Z]H\ZJJr1 We complete them to the whole domain
Z;. N2, ,, introducing the decomposition of unity

1= I1 79 +<1 — I1 X%’l) (1.28)
0244\ ;1—_11 D'C-Qﬁl‘\-();;ll

for each component of Z, and excluding from Z the components with the large
field functions. Let us notice that all the characteristic functions introduced above
depend on the field variables localized in the corresponding components of the
large field region Z,. This is an important part of the inductive assumption for
the effective density, more precisely for the operation T,(Z,). It is also clear how
this operation has been changed by the above decompositions, but we will not
attempt to give a systematic description of all possible cases; there are too many
of them, and we need only general properties of the operation.

Now we will prove that the restrictions introduced by the new characteristic
functions imply that the functions (1.3), (1.4), (1.5), (1.7), (1.8), x{” are equal to 1.
More precisely, we have

X;;H—“X(Zj+1mgj+l)< n /%)>C(Q}+l)/}/k")

00, 1\25 1

( Il [T x{Vixpm—1l<e))
(

yel (.Q;E ¢ Z;’T ,)(JJr D eBiya#ty

1
~exp[*~2[1—Retr Vj(x,y)]j|> yirth ‘”)/,
gi BL/+,GQ

< 1 1 iexp[—glvz[l — Retr V,»(x,y)]:|> (1.29)

" +1
)'G|-Qf,¢1 Zju)“ )

1
z

\eB(y)#y

for j+ 1<k, and for j+ 1=k the right-hand side above is multiplied by
W2,

Let us start with a function (1.3). The cube [J is contained in
;7027 hence 17" =0;,_,\Q;,,. On this domain the configuration U{”
satisfies the last inequality in (1.24) (with ¢ = 1), and the constraints M/(UY”) =V
The same constraints are satisfied by U, on [ *. Reasoning as in the part of
Sect. 3 [II1] between the formulas (3.6), (3 8), we get

4 1 N n N S* - n “,:L?
U,,E:<exngH,‘D<—ilog[M(Uﬁ())(M(Q,« V) ‘])U}J) . (1.30)
The field i m the argument of the function H . is equal to 0 on almost the whole

cube []7* except a boundary layer of the w1dlh 2M, in the lattice 7., £=L"".
On this boundary the field can be bounded by 22d*¢;, by the argument leading
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to the estimate (1.65) in [14]. The exponential decay property of [ - implies that
on the cube [~ this function and its covariant derivatives can be bounded by
Biyexp(—02M,R)22d%e; < (B/10)¢;. Estimating 0U,, as in (3.8) [III] we obtain

2 4
PR i e

B 25 B K2 -
(1 2+10L 10) g;¢? <g;(LFp)? for pe[@d (1.31)
Thus the functions (1.3) in the product on the left-hand side of (1.29) are equal to
1. The same holds for the functions (1.4), because the argument above applies to
an arbitrary j, hence for j+ 1, except when j+ 1 =k. In this case we leave the
functions (1.4) as (2, % on the right-hand side of (1.29). For the functions (1.5)
we use the inequality (3.9) [111], only with k replaced by j, and the configuration
V& replaced by V9. From the restrictions (1.27) we get the bound O(1)d; <e¢;,
hence the functions (1.5) are equal to 1 also.

Now we consider the functions (1.7), (1.8). We start with the second, more difficult
case. At first, notice that the restrictions introduced by the functions y¥ in
(1.29) imply the bound

lexpig A, (VS , (DVEB) =11 <0;+ VY, 2 (B)=VEB).  (1.32)
The configuration V'Y | 2, is defined on Zj [\ Z by
VI = MUBZ; \Z)u B, M(QTV), (1.33)

where the determining set was defined in (2.14) [1II]. In fact in the above case it
is simply given by B, ,(Z J+1)fg L, YBH(Z) 5, and the configuration OV is
equal to Q% (¥, on .Q}HmZJH, and to Q7'V; “on 025.1nZ;. Now we represent
the configuration U(+) in the standard way, as 1n (1.30)

uB(Z J+1\Z)UBk, '(QS* 1))
— U(B(Z,, \Z) UB,, [M(QV) (M (U™ 1)~ MU+ D))

-1

- <exp i@H(B(zj VYU B, — og[MIUE ) MQ YY) 1]) up “> -

(1.34)
This implies
VY o = (M (expiH)MAUL D)) = exp VY, (1.35)
where
exp iHU(b) = u;  (b_)exp i@ (EH, B)RI(u;(b ,)). (1.36)
From the equalities and bounds (106)—(108), (159)—(163) in [12] we obtain
lexpiHP(b) — 1| < O()L-  sup | M. (1.37)

Bib_)uB(b )
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Consider now the field in the argument of the function H. On the domain
Q;,,nZ;,,,except a boundary layer of the width 2LM at the boundary 0Z;, ,,
this field is equal to 0. On the boundary layer it can be bounded by 22d%;, .
Similarly, on the domain ¢ Z¢, except a boundary layer of the width 2M at
the boundary 0Z¢, the field is equal to (1/i)log [V;(V$)~ '], hence it can be bounded
by 46}, as it follows from the restrictions in (1.27). On the boundary layer it can
be bounded by 22d%¢;. From this, and the exponential decay property, it follows that

|H| < B4(40; 4 exp(— MR, )22d%¢; | + exp(—06LMR;, ;)22d%;)
< B5(40 4 exp (— OMR; ;. )44d*(1 + Bo)e;)

_ pi(g)) 2 Ao
_Bs<4p0(gj)+exp( SMR;, )44d*(1 +ﬂ°)A1>5’ (1.38)

on [ for [1'<=Q2;,,\A},,. The quotient on the right-hand side of the last
equality is a negative power of log g; 2, hence the coefficient at §; can be arbitrarily
small, also after multiplying it by O(1)L from (1.37), if y is sufficiently small. We
assume that it is so small that the expression on the left-hand side of (1.37) can be
bounded by 1/26;. From this we obtain

VY 2 (B) = VEB) <36;+ VD) —VP(B)l. (1.39)

The configuration VY is equal to M/(U,,, ). For U ., -, we have the representa-
tion (1.30), with j, n, [, and ¢ replaced by j+ 1, n+ 1, (7, and L™ !¢ This
representation implies

VO = (Mi(expil ™ 'eH,, , L)MIUE* D))o+ = exp iHY) VY, (1.40)
where
expiHO(b) = u L (b )expiQ (L7 N, L BRI, (b )). (1.41)

