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Abstract. We prove a global existence theorem for a discrete velocity model of
the Boltzmann equation when the initial values φ^x) have finite entropy and,
for some constant α>0, (1 + |x|α)φi(x)eLi[(R).

1. Introduction

The discrete kinetic theory is concerned with the analysis of systems of gas particles
with a finite set of selected velocities, and provides a useful substitute for the
Boltzmann equation, in terms of a system of semilinear hyperbolic equations. This
system defines the space-time evolution of the number of densities associated with
every chosen velocity. Generally the discrete kinetic theory only takes into account
the binary collisions.

These models, known as discrete velocity models of the Boltzmann equation,
have been studied for some time now, but were introduced by Maxwell.

The general model is written in the form:

~+ϊrVJi = Gi(fJ)-fiLi(f)

i = l,2,...,r,

where vh i = \,2,...,r is the set of the admissible velocities, and /(3c, ί) = {/i(3c, t),
/2(x, ί),..., fr(x, t)} is the r-component vector whose zth component represents the
density of the particles with velocity vt is the position 3c at the time t. Both 3c and v
are referred to an inertial reference frame S with unit vectors i, j , £

In the system (1.1) the gain term Gt and the loss term Lt are defined through the
expressions:

J k'm (1.2)

Li(f)(x,t)=\ Σ A\ffβ,t).
~ £ j,k,m
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The quantities Ak™ are nonnegative constants, linked to the probability that two
particles with velocities vt and v} collide and come out of the collision with
velocities vk and vm. Such constants obey the reversibility hypothesis, AkJι = Aι^m,
and also that of physical consistency A% = A%m = Ak™ = Ak

j]
ι = 0.

Since the collision conserves the momentum and the energy, the constants A\f
are different from zero when

with i,j, k,m= 1,2, ..., r. Naturally, this condition limits the number of discrete
velocity models that can be constructed. Cabannes [4] and Gatignol [6] may help
to give a more in-depth study of the various types of models.

Due to the form of the collisional operator, the system (1.1) possesses a certain
number of collisional invariants, that is to say:

i\ Σ A^(fkfm-fifj} = 0 (1.3)
Z j,k,m

at least, when ξ is the vector with all equal components, and

This induces, at least from a formal point of view, a priori bounds on the solution.
Likewise, as in the classical kinetic theory, if the Boltzmann iί-function is defined
as:

H(f)(t)=Σ ί mt)\ogfβ,t)dx, (1.4)
i IR3

it is proved that, at least on a formal level, the iϊ-function of the solution to the
Cauchy problem for the system (1.1) decreases with time.

In spite of its apparent simplicity (with respect to the complete Boltzmann
equation), the Cauchy problem to the system (1.1) has not been solved, except in
particular cases. Progress in this field has been achieved essentially in the last
fifteen years.

The state of research is noticeably different according to the Cauchy problem,
whether studied for initial data which depends on a single spatial variable, or for
more than one spatial dimension. In the latter case, results on the existence and
uniqueness of solutions have been obtained essentially for initial values close to a
known solution to the system (1.1). When the identically vanishing solution is
considered, the theorems of existence and uniqueness are proved with initial data
satisfying suitable smallness conditions [7, 8, 13, 15], i.e. for perturbations of the
vacuum.

For initial values close to the equilibrium solutions (globally Maxwellian
functions), the corresponding theorem of existence and uniqueness has been
proved by Kawashima [11]. In the same paper, an interesting result of existence
and uniqueness for initial data close to a spatially homogeneous distribution can
be found.

The limitations which are imposed on the initial data, as in the "smallness"
condition for the problem of the perturbation of the vacuum, are governed by the
fact that the techniques used (fixed-point theorems, iteration scheme of Kaniel and
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Shinbrot [10]) are applied to bounded initial data, and in practice they do not take
into consideration the loss term of the collisional operator, whose presence
implies, through (1.3), the conservation of the mass.

Such an a priori bound to the solution can be used studying the problem in a
L1 -setting, where, however, the presence of the quadratic terms on the right-hand
side of (1.1) causes a lot of difficulties in proving existence theorems in these
spaces.

The results are noticeably better when the system (1.1) is studied with initial
data which depends on a single spatial variable. In such a case, in fact, when the
initial data are uniformly bounded and integrable, it has been shown, first by
Nishida and Mimura [12] for a sufficiently small mass, and second by Crandall
and Tartar [14] for masses of any other size, that regular solutions to the Cauchy
problem exist globally in time. Crandall and Tartar's argument lies in proving that
the problem admits a local solution, and that, as a consequence to the if-theorem
(which for uniformly bounded data can be shown to hold rigorously), the solution
can be extended globally in time. It should be noted that, for the validity of the
//-theorem, the form of the collisional operator plays a fundamental role. Crandall
and Tartar's method was originally applied to the Broadwell model, which is one
of the more simple discrete velocity models. Then, the same method was applied by
Cabannes [4] to more complex models.

