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Abstract. We study the largest Liapunov exponent for products of random
matrices. The two classes of matrices considered are discrete, d-dimensional
Laplacians, with random entries, and symplectic matrices that arise in the
study of d-dimensional lattices of coupled, nonlinear oscillators. We derive
bounds on this exponent for all dimensions, d, and we show that if d ̂  3, and the
randomness is not too strong, one can obtain an explicit formula for the largest
exponent in the thermodynamic limit. Our method is based on an equivalence
between this problem and the problem of directed polymers in a random
environment.

1. Introduction

Consider a classical Hamiltonian system of mass points, arranged on a
d-dimensional lattice and connected by (non-linear) springs along the lattice edges.
At high energies per site, the time evolution of this system may be quite chaotic and
we want to measure the chaoticity in terms of Liapunov exponents. In the case of a
one dimensional lattice (i.e., a chain of oscillators) extensive numerical results
[5, 8] suggest that the Liapunov exponents approach some sort of thermodynamic
limit as the number of oscillators approaches infinity. In earlier work [3] we have
argued heuristically that the Liapunov exponents for such a system could be well
approximated by the Liapunov exponents of a product of random, symplectic
matrices.

In the present paper we analyze rigorously the largest Liapunov exponent of a
product of such matrices. We describe the exact form of those matrices below, but
first we summarize our results. We first derive an upper bound for the largest
Liapunov exponent of such systems, valid in all dimensions, d, and for any number
of oscillators. We then show that for dimension d^ 3, and when the randomness is
not too strong this upper bound gives the exact value of the Liapunov exponent in
the thermodynamic limit. The proof consists basically of two steps. We begin by
showing that one can rewrite the expression for the Liapunov exponent as a
random walk in a random environment. The second step uses recent ideas of
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Imbrie and Spencer [4] to derive the desired bounds from this random walk
representation.

We now describe in greater detail the class of random matrices we consider. We
denote by i the d-dimensional vector

We fix a rank M, and define

In general, we shall consider periodic boundary conditions, and thus we define

d

k = 1

where the distance is measured modM 1 . For future use we define B M as the set of
non-directed bonds

Now suppose we have a system of coupled oscillators whose Hamiltonian is of
the form

2

#(p,q)= Σ P-+ Σ v(qι~qι). (l.i)
|i-j| = l

If at some instant of time, say ίθ5 the momentum and position of the system are
(p(0), q(0)) then for a sufficiently small interval of time τ, we can approximate the
trajectories of the system (1.1) by expanding the Hamiltonian in a Taylor series
about (p(0), q(0)) and retaining only terms of second order or less. The resulting
linearized equations of motion may be solved exactly, and the tangent matrix to
this linearized flow is

with y the Md x Md matrix given by

)t,i= Σ V"(q(0)i-q(0)k), if i = j ,
b ( l k )

and all other elements are 0.
Note that the indices of Ψ~ are d dimensional vectors. Here, and whenever we

encounter such matrices in what follows, we define the product of two such
matrices, Ψ~ and Ψ~ to be

1 We shall only need the notions of small distances, to describe nearest neighbors and similar

things. Therefore we prefer the (incorrect but more readable) notation | i—j| instead of dist(i,j)
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In [3] we argued that at sufficiently high energies one could choose the time
interval τ such that one could simultaneously insure that the linearized approxi-
mation was valid and that at successive times t0 and t0 + τ, the elements of i^{q{t0))
and i^(q{to + τ)) would be uncorrelated with respect to one another due to the
chaotic nature of the trajectories of the system. Thus, we concluded that the
Liapunov exponents of the system (1.1) could be approximated by those of the
product of random, symplectic, matrices

0 )}
The matrix Ω in this equation is defined by assigning to every bond b in B M (see
above, for the definition of BM) a random variable, ωb. These random variables are
assumed to be independent and identically distributed. Note that one should think
of ω i s j as representing f]^ in the above tangent matrices. Then a Md x Md matrix
Ω(ω) is given by

Cij= Σ ω b , if i - j , (1.4)
b = (i,k)

and

O 1 J = - ω ( M ) , if | i - j | = l , (1.5)

all other elements being 0.
In the present paper we will study rigorously the Liapunov exponents of

products of random, symplectic, matrices of the form

with Ω as above. One can think of such matrices as an approximation to the τ = 1
case of the matrices (1.3), and although τ = l is far outside the region of
applicability of the theory described above, previous numerical work [5, 8] (again
limited to d=ί) has shown that the Liapunov exponents of matrices like (1.6)
behave in a fashion very similar to those of Hamiltonian systems of the type (1.1).

We now give a concise statement of our principal results. Let (...) denote the
average of the enclosed quantity with respect to the distribution of the random
variables ω. Let μ be the largest eigenvalue of the averaged matrix <£>. (Note that
this eigenvalue is independent of M - see Sect. 4.) We will assume that the random
variables ω have a distribution with strictly positive support, together with some
integrability assumptions detailed in the next section. Finally, let λM be the largest
Liapunov exponent of the product of matrices of the form Σ.

Theorem 1.1. For all dimensions d, and all M one has

// d^.3, and the variance of the random variables ω is sufficiently small, we have

lim ΛM =
M-+00
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Note that logμ is the largest Liapunov exponent of the product of constant
matrices <£>, so we will sometimes refer to the second conclusion of Theorem 1.1
as the "self-averaging" of Liapunov exponents. For reasons discussed in Sect. 3 it is
also related to the equality of the "annealed" and "quenched" averages in spin glass
theory.

The only previous work with which we are familiar, that allows one to compute
the largest Liapunov exponent for products of random matrices is that of Cohen
and Newman [2] and Newman [6,7]. That theory requires that the distribution of
the random matrices, S, be such that STS is rotationally invariant, and that the
density of states of these matrices converges to a non-random function in the
thermodynamic limit. Such a condition holds, for instance, for the well known
"Gaussian orthogonal ensemble" whose density of states satisfies "Wigner's circle
law" in the thermodynamic limit. In [6] a formula is given which expresses the
largest Liapunov exponent as one half the logarithm of the second moment of the
limiting density of states. One can write down an integral equation for the density
of states of the matrices Σ in (1.6) using the methods in [3]. While it is not possible
to solve that equation exactly, one can determine the support of the density of
states, and one finds that the eigenvalue μ, appearing in Theorem 1.1 is precisely
the upper bound of the support of the density of states, rather than the square root
of its second moment. Thus we are evidently in a rather different situation than
that studied by Cohen and Newman.