For the configuration (1.41) we have again the bound (1.37), with H replaced by
,., on the right-hand side, and without the factor L. The function H
bounded on [1~? by By exp(—0LM,R;, )22d%;,, hence

(VO (b) — VP (b)| = |exp iH (b) — 1|

J+10

< O(1)Byexp(—0LM,R;, ,)22d%(1 +/30>—05 <19, (1.42)

on [J'~% The inequalities (1.32), (1.39), and (1.42) imply that the functions (1.8) in
the product in (1.29) are equal to 1. For the functions (1.7) the argument is simpler.
We have

Vi)V B) = = V() VP(D) ™ =1+ V(b)) — VY(b)]
<20;+30;<20; on (S (1.43)
for []’C.Qj“fl\QjH. Here we have used the restrictions from (1.27), and the
estimate (1.42). The above inequality implies that the functions (1.7) are equal to
1 also.
It remains to be proven that the function ¥\ in (1.29) is equal to 1. Consider
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the configuration U{",. Representing the field V; on Q. ,\Z/,  as[V;(VY) ']V,
we have

-1

UL’:’Z——-<expin[H]§(’j)< log [V;(VY)~ 1]) J‘"*“) . (1.44)

The field in the argument of the function H{” is bounded by 44}, and is localized
in the domain Q9, \Z}, ;, therefore the following estimate holds:

sup Lin ||, sup (Ln)? | Vies o HE| < Byexp (—0d(y, Q5. \Zj 1))45;.  (1.45)

Bi(y) B(y)

Here d(-, ") is the scaled distance, y is a point of the i component of the determining
set B{™. Using the representation (1.44), and the above estimate, we obtain

|U%(@p) — 1] < UL (@p) — 111+ 3n]HEY @p)
+ 12 |(DYs v R ()] + 30| HEY | Gp))
<|US D(@p) — 1](1 +8B;L ™ exp(—6d(y, 5, \ Z}- 1))3)

Ay pi(g ) 1
+9BsAO polg )(1+ﬁo)(1+( —)'?)

exp (—ad(y, 25\ 2], D)edLE'n)?
for peB(y), where ye(Z!, \Z/)" =TI for
i=j—1,j—2,..., and ye(Q5, \Z)P for i=j. (1.46)

Let us remark that the scaled distance in the above estimates is defined in terms
of M ,-cubes on corresponding scales. Thus, by the definition of the domains Z7,
we obtain

M
exp(—5d(y>95-+1\z}'+1))§eXp<—5M—(j~i)> for yel{, i<j. (147)
1

We choose M large enough, so that 5(M/M ) = 2. Then the product of 1 + (j — i)*/?
and the exponential factor in (1.47) can be estimated by exp(—(j—i)). The
remaining numerical factors in front of the exponential can be estimated by
9B5(A1/A)(p1(7)/Po(7))(1 + By), and can be made arbitrarily small by choosing 7,
or A;/A, sufficiently small. Notice, that the conditions on M, y, A,, and A4,
introduced above do not depend on any scale, i.e., on i,j, k, and so on. This applies
also to other conditions introduced before. The numerical factor 8B,L™'d; <
8B3yA;p,(y) can be also chosen arbitrarily small for y sufficiently small. Let us
choose a bound for these two factors in the form «ff, where an absolute constant
o will be chosen later. Then the estimate (1.46) and the above bounds imply

|U§(")Z(0p)—1j<|U(n+1)( P)—1|(1+aﬁ2'(j‘i))
+ OCBZ (J*i)gi(Lk*in)Z for peBi(y), (148)
where y is as in (1.46). Now consider the conditions in the definition (1.24) of y{".

The condition on the domain Z;, \Z/, fori=h, h+1,...,j — 1, can be written in
the form

(U@, (0p) — 1] < (1 — p(1 — 27U+ Dy)pamesioko-lg (pk=ip)2, (1.49)
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The corresponding condition for the configuration U{'; ! is of the same form, only
j is replaced by j + 1. Introducing this bound into (1.48) we obtain
| (n) (ap)___ 1| <(1 _B(l 2~ (- z+2)))L2max {0,i— kg —1} i(Lk_in)z
(I +af27U70) 4 af27 U De (L y)?
<(1 — ﬁ(l — 2'(j-i+1)) _ ﬁ2—(j—i+2)
+ 2027 UL R U (L i, (1.50)
and the last inequality implies (1.49) if 8z <1. On the domain Q)\Q,,, for

I=ky+1,...,j, and on the domain Qj ,,\Z7 for [ =k,, the condition on the
configuration U, is

| UEL@p) = 1] < (1= BR) Lg™1 " ey (L i), (1.51)

The condition on the configuration U{'; ) has the same form, only j is replaced
by j+ 1. Introducing this bound into the inequality (1.48), which holds on those
domains with i =j, we obtain

[UM,0p) — 1 < (1 — BHLE™ Ny (LT (1 + aﬁ

+ afe(LFy)? <1+ﬁ0) 1+oz/)’ 2{‘;)

(1= BRLG™ O gL )2, (1.52)

The above inequality implies (1.51), under the usual restrictions on f,, 5, L, (i.e.,
Bo=1/2, 8<1/2, Ly <(1/2)L), and o < 1/4. Thus taking o = 1/8 in (1.48) we satisfy
all the conditions. We have proved that the function ¥ in (1.29) is equal to 1.
This completes the proof of the equality (1.29).

Now let us come back to the integral (1.25) with all the newly introduced
functions. Using the equality (1.29) we get the integral of the same form multi-
plied by z{**", in which the only characteristic functions are the functions (1.9),
(1.27) restricting the fluctuation field on the domains 2;,,nZ;,,, 05, ,nZ7%,
correspondingly. There are also the gauge fixing terms (4.6) on the last domain.
For this integral we perform all the operations discussed in Sect. 3 [I111]. We
introduce the fluctuation field ¥ on (25, ,\Z})",

o N R
Vi=Vi(O) L VO = MIUETY), Bi= logV (1.53)

This field is small, because
|V}— 1< V,(V(Zj’)'1 — 1+ VPVt 1)< 353, (1.54)

by (1.27), and by the fact that the second expression on the right-hand side is
much smaller than ¢’. This we will show later. Thus B is small, | B)| < 66}, and
we expand all the expressions in the integral with respect to B), we linearize the
expressions in the J-functions, we remove the d-functions using the operator C,
and finally we perform the scaling transformation B;= g;B;. All the formulas are
the same as in Sect. 3, or in Sect. 2[I], only we have to replace the function
(g{())"? in the Wilson term of the action by g; % the term with the difference
(9())~* —g; * is put into the interaction. We obtain an equality with an expres-
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sion analogous to the expression on the right-hand side of (3.15) [111]. The
differences are obvious, mainly that the integration variable is denoted by B;, and
that there is the additional integration with respect to the variables A4;, the first
integration in (1.25). In the obtained integral we introduce the decomposition of

unity 1 =3P 4+ (1 — 4'(?) in each component of Z, where
79 = 1({| Bjb)] < & for be(€25, \Z]. )"} (1.55)
We exclude from Z the components with the large field function 1 — '), In these

components we have to localize the dependence on the field V in the characterlstlc
functions (1.27). Once more we write the representation