Recently, Beale [1, 2] has studied, still with initial data in L1nLO0, the
asymptotic behaviour of the solution of the system (1.1), showing that this solution
manifests a trend towards a state in which each component is a running wave
without interactions. Cabannes [5] and Bony [3] have found other results on the
asymptotic behaviour of the solution.

In 1984, Illner [9] appropriately adapting the iteration scheme of Kaniel and
Shinbrot in the study of the Cauchy problem for the Broadwell model, showed the
existence of a global mild solution for initial data in L l3 with small L1-norm. In
addition, if these initial values have a finite entropy, he showed that a global
solution exists, independently of the size of the Lj-norm, when the Boltzmann
//-theorem holds. Even if it seems reasonable to expect the H-theorem as a
consequence of the kinetic equations, Illner did not give a rigorous proof of it, but
only a semi-formal discussion.

In this paper the Illner program is completed, showing that the Cauchy
problem for a general discrete velocity model of the Boltzmann equation, in one
spatial dimension, has a unique global mild solution, provided that the initial
values have finite entropy, and belong to a weighted L1 -space. More precisely, let
φf(x), x e R, i = 1,2,..., r, be the initial densities of the gas, and let us suppose that,
for given constant α>0,

and

R), ;=l,2,...,r.

Furthermore, for any couple {vhVj) of possible pre-collisional velocities, let
(2,-15;) °fφθ.



124 G. Toscani

In Sect. 2, it will be shown (Theorem 1), through a classical fixed-point theorem,
that the Cauchy problem for the system (1.1) has a unique local solution.

In Sect. 3, to show rigorously the //-theorem for the solution, we will verify
(Lemma 2) that for nonnegative initial data, the local solution is nonnegative and
that (Lemma 3) the solution can be uniformly bounded in its interval of existence,
from below and above. These bounds are determined by the initial data. Keeping
in mind these results, and making use of those techniques already introduced by
the author in [16] for the study of the complete Boltzmann equation, the
//-theorem will be shown first for the solution of the Cauchy problem for the
system (1.1) when the initial data are opportunely bounded away from zero
(Lemma 6), and second for any other initial data.

The main result derives from the local existence theorem and from the
argument of Crandall and Tartar (Theorem 3).

Other problems are left open. We have not investigated the asymptotic
behaviour of the solution. The problem of the extension of the existence theorem,
where (pi — vj) of vanishes for some couples (υ^vj) of incoming velocities, is also left
open. This last problem may be solved using the techniques of Bony [3].

2. The Discrete Velocity Model. Local Existence

The formulation of the initial value problem for a one dimensional in space
discrete velocity model of the Boltzmann equation is the following:

£+>•'£-ettO-'MD ( 2 1 |

All the quantities appearing in (2.1) were defined in the introduction. In addition,
x = x ΓeR, D - ϊ j i e R In this paper, instead of the formulation (2.1), after
integration along the characteristics, we shall consider the weaker form:

0 ~ (2.2)
= l , 2 , . . . , r ,

where, for a given vector g{x,t), we denoted:

i. (2.3)

We will start to solve (2.2) with a few definitions and hypotheses. For each
constant p ^ l and α^O, let Lp α denote:

Lp,a = {f:(ί+\x\")f(x)eLp(R)}, (2-4)

and, for every fixed Γ > 0 , let 3SPfΛ be the Banach space:

endowed with the norm:

(2.6)
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where

Wα) sup I / ^ O I W ' (2.7)

In all this paper we shall consider only discrete velocity models such that the set
of the admissible velocities satisfy the following:

Hypothesis. For every couple (vbVj) of velocities entering in a collision,

(2.8)

The above condition is satisfied by many models, as the plane 2r-velocity model by
Gatignol [6], when r is odd, and the spatial eight-velocity model by Cabannes [4].
Other models, like the Broadwell model, are not included.

The proof of the local existence theorem will apply the principle of contraction
mapping to (2.2). As a first step toward this, we need a preliminary result.

Let A be the operator acting on 3$PiΛi whose components are

(AfUx, t) = Ψi(x) + J {GifJ) (x, s) - i t a s)Uf) (x, s)}ds. (2.9)

Then we prove

Lemma 1. Let φ^x) e L p α , / = 1,2,..., r. Then, if the Hypothesis holds, A maps 3§Pta

into 3$Pia for every fixed T > 0 .