We conclude this introduction by reviewing the organization of the remainder
of this paper. We begin in Sect. 2, by discussing a slightly simpler situation -
namely, the Liapunov exponents of products of the random matrices Ω introduced
above. Note that in the absence of randomness, the matrices Ω would just be the
d-dimensional lattice Laplacian, so we refer to Ω as a "random Laplacian." We
introduce the random walk representation for the Liapunov exponents in this
section because this allows us to introduce the principal ideas of our method in a
notationally simpler context. Section 3 shows how one can bound the random
walk representation for the random Laplacians, while Sect. 4 treats the additional
complications encountered in the symplectic case. In Sect. 5 we give some
generalizations of classical results on random walks, found for instance in [10],
and finally in Sect. 6, we present numerical evidence which strongly indicates that
in d = \, the self averaging property discussed above does not hold.

2. Liapunov Exponents for Random Laplacians

2.ί. Liapunov Exponents

We are interested in computing the largest Liapunov exponent of a product of the
random Laplacians Ω introduced above:

λM= lim|log||Ω'(ω)e||. (2.1)

Here,
Ω\ω) = Ω(ω{t ~1 })Ω(ω ( ί ~ 2 ) ) . . . Ω(ω{0)),

is the ί-fold product of random matrices and e is a nonzero vector.



Largest Liapunov Exponent for Random Matrices and Directed Polymers 151

If we average Ω - i.e., compute the matrix <Ω> (throughout this paper, <•)
denotes expectation with respect to the ω's) - then <Ω> is proportional to the
d-dimensional lattice Laplacian, D, with periodic boundary conditions.

If one has a constant matrix whose largest eigenvalue is real and positive, then
the largest Liapunov exponent of the product of such matrices is just the logarithm
of this eigenvalue. Thus, if we compute

λM= l im^log| |<Ω> fe| | , (2.2)

this is just the logarithm of the largest eigenvalue of D. This eigenvalue is equal to
Ad (independent of M) so that λM = log(4<2). In Sect. 3 we will prove upper and lower
bounds relating λM to λM.

It is clear that the Liapunov exponent is independent of the choice of any
(equivalent) norm on RM d. The norm most convenient for our purposes is the L1

norm. Throughout this paper we will take

2.2. Existence of the Liapunov Exponents

We will assume throughout that the random variables ωb

p ) have a density, ρ, with

(H.I) suppρC(0, oo),

(H.2) \ogωeL\ρ(ω)dω),

(H.3) ω2el}{ρ{ω)dω).

Definition. If a random variable ω satisfies H.1-H.3 above we shall say that
ωe(L°nL2) + .

Lemma 2.1 // the ωjf} are in (L°)+ then the Liapunov exponents of the product (2.1)
exist. They are almost surely independent of ω, and the largest Liapunov exponent
λM is given by

λMMim-\og\\Ω\ω)e^ = lim - <log||Ωf(ω)β||> . (2.3)
\ f-» oo t / Hoc ί

Proof. By [9], a sufficient condition for the conclusions of the lemma to hold is

| |ί2(ω)| |><α), (2.4)

where log + (x) = max(0,log(x)). We now show that (2.4) holds for our matrices Ω.
Since we are working with L1 norms, and the ω b are all positive, we have

£ ωb,
b e B M

where we have used the special form of Ω. We next note that

log + || Ω(ω) || ̂  log + (Ad X ωΛ ^ log + (4dMd max ωh

\ beBM J \ beB M

("max ωΛ +log(4dMd).
V



152 J.-P. Eckmann and C. E. Wayne

Here we first used card(BM) = Md. Then we used that for Xj>0, log +

^ log (s max xλ. But

log+ (max ωΛ\ ^ Σ < l og+(ωb)> < ^ ,

because ωe(L°) + . Therefore (2.4) follows.

Remark. The results of [9] further imply that the limit in (2.3) is almost surely
independent of the vector e. In fact, it does not depend on e if e lies outside of a
given hyperplane.

2.3. An Equivalent Problem

Note that if the random variables ωjf* are identically distributed with non-zero
mean, then multiplying each ωjjf} a constant factor, c just multiplies Ω\ω) by c\ and
hence changes λM by an additive constant log|c|. Since we will assume that the
random variables have non-zero mean, the above remark implies that we may
assume this mean to be 1, without loss of generality. We will do so from now on.

We next remark that we can replace the matrix Ω(ω) by one in which the off
diagonal elements are positive, without changing the largest Liapunov exponent.

Lemma 2.2. Let Ω(ω) be a family of random matrices as defined in Eqs. (1.4), (1.5),
and assume that all ω[p) have the same sign. If M is even, then the largest Liapunov
exponent of Ω(ω) coincides with the largest Liapunov exponent of Γ(ω), where

Γ(ω)ii= <
3 ( .-Ω i j 5 otherwise.

Proof. This is similar to the relation between ferromagnets and antiferromagnets.
Choose an initial vector ep with the property that

where the "parity" P is defined by

P(ϊ)= Σ it,
k = 1

and ei ^ 0. In the sequel, i denotes (t + 1 )-tuples (i ( 0 ),..., i(ί)), with i(p) e lM. It is then
easy to see that all terms in the sum below have the same sign:

ep\- Σ ΩJIU- i)(ω ( t" l))Ωi(t- 1 ) i ( t - 2 ) ( ω ( ί - 2 ) ) . . . Ω i ( υ i

i

In fact, this sign is even independent of j . Taking absolute values, we see that

{Ω\ω)ep\-

where e{ = e-x for all i e I M . Thus,

lim - log \Ω\ω)e?\ = lim - log | |Γ(ω)g||.
ί->oo t ί^oo t

Since this holds for all ω and for ep and e in a set of positive measure, it implies that
the Liapunov exponents are equal.
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2.4. The Random Walk Expansion

The main point of this section is an interpretation of ||Γf(ω)e|| as a random walk.
We will assume that the components of e are non-negative. Then

\\r{ω)e\\= Σ \(nΦ)i\= Σ

= Σ ( Σ *

Note in particular if we choose the initial vector, e, to have component eio = 1, and
all others zero, where i 0 is an arbitrary element of I M , then we have

Note 2.3. The proofs we are giving are independent of the particular choice of i 0

and any other vector with positive components would be acceptable. Throughout,
we shall fix i0. As we remarked earlier in this section, the largest Liapunov
exponent is independent of the initial vector so long as it lies outside of some
hyperplane. Since our results are independent of which of the Md vectors eio that we
choose, they must give the largest Liapunov exponent.

We interpret] as a random walk in I M , where at time p we step from i(p) to i ( p + 1 } .
Because of the sparseness of Ω and Γ, the only nonzero terms in (2.5) are those in
which only "horizontal" and "diagonal" steps occur, corresponding, respectively
t n :(P) ;(p+i) onH \l(p) i(p + 1 ) | 1
LU l —1 dllU. |1 1 I — 1.

