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Abstract We discuss conditions which ensure that weak limits of invariant
measures of small random perturbations of dynamical systems have their
supports on attractors.

1. Introduction

Let F:M~>M be a continuous map of a metric space M. Suppose that
{Qε

χ9xeM,ε>Q} is a family of probability distributions on M such that for any
δ > 0 and each bounded continuous function g,

limsup\lg(y)Q£

x(dy)~g(x)\ =0. (1.1)
ε- O x eM

Then the Markov chains Xε

n with transition probabilities pε(x, Γ) =
P{Xε

n^.1EΓ\Xε

n=^x} — Qε

Fx(Γ) are called random perturbations of iterates of the
transformation F. One may be interested in the asymptotic behavior as ε—»0 of
invariant measures μfc of XL

n, i.e. the measures satisfying

μ*( )=$dμε(x)p*(Xi ). (1.2)

Under (1.1) all weak limits μ of measures satisfying (1.2) are known to be invariant
measures of F (see, for instance [Kl], Sect. 1.1), i.e. μ(F~1Γ) = μ(Γ) for any Borel
Γc:M.

In physical applications one may think on measures μ obtained as limits of //
as more stable to random perturbations and so having more physical sense than
other invariant measures. Usually physically relevant systems are considered near
stable invariant sets? i.e. attractors and so their statistical behavior is thought to
be described by invariant measures which sit on attractors. Thus it is important
to specify conditions on random perturbations which ensure that weak limits of
their invariant measures will sit on attractors. This will be the main issue of this
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note. At the end we will compare different order relations corresponding to
dynamical systems which play important roles here. Remark that there is another
important and usually more difficult question addressed in [K1 ] about distributions
of limiting measures inside invariant sets.

2. General Results

A finite sequence of points x 1 ? . , . , xn is called a ^-pseudo-orbit if

dist(Fxhxi + l)<δ for all z =•!,...,«-1. (2.1)

One introduces a preorder ">" writing _y> x if for any (5>0 there is a
(5-pseudo-orbit starting at x and ending at y. We also have an equivalence relation:
x ~ y if x >- y and y >- x. By the definition x ~ x. An equivalence class containing
x will be denoted by [x], and if either Fx — x or [x] contains more than one point
[x] is called a basic equivalence class. For brevity by an equivalence class we
will always mean a basic equivalence class. Next, one obtains the partial order
among equivalence classes writing [y] > [x] if y>x. Maximal in this partial order
equivalence classes will be called quasi-attractors.

Ruelle [R] considered random perturbations satisfying the localization
condition: suppQ^c Uε(x) and the "core" condition: suppβ^x^ FUΛ(x) for some
ε > a > 0, where Uδ(y) is the <5-ball around y. He showed that for ε small enough
all invariant measures με of corresponding Markov chains Xε

n have their support
in neighborhoods of quasi-attractors. This is a simple consequence of the fact that
each time the process Xε

n comes close to a nonmaximal equivalence class some
"mass" will go away along a pseudo-orbit and will never come back to a
neighborhood of this equivalence class, and so eventually all "mass" will be lost
from there.

If perturbations are not localized the process may return to any neighborhood
of any equivalence class infinitely many times and so the above argument does
not work. Moreover as an example from Sect. 1.5 of [Kl] shows invariant measures
με may be concentrated mainly in neighborhoods of a nonmaximal equivalence class.
This is because, in general, the process Xε

n may be forced to spend much of the
time in a neighborhood of any invariant set by making perturbation there very
"slow," So we shall need additional assumptions both on dynamics and on
perturbations.

Assumption 2.1, M is a compact space and there exists only finite number of
equivalence classes K l 5 . . , , Kv.

