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Abstract. We develop the quantization of topological solitons (vortices) in
three-dimensional quantum field theory, in terms of the Euclidean region
functional integral. We analyze in some detail the vortices of the abelian Higgs
model. If a Chern-Simons term is added to the action, the vortices turn out
to be "anyons," i.e. particles with arbitrary real spin and intermediate (Θ)
statistics. Localization properties of the interpolating field, scattering theory
and spin-statistics connection of anyons are discussed. Such analysis might be
relevant in connection with the fractional quantum Hall effect and two-
dimensional models of High Tc superconductors.

1. Introduction

In this paper we consider the quantum theory of vortices in three space-time
dimensions. Following the strategy of [1-2], we construct Euclidean Green
functions of local order fields and vortex fields in terms of Euclidean region
functional integrals. In these correlation functions the basic Euclidean fields of the
theory are distributional sections of some non-trivial bundle over punctured 3-d
Euclidean space-time, with those space-time points deleted where a vortex field
is inserted.

We discuss, in detail, the non-compact abelian Higgs model, but the main
strategy applies to a large class of models with vortices. The quantum vortex fields
of these models can be localized in bounded regions and satisfy the dual algebra
with the Wilson loop operators. In the Higgs phase, vortex fields of unit vorticity
couple the vacuum to a massive stable one particle state; [for a rigorous proof on
the lattice see [1]]. If a Chern-Simons term is added to the action of the model,
then vortex fields still exist, carry a fractional electric charge proportional to the
coefficient of the Chern-Simons term and cannot be localized in bounded regions.
According to a general analysis of Buchholz and Fredenhagen [3], the electrically
charged vortex fields can be localized in space-like cones in 3-d Minkowski
space-time. Those with unit vorticity couple the vacuum to a massive stable
one-particle state; with an "extended particle" structure.

Such particles are called "anyons", according to a terminology introduced by
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Wilczek [4]: they can have "any" real spin depending on the coefficient of the
Chern-Simons term. Using the transformation properties of anyon states under
rotations, we can show that "anyons" obey anomalous statistics (the so-called Θ
statistics) and establish a spin-statistics connection. The analysis of vortices and
anyons performed in this paper is non-perturbative and does not rely on the
semi-classical approximation.

From the point of view of Relativistic Quantum Field Theory, the discussion
of vortices is essentially of academic interest, since it refers to d = 2 + 1 dimensions.
However, it may have some interest in models of Solid State Physics which share
properties similar to those of the models analyzed here. Besides the obvious relation
between vortices of the Higgs model and the Abrikosov vortices in type II
superconductors, [5] an analogy can be found between the anyons discussed in
this paper and the lowest lying excitations appearing in the Fractional Quantum
Hall Effect [6]. Actually the action discussed here has been proposed in [7] as a
phenomenological action to describe the excitations of the F.Q.H.E. Furthermore,
speculations on the role of anyons in high Tc superconductors appeared recently
in the literature [8]

The organization of our paper is as follows: In Sect. 2, we briefly review the
classical theory of vortices. In Sect. 3, we recall some basic facts about bundles
and (de Rham) currents to make the paper self-contained. [The currents are needed
in a "distributional" generalization of the gauge field involved in the functional
integral representation of vortex-correlation functions.] In Sect. 4, we discuss the
vortices of the non-compact abelian Higgs model in the formal continuum limit.
At the end of the section we show how this construction is related to the rigorous
one performed in the lattice approximation in [1] and comment on possible
generalizations. In Sect. 5, we discuss the electrically charged vortices of the model
with Chern-Simons term, in the formal continuum limit. In Sect. 6, we analyze
the localization properties of anyons, construct asymptotic states describing free
anyons and prove that anyons obey the anomalous Θ statistics. In Sect. 7, we
analyze rigorously the lattice model with Chern-Simons term, we give a defect
representation of anyon correlation functions and prove that anyon fields with
unit vorticity couple the vacuum to a stable massive one-particle state.

2. Classical Vortices

In this section we briefly recall the classical vortex solutions of the non-compact
abelian field theory in three dimensions. The Lagrangian density of the model is
given by

J? = ̂ ϊ\dA\2+W-iA)φ\2-λ(\φ\2-\)\ (2.1)

where e9 the electric charge, and λ are positive constants, φ is a complex scalar
field and A is a real gauge field, i.e.

A = Aμ{x)dxμ, Aμ(x)eR.

The energy of a configuration (A, φ) is given by
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where Θμv is the stress-energy tensor corresponding to if. A configuration (A, φ)
is called static iff it is time-independent, and Ao = 0. For static configurations

E(A,φ)= J d2x(-J?). (2.2)

Assuming that a static configuration satisfies the following boundary condition:

lim s u p | l - | φ ( x ) | | = 0 ,

\1+δ \{d-iA)φ\{x)^comU

for some positive δ, then the gauge orbit [A, φ~] defines a homotopy class in
π^S1) = Z. This class coincides with the homotopy class [φ] of the maps

φ(x)

\φ(x)\
for R sufficiently large [9]. The integer \_φ~] = q is called vortex number or vorticity.

Alternatively, the vorticity is also given by

1
q = — lim J dA. (2.4ii)

It is conjectured that the homotopy class [A, φ~\ can be defined under the simple
assumption of finiteness of energy [9]. Hence, classically, static finite-energy
configurations (A, φ) fall into disjoint homotopy classes labelled by the vorticity
qeZ.

The configurations minimizing the energy in the class q = -f 1, — 1 are called,
respectively, vortex and antivortex. These configurations are solutions of the
classical equations of motion, and their existence is discussed in [9]. An important
feature of these solutions is that | dA |, 11 — | φ ||, | (d — A)φ | are large only in a compact
region of space outside of which they converge to 0 exponentially fast. Therefore
the energy density of vortices is negligibly small outside a compact region of space.
For this reason one can think of vortices and anti-vortices as (extended) classical
particles. In Sect. 4, we show how to construct their quantum counterparts, namely
local quantum fields which couple the physical vacuum to one-vortex, or
one-antivortex state.

The model (2.1) does not admit electrically charged vortex solutions [10].
However, if we add a so-called Chern-Simons term, i?c.s.>

 t 0 t n e Lagrangian
density (2.1), where

5£c s = —A Λ dA, (2.5)
4π

it has been shown [11] that time-independent, finite-energy solutions of the
corresponding equations of motion exist for which, however, Ao Φ 0.

From the equations of motion
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^+lrt..,jo (2.6)

it follows by integration that for such solutions the electric charge, qe is related to
the vorticity by

qe = μq. (2.7)

These charged classical vortex solutions, too, have a quantum counterpart. The
quantum particle to which they correspond has been called "anyon" [4], since, as
we shall see, it can have "any" spin [and "any" statistics parameter] depending
on the value of μ.

We close this section by reviewing the vortex solutions of the simplest
non-abelian model, so SO(3) Higgs model. A Lagrangian which admits vortex
solutions to the equation of motion is obtained by coupling an SU(2) gauge field

3

A = Σ τaAa to two Higgs field φl9 φ2, in the adjoint representation of SU{2). One
a= 1

may choose

\2-ηl)2^λXφa

ί'φ
a

2)
2), (2.8)

where ||( )|| is the norm induced by the inner product ( , ) = Tr( ),

F = {dA + A A A\ VA = (d -f iA).

Vortex solutions correspond [12] to non-trivial element of

[In this model, too, the addition of a Chern-Simons term,

JS?C.S. = Tv(Λ A dA + f A A A A A\ (2.9)

permits the existence of charged vortices [13].] Generalizations to SU(N)/ZN are,
of course, possible, at both, the classical and the quantum level.

3. Mathematical Preliminaries

In a geometrical framework, classical matter fields are interpreted as sections of
a fibre bundle, and gauge fields as connections on a principal fibre bundle [14].
In our construction of quantum kinks in two dimensions [2], we have seen that
the quantum field theory of solitons involves the dual of the space of C00 sections,
i.e. a space of section distributions.

To follow closely the analogy with quantum kinks, we require, in our
construction of quantum vortices, a distribution generalization of connections, A,
and matter fields, φ. The proper mathematical framework for such a generalization
is given by the theory of (de Rham) currents.

In this section, we thus collect some basic definitions and properties of fibre
bundles and currents, which are needed later on. The following definitions and
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results can be found in standard textbooks (e.g. [15]) and are summarized here
merely for the reader's convenience.

3.1. Fibre Bundles and Connections. Let M be a topological space, and let G be a
group acting continuously on a topological space, F. Then a fibre bundle, W, with
structure group G and fibre F over M can be constructed by choosing an open
covering of M,% = {i/f}ieJ, and continuous transition functions:

gtjiUiftUj-tG, (3.1)

satisfying g^g^g^ix) = 1G, for

xeUiΠUjnU^ (3.2)

One takes the disjoint union, ( jL^xF, and identifies (x,/)e(7ι x F with

(x,gij(x)f)eUj x F for xeUinUj. The identification space is the fibre bundle W.
Assume, for simplicity, that the covering % is such that every multiple

intersection Uhn ' nUίn of open sets in °U is contractible. Then two fibre bundles,
constructed as indicated above, are called isomorphic iff, for every Uh there exists
a continuous function

Gi-.U^G (3.3)

such that the transition functions of the two fibre bundles, {g^}, {g[j}, are related by

A fibre bundle, P, in which F = G, with G acting on itself by left translation,
is called a principal bundle. A fibre bundle in the isomorphism class of P is called
a bundle associated to P. An isomorphism class of fibre bundles with structure
group G is called a G-bundle.

The following classification theorem is useful.

Theorem 3.1.
a) {Unbundles over M) £ H2(M,Z).
b) Let M be a three-dimensional manifold, G a simply connected compact Lie group,
and ZG a subgroup contained in the centre of G. Let G = G/ZG. Then {G-bundles
over M) ^ H2{M, ZG).

Here H2(M,Z\ (H2(M,ZG)) denotes the group of closed 2-cochains with
coefficient in Z(ZG), modulo exact 2-cochains.

If M is simply connected, then H2(M, Z) is isomorphic to the subgroups of
iίdeRham(^) given by the group of closed two forms with integral periods, modulo
exact forms. We recall that a k-ΐorm, α, is said to have integral periods if, for every
/c-cycle, ck, in M,

JαeZ.

The map between H2(M, Z) and #deRhamCM) is obtained as follows. If c2 denotes
a closed 2-cochain, then we associate a 2-form α with c2,

// 2(M,Z)9[c 2]->[α]G/f| e R h a m(M), (3.5)
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such that, for all α-cycles c2,

If, moreover, M is an orientable Riemannian manifold, then the cohomology class
[α] has a canonical representative, the harmonic form.