We associate to each walk a probability wJM)(i) and a weight, which is one in the
absence of randomness. The probability density wjM)(i) comes about as follows. We
have a representation similar to (2.5) for || <Γ>f e ||, and the contribution in this case
is a factor of Id for every "horizontal" step and a factor of 1 for every "diagonal"
step. This makes I M

r a probability space with weight wJM)(j), when we normalize
properly. We call these walks "free" walks.

More precisely, let fo = 2d and fγ = 1, and /} = 0 for y'^2, and define
ί - l

and finally
wm(ϊ)

It should be noted that, in principle, the normalization factor depends on i0. In the
case of the random Laplacian, it is in fact independent of i0, and equal to (Adf. We
shall, however, not use this information, so that the generalization of our methods
to the case of random symplectic matrices will be easier. It will also be useful to
define

Wtut2®= Π f\iip + »-iip)\, (2.7)
P = H

so that
w<M )(JHw oχi). (2.8)



154 J.-P. Eckmann and C. E. Wayne

Definition of the Variables σ. We now introduce new random variables, σ, defined
by σb = ωb—1 if the bond b is diagonal, and σ ^ £ (ω^ —l)/2d, for

horizontal bonds. In more generic notation, we can write for b = (i, j),

whenever |i—j|^l.

Remarks. 1) With the above definition, all σb have mean zero.
2) By hypothesis H.2, and because ρ is a probability measure, the σb have finite

variance. We define

σ2= max (var(σh)).
b

In terms of σ we get the following nice representation for λM — λM:

λM-λM= lim i l o g | ^ j i Ξ lim^logZ,, (2.10)

with the identities

t — i
ι~7(M)f _ \ v^ ii°i(M)/;\ τ~τ /i i _(p) \ /O i i \

and

- Σ ^iM)Ci) ' Π (l+σ<fλ1 ( J, + 1 ) ) . (2.12)
i:i(°) = io p = 0

Notation. We shall use henceforth the more readable notation

Note that Zt(σ) is precisely the partition function for the diffusion of directed
polymers in a random environment, [4]. In general, we will not write explicitly the
M-dependence of Zt(σ), but it is understood that the random paths vary in IM. In
this diffusion the random paths are chosen with a probability which is independent
of the random environment σ. We are diffusing here on a finite lattice with periodic
boundary conditions (of period M, M even), and hence the results of Imbrie and
Spencer are not directly relevant for our questions. We will see in Sect. 3 how some
of their ideas can be made applicable to our case.

2.5. Inequalities for Arbitrary Dimension

Using the random walk expansion of Sect. 2.4, we may easily derive some rigorous
bounds on the largest Liapunov exponent, cf. also [1] for other bounds.

Proposition 2.4. // the random variables ωi are in (L°) + , i.e., if they satisfy

μμ(ω)|log(|ω|)|<oo, (2.13)
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then for all even M and in all dimensions d^ί one has the inequality

Proof. Since λM is almost surely independent of ω (and hence σ), we may average
over ω (respectively σ) and obtain

/ \ \
(2.14)

We now note the important fact that all the random variables σ\?] have mean
zero and are independent, identically distributed for different p. (The distribution is
also independent of i and j in the sense that there is one distribution for the case i = j
and another for the case |i— j | = l, cf. the definition of σ)

Definition. We summarize these properties as the "time-independence" of the σ's.

By the time-independence of the σ's, we have the identity

By (2.3), the interchange of the limit and the average in (2.14) is allowed and we
find, by Jensen's inequality,

1 1
λM — λM= hm - (logZXσ))^ hm -log<Z f (σ)>=0,

t-> oo t ί->oo ί

and the claim follows.
This proposition may be easily generalized to yield

Lemma 2.5. Given a probability measure ρ on a set of matrices {S(ω)} such that
log || SO II eϋ(ρdω), define

/ ' k i l l | s 1 2 | ... \s,
£av /

\\Sml\ \Sm2\ ••• \smm\

i.e., we replace each element by the mean of its absolute value. Let β be the largest
egienvalue of Sav. Then the Liapunov exponent, λ, of the product of such matrices
satisfies

λ^\og\μ\. (2.15)

Proof Since λ is almost surely independent of ω, we have

?-• 00 t

Here, the interchange of the limit and the average is justified as in the proof of
Proposition 2.4. By Jensen's inequality, the right-hand side of (2.16) is bounded by

ί^oc t

But <| |S ίe| |>^| |(S a v) ίe| |^ |μΓ ||e||, and the lemma follows.
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We remark that in the case where the random variables are almost surely non-
negative, Proposition 2.4 will in general give sharper estimates than the bounds of
[1], which are based on the L2 norm.

Jensen's inequality also leads to a lower bound on λM. For this bound we
observe that

λM~λM= urn - <logZM(σ)>
ί-+oo t

= lim V log j Σ wHl) Π (1 + Φl D)
ί^oo t \ t ( ° ) )

^ l i m - Σ MM\ϊ) log π (i + Φ ϊf)
ί-^oo t i:i(O) = i o \ ^ = 0 /

This step used the fact that wJM)(i) is the density of a probability measure. Note next
that

where in the second average |i— j | = 1. Thus, since the distribution of log(l + σ(p; i))
is independent of p, (2.17) is bounded below by Cσ9 and we have the

Proposition 2.6. For all M and all dTzl, the inequality

λM — λM^Cσ

holds. The constant Cσ tends to zero if the ω tend to one in (L°) + .

3. Three or More Dimensions

We have already derived upper and lower bounds on the largest Liapunov
exponent valid in all dimensions d. In the present section we show that for
dimension d ̂  3, one can compute the largest Liapunov exponent explicitly in the
thermodynamic limit, i.e., when M ^ o o . Our main result is

Theorem 3.1. If d^3 and the variance σ2 of the noise is sufficiently small then

lim λM = \og(4d).

In thermodynamic language, this says that the quenched average of logZ M is
equal to the annealed average. Note that the right-hand side of this equality is just
λM, (which is independent of Ml) and we will prove the theorem by showing that

lim (AM-XM) = O. (3.1)
M-*oo

To establish (3.1) it is only necessary to prove a lower bound on λM — λM since
Proposition 2.4 implies λM — λM g 0 for all M. From the random walk expansion of
Sect. 2.4 we know that

λM~λM=\im\(\ogZ\M\σ)y, (3.2)
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and we shall prove the lower bound by using this representation. We indicate the
M-dependence explicitly only when it seems necessary, cf. (2.11), (2.12).

Before entering into the technical details that follow, we review their goal. We
wish to use the ideas of Imbrie and Spencer [4] to show that fluctuations of Zt(σ)
about its mean value of 1 are small. The method of [4] is based on the fact that in
d ^ 3, a random walk in a nonrandom environment is non-recurrent. However,
since the walks that define the partition function, Zt(σ), in our problem take place
on the finite lattice I M , they will always be recurrent after a sufficiently long time [in
fact, Θ{Md)~]. In the following paragraphs we show that we can estimate the
partition function by walks of sufficiently short length so that they do not "feel" the
finite size of the lattice, and this allows us to use some of the methods of Imbrie and
Spencer.

