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1. Introduction

Consider in R2n a Hamiltonian System which has the origin as isolated equilibrium.
We use the notation zk = (qk,pk), k = i- n, and we assume that the Hamiltonian
H is of class C2 and that H2, the quadratic part of H, is given by

zl zi = qf + pf, (1.1)

with V j /O, i= l n. If Vf vj""1 is not an integer for any pair ij (i^j) a theorem
by Lyapunov [1] states that one can find a neighborhood N of the origin such
that in N there are n families of elliptic periodic solutions of (1.1); the /cth family
has minimal periods approximately equal to 2πvk

1 and lies approximately on the
hyperplane {z\zh = 0 if h + k}. One can use as parameter the distance from the
origin. These results follow from an application of the Inverse Function Theorem
to the periodicity condition.

General lower bounds on the number of periodic solutions on every energy
surface sufficiently close to the origin have been obtained within a variational
approach. These results hold independently of whether there is a resonance among
the frequencies, but are often restricted to the case when H2 is of definite sign [2]
(see however [6]); also, the localization and stability of the periodic solutions are
in general not known.

On the other hand, if v£ = kvj for some i φj, /ceZ (a resonant case) the number
of families can be different from the one indicated in Lyapunov's Theorem, and
some of the periodic solutions are hyperbolic. Systems with resonance have been
studied extensively in phase space [3]. [4] leading to various estimates on the
number of families of periodic solutions and their stability. In particular it was
shown (see also [5]) that, if n — 2, v2 — 2v l 5 one has in general three families; the
minimal period is approximately 2πv1~

1 for two of them, while it is approximately
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equal to 2πv2~
1 for the third. If one considers instead the case v2 = — 2v l 5 one has

in general only one family, with minimal period approximately 2πv2~
1.

In view of these results, it is natural to ask whether there is a discontinuity in
the behaviour of the system when the set of frequencies in H2 approaches a
resonance. To answer this question, we shall study the system in a full neighborhood
of a resonance, i.e. in a domain in R2n x Rn of the form

N-{(z,v)|zeBε

2",v-v0e(Bw

α(ε))},

where v0 is a set of resonant frequencies, α(ε) = εα for some α > 0 to be chosen later,

Several aspects of this "detuning" (or bifurcation) have been studied previously
by J. Duistermaat [5] using the variational approach. Many of our results overlap
with those of [5], and we refer to that paper for a list of previous results in various
cases of resonance.

Our aim is to give a systematic treatment within phase space; this approach,
as compared to the variational one, has the advantage that one can exploit
symplectic transformations, through the use of normal forms. At the same time
one can apply directly in our context the estimates which have been derived within
the variational approach through the use of a cohomological index [6].

We shall in fact prove, in the phase space approach, that the number of families
of periodic solutions near the origin is linked to the number of critical points of
a suitable function F defined on a manifold in phase space.

The function F and the manifold are closely related to the ones introduced in
[6] through a reduction to a finite dimensional subspace of functions. On the other
hand, the results obtained in the phase-space approach hold only "generically" (in
a sense to be made precise later) since to exploit the Inverse Function Theorem
one needs transversality conditions which are stronger than those required in the
variational approach.

A basic role in the analysis described here is held by a lemma on commuting
vector fields (Lemma 1) which may have an independent interest and is therefore
formulated and proved in greater generality than needed in the rest of the paper.

The paper is organized as follows: In Sect. 2 we prove the lemma and some
related results. In Sect. 3 we specialize to the case of Hamiltonian vector fields,
using the theory of normal forms. Here we connect the families of periodic solutions
to the critical points of a suitable function in phase space. We also discuss the
stability of these families of solutions. In Sect. 4 we discuss the detuning, and, as
an example, we give a detailed analysis of the cases n = 2, v2 =2v l 5 v2 = — 2v l 5

2v 2= ±3Vi.

2. A Lemma on Commuting Vector Fields

We prove first a simple lemma which plays a central role in what follows. Consider
in R2n the vector field

Az + εG(z,ε), [G(z, <Mz]Lie = 0, (2.1)

where G is Lipshitz-continuous in z in Ba = {z\z ^ a}, uniformly for O^ε^ε^. The
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matrix A is antisymmetric with eigenvalues ±ivi-" ±ivn, which satisfy

fc=l-n, v>0. (2.2)

We shall use the notation

τk = 2π\vkΓ
1, τ = 2π|vΓ 1,

and denote by τ the largest positive number for which

τk = mkτ, mkεZ. (2.3)x

One has then

τ = Nτ, N = mk\sk\ V/c. (2.3)2

For ε ̂  0, we denote by φε(ί, z*) the solution of

dz/dt=Ye(z), φε(0,z*) = z*. (2.4)

Notice the following: if for given ε,z* there exists λeR such that

G(z*9ε) = λAz*, (2.5)

then this relation holds also for ε,φ0(ί,z*) Vί, since the two vector fields Az and
G(z, ε) commute. Therefore

φe(ί.z*) = φ0((l+A)-1ί,z*), (2.6)

so that in particular φε(ί, z*) is periodic with minimal period

We now prove (Lemma 2.1) that for every T > 0, if ε is small enough, all periodic
solutions of (2.4) arise in this way, i.e. have the form (2.6).