Let d denote the exterior differential on M, and * the Hodge dual. We set
δ = ± *d*, and define the Laplacian by A = dδ + δd. A form och is called harmonic
if Δah = 0, which, for compact M, is equivalent to δ(xh = dah = 0. Therefore, if M
is simply connected, a ί/(l)-bundle over M is completely specified by giving a
harmonic 2-form with integral periods. A generalization to Z G (or to non-simply
connected M) requires the Allendoerfer-Eells forms [16].

Next, we introduce connections. A connection i o n a principal G-bundle is a
collection of 1-forms {At} on °U with values in the Lie algebra of G, Lie G, such
that for xet/j nL/y,

^ ( x ) = [grj HgVj + gi] M^,.](x). (3.6)

Given a connection, J5, we define its curvature F = F(Ji) as the collection of
2-forms,

Ft = dAt + AtA A ( (3.7)

on %. Notice that if G is abelian

Fi{x) = Fj(x), for all

i.e. {Ft } defines a closed 2-form F.
For G = 1/(1), the map between the set of l/(l)-bundles and HdeRham(^) c a n be

realized, explicitly, as follows: Let P denote a L/(l)-principal bundle and A a
connection on P. Then the elements in HjeRham(M) corresponding to P are given
by (i/2π)F(Ά).

The space of smooth connections of a bundle P, stf = «s/(P), is an affine space
modelled on the vector space 7"1(adP) whose elements are collections of Lie
G-valued 1-forms (ΛJ with the patching property,

x)gij(xl for ^ j

Therefore, given any connection, Ao, on P, any other connection A can be written as

A = A0 + A, (3.8)

where AeΓ1(adP). Notice that if G is abelian, then A is α globally defined 1-form.
On the space, ja/, of connections the gauge group, &, acts whose elements are

collections of G-valued functions, {gt}, with the patching property

gj(χ) = gtj(χΓιg,(χ)gtJ(.χ), for xeU(nUj. (3.9)

Let G be as in Theorem 3.1, and denote by ^ 0 the subgroup of'S satisfying

0 ( * O ) = 1 G . (3-10)

for some fixed point, x0, in M; (if M is non-compact we can interpret (3.10) as a
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boundary condition at infinity, i.e., formally, x 0 = oo). Then si is a principal fibre
bundle over the orbit space Jί = J / / ^ 0 with structure group ^ 0 [17]. The base
space ^ is usually viewed as the configuration space of classical (pure) gauge
theories with structure group G.

If, in addition, matter fields (= sections in Γ(W)) are involved, where W
is an associated bundle whose fibre carries a representation, U, of G, then the
classical configuration space can be taken as (s/ x Γ(W))/&0, where ^ 0 acts on
(A, φ)e*/xΓ(W) by

ge<$: (Ai9 φd->teΓ lAiQi + gr
1 dgi9 U(gr % ) .

In the abelian models, with G = (7(1), the vector space, Γ ^ a d P ) , on which s4
is modelled, is simply the space of (real) 1-forms, Λ1(M). If M is connected and
simply connected, then ^0 = space of exact 1-forms, d/l°(M). In fact, using
connectedness of M,

where the isomorphism is obtained by considering the map

g{')e<f->g(')/g(xo)e9o.

One also has

where the isomorphism is obtained by considering

where g~1dg which is always closed is, in fact, exact, because H\eRham(M) = 0, by
the assumption that M is simply connected. Moreover,

dΛ°(M)~

since

d:aeΛ1(M)->d(xedΛ1(Ml

and injectivity follows, because H^e R h a m(M) = 0. Therefore, symbolically,

and one observes that J( is still an affme space.

3.2 Currents. In order to define a quantum measure in scalar models, like λφ4,
one needs to enlarge the space of configurations from smooth functions to
distributions. Similarly, in gauge theory one must enlarge the space of connections,
iδ/, and the quotient space, Jί9 to a "distributional completion." For abelian
models, with G = ί/(l), both spaces, srf and Ji, are modelled on a space of forms,
as we have seen. A natural distributional completion of the space of fc-forms is
well known to mathematicians and is called the space of (deRham) fc-currents.
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We first give the formal definition of a /c-current and then we exhibit its relation
with distributions, forms and chains.

Definition 3.2. On a d-dimensional smooth manifold, M, a k-current (or current of
degree fe, or of rank k), is a functional, T(α), defined on the space of all smooth
(d — /c)-forms, α, with compact support, which is linear and which is continuous in
the sense of distributions.

Currents of rank 0 are ordinary distributions. If Th...ik(iι < j 2 < ik) are ί
\k

currents of rank 0 defined in the domain, D, of a coordinate system, {x1 •• xd},
then, according to the definition,

τ= Σ τh-ijχiι A •••Adχik

ii <Ϊ2" <ik

is a /c-current defined in D, and any /c-current in D can be represented by such an
expression.

Therefore every current can be represented by a differential form whose
coefficients are distributions.

The notion of current generalizes the notions of form and of chain.
In fact a fc-form, A, defines a /c-current by setting

A(α)=JαΛ/l , (3.11)
M

where α is a (d — /c)-form, and a fc-chain, ck, defines a (d — fc)-current, ck, by setting

ck(α) = j α (3.12)
Ck

for every aeΛk(M).

Given a fc-current, T, we define a fc + 1 current by

(oc) = (-l)k+1T{doc). (3.13)

Note that if Tis given by a form, A, then dT = dA, and if Tis equal to a (d — /c)-chain

Q-fc, then

d ^ (3.14)

If M is a Riemannian manifold, then one can generalize the Hodge decompo-
sition to currents. We denote by * the Hodge dual, defined for currents in an
obvious way, set δ= +*<i*, with d defined as in (3.13), and define the Laplacian
A = δd + dδ.

Any current T can be decomposed as

T = δdGT + dδGT + HT, (3.15)

where HT is called the harmonic part of T and satisfies

ΔHT = 0.

and G is the Green function for A. If M is compact this is equivalent to

dHT=δHT=0.
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The following theorem ensures that all information on cohomology is already
contained in the subspace of currents given by smooth forms.

Theorem 3.3 [15b]
a) Each closed current is cohomologous to a form.
b) //, given a form α, there exists a current T such that a = dT, then there exists a
form β such that α = dβ.
c) A harmonic current is equal to a C™ from, the harmonic form.

4. Quantum Vortices

We now turn to the Quantum Field Theory of the non-compact abelian Higgs
model. In order to associate a Euclidean quantum field theory with the classical
action functional

S(A,φ)= J d*x\~{dA)2{x) + \\{d-iA)φ\\x) + λ\φ\\x)
R 3 t 6

— \m21 φ \2(x) + counterterms >. (4.1)

the formal prescription is to construct a "probability measure"

dμ(A, φ) = -e~s^φ)DφDA, (4.2)

where Dφ, DA are formal Lebesgue measures on X C, X R3, respectively.
xeR3 xeR3

Actually, since S(A,φ) is gauge-invariant, one should interpret the measure
(4.2) to be defined on gauge-equivalence classes of configurations (A, φ), i.e. on M,
or add some gauge fixing term to the action. Formula (4.2) is the Euclidean
Gell-Mann-Low formula. [Henceforth we omit the explicit reference to counter-
terms in the action.]

In a series of papers [18], a rigorous meaning has been given to the measure
(4.2), with a mass term for A and a gauge fixing term, by means of a lattice
approximation. The renormaliation theory for (4.1), (4.2), i.e. a choice of counter-
terms is also contained in [18].

The lattice measures are shown to converge to the continuum limit, using a
sequence of block-spin renormalization transformations. A similar technique is
combined in [19] with cluster expansions, to construct the continuum limit of the
lattice measure with a compact action for A. Such methods appear to also suffice
to rigorously establish the so-called Higgs mechanism. That is, for λ and e small,
all gauge-invariant correlation functions exhibit exponential clustering. Heuristic-
ally, this is understood by a polar decomposition of φ:

6>(x)e(-π,π), (4.3)

and the choice of the unitary gauge:

Θ(x) = 0. (4.4)
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In this gauge the fields A and φ acquire masses

η φ ~ m . (4.5)

The apparently massless rotational degrees of freedom described by Θ are
suppressed by the gauge condition (4.4). Therefore one obtains exponential
clustering, at least heuristically.

Remark 4.1. On the unit lattice one can prove [20] that the model with
non-compact action (4.1) has also a Coulomb phase with massless photons for λ
and/or e large enough.

Even if successful in exhibiting clustering (one of the main inputs in our
construction of vortices), the lattice approximation involved in the strategy of
[18,19] somewhat obscures the geometry of the gauge fields (see however [21]),
which plays a key role in our definition of vortex correlation functions.

Our approach is then as follows: We describe the construction of neutral [and
charged = anyons] quantum vortices in the formal continuum limit, using the
measure (4.1), (4.2) to exhibit the geometrical structure of our construction. The
construction of vortex sectors indicated for the continuum Higgs model in this
paper can be justified, rigorously, for the lattice Higgs model. At the end of the
section, we make some comments about the lattice model and the requirements
needed to completely justify our discussion in the continuum.

Euclidean Green functions of the non-compact Abelian Higgs model can be
defined as expectation values in the measure corresponding to the formal expression
(4.2) of monomials of gauge invariant observables such as : |φ2 | :(z) and (re-
normalized) Wilson loops (see e.g. [12]):

Wa{&) = lim eCM™ exp (iα § Λε). (4.6)

Here :: denotes the normal ordering with respect to the free complex gaussian
measure of mass 1, if is a loop, ε a lattice cutoff, α a real number and C(ε, α) a
constant oc α2 which diverges when ε \ 0.

A relativistic quantum field theory can be reconstructed from these Euclidean
Green functions, assuming they satisfy the Osterwalder-Schrader axioms in the
form given in [23-24]. The Hubert space of states, J f0, obtained via O.S.
reconstruction turns out to be the vacuum sector of the model.

In the Higgs phase, however, the physical state space is much larger than ffl0.
One can in fact define a vorticity operator Q, the quantum counterpart of the
vorticity number (2.4ii), and one can prove (see Eq. (4.29)) that

δ^o = 0, (4.7)

i.e. all states in Jf 0 have total vorticity zero.
As suggested by the classical vortex solutions, however, there exist physical

states \υ > of finite total energy which are eigenvectors of the vorticity operator Q
corresponding to integer eigenvalues. By Eq. (4.7) they cannot belong to ffl0.

Our purpose is now to construct a local field vq(x) the quantum vortex field
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operator, carrying a vorticity of q φ 0, out of which states of vorticity q can be
constructed.

The strategy is the same as the one used in [2] to construct quantum kinks:
we directly construct Euclidean Green functions

for vortex fields and local gauge invariant fields. From {Slίtnn} we obtain the vortex
sectors Jf q, satisfying Q^q = qJ^q, representation of the Poincare group on Jf\,
and local field operators vq(x\ φ2{z\ Wa{^), by the Osterwalder-Schrader re-
construction theorem. We proceed as in [2], where more details can be found.