3.1. Reduction to the Infinite Volume Case

Throughout this section, M is a fixed, even, and finite number, all walks are in I M ,
and the σ are random variables indexed by time and by bonds in BM.

We may evaluate the limit of (3.2) along any convenient subsequence and we
choose {fz} = XL, where L is a large integer. We will always choose L < M/2. We will
provide a lower bound by "decoupling" the partition function over "time" and
then giving lower bounds on the decoupled factors. We begin by:

Proposition 3.2. There is a constant C such that for any L, and for any dimension d,
we have

±- <logZίL(σ)> 2; i <logZL(g)> - ~ logL, (3.3)

for 1=1,2,.... In particular,

A M - X M ^ < l o g Z L ( σ ) > - ^( logL + logM). (3.4)

Proof To prove Proposition 3.2, we note that since ZlL is defined as a sum over
random walks, all of which have positive weights, we obtain lower bounds if we
exclude some of the allowed walks. We now describe these exclusions in detail.

We define a new class of partition functions: For t>s, we set

Z*,x(s, t; σ) = X* wsβ) Vί (1 + σ(p; i)), (3.5)

where the * on the sum denotes a restriction of the sum to walks i which "walk"
only from time p = s to time p = t, and satisfy the boundary conditions i(s) = y, i(ί) = z.
Note that the w are unnormalized weights.

We fix the noise configuration, σ, and define the recursively a sequence of
"stopping points" {y/σ)}J = θ J f° r Ztι(σ) as follows:

Definition 3.3. We set yo(σ) = io, and, for j = 0,...,/— 1, we define yj+1(σ) as a point

y which maximizes

with tj=jL. (One can choose any maximizing y.)
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Note that with this definition, one has

Ztι(σ)^ lnZ*jiσ)ιyj+ιUtj9tj+ί;σ)9
j = o

because the right-hand side corresponds to a restriction of paths. Thus,

- <logZ t ί(g)> Ξϊ - 'Σ <\ogZ*Aσ)^m(tj, tJ+, g)> . (3.6)
»τι ιι j = o

We compute the terms on the right-hand side of (3.6) by conditioning on the event
that y/g) = y. Thus,

= Σ j J J j }
yeί M

There are now two important observations. First, note that Z*tΎ iQ)(tj,tj+1; σ)
depends only on the random variables σ[f with tj^p<tj+i. In particular, by time-
independence, the random variables Z^y.+ ιiσ)(tβtj+ί;σ) will have the same
distribution as Z* > y m + l ( f f ) ( ί m 5 ί m + 1 ; σ) (with a relabeling of random variables). The
second important observation is that because of our periodic boundary
conditions,

the distribution of Z^y. + ι{q)(tp tj+1; σ) is independent of y. (3.7)

These two observations imply that

ϊ Z^yi{σ^L; σ)> . (3.8)

Thus we get the bound

\ <logZ(1(σ)> ̂  1 <logZ*o>yi(σ)(0, L; σ)> .

Note next that

ZL(σ)= X Z*0JO,L;σ). (3.9)
yelM

Since Z*o>y(0,L; σ) = 0 if |y —y o |>L, (each step of the walk has length at most 1!)
we have at most Θ(Ld) terms in the sum (3.9). Furthermore, Z*o y i ( σ )(0,L; σ) is the
largest term in this sum, and therefore

Z^yi{σ)(0,L;σm~ZL(σ). (3.10)

This proves (3.3). We now turn to the evaluation of <Zί;(σ)>. We prefer to do this in
a slightly more complicated fashion than is absolutely necessary, because this will
allow a more straightforward generalization to the symplectic case. Note that

Now <Γ> is a fixed matrix whose largest eigenvalue, μu is simple. If e has a non-
zero component in the direction of this largest eigenvalue, and if μ2 is a bound on
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the remainder of the spectrum, 0 < μ 2 < μ 1 ? then we have

Thus, for all Z,

\\(Γyιe\\= constμ,tι ( 1 + 0 ί M f ^ *

-log<Z ί z (σ)>- | log<Z L (σ)>

Combining (3.3) with (3.11), we have

1

> 1

- L

(3.11)

This completes the proof of Proposition 3.2.

Remark 3.4. Had we used the explicit form of <Ό>, the term containing logM
would be absent in the above estimate.

We now compare the partition function Z[M)(σ(M)) to Z^°\σ{co)). For this we
need to compare configurations of σ's on I M and on Z ί i = I0 0.

Definition 3.5. We say that σ(M) coincides with σ/(oo) in a disk of radius L<M/2
around i 0 if

σij ~ σ i j

for p = 0,1,..., and |i —i o | ^L, |j — i o | ^ L (measured on I M for σ and on 1^ for σ').

In other words, we first extend the configuration σ periodically from I M to Zd. It
is the configuration which is then compared to σ' on a disk centered at i0.

Proposition 3.6. If M is even and L<M/2 and σ(M) coincides with σ/(oo) in a disk of
radius L < M/2 around i0 one has

Z^ί\σiM)) = Zγ°\σf{co)). (3.12)

Proof. We have already pointed out that in a "time," L, the walk can move a
distance at most L from its initial point i0. Since L < M/2, no two walks in the sum
defining Z^M)(σ) can ever reach points a distance M, or more, from one another.
Therefore we will not change the distribution of the random variable Z^M)(σ) if we
replace the periodic array of random variables on Zd (outside a disk of radius L
around i0) with a set of independent random variables with the same distribution.
This completes the proof of Proposition 3.6.

3.2. The Infinite Volume Case

By Proposition 3.6 we see that it suffices to control the limit, as L goes to oo of
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In this subsection, M is always infinite, the random walks are on Zd starting at i0,
and the weights are w{

t^\i). This means that we are in a situation very similar to the
one considered by Imbrie and Spencer. We henceforth omit the superscript (oo).

We first use the assumption H.I we made on the random variables ωn (or
equivalently σ^), in the following form:

Hypothesis. The support of the random variables ω^ is contained in the interval
\_e~μ, oo) for some μ, 0<μ<oo.

This hypothesis gives an (obvious) pointwise lower bound on the partition
function which is of the form

ZL{σ)^e^L. (3.13)

Before starting the Imbrie-Spencer part of the argument we make one more
simplification. Define, for x>0, log~(x) = max(0, — log(x)) and log+(x)
= max(0, log(x)). With this notation,

logZL = log + (ZL)-log-(ZL).