It follows from (2.2) that for every z* in R2n, φ0(t, z*) is periodic. We denote by
T0(z*) its minimal period and by K(z*) the positive integer for which

Γ0(z*) = K(z*)τ. (2.7)

From the definition of φ0 one easily verifies that given c2 > 0, one can find ε0 > 0,
and Ci > 0, depending on a and on vί ••• vn, such that for each z*eBα, 0 < ε < ε0,
teR there exists an integer m (z*,ε, ί) with the property that

I φ0(ί, z*) — z* I < c^ implies 1 1 — m(z*, ε, ί)τ | < c2ε. (2.8)

If φε(t, z*) is periodic, we shall denote by Tε(z*) its minimal period. Let T be an
arbitrary but fixed positive number; we shall look for periodic solutions of (2.3)
for which Tε(z*) < T. If φε(t,z*) is periodic, and |z* |<α, one can find c x > 0
such that

|z* -φ0(Γε(z*),z*)| ^|φε(Tε(z*),z*)-φ0(Tε(z*),z*)| <cίε. (2.9)

We conclude from (2.8), (2.9) that for all 0 < ε < ε0, for all z*eBΛ for which φε(t9 z*)
is periodic one can find an integer K such that

)-τ |<c 2ε. (2.10)
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Define b(ά) to be the largest positive number for which

|z*| <&(fl)=>|φ0(ί,z*)| <a Vεe[0,ε0]Vίe[0, Γε(z*)].

One can now prove

Lemma 2.1. Let Yε(z) be given as in (2,1), (2.2). Given T> 0, one can find y > 0 wz'ί/i
ίte property that, if ε<γT~1 and z*eBb(α), ί/zen φε(ί, z*) is periodic with minimal
period Tε(z*) < T if and only if there exists λ(z*,ε)eR such that (2.5) holds.

When (2.5) holds, φε(t,z*) coincides with φ0(ί,z*) up to a time scale, Π

Proof. For fixed z*, ε define λ as follows:

l + ε Λ = τ/KTε(z*), (2.11^

so that, from (2.4), (2.10)

exp {K(l + 8λ)Te(z*)A} = I (2.1 1)2

Define ι^ε(£,z*)by

,z*). (2.12)

It follows from (2.11) that \l/ε(t9z*) is periodic with period XTε(z*). Differentiating
(2.12) and using (2.3) one concludes that ψε(t,z*) is the solution of

dψjdt = εΘ(ψε, ε) ψe(Q, z*) - z*,

where

Θ(z, ε) = exp [ - K(l + ελ)tA] {G(exp [X(l + ελ)tA]φε(t, z), ε) - λAz} = G(z, ε) - λAz.

(2.13)

The last equality in (2. 1 3) follows from the fact that the fields G(z, ε) and Az commute.
Without loss of generality we can assume that

I Θ (\l/e(t, z*), ε) I ̂  I Θ (z*, ε) | VO ̂  t ̂  Tε(z*),

so that

|^β(ί,z*)|^eί|β(z*9ε)| VO^ί^Tε(z*). (2.14)

Since ψε is periodic

XΓε(z*) KΓε(z*)

0 = J Θ(\l/ε(t, z*), ε)dt - KTε(z*)Θ(z*, ε) + j [Θ ( ê(ί, z*), ε) - <9(z*, ε)]Λ,
o o

so that, using (2.14) and the Lipshitz condition on G

KTε(z*)

KTε(z*)|Θ(z*,ε)| ^c4 J \ψe(t,z*)-z*\dt£ l/2c4εK2Γε

2(z*)l^(Λε)|,
o

i.e., if |(9(z*,ε)|^0,

2^εc4KTε(z*). (2.15)

We conclude that, if εg;min{ε0,2[c4/C'Γ[~1}, and if Tε(z*)^ T, one must have
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I <9(z*, e)| = 0, i.e. G(z*, ε) = λAz*. In particular

Tε(z*) = (l+λεΓlT0(z*),

so that

Γ0(z*) = τ => K = l. (2.16)

Conversely, if (2.5) holds, then one has

since G(z, ε) and Az commute. Therefore Yε(z) is parallel to Az along the orbit of
φ0 starting at z*, and φQ(t,z*) solves the equation

The remaining statement in Lemma 2.1 is obvious. Π

Remark 2.2. Condition (2.10) can be written in the form

λV(Az, Az) = - 2AG(z, ε). (2. 1 7)

Let

Σe = {z\(Az,Az) = c}.