Proof Let fe3§Pt0L. Then, for every i and t< T:

^ - VJS, S)\ds

Now, for every x e R , let us set:

F i (x)=sup| i ;(x, ί) | ; i = l,2,...,r. (2.10)

Since fe3SPiΛ, F^(x)eLp α, and for each xelR and f rg T:

Moreover, for any given constant c,

|/ί(x + cί , ί ) |^ sup \f(xJrvis
Jrct,s)\ = Fi(x + ct). (2.11)

By (2.11) we get:

£ j,k,m

V A1

^ h k, m

T

0

T

\f ί
0

^ j,fc,m 0

W Σ ^"JF/x
jk,m 0
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Let us multiply both sides of the above inequality by (1 +\x\a) and evaluate the
Lp-norm. By applying the Minkowski inequality, we get:

Af
j,k,m

Fk(x + {vt - vk)s)Fm(x + (Vi - vm)s)ds
(2.12)

- V Akm

2 f ij
Ft{x) J Fji

Let us consider first the last term on the right-hand side of (2.12). By using the
Holder inequality we obtain:

J Fj(x + (vt-vj)s)ds = (« , .- V j )- 1 J
0

Thus,

- V Λkm

z Jfcm

^ 4 ~ T " | | F ; ] | p , α ΣmΛ\T\υi-vj\ >\\Fj\\Pί0.

In order to find an upper bound for the second term on the right-hand side of (2.12),
we need a simple further inequality. First, consider that, when vt — vk or Vι — vm are
equal to zero, the upper bound has been found above. Therefore, suppose that
^ - % Φ 0 and at the same time vt — vmφ0 (the Hypothesis implies that vt — vk and
Vι — υm cannot be simultaneously zero). In this case it is a simple matter to show
that, for every x e R and £rg T:

-υk)t]2 + [x + (vt- v^t]2}, (2.13)

(2.14)

the constant cikm being defined as follows:

12' (vk-vm)2

Inequality (2.13) allows us to conclude that, for a suitable constant c |^ m ,
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By virtue of the last inequality, and by applying the Fubini's theorem, we get

: + (Vi-vk)s)

P ") l/P

dx

Ί P

x Fk(x + {vi - vk)s)FJx + {Vi - vm)s)ds dx

L

]
dx

-T Ί P

o ; J
p 1 I/P

Finally,
1

II < II roll 4 - - T p V / l k n ί l ί ; — ί; I ^
^ j,k,m

•
From now on, μ shall denote the Lebesgue measure on IR, and if (R) the class of all
Borel sets.

Given a vector function g(x, t)e$p>α, let us set:

sup ίj Γ(l +|xΓ) sup I^Ol lMxl 1 ' * . (2.15)
R ) β ) = ̂  [B [ J j

Let us introduce the subset 2Pt0L of 0SPtOL by:

It is straightforward to show that @)Pi0L is a closed convex set. The closedness
property of &p>α can be shown by contradiction. Let in fact {/„}„>! be a sequence
of ^ p α, which converges in ^ p a to / and suppose that fφl$PtQL.

This means that there exists a set 5 G ^ ( R ) , with μ(B) = β, such that

( l+ |x | α ) sup \&xJ
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Let χ(B) denote the characteristic function of the set B. Then, if we set
gn = fn'X(Bl Sn converges in J ^ α to g = fχ(B), with H l g J H ^ ^ , whenever
Illglllp,a>cβ, and the contradiction arises.

The local existence result for the system (2.2) is contained in the following:

Theorem 1. Let φt e Lp α, i = 1,2,..., r. Then, if the Hypothesis holds, there exists a
time Tp α > 0 such that, when T^Tp a, A is a contraction mapping from Q)p a into

Proof In Lemma 1, we proved that A maps Mp α into Mp α. Let now fe@p(X. If

if Γ(l + |x |α) s u p | ( A / ) . (x, t)\\ p

o

l /P

l ί Γ τ ~\p

+ x Σ 4 f ί (1 + M * ) W ί Fjίx + iVi-vjMs \ dx

L e t u s s e t F = max \Vi-Vj\. (2.16)
i.j i + j

If we proceed as in Lemma 1, we obtain the bound:
ϊ Fjtx + ivi-VjWs&T^lVi-vfi Σ λpJφi)(VT).
0 ί

Thus

1 ί Γ
~ Σ 4™ i ί (i H-M^iW ί f/

<j,k,m i

and

[ r Ί P 1 l/p

(l + |x|α) 1 ̂ (λ + ̂ - ^ F J x + ̂ - ί J ^ ) ^
o

i i

By grouping all these inequalities, and by taking the sum over i:

x Σ
i,j,k,m
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Let us fix a constant δ < 1. By virtue of the absolute continuity of λPtΛ{φϊ) (β) with
respect to β, when T is sufficiently small,

Σ λPJφ
ί

. (2.17)

Denoting by Tpa the supremum of the times in (2.17), we conclude that, when
T^ TPta, A maps ^ p ? α into % α .