Since we only need to derive a lower bound on (l/L)logZL, we can replace logZL

by — log~(ZL), and we have

X- <logZL(σ)> ^ - I <log-(ZL(σ))> . (3.14)

We also note that (3.13) implies

0 ^ 1 o g - ( Z L ( σ ) ) ^ μ , (3.15)

so that we have an a priori uniform bound.

Proposition 3.7. // the noise is sufficiently weak, and d ̂  3, then we have, for L} = 2J,

^ Z L / g ) ) > = 0 . ( 3 . 1 6 )

Proof of Theorem 3.1. If we combine (3.4) and (3.14) with (3.16), then we see that for
every ε>0 and M sufficiently large,

λM — λM > — ε.

Since we have already shown λM — λM ^ 0, this completes the proof of Theorem 3.1.
The remainder of this section is essentially devoted to the proof of Proposi-

tion 3.7. We need first a notion of "irreducible part" of the partition function. We
begin by defining, for s < ί,

Pl(tΛt;s)= Σ σ(ί-l;i)w s^i)Vπi+σ(p;i)). (3.17)
i : i ( s > = i 0 , i ( t ) = i t P = s

(Recall that w is the (normalized) probability on the infinite domain Zd, for paths
starting at i0.) The quantity pj is an "irreducible propagator," which collects all
terms in which the last "interaction" σ occurs at time t — 1 and in a bond ending in
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it. We can write the "full" partition function in terms of these irreducible pieces as

zL{σ) = (zL{σ)y+ Σ Σ PiCΛ O).
f = l i t e Z d

Note that <ZL(σ)> = 1. The idea of the proof of Proposition 3.7 is now to show that
with large probability, ZL(σ) is close to its mean 1.

We choose a particularly convenient subsequence of L's in order to evaluate
the bound in (3.16). Let Lo = 0 and, for j > 0, Lj = 2j. We will consider the partition
functions Zτ. and we rewrite them as

Σ
7 = 1

where we define, for t2>t1 ^s ,

S{tl9t2;s)= Σ Σ P/(*Λ;s). (3.18)

Note that for s'>0, S(t1 +sf, t2 + sf; s + s1) has the same distribution as S(t1,t2;
 s)

We next state a basic bound on S:

Proposition 3.8. // σ2 is sufficiently small and d ^ 3 , there exists a constant C1>0
such that for all non-negative ί*, t1 <t2 one has

+ tu t* + t2; t*)\2} ^ Cλo\\ + txγ
{ά-2)/2. (3.19)

Corollary 3.9. Under the hypotheses of the previous proposition, there are constants
C2 and C3 such that

Prob({σ | \S(t* + tί91* + 1 2 ; t*)\ >(C 2 σ 2 ( l + t1Γ
( d-2 ) / 2)1 '})

^ C 3 σ 2 ( 1 - 2 ' ί ) ( l + ί 1 ) - ( 1 - 2 ^ ( ί i - 2 ) / 2 ,

/or 0<f7<l/2.

Proof This is an immediate consequence of Proposition 3.8 and of Chebyshev's
inequality.

We now fix η in (0,1/2). Postponing the proof of Proposition 3.8 we continue
the proof of Proposition 3.7. We consider first special noise configurations σ.

Definition 3.10. We say a noise configuration σ is eventually good if there is some
m* — m*(σ)<oo such that

p j

2 { \ ^ L ^ m r { d - 2 ) l 2 ) \ (3.20)

for all j ^

Proposition 3.11. // σ2 is sufficiently small, then for every σ which is eventually
good, one has

lim
m-+co

We shall see below that almost all σ are eventually good.

Proof. Assume σ is eventually good and let m* be defined as above. Choose L = Lm,
with m>m* and set ί* = Lm*. We will bound ZL(σ) from below by again restricting
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the sum over random walks, much as we did in the proof of Proposition 3.2. With
the notation of (3.5), (but now for M = oo), we have

Σ

Σ y

Σ

Σ ^ L ( i ) [] (ί+σ(p;ϊj)\, (3.21)

where the last sum is over walks starting at time ί* and ending at time L and wt*t L is
the corresponding (normalized) weight cf. (2.8).

We now claim that both factors in braces are bounded from below by a
constant which is independent of L. We shall denote the quantity in the second pair
of braces by Z(t*,L). Note that in terms of this notation, Z L = Z(0,L). More
generally, we set

z{tut2)= Σ ^ J i / π

We can write

Z(t*,LJ = S(Lj,Lj+i;t*).

Using the bounds (3.20) on S, we see that the sum over j converges and we have

Z(ί*, L J ^ 1 - Qσ 2 f ?(l - 2~" ( d~ 2 ) / 2)" ', (3.22)

for all m>rn*. This bounds the second factor.

To bound the first factor, we remark that the hypothesis H.3 on the random
variables implies, for some μ > 0 ,

We also have

Σ
i:i(θ)=i(t*)=io

(3.23)

provided at least one term in the above sum is positive. This is the case since there is
at least one path connecting the 2 endpoints, which only involves non-zero factors
/jiίp+n-iίp)], cf. (2.7). Thus, we have only to bound

Σ >V>L(g)
ii<^> i

Σ
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Recalling how the vv are defined, we see that this quotient is exactly

and this inequality holds for all L. (For large s, the vector <Γ>Le is essentially
colinear with the eigenvector corresponding to the largest eigenvalue of <T>, and
hence the quotient in fact approaches e~μίt*.) Thus, the first factor in braces [in
(3.21)] is bounded by

for all L.
Combining (3.22) with this, we get

lim —log-(Z L m (σ)) = 0,

whenever σ2 is sufficiently small. This proves Proposition 3.11.
It remains to show that a.e. σ is eventually good, and to give the proof of

Proposition 3.8.

Proposition 3.12. // σ2 is sufficiently small, then almost every σ is eventually good.

Proof. We note that for a σ to fail to be eventually good, there is, for every m*, a
minimal j=j(wι*, σ) ̂  ra* for which (3.20) fails. We can now construct a sequence of
j n as follows: Set 7o = 0. Then define mn = j n _ λ + \ and j n = j(mwσ), for n = l , . . . .
Define

K — Lmn = Ljn _ 1 + ! ,

where we recall that Lk = 2k. If σ fails to be eventually good, then, with the above
choice of the /s we have

\S{L^Ljn + ̂ tn)\UC2σ
2{\^Ljn_jn_y^-^2)\ (3.24)

for n = l,2,.. . . Given j u ...,jN we denote by ? ( ; i i ] v } the set of σ for which the
above construction yields the j t in question. Note that ;„ >jn-ι. We now define ^N

as the set

Clearly, f] ^N contains all σ which are not eventually good. The condition (3.24)
iV>0

for a given n only depends on σ{p) with p = tn,...,Ljn+ί — ί. By construction, tn+1

= Ljn+1>Ljn+1 — l. This implies that these conditions are independent for
different n. Therefore, using Corollary 3.9, we find

Σ Prob(σ{j,,...,jΛr})
Λv>- > 7 l > 0

Σ Π (C 3 σ 2 ( 1 " 2 " ) (t+Lj m -j B 1 _ 1 )" ( 1 ~ 2 ' ' ) ( < i ~ 2 ) / 2 )
jN> ...> j{ > 0 m= 1

2 - (1 - 2η) (d - 2)/2\ - 1 \N

Since N is arbitrary, this proves Proposition 3.12.
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Proof of Proposition 3.7. Since Proposition 3.11 and Proposition 3.12 imply that

l i m T

1 - l o g - ( Z L » ) = 0,

for a.e. σ, one has, by (3.15) and the dominated convergence theorem,

which is Proposition 3.7.