Construction of Vortex Correlation Functions. We choose n points, x — {xx - xn}
in Euclidean space-time, R3, and define

Mx_=R\{Xι-xn}. (4.8)

The manifold M x is simply connected and its second cohomology group is given by

H2(M, Z) = Z φ Z φ Θ Z .
ft-times

Hence, non trivial U(l) bundles exist on Mx, by the classification theorem 3.1. Such
bundles are uniquely characterized by a set of integers q = {qγ --qn} and the
corresponding harmonic form

i - y)i*y\dx> A dx?. (4.9)

From now on we consider only non-vanishing qt satisfying the neutrality
condition ^ qt = 0. (If £ #* Φ 0, the classical action diverges.) We call such principal

ί ί

bundles vortex bundles and we denote them by P(x, q).
As a remarked in Sect. 3, any closed form, Fo, corΐomologous to Fh(x, q) is the

curvature of a connection Ao of the principal (7(1) bundle P(x,q).
We define a preliminary form of the action functional on the connections, A,

of the principal bundle P(x, q) and the sections, φ, of the associated bundle E(x, q),
with fiber C, by:

= ί d3x\~(F0 + dA)2(x) + ±\VA + Aoφ\2(x)+V(\φ\)(x)\ (4.10)
MX L z e J

where V( ) is the polynomial

V(x) = λx* - m2x2.

Notice that \VA + AoΦ\2(x) ^ o e s n o t depend on the choice of Ao, for fixed Fo, due
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to gauge in variance. As it stands the functional (4.10) is not well defined, due to
the infinite self energy of the curvature Fo.

To compute the necessary counterterm let us take

F0 = Fk = Fh(x9q), (4.11)

and restrict the integration to the complement of small balls Sδ(xι) of radius δ
around each xtex. The cross term

f
R3\Sό(x)

vanishes, since δF% = 0 and the fields have rapid fall off at oo.
The quadratic term in Fh is easily evaluated:

<5jO i Φ j

with

4-1(x ι ,xι )
2. (4.12)

δSδ(Xι) *i» i

[The behaviour at infinity does not cause trouble, because

-is 1 -1 1

hence j *dΔ~1δx Λ Δ~xδx is uniformly bounded in R.^ Hence we define a
\x\=R

regularized action functional by

(4.13)

For £ <j. = 0 we define the (formal) π-vortex correlation functions of the
i

non-compact abelian Higgs model by:

Sn{xuq1,...,xn,qn)

J

where: ^ ' is the distributional completion of the space of gauge orbits of
connections (see Sect. 3) for the vortex bundle P(x, q\ <€' is the space of equivalence
classes of the 1-currents,

{ A ' ) = 0}9 (4.15)

@)(E)f is the space of section distributions of the associated bundle E(x, q). The
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normalization factor in (4.14) is given by

\Dφe-S{Λ'φ\ (4.16)

3
where Q}'Q is the space of complex distributions in R3. Finally the subscript "ren"

n

indicates a multiplicative renormalization, f|c(ε)^2, where c(ε) is constant which
diverges, as a regulator, ε, is removed.

Remark 4.2. Let / l c R 3 be a finite volume, and denote by ^'(Λ) the space of
equivalence classes of currents in # ' whose support is contained in A. Then to the
formal expression

there corresponds a well defined Gaussian measure on ^'(A) whose covariance is
given by

where the subscript D indicates O-Dirichlet b.c. at dA. This choice of b.c. corresponds
to the requirement that A behaves as a pure gauge on dA.

Furthermore if A + Ah is a regular form in A, to the formal expression

j
A

there corresponds the product of a Gaussian measure with covariance

on 3)(E)'(A\ the space of section distributions in @(E)' whose support is contained
in A, and the determinant

^w-iy> (4Π)

Here E is the bundle associated to the principal bundle in which Ah is a connection.
If Ah = 0, then E is the trivial bundle and 9{E') = Q)'o.

Notice that by defining formally (see [1-2]):

one can rewrite (4.14) as

where <•> denotes the expectation value in the measure (4.2). The variable (4.18)
is called a disorder field.

A full set of (formal) correlation functions for the non-compact abelian Higgs
model is defined by:

i),..., αw, Σ{S£$)

aj J Fh)) (4.19)
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if Σiqi = 0, and correlation functions with non-vanishing total charge q are defined
by introducing a compensating charge q and removing it to infinity [1-2]. In (4.19),
Σ(J?j) is a surface whose boundary is given by S£y If Sf ̂  is a flat loop, Σ(£?3) is
the flat surface whose boundary is given by if j 5 to simplify the notation we write
£?} in the left-hand side of (4.19) instead of Σ(&j).

Furthermore we set

The left-hand side of (4.19) is then written as

<£fe q; Fh):\φ\2(z): WΛ{<£) exp {igtJFh} >. (4.20)
Σ

The correlation functions (4.20) do not change if we substitute Fh by a different
curvature F o in the same cohomology class. Then, in fact, Fo — Fh = da, where α
is a globally defined 1-form. Performing the change of variables A-+A + a, we
obtain:

"(4.21)

In view of (4.21) we omit the reference to the field Fh in the notation for the disorder
variable, i.e. we write D(x9q).

Remark 4.3. We can use the above freedom to choose in (4.19) a field F o which
coincides with Fh in a neighborhood of x and vanishes outside some compact
region K.

With this choice of Fo, O-Dirichlet b.c. on [A] implies that A behaves
asymptotically as a pure gauge.

Ultraviolet Behaviour. Ultraviolet singularities for Wilson loop expectations have
been discussed in [22, 23], in particular one expects an upper bound

d b as d(4fU0> (422)

where d(J£) is the minimal distance between any two of the loops and p is positive
and arbitrarily small.

Define Fh = Fh(x, q) and

j d3F2

h(y) - c(δ)}, (4.23)

then the leading ultraviolet singularity of correlation functions of disorder fields
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is expected to come from the term

The determinant (4.17), renormalized, gives a subleading logarithmic contri-
bution to the exponential as |xt — x7 | JO; see [2] for a discussion of an analogous
problem in d = 2. Equation (4.24) shows that in term of the x's the correlation
functions of disorder fields may have ultradistributional singularities like

— J as d(x)lθ, (4.25)

where d(x) is the minimal distance between any two x's.

O.S. Reconstruction Theorem and Vortex Sectors. We now assume that the
correlation functions {Sί>m>n} satisfy the O.S. axioms in the form given in [23]. In
particular, the required distributional properties are satisfied if the bounds (4.22)
(4.25) hold (together with temperedness in z). Osterwalder-Schrader positivity and
clustering will be justified by using a lattice approximation at the end of the section.

We recall that clustering in the x's in particular, implies that all correlation
functions with non-vanishing total charge are zero, since they are defined by
removing a compensating charge to infinity. From the reconstruction theorem of
[1-2,23,24] it then follows that Slmn are the Euclidean Green functions of local
vortex field operators vq{x\ Wilson loops operators WJ^£) and Higgs field operators
\φ\2{z) and the physical Hubert space reconstructed from (4.19), Jf7, decomposes
into orthogonal sectors Jfg,

©V (4.26)
qeZ

We now sketch how the sectors J^fq are defined. Let ^ + denote the polynomial

algebra of euclidean fields generated by the fields :\φ\ 2(z):, Wa(J?) exp {ΐα J Fh} with
Σ{Sf)

support in {x° > 0}. Then, to each element F e # " + , we associate a vector \F > in
JFQ. The scalar product between such states is defined by

(4.26i)

where Θ is the Osterwalder-Schrader involution: the product of a reflection in
the time zero plane, r, and a complex conjugation.

Let ψ denote the map

then φ{$F+) is dense in ffi0.
Let z and «£? belong to the time zero plane, then the field operators φ2(z),

are defined on φ(F+) by
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The sector Jf\ is the closure of the set of states

vq(f)\F>

with FeϊF + and / a test function with support in {x° > 0}.
The scalar product between such states is defined by

<υq(x)F\υ'q(x')Gy = <D(rx,-q,x',q')(ΘF)Gy. (4.26U)

The decomposition (4.26) then follows easily from the vanishing of charged
correlation functions, in fact

<vq{f)F\vq.{f')F'y = 0 if qφq[.

The space ffl carries a unitary representation of the universal covering of the
Poincare group which factorises on the sectors Jf q, (see [1-2]). By clustering, the
vacuum Ω = \ 1 > is the unique Poincare invariant state in Jf, and it belongs to
J*f0. According to standard definitions [25], the sector J ^ o is a vacuum sector
and the sectors J4?q,q Φ0, are soliton sectors: they are called vortex sectors.

We now show that vq(x) and Wa{£?) satisfy the dual algebra: for if, x in the t = 0
plane, x φ supp if,

\υq(x)

where int Σ is the interior of the flat surface Σ whose boundary is given by 5£.
To prove (4.33) we consider the Euclidean Green functions

SIfMfn(...ςf,x,...,α,JSf(-β),...) and ^ m , π ( . . . ^ , x , . . . , α , ^ ( ε ) , . . . ) ,

where x, i f are as above and the index (ε) denotes a translation by ε in the time
direction.

From the definition (4.19):

εjO

= limexp{iα j" Fhexp}{- ia
εjO ^(ε) i

ε jO

The dual algebra (4.27) follows by standard arguments of axiomatic field theory.

Vorticity of Sectors. We now define the vorticity operator Q and we show that
the sectors J^q are eigenstates of the operator e ίαQ,αeR, corresponding to the
eigenvalues em, i.e.

q eiaqJ^r (4.28)
We define

^ C Ξ W " ϋ m 7 W 7 ^ T N ( 4 2 9 )

where C^ is a circle in the time zero plane of radius R, centered at the origin.
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Since the linear span of the vectors {υ(f)άF + :suppf c {χ° >0}} is dense in
Jfq, to prove (4.28) we only need to compute

(vJx)F\e^Q\vq(y)G)=\im
^ <ϋq(x)F\Wx(CR)\vq(y)G)

<Ω\Wa(CR)Ω>

l(ΘF)Wa{CR)QχV{ia J F0}GD(rx,-q,y,q)

- ,„??„ u ~, (4-30)

where F, Ge J ^ + , ΣR is the surface bordered by CR, and we choose Fo of compact
support. By clustering

(4.30)= lim exp{iα I, F0}<(ΘF)GD(rx,-q,y,q)) = ei*\vq(x)F\vq(y)G).

Remark 4.4. For the lattice model we have shown in [1] that the vortex of charge
1 is a massive, stable particle by showing that the vortex propagator has a spectral
representation

where dp(a,Tc) is a positive measure on [0, oo] x [ — π , π ] 2 and

dp(a, ()) = cδ(a — ms) + dp'[a)

with suppl p' <Ξ [ms + μs, oo], ms > 0 being the vortex mass and μs > 0 the upper gap.

