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Abstract. We calculate the homotopy groups of the space of elliptic boundary
value problems for an elliptic differential operator A of a first order and of the
space of elliptic self-adjoint boundary value problems when A is a formally
self-adjoint. In particular we show that the spectral flow of an S1 family of
self-adjoint elliptic boundary value problems is well defined. This provides some
information on spectral properties along the lines of the Vafa-Witten approach
to spectral inequalities.

1. The Notion of an Elliptic Boundary Value Problem

Let X be a smooth compact manifold with boundary Y. Let E and F be smooth
complex vector bundles over X. For simplicity, we consider A: C°°(X; E) -» C°°pf F)
an elliptic differential operator over X of first order. We discuss the results for a
larger class of operators at the end of the paper. Now let us fix a Riemannian
metric on X and Hermitian structures on E and F. Then in a fixed collar
neighbourhood N = 1 x 7 of 7 = 0 x Y the operator A takes the form

-Bt(y)l (1)

where G(ί,y):£ | y -»F| y is a bundle isomorphism for fixed t; dt is the normal
derivative; and Bt: C^(Y; E\γ)^ C"°(Y; E\γ) is an elliptic differential operator of
first order on Y such that the principal symbol bt(y, ζ) of Bt has no purely imaginary
eigenvalues. We will assume that G(ί, y) is unitary.

It is well known that the orthogonal (with respect to L2(Y;E\Y)) projection

P(A):C°°(Y;E\Y)->H(A)

of C°°(y;£|y) onto H(A) = {u|y |ueC°°(X;£) and Au = 0 in X\Y} is a pseudo-
differential operator of order zero. It is called the Colder on projector of A At each
point (y, ζ) of the cotangent sphere bundle SY the principal symbol of P(A) is the
orthogonal projection p + (yiζ)\Ey-+Ey onto the direct sum EyX of the eigenspaces
of the symbol bo(y,ζ) corresponding to the eigenvalues with positive real part.

Now let V be a Hermitian bundle over Y and let i?: CG O(y;E|y)^C0 C(Y'; V) be
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a pseudo-differential operator. Then we have various expressions of a boundary
value problem, namely the pair

(A, R): C°°(X; E) -> C00(X; F) ® ran (R),

the realization of ,4

as an unbounded operator in L2(X;E) with

dom(y4Λ):={M6L2(X;£)μMGL2(X;F) and R(u|y) = 0}, (2)

and the boundary integral

RP(A):H(A)-+mn(R).

It has been shown in Seeley [11] that we get well defined operators with suitable
regularity and finite index under the following assumptions:

(a) the range is R is closed in a suitable L2 space, and
(b) the principal symbol r of R maps the range E+ of p + isomorphically onto

the range of r.

Remark. This notion includes the local condition (of Shapiro-Lopatinsky type)
and the global condition (of Atiyah-Patodi-Singer type) as well. We get the local
condition when R\ C 0 0 ( 7 ; £ | y ) ^ C 0 0 ( y ; V) is a pseudo-differential operator such
that r:R+-+π*(V) is an isomorphism where π:SY-+Y denotes the natural
projection.

Note that here we also admit operators R: C°°(y;£|y)-» C°°(7;£|y). In this case
the cokernel of R is infinite dimensional; but the point is that only the kernel of
R is important. Thus5 as was explained precisely in Seeley [11], we may restrict
ourselves to boundary conditions which are pseudo-differential projections. This
leads us to the following definition:

1 Definition. We shall say that a pseudo-differential operator R:CrjJ(Y;E\γ)-+
C™(Y\E\Ύ) defines a generalized Atίyah-Patodi-Singer elliptic boundary condition
for A if and only if

(a) R2 = R, and
(b) r(y9ς) = p + (y,ζ) for all yeY and ζeSYy.

We denote the space of pseudo-differential projections defining generalized
APS conditions for A by Elly(/4). It carries the L2 operator topology.

Remark. The space EUy(/4) does not contain all possible elliptic boundary
conditions for A. Even so, it is in a certain sense generic, and one can find a close
correspondence between Elly(Λ) and the Grassmannians which are used in
Pressley-Segal [10], Segal-Wilson [12] Witten [15].

The introduction of the space Elly(/4) permits one to reduce the topological
analysis of the space of elliptic boundary value problems to just the boundary as
shown in the next theorem, which is an easy consequence of Seeley's considerations
in [11].
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2 Theorem. The space El\γ(A) of generalized Atiyah-Patodi-Singer elliptic
boundary conditions for A is isomorphic to the space

Pdiffp + (£| y ) = {P|P 2 = P is pseudo-differential of O-th order over
Y in E with principal symbol p = p + \.