It remains to prove that A is a contraction mapping on 2$Pi0L. To this end, let
. Then

^ j,fe,m 0

f/ - υ*)s, s)| |/m(x + (Γ. - vjs, s)\ + \fm(x + (vt - vjs, s)

- gjx + (vt - vjs, s)\ \gk(x + (Vi - υk)s, s)\}ds

T Σ Λ\f \ {\flx, s) - Ux, s)\ \l(x + {Vi - Vj)s, s)\
£ j,k,m 0

I?j(x + fa - Vj)s, s) - g/x + («,.- ^)s, s)| |gi(x, s)|}ds.

If z

- gk{x + {υi - vk)s, s)\ \fm(x + (vt - vm)s, s\ds dx

Moreover,

dx
1/P

and

ϋf - vj)s, s)\ \gi(x, s)\ds dx

- 00

71
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Therefore

y λpJΨi)(VT)

so that, if TSTPtX,

Via the contraction mapping theorem, we stated that system (2.2) has a local in
time solution, provided that the initial value φ is in Lp α. Let us remark that the
result of Theorem 1 is quite general with respect to what we need to prove the main
theorem of Sect. 5.

3. Nonnegative Solutions

In this section we shall prove that the local solution to system (2.2) is nonnegative
when the initial values are. This result will be achieved by means of a classical
argument that has been applied before to nonnegative bounded initial values.

Let us suppose that φ^x) e Lp^nL^ i = 1,2,..., r. Then, it is a simple matter to
verify that, for every T > 0 , A maps *fp>α into *fp>α, if

^P,a
= [fE^P,oc: S U P \?&χ>t)\ELp^nL^', Ϊ = 1 , 2 , ...,r\. (3.1)

This implies that the local solution f(x, t) we found in Theorem 1 lies in /pa. Let us
set

K= max esssup sup |/f(x, ί)l > (3.2)

and introduce, for y>0, the functions φi(x,t) = fί(x,t)Qxp(yή. Obviously, system
(2.1) can be written in equivalent form in terms of the functions φb

dφi dφi _,
+ Vι = yφi + β y {G({φ, φ) —'

dt dx ~ ~

or, in integral form

<^-(x, t) = (Pi(x) + J e ~~ys • — X A^φy^x + (vι — vk)s, s)

0 2. j , k,m

xφm(xΛ-(vi-υm)s,s)ds

* . Γ l . Ί
+ f φ;(x,s) \ y— - e λs V A^φiix + ίVj — vXs.s) Ids. (3.4)

o L 2 j.fc m J

Choose y7t-K Σ ^ j " ; then, since the functions into the integral appearing in

(3.4) are nonnegative at time t = 0, both these functions and the densities φt remain
positive for t > 0.
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By virtue of the equivalence of systems (2.2) and (3.4), it follows that, if
O^ψiixjeLp^nL^, the local solution to system (2.2) is nonnegative. Keeping this
in mind, for given nonnegative initial values φ f(x)eL p α, let us introduce the
sequences

φi"\x) = mm{n;φi(x)}; i=ί,2,...,r; n^ί,

and let / (" } be the local solution to system (2.2) with initial datum φ{n). Since
φ(fι)(x)^φi(x), according to the result of Theorem 1, this solution exists at least in
the same interval [0, Tp J in which system (2.2) has a solution with φ as initial
datum. Moreover,

lllΓ)-/IIU^m^)-?IU«+ί5lll/(")-/IIUα (3.5)
with δ<l.

The above inequality is easily derived if we consider that f{n) and / are
functions of 3)v>α, and the operator A is a contraction mapping on ^ p > α . On the
other hand, with a simple application of the dominated convergence theorem we
can prove that | | |φ ( / ί ) -φ| | | p , α ->0, as n^oo, so that by (3.5), | | | / w - / | | | p , α - + 0 .
This proves that fjx, ί ) ^ 0 a. s.

In conclusion we have:

Lemma 2. Let O g φ ^ e L ^ , z = l,2, ...,r. Then, the solution to system (2.2) is
nonnegative in its interval of existence. •

Owing to the positivity of the local solution, we can derive some useful bounds,
from above and below, for the solution itself.

In Theorem 1, we did not take advantage of the minus sign in front of the loss
term /JL^/). This means that, in effect, we proved Theorem 1 also for the system:

(3.6)

so that this system has a unique local solution / + in the interval [0, Tp J .