+1), -1
s V)

(

Uptt = (eXp inHit; ”< 1 log [M (U™ ) (M™(Q3 Vi)~ 1]) Ui’z “>

: (1.56)

The field in the argument of the function H{’; " has a support in the boundary

layer of the width 2M, at the boundary of Z, and is bounded by 44d*B,¢,. Thus
the function considered on the domain 29, ,\Z7, satisfies the bound

JHE, V<7 ') "Byexp(— O1OM(R, ) + -+ Ry ;) — OMR,)44d* B 55,
< 44d*B2(1 + o) exp(— Rz, (1.57)
For the averages VY, V) we have, as in (1.40)

V9 = exp PV, (1.58)
where HY? is given by the formula corresponding to (1.41). It is an analytic function
of the configuration U{"*" restricted to Z, and on (25,,\Z%)" it is bounded
by O(1)exp(— R))e;. This bound is very small, smaller than any positive power of
g;- Now we make the change of variables (1.22) [11T], with HY instcad of Hy ax
for the bonds belonging to (€25, ,\Z, )", or rather to the components of this
set with the large field function 1 — y'”. This change of variables transforms the
function z;(1 — ') into

x({lexpig;B;(h) — 1] <20 for be(Q5. \Z], )" })(1 — '), (1.59)
which has the required property, in fact it does not depend at all on the background
fields. The change of variables gives also the usual new terms in the action.

Let us consider the components of Z with the small field function y'%, or rather
we assume that Z is a union of such components. The integral corresponding to

(1.25) has the form of the fluctuation field integral in (3.25) [111], more precisely
it has the form

a0V exp [AP(UYTY, A= 0)+ EQ(Q5, ,\Z}, )]
fdA [z,,lpr) /“)(Zjﬂm-ojﬂ)exp[—i<Aj,C*A(,{;)HCA,'>]

Z(J)de rﬂ,+1 l,+1y/(1) exp [ _ %(Bj, C*AU)CBJ> + P(j)(g/” Aja Bj)

+ {([Ek + Ry + B, + BY) (U (expilg,CB; — hﬁ(giCB,-)]V‘j’))
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— (B + Ry + B, + BP)YUL Y, 4;,=0)

1 1 ~ )
+ A (GW - 977 U;(n) (CXp l[gJCB] — hD(gJCBj)] V(}))>
k J
A 1 1 (n+1) 1

The notation used here is the same as in Sect. 3 [111], in particular the constant
EQ(Q5, \Z},,) is equal to the constant in the first exponential in (3.15) [1IT],
only for k replaced by j, and the sets B(I', . ,)*, I', ., replaced by (25, ,\Z], )",
(25, ,\Z}, )V correspondingly. The fundamental difference in comparison
with the integral in Sect. 3 [III] is, that now the integration in (1.60) is localized
in the large field region Z, therefore the integral contributes to the boundary terms
only. Thus in the previous n integrations new boundary terms were created, and
their sum is denoted by B{". We may specify the structure of this term a bit more
writing it as the sum

M=

) —
B;(n —

i

co, (1.61)

I

1

where C{" is the one-step contribution, i.e., the contribution from the i'® integration.
Now it is clear that the integral in (1.60) determines a main contribution to C{"*1,
another comes from the renormalization of the Wilson action, thus

1

1
C"* Y =log(the [ in (1.60 )+A< _ ,U("“’),
¢ g(the | WA e oee e Ut

BtV =B 4+ C{t Y, (1.62)

The integral in (1.60) is of the same type as the integral studied in Sect. 3 [111],
therefore we can apply the results of this section and write the term C{"*% as a
sum of localized terms with the corresponding exponential decay and analyticity
propertics. There is one peculiar feature of this expansion, namely its localization
domains are not from D, , only, but they are of a more general type, and can
be described by the following properties: X N7, ,eD;,;, XN (2,\2,,,,)eD,,
m=j+2,...,k(where 2, ., = ), and X(Z;, ,\Z], ) # J. For a given X there
is a minimal index m such, that X < £, , ;. We take the smallest domain from
D,, containing X, and we resum over all X determining the same domain. As a
result we obtain the representation

C;(rx+1):ZC§<n+l)(X, Ut ), (1.63)
X

where the summation is over the localization domains X satisfying the following
properties: X <2 ,, for some mz=j+1, XnQ,# XeD,, and
XN(Z;:\Z],,)# . The terms in the sum satisfy an exponential decay bound,
which will be formulated later. These results are standard, but there are some new
aspects of the basic properties, like analyticity properties and bounds, which we have
to discuss carefully.
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Let us start with the analyticity properties. The aim of this whole preliminary
step is to gain a larger domain of analyticity for the effective action, in order to
perform the basic step in the R-operation. This is achieved by two ways for
the two parts of the action AY". The regularity properties of the configuration
U, and correspondingly of the complex field U which replaces it, are improved
in comparison with U,; therefore the old action 4, has effectively a larger analyticity
domain with respect to the new field. For the new term B{" of the action we have
to enlarge the analyticity domain by proper inductive assumptions, in agreement
with the restrictions introduced by the characteristic function y{". In order to
describe the assumptions we have to define new spaces of complex gauge field
configurations. They are modelled on the definition (1.24) of the characteristic
functions %", and or the definition of the spaces U§(X, &g, ).