A Semi-Classical Expansion. As for kinks in φ\ [2] one might ask if correlation
functions of vortices may be analyzed with the help of an asymptotic semi-classical
expansion. Here we just outline the scheme of such an analysis for the two-point
function S2 (x, q, y, — q) = S2 (x, q).

We start by looking for the critical points of the classical covariant action (4.13)
in the limit ^ j θ on some Sobolev space of connections, A, of P(x, q) and sections,
φ, of E(x, q). It turns out that it is easier to work with an F o which is harmonic
near ^x}, and of compact support. We also add a Feynman gauge fixing term in
A — A — Ao. The minimizer (Άc,φc) of (4.22), as δ[09 can be written in terms of
the minimizer (Ac = Ac — Ao, φc) of the action

W ψ) = j j - L l(AΔA)(x) + 2*A A δF(A0)(x)]
MX [2ez

+ ΊWAOΦ + iAφ\\x) + V(\φ\){x) >d3x. (4.31)

The Feynman gauge fixing still leaves a global (7(1) symmetry in the action (4.31);
to fix it we require e.g. that j A = 0, where K is the support of F{A0).

K

Once one has constructed the minimizer (Ac, φc) one expands SC(A, φ) around

(Ac, φc), i.e.

where ΆAcφc(a,φ) denotes a quadratic form in (a,φ) and φ = α,φ.
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One must prove that the quadratic form

ΆAι,φc{ίa,φ-\) (4.32)

has no zero modes when defined on the gauge equivalence classes

[Λ, ΦΛ = {(A'cφ'c):A'c -Ac = dλ, φ'c - e-iλφc}9

[α, φ] = {(α;, <p')\a' = a9φ' = e~iλφ}. (4.33)

One can then consider the mean field theory described by a Gaussian measure
over the equivalence classes (4.33) with mean 0 and covariance Ά^φc.

The Lattice Model Vortices on a lattice with finite lattice spacing have been
constructed in [1]. Here we only make some remarks concerning Osterwalder-
Schrader positivity and cluster properties of correlation functions involving
vortices, which may be useful to support the corresponding assumptions made for
the formal continuum correlation functions. On a finite lattice A with lattice spacing
£, the action of the non-compact abelian Higgs model, with Feynman gauge fixing
term, is given by

J ( d M } 2 i Σ \ψφ\U

( 4 3 4 )

where dε,δ\Wε

A are, respectively, the lattice exterior differential, codifferential
(=*d ε *) and covariant differential:

δm2(ε) and E(ε) are mass and vacuum energy counterterms.
In the lattice approximation of the covariant action functional, Sε (A, φ) the

points x = {xί - xn} are in the dual lattice; Slq(A,φ) can be obtained from (4.40)
by the substitution:

dεA->dεA + Fl V^->Vε

A+4, (4.35)

where Fε

h and A\ are constructed as follows. Let ω be an integer lattice 2-form

satisfying

dεω = ΣΦχ)*> ( 4 3 6 )

where δXι is a 0-form on the dual lattice defined byδXι

ί l xt = x

| θ otherwise'

Then we set

where Aε = dεδε -f δεdε is the lattice laplacian.
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Correlation functions of vortices are then defined by

195

= lim
ί Π

(4.38)
- Λ . Z ' J Π dA<xy}X\dφxe-

(xy)eΛ xeA

To prove O.S. positivity one may use the Hodge decomposition on the lattice:

2πω = 2πdεδ\Δε)-1ω + 2πδedε(Δε)~ xω = dεAε

h + Fε

h9 (4.39)

and make the field redefinition

Then we obtain the expression for (D(x,q))ε discussed in [1]. One easily
shows that this expression is invariant under the transformation

— dFξ, (4.40)

where ξ is an arbitrary integer lattice one-form.

Therefore one can arrange ω in such a way that O.S. positivity becomes manifest.
E.g. for the two-point correlation <D(x, — q y,q)}ε function this is shown in
Fig. 1. Clustering of correlation functions involving vortices can be proved easily,
using a Combined Low and High Temperature Cluster Expansion [1,26] for e,λ
small, m large, em » λ.

Using the slightly more complicated expansion around a Gaussian of [27],
one can prove the same result for the larger domain of coupling constants given
by <?, / small, m,e2/λ = 0(l). With both these expansions, however, the estimates
are not uniform in the lattice spacing ε.

To really justify our continuum construction, starting from the lattice model,
one should prove

1. estimates yielding clustering, uniformly in ε.
2. convergence of the lattice approximation (εJ,O) for the correlation functions

involving disorder fields, Wilson loops and scalar fields (suitably renormalized);
3. existence and euclidean invariance of the thermodynamic limit.

o ry

Fig. 1.
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In principle the methods of [19], suitably modified to take into account vortices,
should suffice to prove point 1).

Final Comments
1. In Appendix 1 we sketch a formal construction of vortex sectors using as basic

variables the Wilson loops (= holonomy) instead of the connections.
2. Our construction of vortices can be generalized to SU(N)/ZN Higgs models, by

choosing the reference connection Ao in the ^/(l)^" 1 subgroup of SU(N). The
classification theorem for such vortex sectors is given by Theorem 3.1b). A
rigorous construction of vortex sectors in the lattice approximation has been
obtained in [1].

5. Anyons

We now pass to the quantum theory of electrically charged vortices, or anyons, in
the non-compact abelian Higgs model with Chern-Simons term. Our construction
will be presented in the formal continuum limit. The rigorous construction in the
lattice approximation is sketched in Sect. 7.

The classical action of the model is given by

μ ) + Sc

μ

 s (A)9 (5.1)

where S(A9φ) is defined as in (4.1) and

Sc

μ

s'=l^$(AΛdA)(x)d3x (5.2)
4 π R 3

is the Chern-Simons term.
The corresponding quantum measure is formally given by

VA'+\ (5.3)

where
Zμ=\D[A\ J Dφe-s>iA φ)

C> 9{E)'

(see (4.23))

Remark 5.1. The model without matter fields can be rigorously formulated as a
Gaussian theory.

In a finite volume Λ, the (complex) covariance of the gauge equivalence classes
is given by

Ci^Md+^ d)*. (5.4)
\ l π / Λ,D

In the limit /lfR 3 we can write the Fourier transform of (5.4) as

4π2
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Equation (5.5) shows that the pure gauge theory with Chern-Simons term describes
a massive excitation of mass (|μ|e2)/2π; see [28].

Notice that, with O-Dirichlet b.c. on [A], the action (5.1) is gauge invariant.
Moreover, in spite of the "i" in (5.2), the measure (5.3) is formally Osterwalder-
Schrader positive. In fact, if Θ denotes the O.S. involution (see (4.26)):

Θ(ίA A dA)(x) = r{-ίA A dA)(x) = iA A dA(rx),

where the last equality follows from the fact that A A dA is a pseudoscalar.
Therefore, the vacuum sector of the model, Jίf (

o

μ), can be reconstructed as in
the previous section, using the O.S. reconstruction theorem. However, when A is
coupled to a Higgs scalar Jf (

o

μ) does not contain all physical states of the model,
as suggested by the existence of the classical vortex solutions, for arbitrary values
of μ (see Sect. 2).

Actually, we claim the following: In the Higgs phase of the model, the Hubert
space of states, Jf(μ), of the Q.F.T. determined by the measure (5.3) has a
decomposition into orthogonal sectors:

jf<"> = 0 f # w . (5.6)
qeZ

The sectors J^{

q

μ) with q Φ 0 are soliton sectors of vorticity q, which, furthermore,
carry an electric charge qe = μq, as expressed by the equation

where QE is the electric charge to be defined more precisely; (see Remark 5.2).
There exist non-local field operators, the any on fields, which map the vacuum

sector, #f{g\ into the vortex sector JΊfq

μ).

Remark 5.2. In the Higgs phase, integer charges are screened, and the electric
charge operator cannot be defined as the generator of the one-parameter group
of constant gauge transformations (see e.g. [29]). Only periodic functions of the
electric charge are well defined operators.

Therefore we use ei2π®E to characterize the electric charge of the vortex sectors.

To construct the anyon sectors, J^iμ\ we proceed in analogy with Sect. 4. We
choose n points, x, in R3, define Mx = R3\{x}, and, on Mx, we consider non-trivial
U(l) bundles characterized by magnetic charges q,qt ΦO, and denoted by P(x,q),
i.e. vortex bundles.

We now propose to define the action functional with Chern-Simons term for
connections, A, on those non-trivial bundles and sections φ of the associated
bundles, in analogy with (4.13).

Construction of the Chern-Simons Term for Vortex Bundles. In order to define a
Chern-Simons term on non-trivial bundles, we need to specify a reference
connection Ao, (see e.g. [30]). Given a connection A on the bundle and the reference
connection Ao, a natural definition would we

f , Ao) = ^{Ά - Ao) Λ d(A - Ao).

However, for the physical interpretation of our construction it is more



198 J. Frδhlich and P. A. Marchetti

convenient to add to Ao a globally defined one-form α, defined as follows. Consider
the vortex bundle P(x,q). We denote by E+ (respectively E~) the flux distribution
2-form of a source of magnetic charge 1 at x such that the support of E^ is given
by a cone with apex at x, in the positive (respectively negative) time half-space. Let

{x,E,q) = ({xiiE-9qi},{Xj9E£j9qj})i=l9...9r9 ./ = r + 1,...,«. (5.8)

then for £ qk = 0 and xf < χ9, Vi <;', we define the field F(x, E, q) by
fc=l

F(x,E,q)=£qiE-+ t ΊiK-

For a more precise definition see Sect. 7.
Since F(x,E,q) is in the same cohomology class as F(A0\ there exists an exact

form (xAo(x, E, q) such that

F(A0) - F(x, E, q) = dotAo(x, E, q\ (5.10)

and we define a Chern-Simons term by

l£A0 + ajAd(A~A0 + aAo). (5.11)

Anyon Correlation Functions. Defining A = A — Ao, the regularized action func-
tional is given by:

+ ψ-(A + aAo(x, E, q)) Λ d(A + α^0(x, E, q))(x) - c(δ)}9 (5.12)

where c(δ) is a counterterm for the self-energy of F(A0), as in (4.12).
The n-vortex correlation functions, with Yjqi = 0 and x? < ••• < x? < 0 ^

x?+ i < • < x° are given by

As the notation suggests, the definition (5.13) is independent of the choice of Ao,
within the class connections of the vortex bundle P(x, q).

To display the physical meaning of (5.12), (5.13), we use Eq. (5.10), and rewrite
(5.13) as:

expj-^jα Λ da j . (5.14)

Equation (5.14) can be interpreted as follows:

D(x,q,F(A0)) introduces a vorticity flux along suppF(yl0) the term

exp fe A Λ [F(x, E9 q) -fe
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introduces an electric flux along

supp(F(x,E9q)-F(A0))

(this justifies the use of notation "£" , see also Remark 5.3) and the term

iμ ~

is a topological term.