In these circumstances equivalence classes Kt are compact ^-invariant sets, and
if Kt is a quasi-attractor then K{ is a usual attractor in the sense that there exists
an open set V => Kt such that FVa V and f) FnV=Kt (see Sect. 1.4 of [Kl]).

n > 0

Fix small disjoint neighborhoods ^1 ?...,^v of Kί9...,Kv and suppose that
Ktt,...,Kik are attractors and Kik+ί,...,Kl are nonattractors. Put δQ = inf {δ > 0:
there exists a finite <5-pseudo-orbit starting inside some Vij9 j = l , . . . ,and ending
outside V i } . If neighborhoods V { . are chosen small enough then, clearly, (50>0,
Remark that (1.1) implies
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sup β£(M\ [/,(*)) = ft,(ε)-»0 as c->0 (2.2)
xeM

for any δ (see Theorem 1.1.2. of [Kl]).
Let τv = min {n:Xε

nφV} be the exit time of X*n from Fc M. Then by (2.2) and
the definition of δ0 for j = / , . . . , fe one has

supP* [τκ < JV] ̂  supP* {dist(FXf, Xί + 1) ̂  <50 for some i <N,i^ 0}
xeV t j ^ \εVi}

^Nβ*M (2.3)

where P^{ } is the probability for the process Xs

n starting at x.
Denote U d ( K t ) = (y distO^K;) < 0}. In the same way as in Lemmas IΠ.2.1 and

ill. 2.2 in [Kl] (using moduli of continuity of F in place of the Lipshitz constant

there) one concludes that there exist numbers <5 l 9 Γ0>0 such that Uol(Kt) c Kί?

i = l , . . . , v and (i) if there exists a ^-pseudo-orbit x1,,,.,xn satisfying x1GUδl(Ki),
xnEUδl(Kj)9 and xkφVi for some fc>l, k^n then 1/7 and Kj> K t ; (ii) any
<5Γpseudo-orbit x t , . . . , % „ with n^>T0 has at least one point in (J U ό l ( K ί ) .

ί g v

Remark that by (2.3) except for small probability the exist times from
neighborhoods of attractors have at least the order of βδ~Q

1(ε). To conclude that
limiting measures will sit on attractors one needs exit times from neighborhood
of nonattractors to be of lesser order and for time of this order we would like
paths of Xε

n to go along δ l -pseudo-orbits except for small probability which will
enable us to use dynamics of pseudo-orbits described by (i) and (ii).

In general, we do not have a priori upper bounds on exit times from
neighborhoods of nonattractors which is connected with estimating the time needed
for ε-pseudo-orbits to exit from neighborhoods of invariant sets which are
nonattractors. So we will need another assumption which we will show later to
be satisfied in the main interesting cases.

Assumption 2, 2. Neighborhoods K , . . . , P .̂ of nonattractors K 9...,Kl can be
chosen so that

τκ >ίf(ε)}^ί(ε)->0 as ε-»0 (2.4)
xeVij

for some function έ'(c) satisfying

^(ε)ft52(ε)-*0 as ε-»0, (2.5)

where δΊ ~mi

Theorem 2.1. Under Assumptions 2.1 and 2.2 all limit points as ε->0 of invariant
measures μfi of Xε

n have support in the union of attractors.

Proof, Choose a positive integer valued function n(ε) so that

/(ε)//φ)-*0 and n(ε)βδ2(έ)->0 as ε->0. (2.6)

We will show that for any xeM,

l as ε-»0, (2.7)
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where Pε(n, x, Γ) = Pb

x{Xε

neΓ} is the n-step transition probability of X'n starting
at x. Hence iterating (1.2),

U κ = μμ<(x)/"n(ε),x, (J κ ^ l (2.8)

as ε-»0.