The space U{(X,d,,d,), for one of the domains X in the representation
(1.63), is the set of configurations (U, J) defined on X, such that U = U'U, U has
values in the group G, U' =expinA’, A" and J have values in the complex algebra
g°. For any cube [] from the family of cubes described below there exists a gauge
transformation u defined on [Jn X, and such that U* =expiyA, A has values in
the algebra g. The configurations U, U, x(M"(U)) = U(B,(X)u {I"("} M (L)),
J,J, x(M*(U)), U, A", and A satisfy the following conditions:

(1) [0U — 1], [0U, x(M"(U))= 1], [J], [, x(M"(U))],
|0U — 11, [A"], [V{A'|

J ) k . .
< <1 _ ﬁ Z 2*‘7»1—1\ o ﬂ Z 2—(qu)>Lémax‘0,mko,

i=h+1 g=m+1
Lot (L") 2, ot L 2P (LPL7P) 2, 0t (L) 3,
oo L LLTY 3, sy P (L) 2 oy (L) oy (L) 2

on (2,\2; )nX for m=1,...,j—1, and on (Q7\Q, ,,)nX for m=},
p=1,.. .k

i<p»

Lyl Al (L"n)? |VIA] < Lg™ " I BC Mo, (1.65)

for Oc@,, On2 7, # if m=1,...,j—1, and for [JcQf,
Dmgioﬂ‘l#@
if m=j, [J is of the size CML"y.

(i) [OU =11, [oU, x(M'(U)) =1}, [l [J, x(M (L)), [0U—1], A", |V{A'|

<< [g i _/; i 2*(4‘1})L5(j—m)

i=h+1 g=j+1
oo, ,WZ(LJVI) , g L~ ZP(UL_p)—Ze 0‘0,,’(Lj7))—37 O‘o,iUmm{p’]}(LjL_p)_37
oo (L) "2, o (L)~ o (L)~ 2] (1.66)
on (RN, . )nXform=ky+1,....]—1,].
Lin| Al, (In)?|V"A| < LU~ ™BCMo, ; (1.67)

for JcQ,, (1nQ,,, # &, is of the size CMUn, m=ko+1,....j—1, j.
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(iif) |0U =11, [0U, x(M*(U)) = 1], [9], |d, x(M*(U))], [0U — 1], |A'], |V A'|

<<1—ﬁ Y ami_g Y 2—<M)>

i=h+1 g=m+1
: C[“o,mﬂz(Lm’?) N 2’ O(O,mL‘ 2p(LmL- p) N 25 o‘O,m(Lmr]) N 35 o(O,mLm-mm Ip,m)(LmL— p) N 3>
oo (L) ™2, 0ty (L) ™, 0ty (L") 7] (1.68)

on (2,\2,,)nX for m=j+1,....,k—1, and on Q,n X for m =k, where
c=1form<k,and c=3for m=k,

L'yl A, (L")*|V"A| < BCMoy, (1.69)

for0c, 0N, #Jifm=j+1,....,k—1l,and for J=Q,ifm=k,[]
is of the size CM L.

The constant C above is a positive integer. It is usually small, because of geometric
constraints on the cubes, for example we can assume that C < 2. The constant B
is a fixed absolute constant, for example we can take the constant B = B; from
Theorem 1 [16].

The above definition is so complicated because of the needs of the inductive
procedure. It has been written for the case where j > k,. For j <k, it is simpler,
there are no powers of L, in the point (i), and the point (ii) is empty. Let us discuss
briefly basic propertics of these spaces. They are invariant with respect to G-valued
gauge transformations. For n =j — h = 0 the above space coincides with the space
US(X, 30, d,). They form a descending sequence for increasing n, if ff and L,
satisfy certain conditions, for example if < 1/4 and L% <(1/3)L. Notice that we
get the stronger restriction on L, becausc of the bounds for A. We can improve
the restriction to the previous one changing the bounds, but it does not matter.
In fact we need not only the statement that the sequence is descending, but a
stronger statement connected with the expressions we have to consider in the
n+ 1° step. For example, we have to prove that if U is an clement of the space
(z @, 604, ), then expinH{"(g;CB; — hD(g,CB;))U is an element of the space
U{M(X, 8, d,), and the corresponding statement for J. The proof is almost
identical to the proof of a similar statement for the configurations U, given in
(44)-(52), and we will not repeat it. Finally let us remark that if in a component
of Z we finish the integrations for some n, because some new large field has been
introduced, then we leave the new terms B as a part of all boundary terms,
and it is easy to generalize the definition of the spaces in such a case for the
next steps.

Now we can formulate bounds for terms in the representations (1.63). They
are casily obtained estimating the integral (1.60), after the renormalization and the
localization. All the expressions in the exponential in this integral can be uniformly
bounded in the usual way, except possibly expressions connected with B
Assuming uniform bounds for C{’, i < n, we still have a problem with a bound
for the whole term, because the basic localization regions Z,  ;\Z} ,; contain the
common domain €2 ,,\2} for h+i>k,, hence the bounds from the corres-
ponding terms cumulate. There are at most N such terms, and to estimate their
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sum we use the fact that they are multiplied by g;. More precisely, the bounds of
the terms involve 4}, but 8 <(1+ fo)*(k —j)°0; < (1 + o)’ NE°d,, so Nod;<
(14 Bo)>Nythos, <4N35,, and we assume that N3 makes only a logarithmic
contribution to &}, e.g., No=0(logg, ). In fact we will see that it is smaller.
With such an assumption we get uniform bounds for the sum of the terms also.
Let us formulate the bounds for C{”. It has the representation (1.63), with n
instead of n+ 1, and each term C{’(X,U{) can be extended to an analytic
function defined on the space U{“(X, &, &,) and satisfying the bound

CEX (U, 0)] £ Coexp(— (1 + 3B)cd, (X)) (1.70)

for XeD,, in the representation (1.63).

There is one additional remark we have to make in connection with the
definitions of the new background fields and the new spaces. In these definitions
there are powers of L3, the highest power appearing is k — k, = N,. This number
is defined by the equality L™ *'R,_, ., =1, from which we get LY '=
Ri-no+1 S(L+1)(Ng+ 1)*R,. The number L, satisfies the restriction L} <
(1/3)L, hence L&Y <(1/3)Y°L(L + 1)(N, + 1)’°R, < L{L 4+ 1)Ny 'R,. Thus the
powers of L, make only unessential logarithmic contributions to the constants
O j» %1 j» £; in the definitions.

Let us write now the expressions we obtain after the N integrations, omiting
the T-operations for the large field regions not satisfying the conditions (i), (ii).
These expressions have he form

h
120 . Ikl . T"NZ5, )20 Z) T Zixi exp AL (1.71)
=k

where the superscript (N) in symbols of the characteristic function and the action
has been replaced by the double prime, and the operations T"/ are defined by

TNZ, ) = jdV,‘[zyH5(I71Vf+11)- (1.72)

The new action depends on the background field U} = U, and it has the form
Ay = A, + By, where B is the sum of the new boundary terms described above.