Remark 5.3. A possible limiting choice of F(A0) is obtained by shrinking F(A0) to
a current with support on a set of lines joining the points x in a neutral way (see
Fig. 2). They describe vorticity flux lines, ending at the magnetic sources at x,
together with electric flux lines which spread at x in shapes described by the electric
distributions E.

To simplify notations we formally define a disorder field

D(x, E, q) = [exp - ίSβtXιq(A9 φ9 E) - Sμ(A,

so that

(5.16)

(5.17)

We now enlarge the domain of definition of anyon correlation functions to a
Euclidean invariant domain. The correlation functions (5.13) are formally transla-
tion-invariant, so we need to consider only the euclidean rotations 01. Given a
euclidean rotation 0tΊ{φ\ by an angle φ around some axis ?, we approximate it
with a (truncating) family of diffeomorphisms of R3, given by:

where φf is a smooth monotonic decreasing function of φ satisfying

F(Ao)

vorticity flux

electric flux

Fig. 2.
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Setting

we define

Sn(^?(φ)x, £ ( φ ? ), q) = lim Sn(fllξ(φ)x9 Eiφ'\ q)9 (5.18)

and we assume that the limit (5.18) exists, independently of the choice of the
truncating sequence. [The symbol ~e will be omitted if ~e is along the x°-axis.]

Finally, in the notation of Sect. 4, a full set of correlation functions of the model
is given by

C ίΎ T7 n- σ- n Y( (P\\ — / ΠΓΛΓ F n\ \ rh\2 ' (r?\ W ί (P\ P Y Π fi Γ F( Λ λ \ \ (*> 1 Q^

ui m n\X? J~J > q> 2, OC, Z-i ̂ cZ )) == \-LJ\ X'9 ^ ? Vί/ I *r I v^./ όΓv / CΛJJ W 1 -Γ ^ / 1 Q ^ j / n W 1 ^ /

Remark 5.4. The assumptions made after (5.18) can be proved in the lattice
approximation and, by explicit computations, in the absence of matter fields, as
we now sketch.

We want to prove that if

daR ~ —2-, for dist(supp docR, x) ~ R as R /* oo,

then

Γ in 1 \ °
E,q)}° (5.20)

where <•>£ denotes the expectation value with respect to the Gaussian measure
with covariance (5.4-5), and α0 = otAo{x, £, q).

By identifying

Φ q)l αo = *Ao(<X?((p)x, E^\ q)

it follows from (5.20) the independence of the choice of the turncating sequence,
in the limit (5.18) for the Gaussian model.

To do the computation, it is convenient to make the change of variable

then

D(x, E, q) exp I - ^ j a R A docR + 2daR A A

(p{^^
\ t e J

- ~\ί(daR)2 + 2daR Λ *F{X, E, ? )
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The first exponential term is easily evaluated: it is Θ\ — 1. In the second term we
\RJ

rewrite

then the leading term in the exponential is

lA$aRAfδd + ^

O.S. Reconstruction and Vortex Sectors. We assume that the correlation functions
(5.19) satisfy the following properties:

0. continuity with respect to local variations of the electric flux distributions E;
1. distribution property: SZ>IM>W are continuous functions in x,z,J£ if their mutual

distances are bounded, and they have singularities not worse than ultradistri-
butions, as some distance tends to zero;

2. euclidean invariance;
3. O.S. positivity for x as in (5.13);
4. clustering.

Remark 5.5. Osterwalder-Schrader positivity formally holds due to the arbitrari-
ness of F(Λ0) and the specific choice we made for F(x, E, q).

Furthermore, translation invariance, O.S. positivity and clustering can be
proved rigorously in the lattice approximation (see Sect. 7). Clustering renders the
assumption about the limits (5.18) and the assumption of euclidean invariance
plausible.

From these assumptions it follows that we can apply to (5.19) the O.S.
reconstruction theorem, in the form discussed in [23-24], and obtain the Hubert
space of states, ffi{μ\ the vacuum Ω and a representation of the universal covering
of the Poincare group (see also Sect. 6).

Local fields \$\2(x)9 WjJ£) can be reconstructed as in Sect. 5, and in addition
one can define non-local any on field operators

v(x,E,q\ x ° > 0 , E = E + .

Let FeJ%, and

where / is a test-function with supp/c: {χ° > 0}.
The scalar product between such vectors is given by

< φ t ' , F , - q ' ) F I φ c , E9 Q)G} = <D(rx'9 rE'9 - q'9 x9 E9q)(ΘF)G>μ. (5.2li)

A similar definition holds for products of anyons field operators

υ(fn\ E9 q) = μ2xυ(xl9El9 q,)-- v(xn9 En9 qn)f{n\x)9 (5.21U)

where / is a test function with supp/c= {χ9 >0}, i= l n. The set of vectors
{v(f{n\E,q)\F),Fε^ + } is dense in Jf(μ) by construction.
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Clustering implies that all charged correlation functions vanish. In view of the
definition (5.21) this implies that 2tf{μ) decomposes into orthogonal sectors, Jfv

labelled by the total vorticity q. For q Φ 0 they are soliton sectors. The operator
v(f, E, q) maps the vacuum sector J-f (

o

μ) to the soliton sector Jίf q

μ\

The Electric Charge of the Vortex Sectors J^iμ). We now define more precisely the
operator ei2πQε and prove the equation

For a planar loop if we introduce the disorder field variable,
non-compact abelian Higgs models as follows. Let Σ(^){~Σ) denote both the
flat surface Σ, whose boundary is given by if, and the corresponding integer
current (see Sect. 3).

Then we define

exp I - 2^Jd 3x[(Fμ 0) + dA- 2πdΣ}2 - (F(A0)

exp <! - ^j$d3x[(F(A0) + dA- 2πdΣ)2 - (F(A0) + ίL4)2](x)

(5.23)

The relation of 3>2n{^£) with the electric charge QE is easily seen by computing
expectation values such as

in the μ = 0 model.
By making the change of variables:

A->A-2πΣy (5.24)
one obtains

(5-25)

In fact, all the terms in the action involving the matter field φ are invariant under
(5.24), since §ΣeZ, see Eq. (4.4i). Equation (5.25) shows that ^ 2 π ( ^ ) measures

se
ei2πQE{Σ)> where QE(Σ) is the electric charge contained in Σ{S£\

Therefore we define

ennQE = h m @2π{cRl (5.26)
Rsao

where CR is the circle of radius R, centered at the origin, in time zero plane. By
definition

ei2πQEΩ = Ω, (5.27)

i.e. the vacuum has 0-electric charge mod Z.

Remark 5.6. Notice that if we substitute in (5.25) 2π by a real λφlπZ, the operator
2$λ{Σ) becomes ill-defined, since the matter action is not invariant under the
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transformation

A-+A-λΣ.

Since the set of vectors v(fn\E,q)\F},Fe^ + , with Yjqi = q, is dense in ^ \

we only need to compute

< v(x', E, q')F I eί2πQ* \ v(x, E,q)G}

= \im(D(rx',rE',q',x,E,q)@2π(CR)(ΘF)G)μ. (5.28)
R/oo

Using (5.14) we can rewrite the expectation value on the left-hand side of (5.28) as

/ e x p < ! - ^ J a 0 A i / a 0 y , (5.29)

where

a rr /y (vy' vT*f Π V T* Γί\
o — An \ ' ' ^ ? —' — ' y /*

We now perform the charge of variable

A-^A — 2πΣ Ri

where Σ# = X(CR) and (5.29) becomes

(x,^f,F(A0))exp< — -— \A A dαo>exp{ — iμ f dA}
C 2π J ΓH

•exp {— iμ j <iα0} exp < Jα 0 Λ rfα0 >. (5.30)

ΣR I 2π J

One easily shows that

lim exp{-iμ j da0} = eiμ2π\ (5.31)
Rsco ΣR

This can be understood in terms of Fig. 2 since — j da0 measures the electric

flux through the time zero plane.
We now choose F(A0) of compact support. Then by clustering and (5.30), (5.31)

we obtain

< υ(x\ E', q')F \ ei2πQE \ v(x, E,q)G} = eiμ2πq < u(x', E\ q')F \ υ(x9 E9 q)G).

6. Spin and Statistics of Electrically Charged Vortices

Under very general assumptions on relativistic quantum physics (locality, relativistic
spectrum condition, existence of one-particle states), it has been shown in [3,40]
that, in four or more dimensions, massive fields and particles can carry either
integral or half-integral spin and obey either Bose or Fermi statistics. Fields and
particles of integer spin obey Bose statistics, those with half-integer spin obey
Fermi statistics. The notion of field used in this analysis is very general: "Fields"
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are localizable in space-like cones of arbitrarily small opening angle, but generally
are not localizable in compact regions.

In three space-time dimensions, however, an analysis of the projective represent-
ations of the Poincare group shows that elementary relativistic free particles can
have arbitrary real spin. For particles created by fields localizable in compact
regions, the analysis of D.H.R. [31] excludes the possibility of spin sφ^Z. The
upshot of this analysis is in fact that, also in d = 3, such particles can carry only
integral and half-integral spin, obey Bose or Fermi statistics and the spin-statistics
theorem holds. For particles created by fields not localizable in compact regions,
spin need not be integral on half-integral. No direct information on statistics is
obtained from the analysis in [3].

The electrically charged vortices of the non-compact abelian Higgs model
cannot be created by fields localized in compact regions. This is a consequence of
Gauss' law: one can measure the electric charge by operating at an arbitrary
distance from the localization region of the charge (see [29,32]); therefore the fields
carrying the electric charge cannot be localized in bounded regions. However the
analysis of [3] still applies. It then follows that the interpolating fields of the
electrically charged vortices can be localized in space-like cones (the fields v(x, E, q),
which we constructed in the previous section, have weaker localization properties).
In this section, we show that particles created by such fields have spin given by
μ/2 mod Z, and obey Bose statistics if μ is an even integer, Fermi statistics if μ is
an odd integer, and, for μφZ, they obey so-called "intermediate (6>) statistics" [33].
Statistics manifests itself most clearly in the analysis of asymptotic states.

The main features (localization properties, construction of asymptotic states
spin-statistics connection) of the following analysis of anyons are model inde-
pendent. They apply e.g. to the anyons in the 0(3) non-linear σ model with Hopf
term, discussed in [8a] in connection with high Tc superconductivity.

Relativistic Free Particles in d = 3. By definition, the Hubert space of states of a
free particle carries a projective irreducible representation of the Poincare group
&\ = R3 © 50(2,1). Bargmann has shown in [34] that all the projective representa-
tions of 3P\ are induced by unitary representations of the universal covering of
£P\ which is isomorphic to R3®50(2,1), where 50(2,1) is the universal covering
of 50(2,1). Topologically 50(2,1) = ^ xR 2 , where 5 1 corresponds to the group of
rotations in the two-dimensional space, hence π1(S0(2,1))Z, and topologically
SO(£Ί)^S1 x R 2 ^ R x R 2 .