Both the mild solutions to systems (2.2) and (3.6) can be found by iteration; the
solution / is the limit of the sequences

whenever the solution / + is the limit of the sequences:

0 ' ~ Λ ' ~n

Since /J ,7(x, ί):g/j ^(x, f), ng O, taking the limits we have, for every x e R and
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Consider now the initial value problem (2.2) with initial value φ1 such that
φlti(x)^φi(x). Then, system (3.6) has a unique solution fγ at least in the same
interval [0, Tp J , and in this interval fλ t t(x, t) < /^(x, ί) Therefore, system (2.2),
with initial value φ l 5 has a solution fx that satisfies

0^/ l j ; (x,t)^y; + (x,f); ί = l , 2 , . . . , r . (3.8)

Finally, by virtue of the positivity, consider that the solution to system (2.2)
satisfies, in [0, Tp J :

0 j,fc,m

0 j,/c,m

{-£>}, (3.9)

the function F f

+ and the constant D being defined as follows:

Fΐ(x)= sup fr(x,t),

(3.10)

0 = 2 Σ 4™ll<PillP.o-

Let us group all we have derived into the following:

Lemma 3. Let 0 ^ ^ ( x ) e L p α, i=l,2, ...,r. T/zβn, ί/zβ /oca/ solution f to system

(2.2) satisfies, in its interval of existence:

x,t); ΐ = l , 2 , . . . , r , (3.11)

where D is given by (3.10) and / + is ί/ie solution of system (3.6) wiί/i initial values
(Pi(x), Ϊ = 1,2, ...,r. Moreover, let 0^φli(x)^φi(x), i = ί,2, ...,r.
/oca/ solution of system (2.2) wiί/i φ x as miίia/ i a/t/β:

i = l ,2 , . . . , r . D (3.12)

4. The .ίΓ-Theorem

As a second step toward obtaining global solutions to the initial value problem
(2.1), we need to show that the local solution satisfies the Boltzmann //-theorem.
As explained in the introduction, given the solution /(x, t) of system (2.2), the
//-function is defined by:

mi) (ί) = Σ ϊ ttx, t) log fix, t)dx. (4.1)
ί - GO

The Boltzmann //-theorem states that H is a nonincreasing function of the time.
In the rest of the paper we will fix 0 < α < 1. In this section, we will prove that, if

0 ^ φ f ( x ) e L l j α J and φi\ogφieL1, the //-function of the solution to system (2.2) is
uniformly bounded, in its interval of existence, by H(φ). To prove this, we need
some preliminary lemmas. The first is of independent interest.
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Lemma 4. Let φ f ( x ) e L 1 > α , ί = l , 2 , . . . , r , and in addition

/or some constant c. Then, in [0, T 1 > α ]:

^ + x 2 ) " 1 ; ΐ = l , 2 , . . . , r ; k c < o o . (4.2)

Proof. The result follows from a standard domain of dependence argument. By
virtue of the finite velocity of propagation, the solution at the point (x, t) does not
know what the initial data look like outside of the interval (x— VTX >α, x + F7\ α).
Let us break the real line into three intervals: (— oo, — ρ); [ —ρ, + ρ ] and ( + ρ,
4-oo), where ρ > 0 is a suitable constant to be determined later.

Since the solution f(x, t\ where x ̂  ρ + FT1 > α does not depend on the values of
the initial datum outside the interval (ρ, + oo), we will study the Cauchy problem
(2.2) first when φ^x) is modified outside that interval. We choose these initial
values, say φf(x), in order to satisfy the inequalities

e); i = l,2,...,r, (4.3)

where

if -ρ^x^Q
( 4 4 )

ρx) = c{ί+x2)~1 if x < ~ ρ or x>ρ.

To this point, consider that, for all constants a,b, with frφO, the following
inequalities hold:

0
Jx + bs)ds (4.5)

if x e [ — ρ, ρ], whenever

f h(x + as)hρ(x + bs)ds
o

(4.6)

Ύ( ] ) Ύ K
if x|e(ρ, +oo).

This proves that the operator A maps / into /, if

/ = {fe^Ua:\fi{x,t)\Sdhρ(x) for some constant d; i = l,2,...,r}.

In fact, when the Hypothesis is satisfied, and fef, the application of (4.5) and (4.6)
gives:

t

ί l/*(* + (̂ i - %>, 5)| |/m(x + (t;f - vjs, s)\ds
o

g J dthJ
0
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if

i,j;ί + j 2

\2rp2
11 . / / . i f - 1 / i/;. / / .

hρ(s)ds - max < 1
\n 11 \2T2

In the above inequality we fixed i . — υ m φ0.
Finally, for a suitable constant c, depending on T, α and on the velocities υh

\Gi{fJ)(x,s)ds^cιd
2hβ{x)- ? λρ(s)<fe. (4.7)

0 ~ ~ - oo

In the same way, for another constant c2 depending only on Tl0L and on the
velocities vb

I Ux,s)Uf){x,S)dS^c2d
2hQ{x) J hβ(s)ds. (4.8)