Proof of Proposition 3.8. We begin by noting that by time-independence the
estimate will be independent of the starting time T* so that it suffices to do the
estimates for T* = 0. Using the definition (3.17) of the irreducible kernel, we see
that

(\S(TUT2;O)\2)= τ J < τ Σ <PI(t1M;0)pI(t2,i2;0)}. (3.25)

We now note that because of the time-independence of the σ(p)'s,

<σ(ί;ί)σ(s;j)> = 0, (3.26)

unless t = s, and the bonds b = (i(ί),i(ί + 1)) and b' = (j(s),j(s+1)) are neighbors in the
sense that they either coincide or at least have a common endpoint. This remark
allows us to expand (3.25), and to rewrite it, using (3.17), as

<|S(7i,T2;0)|2>= Σ Σ Σ
Ti<ί5=T 2 n—1 0 —so < Si < ... <sn = ί

n
χ Π Σ (σ(s

P ~ 1 ? i)σ(sp ~ i i))

0 V / 0 \J J / * V /

The Sj can be viewed as "hitting times" of the paths i and j . Here, we take i ( 0 ) = j ( 0 )

= i0. The probabilities P*o are defined by

n ϋ ) - _ Σ m wOfί(i).

The factors of Po result from the fact that in between their times of intersection, the
walks i and j are just "free" random walks on the infinite lattice in dimension d.

Note now that |i(sp~1}— j ( S p ~ 1 } | , |i(sp~1} — i{sp\ and |j(5p~1}—j(Sp) |, must be less
than or equal to 2 in order to get a non-zero contribution in the sum. This reduces
the four-fold summations in (3.27) effectively to summation over a single index i.
On the other hand, for fixed i(w), j ( u ) , we get using Corollary 5.3 of Sect. 5 for

Σ ΊJU — tγ (w) \(v)\ P u ~~ v( i ( w ) \(V)\ <ϋ 6Γo K1 ~~ι )Γo U J ; = \u_v\d/2

Furthermore, the factors of
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are all bounded by σ2. Summing over the \{Sp) and \{Sp) in (3.27) we find

τ2

T\ <t^T2 n- 1

x Σ Q Π (sP-sp-1Γ
dl2-

O-SO<S!< ...<Sn = t p=ί

n

Note that in the product, γ\ (sp — sp^ί)~d/2, there must be some p with sp — s p_ t

>t/n. (In all cases, sp — sp-1^l.) Thus

Σ Π (sp-sp-ι)-dl2£Cn('j
O=so<s1<...<sn = t p= 1 \t

This implies

τ2 i

for sufficiently small σ2. This completes the proof of Proposition 3.8.

4. Symplectic Matrices

In the present section we demonstrate that the results of the previous sections
generalize to the case of symplectic matrices

)

introduced in Sect. 1. Unlike the previous case of random Laplacians we cannot
scale out the mean of the random variables ω in the symplectic case. We have to
consider explicitly their mean and we define, throughout this section,

In analogy with our definition for the random Laplacian we define the random
variables σ^) χ ( P + i) as in (2.9), by

- , , ^ , ,4.2,

whenever <Σ x y >Φ0. We then set

σ2 = max (var(σb)).
b

In this section λM refers to the largest Liapunov exponent of Σ, not Ω.

4.1. Statement of Results

Our principal result is the following set of estimates on Liapunov exponents:
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Theorem 4.1. For all d^l and all even M one has the inequality

^M = l°g(l +2εd-\-2yrεcΓ+ε2d2). (4.3)

// d ̂  3 and σ2 is sufficiently small one has

lim λM = \og{\ +2εd + 2yεd + ε2d2).

Remark. Note that in terms of the original random variables ω, the condition σ2

sufficiently small means that there exists a small constant c > 0 such that var(ω)
<cε2.

Proof We prove this theorem by comparing the Liapunov exponent, λM, to the
(explicitly calculable) Liapunov exponents of the matrix averaged over the
randomness. As a first step, we note that -for the purpose of computing Liapunov
exponents - the argument we used in Sect. 2.3 allows us to replace the random
matrices Ω by random matrices Γ, all of whose entries are non-negative. By an
abuse of notation, we call the new matrices Σ as well, and from now on we will con-
sider only these latter matrices.

We next note that {Γ} = εD^, where

The subscript M indicates that the distances are measured modM. Thus, if we
consider <Σ>, we have

Let δ denote the largest eigenvalue of D^ This eigenvalue is 4d. An elementary
calculation shows then that the largest eigenvalue, μ, of <£> is given by

(52. (4.4)

Since μ is positive, the largest Liapunov exponent, λM, of <Σ> is

λM = log(l + 2εd + 2γεd + εΨ).

Thus, Theorem 4.1 is equivalent to showing that in any dimension,

λMύλM, (4.5)

while for d ̂  3 and σ2 sufficiently small,

lim (λM-ZM) = 0. (4.6)

Since (4.5) follows immediately from Proposition 2.4, we only need to establish
(4.6), and Theorem 4.1 follows. This is again done via a random walk expansion.