It follows from a general theorem of Mackey on the representations of
semi-direct products of groups [35], that all irreducible representations of

R3 xS0(2/l)
are classified by

—an orbit of a point p in R3 under the action of the group 50(2,1),
-—>—

—an irreducible representation of the subgroup of 50(2,1) leaving invariant a
point on a fixed orbit.

For a fixed orbit, all these subgroups are isomorphic to the same group, called
the little group.
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Massive particles correspond to orbits characterized by

Km = { ^ : p ^ = m 2 > 0 , p ° > 0 } , (6.1)

where meR + is identified with the mass of the particle: The spin characterizes the
irreducible representations of the little group. In d — 3 dimensions, this is the
covering group of rotations and it is isomorphic to R. All unitary irreducible
representations of R are of the form:

where s is identified with the spin of the particle.
Massless particles correspond to the orbit

The little group is also isomorphic to R and its irreducible representations are
classified by a real number, the helicity. Therefore, in d = 3 dimensions, relativistic
free particles can have arbitrary real spin (if m > 0) and helicity (if m = 0).

The "Spin" of Any on States. (See also Appendix 2 for details.) We now show that
the space of one-anyon states of vorticity q carries a unitary representations of the
covering group of rotations of spin (μq2/2)mod Z. Let U(φ) denote the representa-
tive of an element, φ, of the little group on J^(

q

μ\ Then under the assumptions
made after (5.16),

(v(x\ E\ q')F I U(φ) | υ(x9 E9 q)Ω > = lim < (ΘF)D(rx\ rE\ q\ »R{φ)χ, E^R\ q) > μ (6.2i)
R/ΌD

= e-iπμq2n((Qp)D(rx',τE\ ~q\M(φ)x,E(φ\q))μ

= e~iπμq2n (υ{x\ E\ q')F | v(x, E~q)Ω >,

where n is an integer such that

Ψ = Ψo + 2πn, φoe[0,2π].

To prove (6.2ii) we first note that E{ψ) - E{φR) is exact, i.e.

E«P) _ E

{φR) = docR,

where aR is a smooth form, then, for JR large enough, we can rewrite the expectation
value in (6.2i) as:

expj -^- j α Λ Λ dotR

We assume that the term

does not give any contribution in the limit R /* oo, due to clustering and decay
properties of daR. This can be justified as follows, integrating out the matter field,
one expects that the effective action for [A] has the same long distance behaviour
of a gaussian theory with a complex covariance like (5.4-5). For this covariance,
the claim is easily checked as in Remark 5.5, since daR — \/R2 as R /* oo.
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We now compute

Fig. 3. Flux lines of da^

\(XRΛdGCR.

Let Σx, Σ2 be two integer currents corresponding to two surfaces whose boundary
is given by two flux lines of *docR (recall *dotR is a vector!), see Fig. 3. Then one
easily realizes that

j oίR A docR = 4π2q2 \Σλ A dΣ2 = 4π2 J dΣ2 = 4π2q2n (see Appendix 2).

In particular for φ = 2π, one finds

U(2π)\υ(x9E,q)Ωy = e-iπμq2\υ(x,E,q)Ω}9 (6.3)

i.e. the space of one-anyon states carries representation of spin (μ/2)q2 mod Z of
the covering of the rotation group. It is easy to generalize this result to an arbitrary
rc-anyon state v(x,E,q)\Ω}.

Let us assume that supp EinEj = 0. Then one can define 1 -forms αf, ΐ = 1,..., rc,
by

where φ = 2π.
We need to compute

lim

One easily realizes that if ΣiΛ,ΣU2 are two surfaces whose boundary is given by
two flux lines of *dαf, then for R sufficiently large,

i.j 1,1 ',}

i.e. the "spin" of the representation of the covering group of rotations is given by

?έ «,«,)=?( i.«« (6.4)

in the space of n-anyon states of charges {q1... qn}. The spin of an rc-anyon state
is not the sum of the spins of the individual anyons. Besides the single anyon
contributions, (μ/2)qf, corresponding to a self-braiding of the flux lines within each
electric flux distribution Eh there are also contributions, μq&j corresponding to
the braiding of distinct electric distributions (see Fig. 4).

This point will be discussed more formally later on; see Appendix 2.
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q=+1

(ΦR)

Fig. 4. Flux lines of E

Asymptotic Anyon States. On the lattice one can prove (see Sect. 7) that the field
operators v(x, E, +1) couple the vacuum to a stable one-particle state of mass
ms > 0, and the spectral representation of the two-point function has a non-vani-
shing upper gap μs > 0, i.e.

<>(0?£, ± l)Ω\v(0,E, ± l )β> = ldρ(ajc)e~alχO\eιΊ'*9 (6.5i)

where dp(a, k) is a finite measure with

suppdp(a9 0) = msu[ms + μs, oo), μ > 0. (6.5ii)

Assuming a non-vanishing upper gap also in the continuum theory, there are
in principle no obstructions against applying Haag-Ruelle collision theory and
constructing asymptotic anyon states. We now sketch how that works. One first
constructs euclίdean anyon correlation functions in which the support of each
electric flux distribution E is shrunk to a wedge contained in a two-dimensional
plane. To obtain well defined correlations one needs to renormalize the self-energy
of the flux distribution £, since the self-energy of a distribution E localized
in a cone diverges logarithmically, as the cone shrinks to a two-dimensional
wedge. From these correlation functions one attempts to reconstruct Wightman
distribution field operators

vM(x,E(a\q) (6.6)

localized in space-like planes in the three-dimensional Minkowski space; (here α
is the boost parameter corresponding to the boost mapping the time zero plane
to the plane where E(oc) is supported).

We briefly sketch how these Wightman distributions are obtained: let E denote
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a distribution with support contained in the half-plane

{ x ° - 0 ? x 1 > 0 }

and source at x. Let E(oc) denote the distribution obtained from E through a
rotation by an angle α around the x2-axis, and let x(α) denote the position of its
source. For αx < α2 ••• < αn the correlation functions

S n ( x 1 (α), Ex (α), qί9..., x π ( α ) , En(S)9 qn)

can be formally written as

where M x is the generator of boosts in the (xo,x1)-plane. Wightman distributions
can be obtained by analytic continuation in the α-parameters.

Let g be a test function for ultradistributions in R3, and foe^(R). Then

vβ,h,E{q) = J d3x0(x) J dαft(ΦM(x, £(α), (?) (6.7)

are well defined operators, with support in space-like cones ^ = ̂ (E, g, h). Due to
Eq. (6.5), a Haag-Ruelle collision theory in the form developed by Buchholz and
Fredenhagen [3] can be developed for the fields vghE(q\q = ± 1.

Here we sketch the key points for the reader's convenience: In a Lorentz system
where the time axis is in the direction of a time-like unit vector e we consider the
subspace j£?(^, e) a ^ ( R 3 ) of functions / whose Fourier transform f(p) satisfies
the conditions:

1. supp7(p)nspec{P"} c Vm = {p":?^" = ms

2,p° > 0},
2. for pesupp/(p)

p-(p-e)ecmt(<g)-a, (6.8)

where a is the apex of #, int(^)_a denotes the interior of c€, translated by the vector
a. Let us denote by C7(x) the translation operator in ,̂ f<μ), and define

gX Ί K κ . (6.9)

Then for

Φ) = j(Fe)YZrpΓ+~m2, (6. lOi)

^ -"^v^ip, q) (

is an operator which creates from Ω a one-particle state. It is essentially localized
in the region # ί ( e + s) <= <£te9 where 56^_α is a fixed vector. (For simplicity we omit
henceforth the explicit reference to E, h and g)

Let fe^?{(^ue1)®'"®^{^n,en) with (£ι + teL,...^n +ten mutually space-
like separated for large t and let i;f(#,-), ̂  = ± 1 be supported on <£i9 i = 1 ... n. The
asymptotic states are defined by

s- lim ϋ(/ ( Λ ) ,^ < ? J ί ) β = l / ( I I ) ^ i - ^ > , , (6.1 li)
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where

(6.1 Hi)

We denote by J>f ( | s ) the Hubert spaces of states given by the closure of the
linear span of vectors (6.11) The spaces Jf(+)as carry a unitary representation
Ual(a,A),aeR3,ΛeSO(2,1) of the universal covering of the Poincare group
defined by

U°?{α9Λ)\fn\ql9...9qn>ϊ=s- lim U(α,Λ)v(fn\qu.. .,qn\t)Ω. (6.12)
ί->±oo

In particular, if U(2π) denotes the representation on Jf(μ) of the rotation by 2π
around the time axis, then from (6.2-4), (6.11-12) it follows:

U»i(2π)\f"\qi,...,qn)±=expl-iμπ(YqX\\f"\q1,...,qn)±. (6.13)

For n — 1, Eq. (6.13) shows that the spin of one-particle states is given by

s = | m o d Z . (6.14)

It is quite plausible that generically the one-particle states are non-degenerate, i.e.
the integer in (6.14) is fixed. Then the states | f{n\ q} +,q= + 1 describes a relativistic
free particle of spin seμ/2 + Z, the any on.

In the momentum representation, the 1-particle Hubert space is isomorphic to

L2(Vm,d3p)®C,

where C is the spin space, and the wave functions, f(1)(p)®u, transforms under
rotations as

(6.15)

Statistics of Anyons. In this section we discuss the statistics of anyon of spin
s^(μ/2)modZ and prove a spin-statistics connection. Within the support of the
wave functions f(n){pι,qι->...,pn,qn) of the collision states constructed by (6.11),
neither can a momentum p{ perform a complete rotation around the /?0-axis nor
can two momenta php}, can be exchanged. This is because all the allowed
2-momenta ~pi have different directions

φ ^ a r c t g - y ^ φ ; , i Φ j .

This prevents one from deriving information on statistics of anyons by considering
the collision states (6.11). The full Hubert spaces 3>Fa+, however, carry a represent-
ation of the universal covering of the group of rotation, defined by (6.12). We use
such representations to obtain information on the statistics of anyons.
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We consider states

I f { n \ q , . . . , q } e J ^ a s ( = ^ a s orI f \ q , , q } ( ^ ) ,

and denote by fq

n\Pι,...,pn) the corresponding momentum space function,

describing ^-asymptotic identical anyons with vorticity q and three momenta

{Pi},i = l - n .
From (6.13) and (6.15) it follows:

2π)/?W

(6.16)

Therefore fq(Pi,... ,pn) is not a single valued function for μφZ. We now show that
it can be defined as a multivalued function (section) on the non-simply connected
space

Mn=V*"\D/Σn, (6.17)
where

D = {pu.. .,pn:pi = pj for some i Φ ;},

and Σn is the permutation group of n elements.
Wave functions on a non-simply connected space N can generally be defined

only as sections of a flat complex vector bundle if over N, with structure group
πi(N), [36]. If the wave functions take values in C, then $£ is a line bundle, and
all such line bundles with connection are classified by elements of

H o m M Λ α ^ l ) ) , (6.18)

the set of homomorphisms from nx(N) to U(ί) corresponding to the holonomy
group of the connection of the bundle.