0 - oo

00

By (4.7) and (4.8) we conclude that A maps / into /. Since when ρ-^ oo, j hρ(s)ds
— oo

goes to zero, we can choose ρ in such a way that A maps c§ into ^, and is a
contraction mapping on ̂ , if

00

This follows from the fact that c1 and c2 do not depend on ρ, whereas j hρ(s)ds
— 00

depends on ρ and decreases with ρ. We proved that the solution to problem (2.2)
satisfies, in the interval (ρ, + oo), and for ρ sufficiently great, but finite,

/ i ( x , ί ) ^ 2 c ( l + x 2 ) - 1 ; ί = l , 2 9 . . . , r ; ί e [ O , T l f J .

The identical bound holds when xe(— oo; — ρ).
Now, let x e [ — (ρ+ VΎγ>α), + ρ + FT 1 > α ]. Since the solution depends only on

the initial values in the interval [ —(ρ + 2FT1>α), ρ + 2FT 1 > α], we can take these
initial values to be zero outside this interval, without affecting the solution.

Suppose that we can find a set B e J5f (IR) of Lebesgue measure μ0 > 0, such that,
for xeB and for some t^TiOi and / ^ r:

Then

sup j sup fj[x,t)dx

VTi x ?rr(n-\-?VT

whenever, for each £ 6 J^(R), with μ(£) = μ0:

£ -μo/2

so that
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Choosing ρ + VTX?α>3, at the same time we have

27
Σ A,o(/D(^o)^2^o JQ

and this contradicts the result of Theorem 1. •

Before we consider the validity of the //-theorem, we must prove:

Lemma 5. Let 0^φί(x)eLl(χ, i = l , 2 , ...,r; α < l . Then, there exists a constant d
such that, for every constant b^d, the Cauchy problem (2.2), with initial values

ψi(x) = m<ιx{φί(x); ^ (1+x 2 ) " 1 }

has a local solution in [0, TUa].

Proof Let δ be the constant appearing in (2.16), and let us put:

d= —— <r sup I -τ—2 dx-k
I t Be^(My,μ(B) = VTUoc B 1 + X

*.= Σ 4> ί-υ j.r i(2+8Cίij.
Then,

fca Σ Λ-UψdiVΆJ^k* Σ A,,α(<i()i)(7Tliα)+ ~ =<5+ i = - < 1.
ΐ i A L

Thus, the conclusions of Theorem 1 follow. •

Given the initial value φ, satisfying the hypotheses of Theorem 1, let us
introduce the following sequences:

φί")(x) = n ( l + x 2 ) ~ 1 if φ(x)^w(l +x2)~ι

φ^ix) =X~d{\+x2Yι if φix) S-dil+x2)-1 (4.9)

φ^\x) = φt(x) elsewhere i — 1,2,..., r n ̂  1.

In (4.9) d< 1 is chosen in order to satisfy Lemma 5.
Let us remark that, by virtue of the definition (4.9), the Cauchy problem (2.2),

with initial data φ|"}, has a local solution in the interval [0, Tla].
Moreover, we have:

Lemma 6. Let f{n\x, t) be the local solution to the Cauchy problem (2.2), with initial
datum φ{n\ Then, f{n)(x, t) satisfies the H-theorem in its interval of existence.

Proof Let us set

log + x = logx χ{x ̂  1}, log~ x = — logx χ{0^ x < 1}.

First, let us observe that X ^ l o g / ^ e L j i R ) . In fact, for every i^r,
i

? (x,ί)l<ix= I \ftn\x,t)\ogfi"\x,t)\dx

J ft">(x,t)log-?t*Kx,t)dx.
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By virtue of the inequality:

x\og~ x^y — xlogy

that holds when 0 < y ^ l , x > 0 , if we choose j/ = exp{ — (1

- 00 - GO

Moreover, by the result of Lemma 4, for some constant kn,

+x2yι, (4.10)

and

J fi

{"\x,t)\og+pn\x,t)dxS 1 K(ί+x2yι\og+kn(ί+x2rιdx.
— QC — QC

By the definition (4.9), for each fixed n9 φ(

f

n)(x)^v;f(x) if

This implies that, by virtue of Lemma 3, inequality (3.12), ffn)(x, t) ̂  fί + (x, t), where
/ + is the local solution to the Cauchy problem (3.6) with initial datum ψ. On the

other hand, since φ|n )(x)^ - (1 H-x2)"1, a new application of Lemma 3 gives

D}, (4.11)

the constant D being defined by (3.10) with \pt instead of φ{. To this point, it is easy
to bound the gain and loss terms. We get:

i(f{n\ fin)) (x, ί) = \ Σ A\fftn\x + (vt - vk% t)?£\x + (Vi - vm% t)
~ "" ^ j k m