Then (2.17) is equivalent to the condition that z be a critical point for (AG)0(z)9

the projection of AG to TΣc(z).
The flow t-*Qxp{At} provides a natural S1 action on (AG)Q and on the

(compact) manifold Σc. A lower bound on the number of critical orbits for (AG)0

(and therefore on the number of periodic solutions of (2.4) with period smaller
than T on each Σc\ can be obtained by the use of equivalent Morse Theory or of
Cohomological Index methods [2,6]. We shall not discuss this point here, and
refer to [6] for an extensive analysis. Π

Remark 2.3. Consider the case in which YE is a Hamiltonian vector field. Denoting
by J the standard symplectic map, one will have

Yβ(z) - JdH H(z) = H2(z) + εH'(z, ε), (2. 1 8)

where JdH2(z) = Az and {H',H2}PΛm = 0.

Condition (2.5) becomes now

(2.19)

i.e. that z be a critical point of H' on a surface Γc = {z\H2(z) = c}, or equivalently
that z be a critical point of H2 on a surface Γr

c = {z\H'(z) = c}. Notice that
ί-»exp {At} defines a natural S1 action on JdH' and on Γc, and also on JdH0 and
on Γ'c. Therefore Equivalent Morse theory or a Cohomological index can be used
to give a lower bound on the number of periodic solutions of (2.1), with minimal
period smaller than T, on each surface Γc of Γ'c. In particular, at least n such
periodic solutions can be found if Γc or Γ'c are convex. It should be noted that in
the former case HQ is of definite sign [2], but that the condition that Γ'c be convex
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poses no restriction of convexity on the surfaces

for ε small.
More generally, it is easy to see that, if one can find a real valued function

F(x, y) and a real constant c such that

Φc = {z\F(H0(z\ H'(z)) = c} is convex

Φc€Ea(b) (2.20)2

and if F does not vanish on Φc, then the system (2.4) has on Φc at least n periodic
solutions with minimal period less than T [7]. Π

We determine now the stability of the periodic solutions described in Lemma 2.1.
One has

Lemma 2.4. The Floquet multipliers {pί9 i=l--n} for the periodic solutions des-
cribed in Lemma 2.1 satisfy

l (2.21)

where μi are the eigenvalues of the matrix

DG(z*9ε)-λ(z*9ε)A9 (2.22)

and K is defined in (2.8). In particular (see (2.16)), if T0(z*) = τ, then (2.21) holds
with K=L Π

Proof. Let p(t) be a periodic solution of (2.4) of the type described in Lemma 2.1;
one has

= exp{(l+ελ)At}p(Q).

The Floquet multipliers are the eigenvalues of the map

K2"3ζ->(7(Tβ(p(0)),0, (2-23)

where σ(ί,Q is the solution of

dσ/dt = (D Yε)(p(t))σ, σ(0, C) = 0. (2.24)

Define χ(ί,0 by

χ(t, 0 Ξ= exp { - (1 + sλ)At}σ(t9 ζ). (2.25)

By construction

exp{K(l+<αμrβ(p(0))}=/,

and therefore

χ(KTΛ(p(0)\ ζ) = σ(KTε(Pm 0- (2-26)

Moreover

dχ/dt = ε [DG(p(0), ε) - λA]χ, (2.27)
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since G commutes with Az, and therefore

exp { - (1 + ελ)At}DG(p(t), ε) - DG(p(0), ε) exp { - (1 + ελ)At}.

The conclusion of Lemma 2.4 follows immediately from (2.26), (2.27). Π

A special important case is the one in which the vector field Yε(z) is Hamiltonian,
so that it can be written in the form (2.18). One has then

dχ/dt = DJ[_dHr - λdH0-]χ (2.28)

The vectors VH0 and JdH0 are eigenvectors of the matrix DJ\_dH' — λdHo] with
eigenvalue zero. Define DQJdH' as follows:

Definition 2.5. D0JdHf is the restriction of DJdH' to the orthogonal complement
in R2n of the subspace generated by VH0 and JdH0. Π

One has then

Corollary 2.6. If the vector field has the form (2.18), and p(t) is a periodic solution
of (2.4) for ε sufficiently small (as described in Lemma 2.7), then p(t) is elliptic precisely
if all the eigenvalues of D0JdH' are purely imaginary, while p(t) is hyperbolic if all
the eigenvalues of D0JdHf have non-zero real part. Π

Consider now a vector field of the form

Yε(z) = Az + εG(z, ε) + εp + δR(z, ε), (2.29)

where A and G are as in Lemma 2Λ,p^.l,δ>0 and R is uniformly bounded for
zeBfl, 0 < ε < ε0 and Lipshitz continuous in z, uniformly for zeBΛ and 0 < ε < ε0.