Given the homomorphism χeHom(π1(iV), 1/(1)), the bundle if can be con-
structed as follows. Let N be the universal covering space of N, with canonical
projection

π:N->N, x-+x. (6.19)

Let No be a branch of N such that all other points in N can be reached from No

by an unique element, γ, of π1(N). Denote by Nγ the corresponding branch; then
the transition functions of ^£ between No and Nγ are given by χ(y). A section φ
of ^£, then corresponds to a function φχ on N satisfying

x M (6.20)

We henceforth identify φ and φχ.

Remark 6.1. A more formal definition of 5£\ independent of the choice of a branch,
No is as follows. On the set of couples (x,z)eN x C we define the equivalence
relation ~,

{yx,z)~{x,χ(γ)z). (6.21)

We identify i£ with the space N x C modulo the equivalence relation (6.21).
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The Braid Group 2$n. In our case, πί(Mn) is isomorphic to the braid group $n,

defined as follows. We choose n distinct points xl9...,xn in R 2 and consider n

maps yι,...,yn from [0,1] to the slab R 2 x [0,1] in R 3 with the properties:

a)
yi(0) = xi

where σ is an arbitrary permutation of {1,..., n}.

b)

yf(t)>0 Vίe[0,l].

c) For

i*j yi(t)*yi(s) Vίe[0,l], se[0,l] .

We now identify all maps with properties a),b),c) related to each other by an

ambient isotopy. The resulting object is J^n, the braid group on n-strings.

Let τUi+1,τi~i\ ίe^n be the operation of once braiding the ίth with the ί + 1st

string, as shown in Fig. 5:

•X
i i + 1

H.i+ί* X
i f + 1

The operations τUι+1,i = 1,..., n — 1 are the generators of &n. They satisfy the

following relations:

τ i . ί + 1 τ i + l , i + 2 τ i , i + 1 ~ τ i + l , i + 2 τ i , ί + 1 τ i + l , i + 2 ?

Hi+ l τ i J + i = τ!J+ i τM+ i f o r If ~ i I = Z

Every element 6 G ^ M can be represented as

b=flτ$lm + X9 σ(k)=±L

The pure braid group 0>n is the subgroup generated by the elements

ytj pictorially is represented by

( 6 2 2 i )

i + l
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A rotation by 2π corresponds to the element of ^ n :

#(π) = ΓK- (6 2 2 i i )

Following the general analysis presented above, we view f{^ as a section of a
line bundle if with base Mn and structure group 3Sn. All such lines bundles are
classified by elements

? , 0 ( l l ) - {6>(Λ ί = 1,..., n, ©iΛ)e[0,1]},

defined by:

χ^:τjj+1^elπiΘΐ)j=l. -n-l. (6.23)

Since all anyons are identical, in our case

0{n) = {0(n)9 _ ? gin). ©(»)e["0, 1] }, (6.24)

and we set «-times

From (6.20) it follows that we can view /£° also as a function on Mn. We denote
by f{q\b, •) the branch of that function corresponding to the element heέ%n; it satisfies

( l ;Pi- ίPπ)ϊ (6-25)

where σ is the permutation corresponding to b.
From (6.19) and (6.22-5) we obtain:

i ^ 2π//[ = χβ(n,(«(π)) = χ β (
2 J

= e x p { i Θ ( l l ) 2 π φ - l ) } ,

i.e.

®(») = ^ m o d — ^ — . (6.26Ϊ)
2 n(n — 1)

Let us now imagine that the n-anyon wave function f{f is peaked around some
set {Pi}J= 1,..., n of three momenta with \pm — pm + λ \ small and |pf — p7 | large for
j? j = 1,... 5 w, (ί, 7) # (m, m + 1). As time increases the particles m and m + 1 become
more and more separated from the others. By clustering one expects that an
exchange of the particles m, m + 1 is not affected by the presence of the other
particles, if the exchange is obtained by changing the momenta in a neighborhood
o f p m a n d p m + 1 . I.e.

X<9<")(τm,m+l) — XΘ(2)(τm,m+l)

Hence

©(«) = 0(2) = 0 ?

and from (6.26)

Θ = - m o d Z . (6.26ii)
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From Eqs. (6.25) and (6.26) it follows that the momentum space wave functions

J q V )'

—are symmetric for μ an even integer, i.e. the anyons are bosons,
—are antisymmetric for μ an odd integer, i.e. the anyons are fermions,
—are sections of a flat complex line bundle i f over Mn characterized by

χμ/2eHom(π1(Mn), U(l)) for μφZ, i.e. they change by a factor eιμπ (respectively
e~ιμπ) under an exchange of two momenta obtained by a curve in Mn,

anticlockwise (respectively clockwise) oriented, not enclosing any pk,k = l,...,n.
This last transformation property is called "Θ statistics" in the physical literature,
with statistics parameter Θ = μ/2. Hence, the statistics of anyons smoothly
interpolates between Bose and Fermi statistics, as μ varies from 0 to 1. Furthermore,
by comparing (6.26) with (6.19) we obtain the following spin-statistics connection:
anyons with spin s = (μ/2) mod Z obey a Θ statistics with statistics parameter
Θ = (μ/2) mod Z. Finally notice that Eq. (6.25-6) combined with Eq. (6.19) show
that Mn is the maximal extension of the support of fψ for μφ2Z, i.e. there is a
generalized exclusion principle', the wave functions of n identical anyons of
non-integer spin vanishes if two momenta are equal.

7. Anyons on the Lattice

In this section we discuss the lattice approximation of the anyon sectors of the
non-compact abelian Higgs model. We analyze their particle structure and show
that the anyon field operator of charge + 1 couples the vacuum to a stable massive
one-particle state for a suitable choice of the coupling constants. This one-particle
state has electric charge +μ and vorticity + 1 .

To define the lattice approximation of the Chern-Simons term (5.2) we
introduce a wedge product on the lattice, partially following [37].

The Wedge Product on the Lattice. We start by introducing our notation. We
identify an oriented p-cell, cp, on the lattice Zd with a pair (x,μ), where xeZd and

More precisely for cp = (x, μ\

suppcp = {y = χ+γj ξμeμ,0^ ξμ ^ 1, ξμ = 0 unless μeμ }, (7.1)
I Me/ J

where eμ is the unit vector in direction μ, and the orientation of cp is given
by the sign of

Λ ^ Ξ β μ i Λ . . . Λeβp. (7.2)

To every positively oriented cell there corresponds a pair (x,μ), where
μt E{0, l , . . . , d - l } and μt<μι + 1.
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We define

μeμ

For oriented cells a cup product, Λ , is defined by

J u ° (7.3)
| 0 otherwise. v ;

For example in d = 3

V~y Λ P = C7
(x,l) Λ (y,2) = (x, l ,-2) .

In the following — cp denotes a cell with the same support of cp and opposite
orientation. Notice that e.g.

x_ x

(x, -1) Φ -~7ϊ).
Let cp = (x, μ), then we denote by cp the cell obtained by reflection in the x°-plane
containing x, i.e. changing + ()<-• — 0 if + 0 are contained in μ. We define a map
in the group of oriented cells by j:cp^cj

p. A real lattice p-form (or form of rank
p) is a map, Λ, from p-cells to R satisfying A( — cp) = — v4(cp).

Let ^ p denote the set of positively oriented cells; then two possible bases for
real forms are given by

1) {e?*9cpsVp}9 (7.4)

2) {e^cpej^p)l (7.5)

where for cp = (x, μ), c'p = (y, μ')e^ p

and similar definitions for cp.
A real p-form A can then be expressed as:

A= Σ A{ppy>, A(cp)eR, (7.6)

= Σ A{cj

p)ecK A(cj

p)eR. (7.7)
cJ

pej(Vp)

The exterior product between a p-form and a g-form that we define depends
on the choice of the basis. We denote by Λ the exterior product relative to the
basis (7.4) and by Λ7- the exterior product relative to the basis (7.5). Let

cp = (x, μ)G^p, cq = (y, μ')eVq; φ , μ)ej(Vp), c{ = (y, μ')ej(Vq),

then

\"Λtq l f

u

Λ W ^ o > y = * + ee. ( 7 8 )

otherwise
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0 otherwise.

By linearity this defines the exterior products A A B,A ΛJB of arbitrary lattice
forms A and B. The exterior differential, d, of a lattice p-form A is defined by

dA(cp+1)= Σ A(cP).
cpedcp

Then we have

dAΛB + (- iγ™kAA A dB,

d{A A jB) = dAAjB + (- l)r&nkAA A jdB,

but in general

AAB^(-l)τankABAA,

AAjBΦ(-iγankΛBAjA.

Lattice Chern-Simons Term. In view of (7.11), a possible choice is

SC

μ

S=~- Σ (AAdA + dAAA)(c3).
c 3 e S r 3

However, this choice of the Chern Simons term is incompatible with O.S. positivity.
Therefore we introduce the Λ J exterior product and write

S^s=-^- Σ (AAdA + dAAA-AAjdA-dAAjA)(c3). (7.12)
1 6 7 1

This choice preserves O.S. positivity provided the time zero plane is a lattice plane.
Let us look pictorially to the contributions to (7.12):

(ΛΛdA)Ml,2) P -& P
(dAΛA)(x,o,U2) \ rr U
(iΛjίii)(x,-0,l,2) LJ ^ *^
(dAΛjA)(x, -0,1,2). \rj "X)

It follows that

Θ\ i Σ (A A dA +dA A A)(c3) \=—i Σ {A ΛjdA + dA ΛJA)(C3),

and hence O.S. positivity of exp{ — S^ s}.

Anyon Correlation Functions. The definitions introduced so far permit us to pass
to a lattice approximation of the anyon correlation functions (5.13). In a finite
lattice, Λ, with unit lattice spacing, with Feynman gauge fixing term, the action
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of our model is given by:

Σ ( 7 1 3 )
x x ^ e

where the notations of (4.34-38) are used without ε. To define Green functions of
anyons we modify the action as follows (compare with (5.12)).