Thus all weak limits of με as ε -> 0 have support in (J V φ and since they are F-
l < j < k

invariant they must have support in (J Kt implying the theorem.
l<j<k

To derive (2.7) introduce the event £n = {dist(FXε

i9X
ε

i+1)<δ2 for all
i — 0. . . . , n — I}. For any Borel set Γ we can write

Pε(n(ε)9x,Γ)=P*Λ{gn(E) and X^Γ } +r(c,x, Γ), (2.9)

where by (2.2) and (2.6),
)->0. (2.10)

By (i), (ii), and the definition of δ2 the event < <fn(ε) and Xε

n(ε}φ (J Vtj > may only
'

occur if for 0 ̂  m g n(ε) the process Xε

m stays away from y F/ j9 it never revisits
o < j < fc

U d l ( K ί ) after exiting ]/•, and the times between subsequent visits to U δ ί ( K i ) ,
i — 1, . . . , v do not exceed T0. Thus in this case the process Xε

m must spend time at
least (77 (ε) — (v + l)T0)v " j in one of neighborhoods Vj with) > k. By (2.4) and (2.6)
the probability of such event does not exceed v£(ε) provided ε is small enough. This
yields (2.7). The formal argument uses the strong Markov property of the process

Xε

m in the following way. Define inductively σ0 •= 0, ηm =

(J U δ ί ( K ι } >, and σm = min < / ̂  nm'-^Φ U Kf >, m = 1,2,.,.. Then according
1 < ί < v J ί, l < i < v

to the explanation above
r

andXε

n(ε)φ \J

σm-ηm ^(n(ε) - (v + l^v"1 for some m^v with Xe

ηme ij 1/^(^
fe<j<v '

By (2.4) and the strong Markov property of Xε

n the probability of the last event
is bounded for small ε by

m=l

where χ = l if Xε

ηme l\J Uδl(Kij} and =0 for otherwise, and Ex denotes the
k < j < v

expectation for the process Xε

n starting at x.
Thus by (2.9) and (2. 10),

P ε n ( ε ) 9 x ,
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yielding (2.7) and completing the proof of Theorem 2.1. Π

3. Verifying Assumptions

Assumption 2.2 is a kind of global condition on both an invariant set and random
perturbations at the same time. It is difficult to check such an assumption and in
this section we shall derive sufficient conditions for Assumption 2.2 to be valid
assuming only some properties of dynamics of F and the one-step perturbations
Qε

x('} which are much more transparent.
We shall start with the following smooth model. Let F:M-»M be a C1 map

of a C1 compact Riemannian manifold. For each equivalence class Kt defined in
the previous section put

^(X.)=limsup— logvoKx: max distCPx,^) ̂  0 1, (3.1)
N->ao N I 0<n<N j

and &>(Ki) = lim ^d(K{\ Suppose

Assumption 3.1. For all nonattractors Ktj, j = k + 1, . . . , v one has ^(Ktj) < 0.
We will need also a kind of a "core" condition

Assumption 3.2. There exist constants - c, y > 0, y < j( || DF \\ + 1) ~ 1 such that
Qε

x(Uyε(y)) ^ c for all x, yεM with dist(x, y) < ε/2, where \\DF\\ is the norm of
the differential of F.

In fact, we shall need the last assumption for x and y in neighborhoods of
nonattractors. It will be needed to ensure bounds on exit times from these neighbor-
hoods. Remark that Assumption 3.1 holds true for Axiom A diffeomorphism and
Assumption 3.2 is satisfied for all random perturbations considered in Sect. 2.7 of
[Kl], i.e. when measures Qε

x( ) have densities qε

x(y) with respect to the Riemannian
volume which behave locally as ε~drx(\/ε exp ~ ίy), where d = dim M and {rχ9 xeM}
is a family of nonnegative functions on tangent spaces TXM, xeM such that
\rx(ξ)dζ — 1 and rx is positive and continuous at QeTxM.

Theorem 3.1. Under Assumptions 3.1 and 3.2 one can choose a number κ>0 and
neighborhoods Vi of nonattractors Kij9 j — k + 1,. . . , v so that (2.4} holds true for
any *?(ε)^ε~κ.