One can follow the same steps as in Lemma 2.1 and prove the following: Given
T > 0, one can find εl > such that, if ε < s^ and φ(t,z*) is a solution of

dφ/dt = Aφ + εG(φ, ε) + εp + δR(φ, ε), φ(0, zε*) - zε*,

then one can find ceR and λεR such that

|/Uz* - G(zε*,ε)| < CBΛ+P-*. (2.30)

Under suitable assumptions on the Jacobian of the map

(essentially that its inverse be bounded by c5ε~p+ * uniformly for ε < εt and z in a
neighborhood of z*), condition (2.30) is necessary and sufficient in order that there
exist c6eR and, for each ε < ε l 9 a point yfeR2n such that

I ,.# _* I ̂  „ cδ
WB ~Zε I <C6ε

and φε(t, y*) is a periodic solution of (2.4) with minimal period approximately equal
to Γε(z*).

Also, results similar to those of Lemma 2.4 can be obtained on the linear
stability of the periodic solutions φε(t, yf). We shall study this problem in the next
section, restricting ourselves to the case in which Yε is a Hamiltonian vector field.
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3. Applications to Hamiltonian Systems

We use the results of Sect. 2 to study periodic solutions near equilibrium for
Hamiltonian systems when the frequencies are at or near resonance. We consider
a system for which the Hamiltonian H has the form

= {Zl . zn}9 z^{qi9Pi}9 (3.1)

where //* is of class Cp in a neighborhood of the origin, for some p ̂  3, and is
infinitesimal at the origin of order q ̂  3. We also assume that vk Φ 0 for all k.

Since we are interested in the behaviour near the origin, we introduce the
relevant scale through the canonical transformation

zfc-+εzfe, H(z)^ε-2H(sz) = Hε(z). (3.2)

In the new variables, Hamilton's equations read:

dz/dt = JdHε(z) = JdH2(z) + εq ~ 2JdQ(z, ε), (3.3)

where

H2(z) = 1/2Σ vkzl ρ(z, ε) = s^H*(εz). (3.4)
i

By construction, Q(z, ε) is of class Cp in z in a ball Bα, uniformly in ε near 0.
We are interested in the case when the frequencies are at or near resonance. We
set therefore

(3.5)

where (vk} is a set of resonating frequencies and the constant α depends on H*
and will be chosen later.

Remark 3.0. Using the Inverse Function Theorem it is not difficult to verify [1]
that for any given T>0 one can find positive constants c1 and c2 and s1 such
that, if |z =a and ε<ε l 5 and φε(t9z) is periodic solution of (3.3) with minimal
period Tε < T, then one must have

\Tε — Nkτ\<c2 for some fce{l, 9n} and ΛΓfceZ, (3.6)

where τ is defined in (2.3)t. Moreover in the study of periodic solutions with
minimal period approximately equal to Mτ, MeZ, one can without loss of
generality set zΛ = 0 if (2π)~1MvhτφZ. We can therefore restrict attention to the
case of full resonance, i.e.

v^O. (3.7)

We shall assume (3.7) from now on. Using (3.7) we write (3.3) as

dz/dt = JdH0 + l/2εα£ μkJdz% + εq " 2 JdQ(z, ε), (3.8)!
i

H0 = l/2Σv°kzl (3.8)2
1

For the best choice of α we need a lemma on normal forms.
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Lemma 3.1 [8]. Let Hε(z) have the form

Hε(z) = H0(z) + εrH(εz\ zeR2\ (3.9)

where H0 is given in (3.8)2 and H'(y) is of class Cs, 5^3, uniformly in a neighborhood
of the origin, and is infinitesimal at the origin of order d, with r + 1 ̂  d and d^s. If
(3.7) holds, given a > 0, one can find εt > 0 such that, for each 0^ε<ε1 and each
m^s — 2 there exists a symplectic transformation Φmε, asymptotic to the identity
when ε->0, and such that in B^π,

(HΛΦm,e)(z) = H0(z) + 6*">ΛΓMiβ(z) + εd-r+mRm,ε(Z), (3.10)

where d—r+m^ r(m) ̂  r(m — 1), r(0) = d — r, and Rm,ε is infinitesimal in ε uniformly
for zeBln. The functions JV m ε and Rmε are of class Cs~m and one has

{JVmfβ,H0}p.B. = 0. (3.11)

Moreover ifNm >ε ̂  0, then r(m') = r(m)for all mf > m. The function Nm^ε will be called
"normal form of H to order m" (relative to H0). Π

Outline of proof. The symplectic transformation Φmε is constructed in m steps. At
step i the transformation is the time-ε map Φ(ί} for a suitable Hamiltonian Kt. To
find Kt one has to solve

{^HoW = £;-ι, (3.12)

where Bi^1 is known from step i — 1 and has no component in the kernel of the
n

map F^{F,HQ}PE. No small denominator arises, since by (3.7), if

mfceZ, then
1

1

> v. On the other hand, at each step one loses in general one

order of differentiability, since the map Φ*0 and the functions Bt are as regular as
JdKh while the solution Kt of (3.12) has one order of differentiability less than