~2k" •? A^j,k,m

for every t^TΐOί and xelR.
In addition, consider that, by (2.13)

{^+ίxJr(υi-vk)t']2)(l+lx + (υί-vm)Q2) ^ i

Thus:

OJifM,f^(x,t)^\ki Σ 4Mmax{l,cU i m} ( l+x 2 ) . (4.12)

With similar computations we get:

fn^t)Uf{n)){^t)^\k2

n Σ Aff-iί+x2)-1. (4.13)
I j,k,m
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By (4.10), (4.11), (4.12), and (4.13), for every t^ Tla and x e R :

log - />}(x, t) {Of(/(Λ), l{n)) (x, t) + ??Xx9 ί)£i(/(B)) (*, 0}

id 1 (4 1 4 )
^rf^Cl+x^-Mog- | ^ exp{-/)}-(l+^ 2 )- 1 | ?

and

log +#">(*, t) {GtfWjWHx, t) + ?W(x, ήUf^Kx, t)}

^dln(ί+x2Γ1log + {kn(ί+x2y1} (4.15)

with obvious meaning of the constants. The functions on the right-hand side of
(4.14) and (4.15) are in L ^ n Q R ) .

If we multiply both sides of Eqs. (2.1) by 1 +log //n)(x, ί), and take the sum over
ί, we get:

at

jtfP log ft*

= Σ (1 +\ogft")){Gi(f(n\fn))-fϊ )Li(f("})}. (4.16)
i

We integrate both sides of (4.16) with respect to the x variable obtaining:

ϊ γtΣftH)ft
L

- GO UL i

Let us remark that, for each t^ Tγ ?α, the function into the integral on the right-
hand side of (4.17) is integrable on IR and is uniformly bounded by a function of
L1(R)nC&(R) in consequence of the inequalities (4.14) and (4.15). Thus, we can
interchange the integral with the derivative, and obtain:

^i/(/ ( Λ ))(ί)= ϊ Σ
at -oo i

Now, by a well-known argument,

? Σ (1 j
1 oo f(n) f(n)

n J L ^ij 1 U 5 r(n) r(n) Ufe Jm Ji Jj )UX — V.
O -co ί,j,k,m Jk Jm

This concludes the proof of the H-theorem for / (" }. Π
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Theorem 2. Let O^(pj(x)eL1)OC, and in addition φi\ogφieLι, i^r. Then the local
solution of the Cauchy problem (2.2) satisfies

H(f)(ή^H(φ) (4.17)

for every t^Tla.

Proof To start, let us observe that, in consequence of the definition (4.9),

\\\φ{n)-φ\\\i,o^0.

Since / (" } and / are in ^ 1 ? α , for ί ̂  T1>α5 we get

lllΓ)-/llli,o^lllφ(")-φllli,o + ^lllΓ)-/IHi,o,

δ being defined as in Theorem 1, so that

lll/('1)-/llli,o-o.

Since f-n) converges in measure to fb we can apply Fatou's Lemma to obtain:

l + ttx,t)dx
— OO

^ lim inf J f{n\x,t)log+ f(n\x,t)dx
n~• oo — oo

^ lim inf j Σ ΐιn\x, 0 l o S + U(n)(^^ O^x

1
00 - GO ί

S lim inf \H(φ{n))+ Σ ί {e~(1 + i

n—> oo [ ~ i — o o

c being a suitable constant.
In addition, since / e ^ α,

Thus we verified that fi\ogfeLi for each t^
Let us set:

Σ # " W ) l o g # n ) ( x , i ) - Σ φ^Wlogφ^x); ί^T1 > α. (4.18)
ί ί

The above sequence converges in measure to
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Let us remark that the functions defined by (4.18) can assume negative values, so
that, in order to apply Fatou's lemma, we need to verify that:

Σ?ϊn\x,t)log?tn)(x,ή- Σ φ\n)(x)logφW(x)^ -h(x)9 (4.19)
i i

where h(x)^0, and h(x)eL1(]R).
By the result of Lemma 3, and by (4.9),

Σftn)(xj)logftn)(xj)^ - Σ { e - ( 1 + | x | β ) + (l + \x\*)£+(x,ή}9
i ί

whenever

Σ φT\x)^ogφ^(x)^ Σ φi(

This means that inequality (4.19) is verified setting

h(x)= Σ Je~ ( 1 + 'x'α) + (l + |x|α) sup t + (.