4.2. The Random Path Expansion for Symplectic Matrices

One has a random path expansion for random products Σn, with Σ as above, which
is similar to the one developed in Sect. 2.4 for the product of random Laplacians.
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The main idea of our method consists in viewing the space of indices 1,..., 2Md of
the 2Md x 2Md matrices Σ as elements of a two layered torus. More precisely, we
associate to every index 1 ̂  i ̂  2Md a pair of indices (j, α) by defining a map φ: The
indices of Σ are naturally divided into two groups, corresponding to the
representation (4.1) of Σ. We set

if \<i<

if

where i is associated with the index in the corresponding submatrix, as in the case
of random Laplacians. Thus the index set 1,..:, 2Md is identified with I M x if
where I M is, as before, the torus of side M, and ^£ is the set of "levels" which we call
"upper" (case of u) and "lower" (case of ί). Note that this periodicity is in agreement
with periodicity of the matrices Ω or Γ occurring in Σ. We now define weights in
analogy with Sect. 2.4, corresponding to the averaged matrix (Σy. We set

(4.8)

All other values of fΛβ(ή) are set equal to zero. We now assign to every walk x of
length t in (I M x <£)1 the weight

Π / X W W X ^ I ) , (4.9)
P = O ,

 2 2

where we use the projections onto components

i.e., the " 1 " component is in I M and the "2" component in e£f. Now let the vector
e e R1M X ̂  have a component x 0 = (i0, α0) = 1 and all others zero. Define the norm
on the space R I M X ^ as the L1 norm of the components. Then we have with the
above notation:

IK^> £ e | |= Σ w| M ) (χ).
x:χ(°)=xo

We again define

where the random variables σ^i)χ(P + i) are defined, as in (4.2). We also define the
normalized partition function Z L by

We need some more notation to take care of the two levels. We shall always fix the
"position" i0 at which the paths start, but we will have to allow for both "levels" in
the evaluation of Z. Thus, we define

[M)(x) Y ί (1 + σ $ , , χ ( P + i,). (4.10)
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4.3. Reduction to the Infinite Volume Case

We follow Sect. 3.1 quite closely, and remark only on the changes due to the more
complicated state space. Our principal result is again

Proposition 4.2. There is a constant C such that for any L, and for any dimension d,
one has the inequality

-?-<log2,L(g)>£ min } <logZL(α, σ)> - - l o g L , (4.11)

for / = 1,2,.... In particular,

λM-λM^~ min < logZn«, σ ) > - C l θ g M + l θ g ~ . (4.12)
L. αeif L

Proof Recall that

The proof is now an almost verbatim copy of the one for the random Laplacians,
and is obtained by replacing the variable i in I M by x in I M x ££. The only new
difficulty comes from the presence of the two "levels" and is connected with the
difference in transition probabilities for these two levels. We now indicate where
these things matter, by following the steps of the proof. The Definition 3.3 is
unchanged (except for the replacement of i by x which we will not consider as a
change any more). The argument goes through except for (3.7) which holds no
longer. We now have that the distribution of Z*^y.+ ι(σ)(tp tj+1;σ) (with y,
γj+ieIMxJ£) can only take two values, depending on whether the second
component of y is u or L (If the second components are fixed, then by the
periodicity of the boundary conditions, the distribution is independent of the first
component of y.) Therefore, we find, instead of (3.8),

mm <logZ*o,yi( f f )(0,L;σ)>. (4.13)
j = θ yo = ( i o , α ) : α e ^

It follows that (3.10) must be replaced by

Z*o,y i ( σ )(0,L; σ ) ^ m i n ^ Z L ( α , σ ) . (4.14)

We see that (4.11) holds. We turn to the evaluation of <Zί<f(α, σ)>. Note again that

where ea is the vector in R1M X ^ whose component (i0, α) equals 1 and all others are
zero. Because neither (i0, u) nor (i0, ί) are orthogonal to the eigenvector of the
largest eigenvalue of <Σ>, we find that

li
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is independent of α, and ||<Σ> ίβα | | = const μ\ I 1 + Θ I M — I I I, where μj andμ 2

\ \ \fl\J JJ
are respectively the largest and second largest eigenvalues of <Σ>. The analogue of
Proposition 3.6 follows word for word from the proof in Sect. 3 and we find

Proposition 4.3. // M is even and L< M/2 and σ(M) coincides with σ/(co) in a disk of
radius L<M/2 around i0 one has

ZiM )(α, <ϊ{M)) = Z^°\OL9 σ' ( o o )). (4.15)

for all a.

Thus we may concentrate our attention on the infinite volume case. Again
following the outline of Sect. 3 we see that the proof of Theorem 4.1 will follow if we
prove

Proposition 4.4. // σ2 is sufficiently small, and d^.3, then we have, for Lj — 2j, and
any α,

lim-ί<log-(Z ί,(α,ff))> = 0. (4.16)

The proof of this proposition is again very similar to the random Laplacian
case. One first defines

p /(ί,x,;s)= Σ σ(t-l;x)ws,t(x)Ύl(l+σ(p;x)), (4.17)
X:χ(s) = x0,χ(t)=X(. p-s

w i t h σ{p; x) = σ^iχiP))tπiiχiP + ι)y W e t h e n se t

S(tut2;s)= Σ Σ P/(ί,xf;s). (4.18)
ίi <t^t2 x t eZ d x JSf

Once again one can expand the partition function as

Z L » = 1+ Σ SiLj-^Lj Q),

and then one has the following two propositions:

Proposition 4.5. // σ2 is sufficiently small and d^3, there exists a constant Cί > 0
such that for all non-negative ί*, t1<t2 one has

2{l + tiy
{d-2)/2. (4.19)

Corollary 4.6. Under the hypotheses of the previous proposition, there are constants
C2 and C3 such that

?rob({σ\\S(t* + tut* + t2; tη\<{C2σ
2(l +tiy

{d-2)l2)η})

for 0<η< 1/2.

The proof of the corollary is immediate given the proposition. The proof of the
proposition follows that of Proposition 3.8.
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Proof of Proposition 4.5. The time independence of the random variables allows
us to take T* = 0. Then

<|S(T1?T2;0)|2>= Σ <PI(tl/h;0)pI(t2,i2;0)).
i

(4.20)

We now note that because of the time-independence of the σ(p)'s,

<σ(ί;x)σ(s;y)> = 0, (4.21)

unless t = s, and the bonds b = (π1(x(ί)), TΓ^X^ 1 *)) and V ^ π ^ l π ^ + V)) are
neighbors in the sense that they either coincide or at least have a common
endpoint. This remark allows us to expand (4.20), and to rewrite it, using (4.17), as

<|S(T l 9T2;0)|2> = Σ

x Π Σ (σ(sp-\;x)σ(sp-l;y)}
1

PSP

π(

where we have set

(4.22)

Σ Π /«p.1«,(i ( l'"1 )-i ( p ))
(4.23)

and used the notation

Σ*= Σ

From Corollary 5.3 we know that

<*f',β'

Inserting this estimate in (4.22) yields

Σ Σ σ2" Σ

f}) ̂

Q

c
M — d/2

and from here the proof of Proposition 4.5 follows Sect. 3 word for word.
The proof of Theorem 4.1 is completed by defining the eventually good noise

configurations in exactly the same fashion as in Sect. 3, namely,

Definition 4.7. We say a noise configuration σ is eventually good if there is some
m* = m*(σ) < oo such that
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\S(Lj9 Lj+1; Lm,)| < ( C 2 σ 2 ( l + Lj _ w )" ( d~ 2}/2f, (4.24)

for all j^m*.