««-!• Π

We now apply Lemma 3.1 to the study of periodic solutions of (3.8). Notice
that the term

is in normal form with respect to #0, and recall that

Consider the Hamiltonian

By construction β(z,ε) satisfies the assumptions of Lemma 3.1 with r = 2, d = q,
s = p. For every m ̂  p one can therefore write H' in new symplectic coordinates
(still denoted by z) in the form

H'Λ(z) = H0(z) + ε^Λ^tz) + εd(m)R'mM
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where r(m) ̂  q - 2, d(m) ̂  g - 2 + w, N'm^ satisfies (3.11) and Rf

m^ is infinitesimal
in ε uniformly for zeBα. We consider only the case in which one can find rargp
such that N'm^0 (while N'm = 0 if m < ra), and choose α in (3.5) as

α-r(m). (3.14)

One has then, using Lemma 3.1, for all m ̂  m ̂  p,

Hε(z) = H0(z) + ε'Γl/2 £ μΛ

2 + ΛΓm,ε,μ(z)~| + ε^m,ε,μ(z), (3.15)
L i J

where the Nm^μ satisfy (3.11), and d(πί) ^q — 2 + m, d(m) ^ α and d(m) > α if m > m.
The functions #m,ε>μ are infinitesimal in ε uniformly for zeBα. The best choice of
m, m ̂  m ̂  p, depends on the resonant set of frequencies. This will be seen explicitly
in the example we shall discuss in the next section.

Define the Hamiltonians Hε by

He(z) = H0(z) + εαΓl/2£ μkz
2

k + ΛΓm,ε>μ(z) 1 (3.16)

The term in square brackets in (3.16) is by construction in normal form with respect
to HQ. We are therefore in condition to apply to the Hamiltonian flow of Hε

Lemmas 2.1 and 2.4, Remark 2.3 and Corollary 2.5.

Remark 3.2. We notice in particular that Nm^μ has by construction the form

m

εr(mWm,ε>/1(Z)=χεTs,μ(z), (3.17)
s= 3

where Ps^(z) are homogeneous polynomials of order 5, normal with respect to H0.
Therefore the solutions zε, λε, με of

*m,e>, Γ) = dNm^(z) - λdH0(z) = 0 (3.18)

form continuous families, with parameter ε. Π

We have proved in Sect. 2 that for any given T > 0, for sufficiently small ε the
φ0-orbits of solutions of (3.18) are in one-to one correspondence with the periodic
solutions of

dz/dt = JdHε(z) (3.19)

with minimal period ^ T.
We shall now study, still for ε sufficiently small, the periodic solutions of (3.3)

with minimal period Tε ̂  T. When μk = 0 Vfc, this is equivalent to the study of
periodic solutions of

dz/dt = JdH(z) (3.20)

(with minimal period Tε(p(0)) rg T) in a small neighborhood of the origin. When
some of the μk are /O, the problem we study can be regarded [5] as a bifurcation
analysis for periodic solutions of (3.20).

Since we are interested in small values of ε, we shall use the Inverse Function
Theorem. We make therefore an assumption on the Jacobian of the map
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z-*Xm,ε,μ(z, Tε), with Xm,ε,μ(z, T) defined in (3.18) (the relation between T and λ is
given in (2.11)). This assumption holds only if/? is large enough (depending on the
choice of v? ••• v°), and, for given p, only if NmtEtfl does not belong to a subspace of
codimension greater or equal to one in the vector space of polynomials of order
^ m normal with respect to H0. In this sense, condition (3.22) in the next proposition
is satisfied generically.

Proposition 3.3. Let the Hamίltonians Hε have the form (3.15), with t(m) > α and
Rm,ε,μ uniformly bounded for zeBa. Define Xm^μ by (3.18) and denote by Hess0B the
restriction of the Hessian matrix of B to the orthogonal complement in R2n to the
subspace spanned by VH0 and JdH0. Then, for every δ<d(m), ck > 0, k = 1,2,3,
μeR", one can find ε1>0 such that the following statements hold true:

I: if ε < ε1 and zε, T° is a solution of

*ra,ε>ε.T£°) = 0, (3.21)

which satisfies

ε-mdet[Hess0Nm,ε>μ(Z)]|z=:r >c1( (3.22)

then one can find yεeR2n such that

a) \yt-zt\<c2ε«m>-'.
b) φε(t, yε) is a periodic solution of (3.3) with period Tε(yε) approximately equal

to the minimal period T0 ε of φ0(t,zε).

c) zHφδ,Φo)<c3ε
d(m)-a,

where Δ(φε,φ0) is the distance of the orbits ofφε(t,yε) and ofφ0(t,zε).
The point yε is not unique; however the periodic solution φε(t,yε) is uniquely
determined by the condition

d) Hε(y) = Hε(z)
(Hε and H are defined in (3.15\ (3.16)).