At this point, the result is achieved by the application of Fatou's lemma. Π

5. Global Existence

In this final section, we will prove that, when the initial values for the Cauchy
problem (2.2) stay in L t α, for some α>0, and in addition when they have finite
entropy, the local solution can be extended globally. To do this, we shall use
Theorem 1, coupling this result with an argument of Crandall and Tartar [14].
This argument was adapted to L r d a t a , and for the Broadwell model, by Illner [9].
Our result is contained in the following:

Theorem 3. Let 0 ^ φ j ( x ) 6 L l α , α>0, i<^r, and, in addition

Then, if the Hypothesis is satisfied, the Cauchy problem (2.2) has a unique
nonnegative mild solution.

Proof According to (2.13),

1 +1jc|α^ c^^{Πl -h |Λ: 4- (ϋf - ^)ί |α

so that, if

Ci,k,mCikm — m a x

\x + (vi-vm)tn} (5.2)

for every x e R , te 1R. Let us set

cI%,J (5.3)
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and fix δ < 1. Since φieLι^a, f^r, Theorem 1 assures the existence of a solution to
the Cauchy problem (2.2) at least in the interval [0, Tγ J , where Tγ α is the solution
of

ΣKa(φi)(vτ)=~ (5.4)

and, in this interval, / e ^ l j C r

If we consider that

l i m J (l + \x\a)φi(x)dx = 2 ] φi(x)dx; i^r,
<χ->0 — oo — oo

owing to the definition of λla(g)(β\ we can easily prove that, uniformly with
respect to β,

If T l t 0 is defined as the solution of

it follows that Tljfl£ converges to T1 > 0 as α->0. This implies that, for every η >0, we
can find aί > 0 such that, when α ^ α x :

Tl.α^Ti.o-fί. (5.5)

Moreover, in the interval [0, Ti>fltl], we can apply Theorem 2 to conclude that in
this interval the H-function of the solution is uniformly bounded by the H-function
of the initial values.

Suppose that, in consequence of Theorem 2, the solution, in the interval
[0, T1>αJ consists of uniformly absolutely continuous measures, in the sense that,
for any ε>0, there exists a β>0 such that, for all t^ T l α i , and BeJS?(R):

μ(B)^β=>SΣ?fa,t)dx^ε. (5.6)
B i

Then, we can apply Theorem 1 to the Cauchy problem (2.2), setting /f(x, Tx α i ), i g r,
as initial values, and we conclude the existence of the solution / e J 1 ) 0 , in the
interval [0, T1>αi + T 1 > 0 ]. On the other hand, if we apply Theorem 1 to the Cauchy
problem (2.2), with initial values/^x, T l α i ) , we conclude the existence of the
solution /ef l t ί ( 2 , in the interval [0, Tx α i + 7\ α J . Again, if we choose α2

sufficiently small, given the constant appearing in (5.5),

TUa2^Tuo-
η-. (5.7)

So, we have the existence of a solution at least in the interval [0,2TltO — η(l+ J)]. In
this interval, the solution satisfies the hypotheses of Theorem 2, and therefore
(4.17). With a repeated application of the previous arguments, we can find a

sequence {αk}k>1? such that Tx α , ^ T i 0 — -£, and, after n steps, we prove the
~ 2
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existence of a unique solution in the interval 0, nTx 0 — η £ 2 k \. Since Tx 0 is
L ' k=i J

fixed at each step, we conclude that the solution exists globally.
It remains to verify that, under the hypotheses of Theorem 2, (5.6) follows. We

will verify (5.6) by contradiction. Assume that (5.6) is violated, i.e. there is an ε > 0
such that, for all δ > 0 there is a time t^T1>a and a Borel set B e JS?(R), with μ(B) < δ,
but j X ft(x, t)dx ^ ε. Since the solution satisfies (4.17), H(f)(t) is uniformly

B ί

bounded,

ϊ Σfo,t)log?fa9ήdx?ZH(φ). (5.8)
— oo i

On the other hand, in [0, Tt J :

a, (5.9)
— GO

so that

a + r J e~{i + M*)dx = c. (5.10)
~ ~ — GO

By assumption, there are sequences δn-^0, tn ^ Tλ α, and there are Bn e ^f(IR) such
that μ(Bn) ^ <5Π, but

SΣ
Bn i

By passing to subsequences, without loss of generality, we can assume that, for

Bn

 r

From (5.10) we have:

ί f(γ t ^1θCr+ f(γ t W γ < Γ
Bn

Now, let m ̂  1 arbitrary, and let

Bn, i = {χ<EBn '• fi(x > tn) = ̂ m} -> Bn,2 = ^ 5

Then

[ ί Σ
Bn Bn>1 Bn>2

Λ

- j /Xx, fB) log + fJ[χ, Qdx + δ,,e'" S -
m is,,, i w
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c ε ε
Choose m such that — < —. Then choose n such that emδn < —, so the

m 4r n 2r
ε c 3 ε

contradiction - ^emδn-\ g - - results. •
r m 4 r
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