The new large field region Zj is given by (1.10), i.e., Z} = (23" {)°nZ, hence
it is a union of M-cubes, by the definition of the index kg, and it is a rectangular
parallelepiped. Define

A=Q% N2 (1.73)

This domain, obtained by adding one layer of M-cubes to Z}, is also a union of
M-cubes, and by the condition (i) it is a rectangular parallelepiped contained in
a cube of the size 100M. The domain A plays a fundamental role in the definition
of the R-operation, it is the domain on which we integrate out all field variables.
Now we want to restrict further the variables V, outside A. Take the function
Uy z(V) given by

Uiz = U (Vi) = UBLZ), M Qi V). (1.74)

This function is also important for subsequent constructions. It is defined in each
component of Z separately. In the components introduce the decompositions of
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unity 1 =y, 4+ (1 — ., 4)» Where

Xk,A:X<{inf SupIUk,Z(ap)”_”<28k;72}>- (1.75)
Vil 4 pesdi
The restriction introduced by this function is on the field V,[,, , only. It means
that this field has an extension on the whole domain Z, such that the extended
field satisfies the regularity condition in (1.75). Let us elaborate a bit this point,
because we want to understand also a meaning of the restriction established by
the function 1 — y, 4 Take a configuration V) defined on Z N A° and satisfying the
regularity condition | V,(dp') — 1| < efor p" = Z n A€, e > Ois sufficiently small. There
are many ways of extending it to the domain A. The way we describe here depends
only on V restricted to d* A = {yeA“ there exists a nearest neighbor point y'eA,
or {y,y' >eA}. Introduce a generalized axial gauge on the surface " A. The
configuration Vi[,+, is transformed into a small configuration V}, [V (0') — 1| <
O(1)M?¢ for b’ =3+ A. We extend it putting Vi(b')=1 for b'eA. The extended
configuration satisfies the regularity condition |V (dp) — 1| < O(1)M?¢ for p' = AL
0% A. Now we apply the inverse gauge transformation on A, and we get a
configuration V, defined on the whole domain, equal to the given one on Z N A€,
and satisfying the regularity condition |3V, — 1] < O(1)M?c. The corresponding
configuration U, , satisfies the condition [0U, , — 1| < O(1)B3M?en*. We have a
couple of conclusions from the above reasoning. At first, recall that the functions
1 (27%), xi restrict the field variables V, on 2}, e.g, |0V, — 1] <2L3Nog, <
2L(L + 1)Ng 'Ry, The above reasoning implies that V, has an extension to A,
satisfying the regularity condition |0V, — 1] < O(1)M?I?R,¢, on Z, hence the
function U, , is defined for all those fields, and the condition in (1.75) has a
meaning. Now, take a field V) in the domain determined by the function 1 —y, 4,
and denote ¢ =sup,_,. 4| Vi(0p') — 1|. Of course ¢ < I?R,¢,. By the above reason-
ing the field V,[,, ,c has an extension, for which [0U, , — 1| < O(1)ByM?en*. On
the other hand, for any extension we have |0U,,— 1] =2¢n? hence 2¢, <
O(1)B;M?¢,and |V, (0p') — 1| > (O(1)B;M?) ™ ¢, for some p' = Z n A<. This condition
is enough to get the exponential small factor, estimating in the usual way the Wilson
action. Thus I — y, ,is alarge field function, and we exclude from Z the components
with this function. The union of the remaining components is denoted by Z again,
and the corresponding expressions are given by the formula (1.71) multiplied by y, 4.
All the above transformations preserve the k™ density p,, they change only the
representation of this density. It is represented in the same general form (2.18)
[111], but with different operations T,, and different effective actions. Now we
define the next operation, which changes the density. The equality sign is replaced
by the equivalence sign, the equivalence means that both sides have equal integrals
over the space of fields V. To define the operation we formulate briefly the result
of the previous operations. We have represented the density p, as a sum of terms
of the general form (2.18) [111]. Each term determines uniquely a large field region,
and in particular the components of this region, satisfying the conditions (i), (ii).
Such a term is represented as a T,-operation for the remaining components, acting
on the corresponding expression of the form (1.71) multiplied by the function y, ,.
The next operation is an integration of this term with respect to the field variables
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V, over the domain A. We obtain a new expression, which we consider as a
function of all field variables V,, but independent of V,[ ,. This operation changes
essentially the sum of these terms, and we can write only that the density is
equivalent to the sum of the new, integrated terms. We remark also that regions
of integration are usually different for terms in the sum. Let us write the effect of
this operation for each term. Omitting the T,-operation for the remaining
components, as in (1.71), and using the form (1.72) of the operations T "), we
obtain the expressions

Xk('QI:A‘)Xk‘Aj‘thI—ZhXh('Qh N Zh)Th(Zh)j'dVU[_er\(AmZ;;)XZ exp Aj. (1.76)

The variables V" are determined by, and defined on the set By, ie., V"=V, on
I, j=0,1,...,k—1,k The two integrals above are over the disjoint regions of
integrations, hence we can consider them independently. In fact the first integral,
over the region Z,, is left unchanged in the following discussion.

The above integral should be analyzed now in the same way as small field
integrals are analyzed. i.e., we should find a minimum of the Wilson action A(Uy)
on the domain of integration, we should expand the whole action around the
minimum, introduced a fluctuation field together with a gauge fixing, restrict the
fluctuation field and analyze the fluctuation field integral. Instead, we will do these
steps on the domain AN Z, only, except the first one, the solution of the variational
problem, which we will consider on the whole domain of integration. Let us start
with this problem. The integration in (1.76) does not involve any d-functions, they
are all integrated out, therefore we look for a minimum of the function A(U}) for
V[ 4 restricted by regularity conditions only. This problem can be divided into
two steps, at first we look for a minimum of A(U}) with the averages M*(U})
fixed, and then we look for a minimum removing the restrictions on the averages
on the domain A. A solution of the last problem should give a solution of the
original problem. These remarks serve only as a justification of the following
construction. Consider the function

Vil A= AUy (Vi) (1.77)

It is defined on configurations V, satisfying mild regularity conditions, e.g.,
[0V, —1|<a, on Z. The function is invariant with respect to the group of all
gauge transformations defined on A, hence it is natural to consider it on orbits
of this group. We look for a minimal orbit. We will prove later the following
theorem.

Proposition 1. For a configuration V,[, ., satisfying the regularity condition
[0V, — 1| < ¢ on the domain Z N AS, for ¢ >0 sufficiently small, there exists exactly
one critical orbit of the function (1.77). An element of the orbit is a minimum of the
Sfunction, and is denoted by V ,=V ,(Vi[ ;.. »)- It satisfies the regularity condition

|V A0p)—1| < BsM%: for peA. (1.78)

The orbit-valued function V ,(V,[,.+) has an analytic extension for G-valued
configurations V, =V, V, = expiB'V, satisfying the same regularity condition as V,,
with B'eg® and small, e.g., |B'| <e.
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The constant Bj is determined by the geometry of the problem, more precisely
by the condition (i). The power M? is not the optimal one, in fact we can take
just M, but we will not prove it.