II: Conversely, if ε<ε1 and yεεR2n is such that yε satisfies (3.22) and φε(t,yε) is
periodic solution of (3.3) with minimal period Tε(yε) < T, there exists zεεR2n, A εeK
such that

a) \zε-yε <c2ε
d(m}~δ.

b) Xm ε μ(zε) = 0 holds, so that φ0(t,zε) is a periodic solution of (3.19) with
period T0 approximately equal to Tε(yε).

c) Δ(φ0(t,zε),φε(t,yε))<εd^-δ.
The point zε is not uniquely determined; however the periodic solution φ0(t, zε)
is uniquely determined by the condition Hε(zε) = Hε(yε). Π

Remark 3.4. A more careful analysis shows that if zε is a solution of (3.21) and if
condition (3.22) is satisfied, then φ0(t,zε) has minimal period τ, i.e. the greatest
among the minimal periods of the solutions of dz/dt = JdH0. As a consequence,
K = 1 in Lemma 2.1. Similarly, under condition (3.22), φε(t,yε) in Proposition 3.2,
II, has minimal period Tε which differs from τ by terms of order εdw~δ. Q

Proof of Proposition 3.3. We prove first part I. The condition that φε(t,yε) be
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periodic with period Tε is equivalent to

ε, yε) = ϊ JdHε(φε(t9 y))dt = 0. (3.24)

Since Hε is constant along the flow oϊJdHε, it is sufficient to consider the restriction
of (3.24) to

(y, T)εΣε x R,

where Σε = {z\Hε(z) = Hε(yε)}. Moreover, since Hε does not depend on time, it is
sufficient to solve (3.24) on a Poincare section at yε9 in particular on the hyperplane
perpendicular to JdHε. Proceeding as in the proof of Lemma 2.1 and using the
fact that

the restricted condition can be written as

Θ'(y, T) EE X'm^(y9 T) + ^(m)/C,..μO>, T) = 0, (3.25)

where Rf is uniformly bounded in the domain considered, and A' is the restriction
of A to the orthogonal complement to the subspace Ξε spanned by JdHε and VHε.

By assumption (3.22), the Jacobian of the map y ->• Θ(y, T) is non-singular for
ε<εί. Moreover dΦ(y, T)/dT=JdHε(y) Φ 0, so that also the Jacobian of the map
y,T^>Θ'(y, T), T is not singular. By assumption, zε, Tε solve the equation

x;fe,v(z,r) = o, (3.26)
where X" is the restriction of X to the orthogonal complement to the subspace
Ξε generated by JdHε and VHε. Since Hε — Hε = 0(εd(m)), there exists an orthogonal
transformation Ψε which is of the form / + 0(εd(m)) and maps Ξε onto Ξε. Part I,
a), b), c), d) are then a consequence of the Implicit Function Theorem.

To prove Part II, one follows the same steps. Given a solution {j;, T} of (3.25),
one can write (3.26) in the equivalent form

0 = X"(z, T) = 6>'(z, T) + εd(w)jr(z, T), (3.27)

where R" is defined by (3.27). Since {y, T} solves <9'(z, Γ) = 0, Part II, a), b), c),
follows from the Inverse Function Theorem in view of assumption (3.22). Π

The stability properties of the solutions of (3.3) described in Proposition 3.3
follow immediately from Corollary 2.6. One has in particular

Corollary 3.5. The solution φε(t9 yε) of (3.3) described in Proposition 3.3 is hyperbolic
if all the eigenvalues of D0JdHε(zε) have non-zero real part. It is elliptic if all
eigenvalues of D0JdHε(zε) are purely imaginary and have multiplicity one. Π

4. Applications: The Cases n = 2, φ°2= ± 2φ°, φ°2= ± 3/2 0?

In this section we apply the formalism of Sect. 3 to three simple examples. A partial
analysis of the first and the second have been given previously [3, 4] (for an analysis
of the detuning within a different approach, see e.g. [5]). We present them here
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to illustrate the general formalism. The third example is discussed because it
illustrates generic properties of systems for which n = 29 v^ = m1v9 v2 = m2v,
m1 1 + m2\ ^ 5. The common feature of these systems is that generically H — H2

has a non-trivial normal form N4 of order four. However N4 is invariant under a
one-parameter group of transformations different from the one generated by
JdH0, so that D0JdN4 is singular (it is in Jordan form and has zero as eigenvalue
with algebraic multiplicity 2).

In order to apply the results of Sect. 3, one must assume more regularity and
construct the normal form of H to the order m x | + |m2 | (which is the first order
in which this continuous symmetry is broken). We refer to [9] for other examples,
in particular the cases n = 2, \v2\=kvl9 k^4 and n = 3, \v3\=2\v2\=4vί;

n = 3 |V 2 | = 2 | V l | (see also [4]).
We begin now the analysis of the examples mentioned above.

A) v°2 = 2v°.

We shall only discuss periodic solutions which have minimal period approximately
equal to τ? = τ. The periodic solutions which have minimal period approximately
equal to τ = τ° form a one-parameter family which depends smoothly on μ1 and
μ2. This follows from Remark 3.0.