2. Spaces of Pseudo-Differential Projections With the Same Principal Symbol

The space Pdiffp+(£|y), or for short, Pdiff^ was introduced in [16] and its
homotopy groups were determined in [18] (see also [17] for the calculations
concerning the connected components of Pdiffp + ). In particular we know that

Z for i even

0 for i odd '

which gives us the following result:

3 Theorem. Under the assumptions of Sect. 1 we have

for i even

for i odd '

We present the following example which shows how Theorem 3 works. Let us
assume that X is an odd-dimensional compact manifold with boundary Y, and let
us consider the Dirac operator ]/):Cco(X;S)->Cco(X;S) over X. It is a formally
self-adjoint operator and it is of the form of Eq. (1), namely Jj) = G(dt + B) over the
collar when it is assumed that the metric is product near the boundary.

Now G2 — —Id and S decomposes over Y into 5 | y = 5 + © S _ . With respect
to this decomposition we get

0 \ Λ / 0 B^=B
3 ' + l B + 0

where B + : C00(7;ίS + )-^C00(Γ;5_) is the Dirac operator on Y. Let us observe that
the formal self-adjointness of ψ implies GB = — BG (see below Sect. 3). This leads
us to the following interesting observation:

Let φλ be an eigenfunction of B,Bφλ = λφλ with λ / 0, then Gφλ is an eigen-
function of B with eigenvalue — λ. This means that the spectrum of B is symmetric
with respect to 0. Moreover, as shown in Palais [9; Chap. XVII], we have index
B + = 0. This means that dim ker B = dim ker B + -f dim ker B _ = 2 dim ker B + .

Now let us consider the standard Atiyah-Patodi-Singer realization of Jj> i.e.

P17+(B) ~ P w i th the domain

^ = {ueH\S)\n+{B){u\Y) - 0},

where Π+(B) denotes the projection of L2(5|y) onto the subspace spanned by the
eigenfunctions of B corresponding to the non-negative eigenvalues. Now, from the
results of Atiyah-Patodi-Singer [2] we know that ψπ+{B):domIf)Π+{B)-^L2(S) is
a Fredholm operator and that its index is given by the following formula:

index ψ π+ {B) = jαo(x)dx — |(^β(0) + dim ker B),
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where α0 is the index density which is equal 0 when dimX is odd, hence
is equal 0 and we are left with the formula

index p π+ {B) = — dim ker B + .

In [17] the second author proves the following equality

index ψπ+{B) = index (77+ (B)P(p)%

where he considers Π+(B)P(p):H(p)-+v<mΠ+(B). It follows from [16] that the
index of this last operator is equal 0 if and only if Π+(B) and P(p) belong to the
same connected component of Pdiffp+(S_ © 5 + ).

Hitchin [8] showed that dim ker 5 = 2 dim ker B+ varies when we deform the
metric (the most simple non-trivial examples are all Riemannian surfaces Y with
genus g > 3). This means that Π+(B) and P(p) change their connected components
independently of each other and that under a smooth change of the metric the
operator p Π+{B) varies in a non-continuous way.

With the self-adjoint case in mind, the second author introduced the subspace
Pdiff£+ of Pdiffp+ in his paper [18]. It is defined as follows: We fix PoePάiϊϊp+

and an automorphism G: L2(Y; E\γ)-+ L2(Y; E\γ) such that

G2 — — Id and —GP0G = Id — P0. (3)

Such G always exists. Moreover, the space

Pdiff£+ := {PePdiffp+1 - GPG = Id~P}

is also nontrivial from a topological point of view, namely

f 0 for i even

for i odd '

as was shown in [18]. In the next section we show how to apply this result to the
theory of self-adjoint elliptic boundary value problems.

We want to close with some comments concerning applications of the main
result of this section. Theorem 3 shows us the possibility of analyzing families of
elliptic boundary value problems (for a fixed operator A) in exactly the same way
as was the case with families of elliptic operators over closed manifolds. Later, we
will show precisely how—at least in the case of a simple base manifold—the index
of such families arises.

3. The space of Self-Adjoint Elliptic Boundary Value Problems

Let us now assume that A is formally self-adjoint. In particular this implies the
following identities when we consider the representation (1) over the collar

G(t9.)Bt=-B*G(t9') and G*(ί,.) = -G(ί,.). (4)

In the following we consider a slightly more special case. We assume that all
metrics are of product from on the collar N oϊ Y and that G and B do not depend
at t over N. Moreover, we shall assume that

G2=-Id and B = B*, (5)
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which in view of (4) implies that GB = — BG. Note that all operators "of Dirac
type" satisfy condition (5).