Extend the function ¥V, on the whole domain Z putting V,=V, on Zn A¢,
and define

Up = Ui z(V ). (1.79)

This is a fundamental background field for the constructions of this and the next
sections. In particular we expand the action A4} in (1.76) around this configuration
on AnZj; therefore it is important to understand its regularity properties. To
simplify the description we take into account the characteristic function y, 4. The
restrictions introduced by this function, and the method of construction of the
function V4, imply the estimate

\Uo(@p) — 1] < 26* + O(1)B3B M5 exp (— 5 dist (p, A))eun? (1.80)

for peQ,. We will discuss it together with the proof of Proposition 1, because then
it will be immediate, but it follows also quite generally from the definition (1.79)
and the bound (1.78). From the estimate (1.80) we can see easily that the configura-
tion U, belongs to the integration domain determined by the characteristic function
¥x in (1.76), and to the analyticity domains of terms in the effective action Aj.
In fact, it is the reason why we have done the preliminary integrations, and why
we have introduced the function y7, and the spaces U4(X, &, d,). We do not
show the above statement now, because we will need a stronger statement in the
future.

Now we define the fluctuation field ¥V’ on the set By nANnL;;7. Let us
recall that Qj,, =0;7,=Z;" hence Q]71=Q;], =), and denote
Ag=AN2;55. We put

V'=V'Vy on A, Ve=My(U,). (1.81)

More precisely the equality is on the set B, = B; N A. Let us recall that according
to our convention, bonds intersecting dA belong to By, and bonds intersecting
02} 77 do not belong to B,.

The measure and the underintegral expressions in the second integral in (1.76)
are gauge invariant; more precisely they are invariant with respect to the gauge
transformations defined on B,. We remove this invariance by fixing a gauge for
the variables V'. We fix a gauge which is a modification and a generalization of
the axial gauge in cubes used in the previous papers. At this point we make an
essential use of the fact that the domains A > Z) >--->Zj,, o (Q}73) are
rectangular parallelepipeds. This allows us to give a simple description of the gauge
fixing. Consider two successive rectangular parallelepipeds in the sequence, for

example

Py=[ay,by]x - x[agby] =Py =1[a},b\]x - x[agbyl,

’

hence [a,, b, | < [a,,b,]. We have to fix a gauge in P,\P,, more precisely in the
intersection with the corresponding lattice. We may assume, rescaling properly,
that it is the unit lattice. The gauge is fixed by a tree graph built of bonds contained
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in P,\P,. We fix the initial point y=(y,,...,y) =(a, +1/2,...,a,+ 1/2), and a
number ae(d}, b). For a given point x of the lattice in P,\ P, we choose a contour
connecting x to y. If x; <, then we take the usual contour

Fy,x:[y7(y1>'"5yd~1’xd)]v"'u[(y15x27'-'7xd)’X]‘
If x, > a, then we take the contour

Ly =1y 0 Va1 X)) 10 Ol Yas V3 Xas -5 Xa)s (V15 Vs X3, X 45 Xg) ]
UL Y2 X3 X0, (b = 1/2, 35, x50, %) ]
Ulby =172, y5, X3,y Xg)s (b — 1/2, X5, X3, .5 Xy4) ]
Ul(by —1/2, x5, X5, ..., Xy), X].

This slightly awkward definition describes a simplest family of contours connecting
points of P;\ P, with the point y. The union of all the contours is a tree graph T
on P;\P,, hence T = U I', .. This definition has the important property that

XeP\P
if we enlarge P,, i.e., we réplzace it by a rectangular parallelepiped P, P, = P, < Py,

and we remove the contours corresponding to points of P5\ P,, then the remaining
contours build the corresponding graph T’ on P \P,. We fix the gauge putting
the bond variables equal to 1 for bonds belonging to the tree graph. We use all
gauge degrees of freedom connected with points of P,\ P,, except one, so we add
an external bond to the graph. If is one of the bonds intersecting the boundary
0Py, but they are bonds of the larger scale (they are L-bonds for the unit scale in
P,), except when P, = A, so it is simpler to describe the corresponding bond for
P,. We assume that P, is not the last domain in the sequence, i.c., P, # (Q;57),
because no gauge is fixed in this domain, and no external bonds intersecting P,
are added to the graph. For the remaining domains P, we choose the bond

[(a), —1/2,a5+ 1/2,. . ay+ 1/2), (ay + 1/2,a5 + 1/2,...,a, + 1/2)],

and add it to the graph. For P,=A we add also the additional bond
[(yy =1, y2....,¥.), y]. The union of the above described tree graphs and bonds is
denoted by T,. It is a trec graph in B, fixing completely a gauge in this set.
Using the Faddeev-Popov procedure we introduce the gauge fixing d-function
d7,(V’) in the integral (1.76).

The regularity conditions for V", V,, and the gauge fixing for V' introduce
restrictions on this field. We can prove that it satisfies |V’ — 1| < O(1)M*NR}¢,
on B,. We introduce stronger restrictions on the fluctuation field by the decomposi-
tion of unity 1 =y"+ (I — '), where

¥ =x({|B'(b)) <9, for beB,}), (1.82)

and V' = expiB'. The decomposition of unity is introduced in each component of
Z, and we exclude from Z the components with the large field function 1 — y'. In
the remaining components, denoted by Z, the functions y, 4, 7’ should allow us
to remove the function y}, except that they do not give restrictions on the variables
V"=V, on Z,”\Z, We shall introduce such additional restrictions, but at first we
fix a gauge for the configuration U,. We would like to represent it locally, on a
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subdomain of A, as expinA,, with A, sufficiently small. Such a representation
can be obtained in two steps. The configuration M¥U,) = V , satisfies the regularity
condition (1.78). We fix for it the axial gauge in A%®), hence the field V , is small
inside A®. More precisely, it satisfies the bound

|V 4(b) — 1| < O(1)BsM%, for bc A®. (1.83)

Consider the configuration U, inside the domain A. We take it in the axial gauge
in k-blocks, hence |[M/(Ugy)— Qy- V4l < 11d*0(1)B;BsM?¢, inside A, by the
estimate (1.80), and (1.65) [14]. This and (1.83) imply