We assume that H is at the origin of class C3 + σ, σ>0; by a change in time
scale we can set v? = 1, μ1=0. We write μ for μ2. After the symplectic
transformation described in Sect. 3, and the scaling z->εz, the Hamiltonians Hε

have the form

Hε = l/2(p? + q\) + (pi + q\) + εJV(z l 9z2) + ε1+^(zl5z2,ε) (4.1)

where zt = {pi9 qt)9 δ>0 and

N(z l 5z2) = α[(p? - ql)p2 + 2Plqιq2] + μ(P

2

2 + q2

2). (4.2)

Remark. In the notation Ck = pk + iqk, the flow of JdH0 is given by

CΛί) = Cι(0)exp {iVlί}, ζ2(t) = C2(0)exp {iv2ί},

so that C*2C2

 an(i CiC* are the only monomials of order 3 which are invariant
under the flow of JdH0. Changing the phase of £ι and ζ2 is a symplectic
transformation; one can therefore choose symplectic coordinates such that N(zί9z2)
has the form given above. Π

We assume that aφQin (4.2); without loss of generality one can then take a=l.
(If a = 0, one is in the framework of example 3 below.) Since normal forms to order 3
coincide with time-averages along the flow of JdH0, this assumption holds for all
the Hamiltonians H in C3 for which the time average of H — H2 is not infinitesimal
at the origin of order greater than three. In this sense our results are generic.

One is now condition to use the results of Sect. 3. One has q — 3, m0 = 1,
r(m0) = 1 and in (4.2) we have already taken α = 1. One can choose as Poincare
section the hyperplane ql — 0. The condition

dN - λdH0 (4.3)
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μ > 0

becomes then

Fig. 1

2μp2 = 2λp2, q2 = 0. (4.4)

We consider only solutions for which p1 ^0; the other solution corresponds to
the family of periodic solutions with period approximately equal to τ°, which is
obtained in Lyapunov's analysis. Also, only the case p1 > 0 will be considered, since
{ — z°,z2} belongs to the orbit of the periodic solution of dz/dt = JdH0 with initial
data (z?, z2}. Since pί φ 0, one has K = 1 in Lemma 3.4. One has then

λ± = 2p2
(4.5)

The graph of p 2 ( p ι ) is given in Fig. 1 for fixed μ > 0. It is also straightforward to
compute the spectrum of DJ(dN — λdH0).

For both alternatives ± in (4.5), one finds that, apart from the eigenvalue zero
which has multiplicity two, there are the two eigenvalues

σ+(p1) = ϊ ' lpj |[PI + %P'2\II2/\P2\ (4-6)

In particular \(D0JdN)~11 = l/|σ(pι)|, so that D0JdN is not singular at the solution
of (4.3), with the exception of the point A in Fig. 1.

We conclude from Proposition 3.3 that, given a > 0, for every sufficiently small
ε there are two periodic solutions of (3.3) with period approximately equal to τ?
and orbit approximately equal to the orbit of the flow of JdH0 through the point

= Q and p2 as in (4.5). (4.7)

From (4.6) and Corollary 3.4 it follows that these periodic solutions are elliptic.
Notice that the point A in Fig. 1 is a bifurcation point with period doubling for
the periodic solutions of dz/dt = JdHε, but the same conclusion cannot be drawn
in general for the periodic solutions of (3.3), since condition (3.22) fails at the point A.

Remark. For |μ| large, one of the two solutions in (4.5) (which one depends on
the sign of μ) is such that |p2 | becomes very small (see Fig. 1). This corresponds
to the periodic solution which is found in Lyapunov analysis; in fact, large μ
corresponds to a detuning which is large compared to the size of the neighborhood
of the origin in R2n in which one looks for periodic solutions, and corresponds
therefore to a non-resonant set of frequencies. This can be explicitly seen if one
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makes a different rescaling of the detuning term, i.e. writes vk — v° + εαμfc, with α < 1.
On this scale, the norm of the other solution in (4.5) becomes large when ε decreases,
and therefore when ε is very small the Implicit Function Theorem cannot be
used to deduce the existence of a corresponding periodic solution of (3.3). As a
consequence, in this scaling of the detuning term, in a sufficiently small neighbor-
hood of the origin there is in general only one family of periodic solutions with
minimal period approximately equal to τ?, in accordance with Lyapunov'
analysis. Π

B) v°=-2v°.

Also in this case we shall discuss only the periodic solutions which have minimal
period approximately equal to τj. The Hamiltonians Hε take now the form (4.1),
where

N(zl9z) = (pi - qi)p2 - 2pιqιq2 + (p2

2 + q2

2). (4.8)

Choosing the same Poincare section as in the previous example, condition (4.2)
becomes now

2 = 0> flι=0. (4.9)

Again we consider only the solutions for which pί ^0. One has then

4pm (4.10)

From (4.10) one can see that solutions exist only if 2p1 ^ |μ|; in particular there
is no solution if μ = 0, i.e. in the resonant case. It is also seen from (4.10) that for
each μ > 0 the solutions lie on a curve in the p1p2 plane, parametrized by p2 (see
Fig. 2); as in the previous example, only the half-plane p1 > 0 must be considered.
The energy cannot be used as parameter (see Fig. 3).