4 Definition. We shall call the realization ΛR of A a self-adjoint elliptic boundary
value problem if and only if

Now in view of Green's formula (and here A = A*)

(Au,v) - (u,Av) = J<G(u|y),ι>|y>, (6)
Y

we have the following fact.

5 Proposition. An element PePdiϊϊp + (E\γ) defines an elliptic self-adjoint boundary
value problem for A if and only ifld — P— —GPG.

Proof. We have (Au, Vs) — <w, Av) = 0 for u,vedomAP, hence ran GP = ran (Id — P).

D

The only problem left is that the space Ell^(X) of self-adjoint problems may
be empty. To prove that this is not the case let us recall the following result which
was proved in [5] and in a different way in [17], namely

P(A*) = GP(A)G~\ (7)

which in our case gives exactly what we want. Hence

6 Proposition. Let A be an elliptic differential formally self-adjoint operator of first
order which satisfies (5). Then the realization AP{A) is a self-adjoint elliptic boundary
value problem.

As a consequence we obtain the second main result of this paper:

7 Theorem.

JO for ί even
: (Z for i odd '

In particular the fundamental group of Ell* (A) is Z. This means that the notion
of the spectral flow is well defined in this case. We present the simplest non-trivial
examples is the next section.

The simplest example is of course provided by the operator A = —i(d/dx) on
[0,2π]. We take the family {At}teJ of realizations of A with the condition
w(l) = e2πίtu(0). The eigenvalues of At are {k + t)keZ and the corresponding
eigenfunctions are ei(k + t)x. Moreover, we have A1 = Ao and we see that there exists
a non-trivial spectral flow in this case.

The next example is in dimension 2. Let d denote the complex differentiation
d/dz:Cco(D2)^Cco(D2) over the unit disc. We consider the self-adjoint operator

d 0 '
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Now H

over S

(A) = H(

the following

/ 0 -eiφχ

\e-φ 0 ,

d)©H(d) = H.

form:
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(8)

and iί_ -

αpc Λ. Note that i ί + n H _ = C does not violate (7) because we have

a non-trivial G for 5 (and 3). We obtain

P + ) + Po 0

0 P +

where P + is the projection onto span {eιkx}k>0 in L2 and p 0 is the projection onto
constants. Now we may choose the family At of realizations of A with the boundary
condition Pt = eitφP(A)e~itφ.

In the next dimension we have the first topologically interesting example: the
restriction of the signature operator over S3 to D3. The precise calculations will
be published separately.

4. Spectral Estimates for Self-Adjoint Elliptic Boundary Value Problems

The main reason for our investigation of the topological structure of the space of
elliptic boundary value problems is the search for non-vanishing spectral invariants.
We want to transfer an idea of Vafa and Witten [14] (see also Atiyah [1]) to
boundary value problems. They use the notion of spectral flow to obtain uniform
inequalities for the spectrum of the extended Dirac operator (uniform with respect
to the choice of the coefficients bundle) on closed manifolds. Here, we shall show
how their global reasoning can be adapted to our context, thus providing both a
short-cut alternative and a substantial supplement to the classical (and neo-classical)
spectral analysis with its highly subtle derivations of spectral inequalities.

We consider the simplest (and probably the most interesting) case. Let
' = 2fc — 1, and let A be a formally self-adjoint operator of Dirac type

, , . ^ here,^ = Id
here αeg g =

Fig. 1. The choice of g: X -> U{N)



Topology of Elliptic Value Boundary Problems 7

where ξ is a Hermitian vector bundle over X, and let 77 be a suitable self-adjoint
boundary condition i.e., 77 is a Oth order pseudo-differential projection such that
- G77G = Id-Π (cf. Sect. 2 above).

Now we choose a map g: X -• U(N) of the form explained in Fig. 1. Since g is
equal to Id near the boundary the operator Π®ldcN = 77© •••©77 defines a
self-adjoint boundary condition for the operator Aί:=(Id®g~ί)A0(Id®g) with
v40:= A®IdcN, and in fact for all At\— tAx + (1 — t)Ao,0^ t rg 1. So we obtain a
family of self-adjoint elliptic boundary value problems parametrized over the
interval 7. The family {(At)π@IάcN}tel of the realizations is a continuous family of
self-adjoint unbounded Fredholm operators with discrete spectra and with the
periodicity spec(A0)Π(g)/ίίcΛf = spQc(A1)ΠΘIdcN. Because of Theorem 7 there is only
one homotopy invariant of such families.