Proof. Let j > k then there exists (53 > 0 such that ^δ3(Kij) < — b for some b > 0.
Then for any xGUδ^(Kij) there exists yxeU7t(x) such that FnyxφUδ^(Kij) for some
n g 2d/b log l/yε provided ε is small enough. Indeed, if Fnyxe Uδ^(Kij) for all yeUyε(x)

and n — 0,1,..., N then Uyε c <j z: max dist (F"z, K {j) g 53 >, and so the volume
(. o < n < N J )

of the last set must have at least order of (yε)d, where d = dim M. But this volume
does not exceed e"(bl2}n provided N is large enough.

Put Vtj = V(lj2]δ,(Ki) and m(ε) - 1 -f integral part of (2d/b log(l/yε)).
Then by Assumption 3.2 for any xe V{. and ε small enough

Pb

x{τVi ^ m(ε)} ^ P^X^U^y^ for all f =0,..., m(ε)} ^ cm(ε). (3.2)
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Then by the Markov property for ε small enough

Pl{τVij > nm(ε)} = Eε

xχτVτj>m(ε}E
ε

x^τVιj>m(ε) '

where R = (3d/fe)log(l/c) and χA is the indicator of an event A. Thus if /(ε) in (2.6)
is bigger than ε~κ with K > R then Assumption 2.2 will be satisfied. Π

Corollary 3.1. If Assumptions 2.7, 3.1 and 3.2 are satisfied and v~κβδ(έ)-^>Q as ε-^ΰ
for each δ>0 then all limit points as ε^O of invariant measures // of XL

n have
support in the union of at tractors.

In Sect. 2.7 of [Kl] I have shown that for basic hyperbolic nonattractors (2.4)
holds true for any /(ε) which tends to infinity faster than log(l/ε) as ε-»0, and
since we need here only the upper bound (II. 7. 14) from [Kl] this is true in the
full generality of the set up of Chapter II in [Kl] without additional assumptions
of Sect. 2.7 there which implies the conclusion of Theorem 2.1 for Chapter II of
[Kl] type of random perturbations of Axiom — A dynamical systems. Moreover
(2.4) can be established for some nonmaximal equivalence classes Kt even when
0>(K t) = 0. For instance, / can do this for Kl being a degenerate fixed point or
closed orbit of JF, i.e. when there are no eigenvalues of DFf , / > 0 whose absolute
value are bigger than one but, on the other hand, not all eigenvalues have absolute
value less than one. In this case one can get (2.4) with /(ε) of order of negative
power of ε.

Next, we will consider another model of random perturbations which was
treated in Sect. 1.5 of [Kl] and in [K2]. Let again M be a metric space with a
continuous map jF:M->M. Suppose that for any open set U c M uniformly in
xeM transition probabilities Pfc(x, ) of Markov chains Xε

n satisfy

l ime log P£(x, 10 = -mΐp(x,y), (3.4)
ε-*0 yet/

where p(x, y) ̂  0 is a continuous function on M x M. Everything works without
any map F at all (see [K2]) and then one can consider this model as a random
perturbation of the multi-valued map x — >{y:p(x, j;) — 0} but we will consider here
only random perturbations of F in which case Pε(x, •) = Qε

Fx() and p(x, y)=0 if
and only if y = Fx. This model emerges when, for instance, the measures Qε

x( )
have densities qε

x(y) whose main term behave like e~p( x^lf.
For any finite sequence of points ξ — (ς1? . . . , ξN) define

Σ P(^ς,,ι) (3.5)
\<i<N-l

for N > 1 and Al = Q. For any pair of points x, yeM denote

B p ( x 9 y ) = i Ώ f { A t ( ξ ) : n ^ ί , ξ =(ξl9. . . , ξn\ ξ,=x9 ξn=y}. (3.6)

The function Bp induces a preorder writing y^x provided Bp(x, y) = 0. This yields
an equivalence relation saying x^y if x^-y and y^ x. Equivalence classes
corresponding to ~ are closed sets which are called p-equivalence classes and
again we will speak only on basic ones, i.e. which either a fixed point of F or
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contain more than one point. A p-equivaience class containing x will be denoted
by Mp We obtain a partial order among p-equivaience classes saying [>']P^ MP

if y £• x. Suppose

Assumption 33.