IMi(Uy)— 1] < O(1)B3;BsM®%, inside A. (1.84)
The field U, can be represented inside A as follows:
Ug = U(By(A), M"(Uy)). (1.85)

The field in the argument of the function on the right-hand side of the above
equation is small, hence we can expand the function around the configuration
identically equal to 1. We transform the function to the Landau gauge constructed
around this configuration, and we get

-1

1 4o
U0=<exp inHk,A<7logM'(U0)>> . (1.86)

Thus Uy is in the required gauge, and we have

U% = U =expinA, inside A,
where
1Ay, [VIA,), |07 0"A,| < O(1)B2BsMSs, on  Zl. (1.87)

The function A, =M, ,((1/i)logM (U,)) is also an analytic function of
(1/i)log M*(U,), on a much larger domain than the one determined by the bounds
(1.84). The superscript (AL) in (1.87) indicates the mixture of the axial and the
Landau gauges. Changing the gauge of U, in the integral (1.76) requires the
corresponding compensating gauge transformations of the variables ¥}, the gauge
transformation restricted to @¥(Z},”)®, and of the variables V', the gauge trans-
formation in the adjoint representation. The expressions in the integral (1.76) are
invariant with respect to these transformations. We can also choose from the
beginning the configuration U, in the AL-gauge. Finally, we introduce the last
decompositions of unity on components of (2,7 ,) " €Q,:

1= 1] X({ sup [U, 5((1, V), 0p) — ll<%8h(L""'1)2}>

P Ocp peO™
11 7({ sup |U, ((1, V). dp) — 1!25%@"”"’7?})
[mE=p peO~

= ; Xh,l/z(Pc)Xi.uz(P)- (1.88)

"~

The summation above is over subsets P of a component of the domain (2}, ) N Q2,,
which are unions of LM,R,-cubes (for the L™ "-scale). The symbol (1, V,) means
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the configuration (1] a2 Vilop=2 ). We have new large fields in components
with nonempty sets P, so we exclude these components from Z. In the remaining
components, which form a new domain Z, we have the function y, ; ,((£2;7,) N €2,).
Notice, that if a cube [] is contained in £}, and is not touching the boundary
of this domain, then U, (1,V,)=U,,(1)=1, and the condition defining the
corresponding characteristic function is always satisfied, i.e., the function is
identically equal to 1. Therefore the above characteristic function is defined by

n~2

the product over cubes [] intersecting the domain (£} 1), and contained in £,
Now we prove that, with the new functions introduced in the integral, we can
drop the function yy, i.e., we have the equality

Xk(Q}:4)Xk,AXh,1/2((QZ; D207 (82N Z )y = Xk(QI:4)Xk, ALh, 1/2((9;:1 Nl /e
(1.89)

We have assumed that < 1/4. The equality y,(£2,nZ,) =1 is immediate, so we
have to prove that y; = 1. We have already done several reasonings of this type,
so now we will sketch only main points. Take a cube (] < (2;5,)nQ,, and
represent the functions Uy, on []7 in the usual way:

Uiy = UB(), IM (U ) (M (@37V") " IM Q3 V"))
1 “[;‘1
= <exp iL""‘nH,lD<I; log [M* (U )M (QV") ™ 1]) U,,‘D(V”)> - (1.90)

The function M, and it derivatives can be bounded on []~ by
Byexp(— §2LM,R,)11d%¢, < 11d*Byexp(— R,)s, < ae,, where o is a small, absolute
constant, which will be fixed later. Estimating as in (1.46) we get

[UZ 200p) = 11 <[ U, (V" 0p) = 1](1 + L™ "0e,)
+ (o + 8a%e, ey (L "y)? for pc . (1.91)
The field V" is equal to V, on (£2;51)°n 1" and on 2,51~ []~* it is equal to
V" = V' MY U§Y) = expiB expiQ,(nA,). (1.92)
Expanding U, (V") with respect to the above field, we get

=1
. - 1 " il
U]LD(VN) — <exp lLk hth.D<710g V [Q;;121>Uh,[1(1’ Vh)) . (193)
The function M, above, and its derivatives, can be bounded on []~ by

Ay pi(gn)
L &
Ao Polgn)

+ L SN2O(1)B3BsMOs, < 0z, (1.94)

B30, + L™ "PO(1)B3BsM %, < By(1 + fio)N'/?

The last inequality holds under two restrictions on N. At first, we assume that
N <0(1)(ogg; 3’ < 0(1)(1 + B,)(ogg, ?)* with a positive integer v satisfying
(1/2)v < p, — py — 1. The second is that N has to be sufficiently large, so that the
constant in the second term above can be bounded by (1/2)a. These two conditions
can be satisfied by N to the positive power of logg, 2. From the representation
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(1.93) and the above bounds we get

U, (V" 0p) — 1] <|U, 5((1, V), op) — 1[(1 + L "og,) + (o + 8a?2e,,)e, (L "n)?
<31+ L agy)e(LF )2 + (o + 8o%ey e, (LF ). (1.95)

The estimates (1.91), (1.95) yield
(Ui 2(0p) — 1] <3e(L")? < (1= p(1 =27 “7"D))ey(L"P)> (1.96)

for p = [0, hence on the whole domain (£2;5,)°n Q,. We have chosen o= 1/12
in (1.91), (1.94), (1.95).

Consider now the function Uy , on the domain Q,, nQ2§. We localize it in
the domain Z N Q;;?, introducing the usual boundary conditions at the boundary
02373 through the determining set B,(€2; 7). We write the identity corresponding
to (1.90), with B,((1~*) replaced by By ,UB,(L2;7}), and with the argument

MUy z) = IM(Ug (M (UG™) " IM (U GD).