So what is left is to show that the spectral flow of the family of self-adjoint
boundary value problems does not vanish.

8 Lemma. Under the previous assumptions we have

We postpone the proof of Lemma 8. Its main consequence is the following
theorem about the spectral behaviour of the realization Aπ.

9 Theorem, (a) There exists a constant C such that every interval of length C
contains an eigenvalue of Aπ.

(b) There exists an upper bound Cn1 / ( 2 / c~1 } > \λn\ for all eigenvalues of Aπ

indexed by increasing absolute value.
The constants in (a) and (b) depend only on the spin structure of the manifold X

and not on the coefficients bundle ξ.

Sketch of proof, (a) follows immediately from Lemma 8. In fact, let
denote the family {(At)Π(Ξ)IdcN}teI and let {t\-*jr(t)}reZ be a parametrization of the
eigenvalues of the family {^t}teI. In particular, this means s p e c ^ = {jr(t)}reZ. We
have spec j / i = spec J / 0 , and by Lemma 8 we havej r(l) =./Γ +rank<*(())• This actually
is the precise meaning of sf {stft} = rank ξ.

Since g = Id near the boundary of X we have A1 = Ao in a collar of the boundary.
This makes the difference Ax - Ao to an L2-bounded operator. Hence J^1-S^0

is bounded in its domain in L2(X;(S®ξ)®CN), and by continuity we have

| ; Γ (0)-Λ(l) |^ H ^ - ^ o I I =:C for all r,

hence \jr(0) - j r + r a n k ξ(0)| S C. This proves that in any interval of length C there is
at least one eigenvalue of J / 0 . The eigenvalues of j / 0 are the eigenvalues of Aπ,
just with N-times multiplicity. Finally, we see that C does not depend on the choice
of ξ. This proves the uniformity of our estimate.

For the proof of (b) one repeats and sharpens the arguments given above. The
main ingredient is the choice of a family {yr}reZ of twistings gr: X -> U(N) such that
ch[X x CN,0Γ] =r2k~ich[X x C ^ g J , where gί = g has "degree" 1 as above. •

Remark. Instead of twisting the operator A over the interior of X one could choose
a twisting of the boundary condition 77 or of the boundary component B of the
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(At)n=Dtto

Fig. 2. The family DUt

operator A over the closed manifold Y by means of a topological non-trivial map
g: Y -> U(N). Unfortunately, at present we are not able to give a topological formula
for the spectral flow of the families defined in this way.

5. Remarks Concerning the Proof of Lemma 8

We sketch the proof of Lemma 8. For simplicity we assume that the "tangential"
component B of the operator A is invertible. The necessary generalizations to a
non-invertible B may be found in [19], where the second author also discusses the
relation of our results to the recent works of Bismut and Cheeger [3, 4], and of
Singer [13].

Starting with an arbitrary self-adjoint condition 17, we obtain a family {{At)π}teI

of self-adjoint unbounded Fredholm operators parametrized over the circle. Since
B is invertible, the standard boundary condition Π+(B) is self-adjoint. We are
going to show that sf {(At)π}teI does not depend on the special choice of 77, in
fact sf {(At)π}teI = sϊ{(At)π+(B)}teI. Afterwards, we will prove sϊ{(At)π+iB)}teI = rank ξ.

As mentioned above, the space P cliffy+ is path-connected. So, we may choose
a path {Πr}reI in Pdiff£+ connecting 770:= Π with 17^.= Π+(B). We consider the
family {DUr = (At)Πr}UreI, (see Fig. 2). Apparently, we have sf{Stίr} =sf{D t y } for
any r,r'9 hence sf {{A^π} = sϊ{{At)π+{B)}.

The family {(At)Π{B)}teI consists of standard Atiyah-Singer-Patodi realizations
oϊAt. So we can apply results of Cheeger (see [6] and especially [7, p. 209, Remark
6.11], or we may follow the analysis from Atiyah-Patodi-Singer [2]. We obtain
that 77,(0):= η{{At)π+{B);0) is well-defined and that dηt(O)/dt is local. Because of the
fixed boundary condition, the integral which defines dηt(O)/dt vanishes near the
boundary. Hence it is given by the standard formula on the closed double X of
X out of a neighbourhood of dX.

The detailed calculations can be found in [19].
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