M is compact and there exists only finite number of p-equivalence classes Kl,...,Kv.
In general, p-equivalence classes are smaller than the equivalence classes we

obtained via pseudo-orbits and we will compare corresponding relations in the
next section. It is not difficult to conclude (see [Kl]) that under Assumption 3.3
the number of equivalence classes defined in the previous section will not exceed
v and all maximal p-equivalence classes are attractors (see [Kl]).

Lemma 3.1. Under Assumption 33 [x]=[x]p for any xeM, i.e. p-equivalence
classes and equivalence classes from the previous section coincide.

Proof. Let [x]p = K f and y ~x. If yφ (J Ki9 then by Lemma 1.5.3. from [Kl]

only bounded pieces of the orbit {Fny,neZ} may stay away from fixed neighbour-
hoods of compacts Kt z = l , . . . v . One easily concludes from here that dist
(Fny, Kj)— >0 as n— > + oo which implies that y belongs to the p-equivalence class
K t . If yeKj and y~x then in the same way as in Corollary IΠ.2.1 if [Kl] we
derive that there exist points z + , z _ such that dist (F±nz±,Kj) + dist (F + nz ± , Kj) -> 0
as n-> oo. This yields that K{ = Kj concluding the proof. Π

There exist r0 > 0 such that if Kl is a nonatίractor then for any δ >0 and
K;) there exists a sequence ξ =(<^ 1 , . . . , ί w ) satisfying ^ = x9 ξnφUrQ(K^ and
< δ. Using the lower bound of Theorem 1.5.2 from [Kl] for the probability

that Xε

n stays in a small tube near ξ we derive that for any δ > 0 there is Nδ such
that

P*x{τVι^Nδ}>e-*ι* (3.7)

for an open Vt => Kb Vί c 17 \ro(K^ provided ε is small enough. Thus the Markov
property argument as in (3.3) yields

P^{τK ι>e2 < 5 / ε}~»0 as ε->0. (3.8)

On the other hand, (3.4) implies that βδ2(ε)^e~λlε, where /=^-i
dist (Fx, y) ̂  (52), (52 is the same as in Assumption 2.2, and βδ(ε) is defined by (2.2).
Now if δ in (3.8) is small enough then (2.5) holds true and so the conclusion of
Theorem 2.1 remains valid, i.e. limiting measures will sit on attractors.

A more elaborate technique enables one to derive from (3.4) more precise
results. For all xeKt and yeKj the number B f f = B p ( x 9 y ) is the same. Let
L= {l , . . . ,v} . Given zeL, a graph consisting of arrows m~+n is called ί-graph if
any vertex m ̂  i originates exactly one arrow and the graph has no cycles. The
set of all /-graphs will be denoted by G(z'). Put
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and

The following result was proved in [Kl], Sect. 1.5 and [K2].

Theorem 3.2. Suppose that (3.4) and Assumption 3.3 hold true. Then for each i
Kf is an attr actor and any weak limit of measures με as ε->0 has support in (J K^

«*!fln

We note that, in general, the set L<$n depends on p though maximal
(5-equivalence classes are attractors for any continuous p. Thus the less precise
statement saying that limiting measures sit on attractors is more robust than
Theorem 3.2. Remark also that this large deviation approach based on (3.4) can
be extended to a locally compact case under certain assumptions on the function
p making it extremely difficult for the Markov chain Xε

n to go far away from a
bounded domain.