One then has

Proposition 4.8. // σ2 is sufficiently small, then almost every σ is eventually good.

and

Proposition 4.9. // σ2 is sufficiently small, then for every σ which is eventually good,
one has

lim — log~(ZLm(α,σ)) = 0,

for all a.

The proof of Proposition 4.8 follows verbatim from Sect. 3, while that of
Proposition 4.9 involves only minor notational changes which we do not detail.
These two propositions lead immediately to a proof of Proposition 4.4, and
complete our discussion of the symplectic case.

5. Random Walks in Three or More Dimensions

In this section, we summarize some well known results about random walks in
dimension 3 or more, and formulate results in the form in which we use them. The
cases we consider are special cases of the more general setting of "aperiodic"
random walks in the sense of Spitzer [10].

The state space in which our random walks take place is of one of two types:
1) The lattice ^ Ξ ? , with d ^ 3 ,
2) The "double-layered lattice" l 2 Ξ Z d x jSf, where JS? is the set of "levels",

if = {uy}, as we discussed it in Sect. 4.
The transition probabilities have already been defined in earlier sections. We

summarize them here again.
1) In the case of the lattice Laplacian, cf. Eqs. (2.6)-(2.8) the transition

probabilities are translation invariant. We get in the case of the infinitely extended
domain, M=oo, the transition probabilities

p(i)

2d+ι'

We have used the notation from Sect. 2.4.

2) In the case of the symplectic matrices, we define PQίβ(i) = fΛβ(i) Σ f*β'(W °f
/ s,β'

(4.8).
Note that we are looking here at the "free" walks, i.e., all ω[f are equal to 1. In

other words, they are defined in terms of the averaged matrices, <Ω> and <£>, and
hence do not depend on the random variables σ.
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We next state several facts to fix the terminology, although the proofs are
obvious.

Lemma 5.L The random walks, for M = co, defined by the Laplacίans <Ω> on 3ft γ
and by the symplectίc matrices <£> on 3ft2 can reach every point in their state space,
starting at an arbitrary point in state space.

Proof Assume a path starts at the "origin" [i.e., at i 0 in 3ft γ respectively at i 0 © / (or
i oθw)] in 0t2- Given any other point j in 3ft ^ it is obvious that there is some finite
power m of the random matrices Ω(ω) for which Ωm(ω)i i o is not zero. The
analogous statement holds in 3i2.

The above lemma implies that the random walks on 3%hi = 1,2 are aperiodic in
the sense of [10].

We now discuss the case of walks in 012 only, the walks in 3ft λ being an easier
subcase. We define P\,β) as the transition probability from (0, α) to (i, jβ) in time t,
ί > 0 , and F^(i) as the corresponding unnormalized weight, defined by

n»= Σ Π !*,-*$*-"-'#")•
i : i ( °) = 0 , i ( t ) = i P=ί

<xo, . . . , α t e i f :<XQ = α, oct — β

in terms of this definition, Lemma 5.1 is in fact proved by showing that for ί = 2
and arbitrary a, one has

U (5.1)

for d linearly independent directions in rLd.

Proposition 5.2. // the conclusions of Lemma 5.1. hold, and if faβ(ϊ) + 0 for finitely
many i, then there is a constant C such that for all t > 0 one has

,5- Σ KJ') = t"'2

Proof This proposition is a slight generalization of results in Spitzer. We first
define the quadratic forms Qaβ, for α, β e if, by

Q«,β(θ)= Σ (θ ifFlβ. (5.2)
ίeZd

Note that because F^βii) is zero when |i| > 1, the sum in (5.2) extends only over
| i | ^ L = 2. The forms Qatβ are positive definite by (5.1). Therefore, there is a λ>0
such that

for all θ e Rd. We next define the characteristic functions Φaβ by

ieZd

Since our random walks are symmetric, i.e., Ft

atβ(i) = Ft

aiβ( — i), we see that Φa β is
real, and we have the identity

= Σ ( l-cos(θ i))Fα

2

5,(i) = 2 X sin
ieZd ieZd
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When \Θ\<π/L, we have sin2(# i/2)§;(θ i/π)2 in the above sum because of the
support properties of F\β. When \θ\^π/L and θe^=\_--π,π]d, we have Φaβ(0)
- φα/?(#) > 0, since Φα/ϊ(0) = Φαj8(0) in % only if 0 = 0. Thus, for some λf > 0, we have

for 0 E ̂ . In other words,

Note next that

Σ l 2 ^ ΣΣ
ieZd

Σ

(5.3)

(5.4)

On the other hand,

Combining (5.4) and (5.5), we see that

1 ί

Σ Π

Σ

Σ Π

(5.6)

where the second inequality used (5.3). We now note that with αf = jS, one has

Σ Π
α i , . . . , α t - i eJSf p= 1 __

ieZdso that

r2ί /j\

Σ^Π'V.JO)

Combining this remark with (5.6), and then performing the Gaussian integral
yields the claim of Proposition 5.2, for all even £>0. Since there are finitely many
transitions per unit time, the assertion then follows for all t > 0.

Corollary 53. For every finite m, there is a constant C such that for allt>0 and all
α, β, α', β' we have

Σ

Proof. We start by writing
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Then

J.-P. Eckmann and C. E. Wayne

Σ Σ

= Σ

= Σ

<c frf/2

Here, the sum over u extends over the set of possible paths of length at most m
which can be taken from a given site. By definition, this set is finite for finite m. The
claim of the corollary then follows by dividing by the normalizing factors.

6. Numerical Experiments for d= 1

We have seen in Sect. 3 - for random Laplacians - that in dimension three or
higher, the largest Liapunov exponent λu is "annealed", i.e., it is equal to the
Liapunov exponent λM of the product of the averaged matrices <Ω>, when M->oo.
In this section we present numerical evidence that the self-averaging does not take
place in dimension d = l. We have performed numerical experiments with the
matrices Γ, as defined in Sect. 1 for a random variable σ distributed uniformly in
[1 — a, 1 + α ] , where a< 1, and for several values of the matrix size M.

32 16 12 8 6 4
Fig. 1. Results of a numerical simulation. We show for various values of M (horizontal axis), and
various values of a (labels on curve) the computed Liapunov exponents and the "theoretical fit".
The vertical scale is proportional to λ M — λ M
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In first approximation, we find a law

where C1 ~ 0.1702 and C2{ά)~ 0.0071 a4. The numerical evidence is summarized in

Fig. 1? which shows that C1 is reliably constant over the domain of a considered,

but that the fourth order behavior of C 2 is less clear. On the other hand, there

seems to be some consistency with bounds which can be obtained from estimating,

through the diffusion kernel, the number of intersections between different paths.
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