The above field is equal to V" outside the layer of thickness 2M, (in L™ "-scale) at
the boundary 002} . Denote this layer by Y. We expand the function with respect
to (1/i)log[---][ y by the usual formula. This field can be bounded by

22d* max {1, L 2N '20(1)B,BsM5(1 + Bo) } & + 26,

A
<22d%,+2(1 + ﬁo)N”z—iMsh < 23d%,,

Ao polgn)

The H-function in the expansion can be bounded on the domain Z, \Z] for
h<j<k, Z;.  \Q2;7,) for j=h, and Q\Z] for j=k, by

M
B, exp ( — 5M— (j— h)> exp(—36MR,)23d%e,
1

< 23d2By(1+ Po)(1 +(— W) exp(— (j — h) exp(— Ry)e; < 2z,

This yields the bound (1.91) with h replaced by j, and the configuration U, (V")
replaced by

U(Bj 20 By(2;71), (expiB'M (UG e, M' (UG ). (1.97)

We expand the above function with respect to the variables B'. The corresponding
H-function can be bounded on the same domains as above by
Byt < Byl + o)1 + (k— i) AL o
Ao Polg j)

The plaquette variables for the configuration (1.97) are bounded again as in (1.91),
with & replaced by j, and with U, (V") replaced by (1.97) for B'=0. This
configuration is equal to U, where i, is a gauge transformation constant in blocks
of the determining set of (1.97), the constant equal to the value of u, at centers of the
blocks. The plaquette variables of U{P satisfy the estimate (1.80). Combining the
above estimates, and using the inequality

6 < (14 Bo)k — )1 L7206 e (L) < L6 D (2
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for j <k, we obtain
[Uy 2(0p) — 1] < 2en* + O(1)B3 BsM? exp (— d dist (p, A))en’”)
(1 4+ L7Joe;)? + (2 + L7 7o) (o + 8o”e e (L)
<L %D 4 4o + O(1)ByBsM®
‘exp (—odist(p, A))L™ " D)e, (L In)?, (1.98)

on the j™ domain described above. Now we have to analyze this bound on all the
domains in the definition (1.24). Consider 2,\Q2,,,, for k, <m <k. We have
Jj=k, and the exponential can be bounded by

exp(— (L™ % "™BMR,, + -+ L~k koDYMR, 4 L 6 ko DAMR, )
Sexp(—4o(m — ko)M),

hence the last term in the bound (1.98) can be made arbitrarily small for M large
enough. Making it smaller than «, and taking « < 1/8, we estimate the right-hand
side of (1.98) by (21/8)en? <3(1 — B(1/2))ewn? for m=k— 1, and (21/8)gn* <
(1 —B(1/2))L3% ™" Ygn? for the remaining m. Next, on the domain Q5 , ;N
0,7, the right-hand side of (1.98) can be bounded by (4a+
O(1)ByBsM° L 2*~D)e (L~ In)?, with an increased O(1). On the domain Z7, \Z]
for ky <j<k, and on 24 . \Z} for j=k, we have

(4 + O(1) By BsM Ly 2% ) (I8~ < (1 — BLE ¥~ Ve (LX)

if O(1)B3BsM3Ly*™e~Y < 1/4. From the definition of the number N, (recall
that it is defined by the equation L™ 'R, _y ., =1) we get

O(1)ByBsM Ly 2No~ 1) < O(1)By BsM3L2R 7™,

where a, = (log L3)/(log L). The number on the right-hand side is < 1/4 for R, *,
or y sufficiently small. Finally, on the domain Z},\Z} for h<j<k,, and on
Zy, 02,7, for j=h, we have

(40 + O(1)B3Bs M Lg > P)e;(LIn)* < (1 — Bley(L ),

because k —j = N, and we use the above bound again. Thus we have proved that
the configuration Uy, satisfies all the conditions in the definition (1.24), hence
1% =1, and the equality (1.89) is proved.

Let us now summarize the result of all the transformations we have done on
the density p,. We have obtained a density, which may not be equal to p,, but is
equivalent to it, in the sense that they have equal integrals. This density is written
as a sum over large field regions. The components of the regions are divided into
two classes: the components satisfying the conditions (i), (ii), for which the corres-
ponding integral operations are given by the integrals in (1.76), and the remaining
components, for which the integral operations have many forms, varying from the
old T-operations to the integrals as in (1.76), but with some large field characteristic
functions, through the intermediate operations described above. These operations
are denoted by T;. Thus we have obtained the equivalence

pe(Vy) = Z Xk(Ql<~4)Xk,ATZ(Zk\Z)_deh[(_o;f,)"mth,uz

i3 1
12,4,)
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(235120 Z2)T(Z,n2Z)
'de'[BoéTO(V’)X’exp Ay (1.99)

The operation T, above includes a summation over all possible forms of this
operation in various components of Z,\Z. Now we rearrange the sum above. We
denote Z,\Z by Z,, we write Z explicitly as a union of components, Z =X, u---u
X,, and we separate the summation over the admissible Z,, n, X,,...,X,, from
the remaining summations, which are factorized in those domains. In such a
representation it is natural to replace the summation over {£2, A;} by summations
over the corresponding sequences {26, Z;} localized in the components. Denote
the sequence localized in X; by {€f,Z,;}, and By, T, A localized in X; by
B, T;, A, The integrations in (1.99) are also factorized in those components. This
way we write the expression in (1.99) in a form similar to a polymer expansion,
suggesting explicitly localization operations and an exponentiation. Finally, we
are ready to define an operation, which is not a complete R-operation yet, but is
a basic part of it:

AR (AN D ) || F

oz /0 X =1LNG 76

1
5GI(V;<)X(A¢')CXP[ - ’g‘z A, Uy x (Vy VA.)):|
k

. _ L 1 4
jdV [ A:06,(V)xA, )eXp[ e — A Uk,X,(V/VA)):|

'Id Vh[([) 2 /h.l/z((Qg,;Jr 1)CmQLh)—”—;;(Zi.h)jdVTB,(ST,(VI)XE}eXp AZ};
(1.100)

where G; is a graph in A; fixing the axial gauge, {;eC5 (X)), {; changes from O to
1 in a neighborhood of X % and y(A,) is given by

1
7(A) = x({l;log V'(b)

<My, for beAl}) (1.101)

Because of the gauge fixing terms the expressions in (1.100) are not Euclidean
invariant, and we have introduced the averaging over families of graphs, such that
the averaged expressions are invariant. With our prescription of building the
graphs, dependent on the chosen coordinate system, these averages can be replaced
by averages over Euclidean rotations leaving the lattice invariant, or even simpler,
by averages over d! permutations of coordinates, and 2¢ reflections in subsets of
coordinates. Then N; = 1/(2%d!). We can also choose other ways of fixing a gauge,
generalizing the Landau gauge, which are Euclidean invariant, but they are
analytically much more complicated.
The above operation has the fundamental normalization property

jde R'p) (Vi) jdePk V. (1.102)

In fact, the R'-operation changes essentially the initial density p, only in a neighbor-
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hood of the large field region; the changes are decaying exponcntially fast with
the distance to the region. It is now clear what the next operations are. At first,
we have to extract from the expression in the curly bracket { ---} the density exp 4,,
where A, is the effective action determined by the assumption that Z, is the only
large field region. The remaining expression should be localized around the
components X4,..., X,, represented as a polymer expansion, and finally exponen-
tiated. All these operations will be described in the next paper.
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