4. Comparing Order Relations

By Lemma 3.1 Assumption 3.3 implies Assumption 2.1 but, in general, vice versa
is not true. This and other reasons make it interesting to compare preorder relations
>- and %• . If M is compact and p(x, y) > 0 unless y — Fx which we assume
throughout this section then, clearly, z^v implies z >- v. To get a sufficient
condition for an inverse assertion define δp(ε) — jsup{<3 > 0:p(t;, w) <ε for all v9

weAί satisfying dist(Fι;,w)<<5}. Let Nδ(ε) be the minimal number of open
δp(ε) — balls needed to cover M.

Proposition 4.1. //

lim εNp(ε) = 0,

then y>-x implies y^-xfor any pair of point s

Proof. Let Uδ (t)(z;), z = 1, . . . , Λ^ε) be a cover of M. Suppose that y>x, then there
exists a <5p(£)-pseudo-orbit x l 5 . . . ,x π such that x1=x and xn=y. Exclude any
subsequence x^ + 1 , . . . , xJ2, n >j2 >j1 if Fx^ and FxJ2 belong to the same element
of the cover. After this procedure we will obtain a sequence x, xh,...,xίk, y with
k<Np(ε\ such that dist(Fxi,xi.+ l)<3δp(ε) for a l l 7 ' = 0 , . . . , f c where xίo = x and
x ί k + 1 =y. Then by the definition of δp(ε) we obtain that p(xij9xij+i)^ε9 and so

Bp(x, y) ̂  εNp(ε) for any ε > 0. This together with (4.1) yields y ;£• x. Π

The results become more meaningful if

p(x, y) = Pr(χ, y) = (dist (Fx9 y))r for some r > 0. (4.2)

Clearly,

prι

y>x if r 2 >r 1 .
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Define

ί Pr }
r(F, M) = sup inf < r : y > x implies y > x > . (4.3)

x,yeM ( J

Let N(ε) denote the minimal number of ε-balls needed to cover M . Then limiting
capacity κ(M) of M defined as

In N(p}
κ(M)=limsup— - -A (4.4)

ε-o | l n ε |

We derive from Proposition 4.1

Corollary 4.1. One has

r(F,M)^κ(M). (4.5)

/w particular, if M is a compact manifold then

r(F9 M) <; dim M,

Proposition 4.2. Suppose that F = hGh~1, where h:M — >M /s α Holder continuous
homeomorphism, i.e. /or some α, C > 0

max (dist (ftx, ftj;), dist (h ~ *x, ft ~ *)) ̂  C(dist (x, j/)f.

Then

αr(G, M) ̂  r(F, M) ̂  α~ ̂ (G, M). (4.6)

In particular, if both h and h~l are Lίpshitz continuous then r(F9M) = r(G,M).

Proof. Since both ft and ft""1 transform ^-pseudo-orbits to C(5α-pseudo-orbits and

x^i))^ (4.7)

the assertion follows. Π

A dynamical system {Fn,neT) is called transitive if the orbit (J F" of some
πeZ

point j; is dense in M. A dynamical system (Fn, neZ} is said to have the shadowing
property if for any ε > 0 there is δ > 0 such that for each ^-pseudo-orbit x1 ? . . . , xn

one can choose a point y satisfying dist (Fly, xt) < ε for all i = l,...,n. The following
is straightforward.

Proposition 43. If a dynamical system {Fn, nεZ} is either transitive or it has the
shadowing property then r(F, M) — 0.

Further properties of the number r(F, M) were established in a conversation
with A. Katok. Recall, that a point x is called nonwandering if it does not have
an open neighborhood U such that all sets F~nU, n^Q are disjoint.
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Proposition 4.4 Suppose that M is a smooth finite dimensional manifold, F:M ->M
is a continuous map, and the set of nonwandering points Ω(F) is dense in M (in
particular, periodic points are dense). Then r(F, M) ̂  1.