It is convenient to choose F(A0) to be some integer 2-form satisfying

where x( are points in the dual lattice where anyons are located and qt the
corresponding charge. Let E* (respectively E~\ XEZ3

1/2, be a real 2-form with
support on an infinite connected sublattice Cx, containing x, contained in the
{x° > 0} (respectively {x°^> 0}) half-space. Further we assume that

and

Ex (p) ~d(x,p)~2 as d(x,p) ? oo,

where d(x, p) denotes the distance between x and p. Let Λ be a sublattice of Λ, and
let (x,E,q) be define as in (5.8), then we define Fλ,(x,E,q) by

and

It follows that there exists a lattice one form ocΛ(x,E,q) such that

ω - F A ( x , E9 q) = docΛ(x, E9 q). (7.14)

Then SΛ

μχq(A,φ,E) is defined by performing the following substitution in (7.13):

dA->dA + ω,

Sc

μ

s (A)^Sc

μ

s(A + ocΛ(x,E,q)).

For ^ ĵ = 0, xf+! > x?, correlation functions of anyons are then defined by

Sn(x,E,φ=\im lim ^ . y , ^ ,
A/Ί? A/Ί? ^β, A

ί Π dA<x.

Π dA<x>> Π
xy}eΛ <xeΛ>
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One can easily construct also a lattice approximation of the order-disorder
correlation functions (5.19). Following [1,26], one can prove that such correlation
functions satisfy a lattice version of the Osterwalder-Schrader axioms [1], including
clustering, at least for

e,λ small, m large, m»λ. (7-16)

This permits us to reconstruct

— a Hubert space of physical states J f(μ), containing the vacuum; by clustering it

decomposes into orthogonal anyon sectors
— a self-adjoint transfer matrix T and a unitary representation of spatial lattice

translations,
—non-local anyon field operators v(x, E, q).

Defect Representation of Anyon Green Functions. We now sketch how to derive a
representation of anyon Green functions in terms of defects. This representation
is a first step in the proof of clustering and in the particle structure analysis (see
[26] for more details). The defects of the non-compact abelian Higgs model are
the (Abrikosov) vortices. They can easily be exhibited by decomposing the gauge
field as

W(-*'«)• σ «» e Z - (7 17)
Defects in the partition functions are described by the Z-valued 2-form

v = dσ. (7.18)

Since v is closed its support is given by a set of loops.

If we add to the model a Chern-Simons term, for simplicity taken in the form

c s iμ

then the decomposition (7.17) gives the following contributions to the exponential
of the action:

in i \ in )

(7.19)

2) expj-iμπX(<7Λt;)(c3)j> (7.20)

and a term exp{ — Sfs-(θ)}. The term (7.19) can be interpreted as giving a ^-electric
flux μq to every vortex loop of vorticity q. The term (7.20) can be interpreted as
a linking number for the vortex loops; actually σ Λ V gives the intersection number
of v*, considered as a 1-chain in the dual lattice. E.g. a configuration

υ* =
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has an intersection number — 1. Therefore we can represent the partition function
Zμ of the model with Chern-Simons term as a partition function of a gas of vortex
loops carrying vorticity qeZ and ^-electric flux μq. Using the decomposition (7.17)
and defining

v = ω + dσ, (7.21)

one obtains a similar representation for the modified partition functions Zμ(x, E, q),
used in (7.15) to define anyon correlation functions.

For μ = 0, the modified partition function Z(x, q) (recall: E is present only in
the Chern-Simons term) is the partition functions of a gas of closed vortex loops
interacting with open line defects, vω, whose boundary is given by {x}. An open
line defect corresponds to the worldline of a vortex created at one end of the line
and annihilated at the other one.

If a Chern-Simons term is added, the new contributions to e~s are obtained
from (7.19-20) by the substitution σ-• σ + α(x, E, q). In particular the term (see Eqs.
(7.14), (7.21)):

1 ,
e χ P1v

is interpreted as giving a ^-electric flux to the open line vω which spreads out in
supp(l/2π)F(x,£, q). For coupling constants in the region (7.16), the gas of
electrically charged vortices is dilute and fluctuations of θ and \φ\ are strongly
suppressed. We can set up a combined low and high temperature expansion [1,26]
and establish existence of the limits (7.15) and clustering of correlation functions.

Particle Structure Analysis. By resumming the closed defects one obtains a

representation of the anyon Green functions in terms of fluctuating lines described

by vω:

vω dvω = Σcliδxι

For the two point function

the open line defects vω = vOx is a single random line joining 0 to x. One can analyze
its fluctuations by means of an excitation expansion [26]. The output of this
analysis is that z(vOxi EQ,E+) roughly behaves like the statistical weight of a simple
random walk as |x| / oo, and

with
xVoo

In

In
e2m2 InΛ

e2m2

1

m

(7.22)

(7.23)

where μs is an estimate of the upper gap.
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The decay (7.22) proves that in the range of coupling (7.16), v(x, E, 1) the anyon
field operator couples the vacuum Ω to a stable one particle state of mass ms.

Appendix 1

A Loop-Space Construction. In this appendix we make some comments on a
formal construction of vortices using as variables, instead of the connections A,
the Wilson loop variables

Γ Ί
(A.1)

[More precisely we denote by VFα( |^ί) the character α of the holonomy group of
the connection A].

Since Mx is simply connected, for αeZ we can always write

<x§A\expnu § F(A0)\.

We start with some topological considerations. Given any connection A in a
principal (7(1) bundle over Mx, the Wilson loop variable defines a map

^ (A.2)

satisfying

Wa(*\A)=l, (A.3ii)

where ΩMX is the (based) loop space of Mx, the symbol ° denotes the composition
of loops and * denotes the null-loop.

Equation (A.3) shows that W( |i4) is a character of ΩMX with respect to the
group operation °. Since Mx is simply connected, it follows from a theorem of [38]
that every irreducible character of ΩMX, satisfying (A.3ii) [and some regularity
conditions] can be written as the Wilson loop variable Wa( \ A) for some connection
A of a L/(l) bundle over Mx and A is completely determined, modulo gauge
transformations.

Let X denote the space of the characters of ΩMX corresponding to Wa=1(-\ ).
Then we have the following homotopy classification theorem:

πo(X) lά H\ΩMV Z) lά H2(MX, Z). (A.4)

(See [39] for a proof, in a somewhat different context.)
To show how the isomorphism i1 is defined, we need some preliminary

definitions. Let Ωv denote a vector in ΩMX at if, i.e. a map Ωv: S1 -> TMX satisfying
π(Ωv) = if, where TMX is the tangent space of Mx and π is the canonical projection

π\TMx-+Mx.

The vector Ωv at if can be visualized as a vector field υ defined on supp 5£.
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A k + 1 form A on Mx defines a /c-form ΩΛ on ΩMX by

ΩΛ(Ωυu...9Ωυk)\# = j ẑ  ^ / 1 .
suppif

The form ΩΛ satisfies the following properties: if Ωck is a k-chain of ΩMX, and
ck+ί is the corresponding k + 1 chain M x representing its support, then

J fM - j A.
Ωck ck+ι

The isomorphism ίx is then constructed as follows: let YeX,A be a connection
such that Y = Wί( \A), then

ί2F(A)leH^ί2M x ,Z), (A.5)
2π J

where we identify the de Rham cohomology class with the integer cohomology
class, by (3.5). The isomorphism i2 is then defined by

l ^ M ^ Z ) . (A.6)

In view of the classification theorem 3.1a, the isomorphism ί1°i2 shows that
there is a one-to one correspondence between homotopy classes of X and
ί/(l)-bundles over Mx. Moreover the isomorphism iί shows that there is also a
one-to one correspondence with the flat R-bundles over ΩMX with integer
holonomy, classified by Hι(ΩMx,Z).

Therefore to every vortex bundle P(x, q), there correspond:
— a non-trivial homotopy class of X,
— a non-trivial flat R-bundle over ΩMX with integer holonomy (whose sections
are given by (1/i)In Wγ(-\A)\

There is some analogy with the soliton bundles of the sine-Gordon model in
d = 2, discussed in [2]. These were flat R-bundles over Mx

2) = R2\{x} with
integer holonomy, classified by H1(Mi

x

2\Z.)
The dual spaces of the smooth sections, φ, of these bundles are the spaces on

which is supported the functional measure which defines the soliton correlation
functions. Moreover the holonomy being integer, g = eιφ defines a map from
Mx

2) to U(l) and the homotopy classes of g are in one-to one correspondence with
the soliton bundles.

Following [38], one can pursue such ideas to the level of expressing vortex
correlation functions in terms of a formal functional integration over fields on ΩMX.

Appendix 2

On the Monodromy of Sn(x,E,q). In this appendix we show how the anyon
correlation functions Sn(x, E, q) transform, under variations of the electric distri-
butions E. A relation with the (pure) Braid group will appear. Let y(t):(xy{t\ Ey{t)%
ίe[0,1] be a curve in the space, S>Xn, of electric distributions. We consider a
truncating sequence yR(t):E-^EγR(t\ such that for all EeE, Se[0,ί]:
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\ \y\<R

\y\>R + t.
Then we define:

Sn(x^\ £ y ( 1 ) , q) = lim Sπ(ΐ7<1), E?*\ q). (6.27)

For closed paths, y, in the space $ x n one finds

Sπ(x,£ y ( 1U) = ^ Θ ( 7 X ( x , £ y ( 0 U ) (6.28)

for some Θ(y)eR.
Therefore, with respect to the arguments £, the anyon correlation functions

Sn(x, E, q) are sections of a vector bundle V{n) over $x", with structure group Ω$Xn,
the loop group of <ίXn, and transition functions with values in 17(1). In particular
if we consider only curves in $x "\^", where

®n = {E = {Eiy.EinEj Φ φ, i ΦJl (6.29)

then it is easy to show, using clustering, that Θ (y) depends only on the homotopy
class of

y\Sι-±SXn\®n.
One can easily show that

π x { £ x n \ @ n ) ^ 0>n x Z x ••• x Z ,
n-times

where 0>n is the pure Braid group (see Eq. (6.22i)) and corresponds to curves in
<oXn, where the distributions E are translated, Z x ••• x Z refers to the possible
number of 2π rotations of EJ{1) with respect to EJ{0\ z = 1 •••«.

Therefore the curvature of the bundle V{n) is concentrated in ^M; in <fx "\Z)Π

the bundle is flat and e ί<9(r) in (6.28) gives the holonomy of the bundle.
If the homotopy class of y is given by [y] = yip where yu is a generator of £Pn

defined in (6.22i), then proceeding as in Eq. (6.2), one can show that Θ(y) =
— Iπμqfij. The fields v(x,E,q) are reconstructed from the correlation functions
Sn(x, E, q). With respect to the arguments E, they are section of a bundle i^(n) over
SXΠ, isomorphic to V(n\ Locally in E the fields v{x, E, q) can be written as

but as E = {Ei} varies, they change a section of the bundle i^{n). The individual
fields v{xi,Ei,q^) do not have well defined transformation properties under
variations of E. E.g. for rotations this easily follows from Eq. (6.4).
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