Proof. Let x,yeM be arbitrary points. Connect them by a smooth curve y(t\
7(0) =x, 7(1)1=3;. Fix a small ε> 0, Choose zeΩ(F) with dist(z,x)<ε. There
exists minimal n1 satisfying dist(z, Fn'z) < ε. We put z1=x and zί + ΐ=Fίz,i =
I , . . . , n 1 — 1. Set f j =sup{f < l:dist(x,7(0)^ε}. If t1—l then put znι + l—y.
Otherwise, choose zπι + 1 from Ω(F) satisfying dist(znι + 1, 7(ίJ) <ε. We continue
by induction. Suppose that the numbers n(, tf, and the points z{ are already
defined for / = 1, . . . , k and z =0, 1, . . . , nfc f j. There exists minimal nk + 1 such that

Set ίk + 1 :=sup{f ^ l:dist(y(ίk),7(ί)) gc}. if tl = 1, then put \Λl + ι = y and end the
procedure. Otherwise, choose zn^ι + l from Ω(F) satisfying dist(zΠ f t f ι + 1, 7(ίk + 1)) < ε.
On some step this procedure will end and we will obtain points z1 , . . . , zn with z1 = x
and zn = y . ί t is easy to see that dist (Fznk , znk + J <; 4ε for all fe ̂  1 and the number of
k-th in this construction does not exceed ε"1 times length of y. Thus

(dist (/X, z, + ,)Y = (dist (Λ, Fz))Γ + X (disί (/Xk,
k

^ (dist (Fx, Fz))r + 4rεr ~ 1 length (7)

which tends to zero as ε-»0 for any r > 1, and so r(F, M) ̂  1. Π

If M is a finite dimensional smooth manifold and F = id its identity map Fx — x,
then, clearly, r(F,M) = 1. At the first sight it may seem as the worst case, i.e. that
r(F, M) cannot be bigger than 1. The following two dimensional examples shows
that this is not true. We can choose a function whose graph has the Hausdorff
dimension arbitrarily close to 2. For instance, take the function considered by
Besicovitch and Ursell (see [F], pp. 114-115)

where g is the "zig-zag" function of period 4 defined by

(x for O g x < l ,
0(4k+x):=<2-x for l ^ x < 3 ,

U-4 for 3 g x < 4 ,

for 0 ̂  x < 4 and any integer k. Then for any positive {/J satisfying

^̂  — >oo and - -- >1 as i^oo
λ{ log

the Hausdorff dimension of the graph Γ is s. Place F on the two-dimensional
sphere S2 so that the interval [0, 1] becomes the equator. One can easily construct
a diffeomorphism F of S2 so that all points from the set Γ on S2 are fixed points
of F and F repels away from F in the direction of meridians attracting all points
from S2\F to the North or South poles. It is clear that all points on F are
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equivalent and Γ is an equivalent class in the sense of Sect. 2 since any pair x,yeΓ
can be connected by a ^-pseudo-orbit with arbitrarily small δ > 0. On the other
hand, it is easy to see that the sums

X (dist(Fx,,xi + 1)Y = Σ (dist(x i,x i + 1)r
0 ^ i < n 0^i<n

with x0 = x,xn — y, xteΓ for all z — 0 , . . . , m can be made arbitrarily small for
r > s and they are bounded away from zero for r < s. Hence, in this case,
r(F, M) — s, M = S2. Taking the graph of another function constructed by the
Serpinsky method one can get r(F9 M) = 2. It seems that for any n ̂  2 one
can produce n-dimensional examples with r(F,M) arbitrarily close to n. The
above construction would work if one can produce continuous curves (x1?

/1(x1),...,/M_1(x1))e!Rπ, x1e[0,l] with f 1 , . . . 9 f n continuous whose Hausdorff
dimension can be made arbitrarily close to n.

It is known that the transitivity is a C°-generic property of diffeomorphisms
of a compact manifold, and so by Proposition 4.3 C°-generically r(F9M) = 0.

Conjecture. C1-generically r(F,M) —0. By Proposition 4.3 this would follow from
another standing conjecture that the shadowing property is C1-generic.
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