To study the stability of those periodic solutions of (3.3) which correspond to
the solutions (4.10) of (4.9), we make use of Corollary 3.4 and compute the spectrum
of DJ(dN — dH0). Apart from the eigenvalue zero, one finds the eigenvalues

Condition (3.22) is satisfied along the curve in Fig. 1, with the exception of the
point A and B. Therefore those solutions for which 8p% < pi, i.e. the part of the

-1
2

iμl
2

/ μ>0
/

Fig. 2
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*N μ>0

/ j
/ _μ

/ 2

•Pi

Fig. 3

upper branch of the curve in Fig. 2 which lies to the left of the point B, correspond
to elliptic periodic solutions, while the part of the curve in Fig. 2 which starts at
the right of the point B corresponds to periodic solutions which are hyperbolic.
When $p2 = pi, the matrix D0JdN is singular, and Proposition 3.3 cannot be used.
To study this case, one should make the further assumption that H is of class C4

at the origin, and construct the normal form of H to order four.

Remark. For μ very large, p2 becomes very small compared to p1 on the elliptic
branch of solutions, at least for values for p^ small compared to μ. This branch
of solutions goes over, when μ is large, to the family of solutions found in Lyapunov's
analysis for the strongly detuned case, i.e. the case in which the two frequencies
v: and v2 are not in resonance. This is seen explicitly if one does a different rescaling
of the detuning term in (4.2).

C) v°=±3/2v?.

It follows from Lyapunov's analysis that, for i = 1,2, there exists a one-parameter
family of periodic solutions, with period approximately equal to τf and lying
approximately on the hyperplane zj = 0 j ^ i. We are interested in periodic solutions
with minimal period longer than the one of Lyapunov's solutions. By a change in
time scale, we can take v? = 2, v2 = ± 3, which corresponds to the choice v = 1 in
(3.7). As in the previous examples, we can also take μv = 0 and write μ for μ2. In
the present case, in order to satisfy (3.22) — at least generally — one must assume
that H is of class C4 + δ at the origin, δ > 0, and take m = 2, so that d(m) = 2 + δ.
The Hamiltonians Hε can then be written in the form (4.1) where, for v2 = 3 one has

N(zl9z2, ε) - Cl(pl + q2,)2 + C2(p2

2 + q2)2 + μ(p2

2 + q2

2)

p2 - 3q2)(p2 - q2) - 2qιq2p2(q2 - 3pf)], (4.1 1)

while for v2 = — 3 the second term in the square bracket has opposite sign. We
shall assume that the constants C1,c2,c3 are all different from zero. (This condition
holds generically for Hamiltonians of class C4.) Without loss of generality one can
then take c3 = 1.

Making use of the same Poincare section as in the previous two examples,
condition (4.2) becomes

= 2λp1 ,

= ±3λp2. (4.12)
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We consider only solutions of (4.12) for which p1 / 0 and p2 / 0. Solutions which
do not satisfy these two conditions correspond to the periodic solutions which are
obtained through Lyapunov's analysis.

Since (z?, — z2} and {z?,z2} belong to the same orbit oϊdz/dt = JdH0, we must
consider only those solutions of (4.12) for which p2 > 0. From (4.12) one derives

-P\( ~ ̂ 2 ± 9εPl) = ± pl(Uc, - 4μPl) - 2μ, p2 > 0. (4.13)

Solutions of (4.13) exist for various ranges of the parameter μ, depending on the
relative sign of the coefficients cx and c2, and of whether one chooses the + sign
or the — sign in (4.13) (i.e. whether one considers the case v2 = + 3/2v2 or the case
v2 = — 3/2vJ). Since the two equations in (4.13) are interchanged if one changes
sign to c1 and μ, we shall consider only the upper alternative in (4.13), i.e. the case
v£ = 3/2v?. When μ = 0, CJc2 < 0. there are no solution. When μ = 0, cjc2 > 0,
the equation has two solutions for each value of p2.

In Figs. 4 and 5 we illustrate the cases c l 5 c2 > 0 and c1 > 0, c2 < 0 respectively,
for a fixed value μ > 0. The case μ < 0 leads to similar figures and results. At the
solutions of (4.13) the matrix DJ(dN — dHQ) has, in addition to the eigenvalue zero,
two eigenvalues

** = ± l/>ιP2l[(8c2 + ISc^p! + (He2)]1'2. (4.14)

Therefore, on every point of the curve in Fig. 4, with the exception of the points
A and B, condition (3.22) is satisfied if ε is sufficiently small. The corresponding
periodic solutions of (3.3) are elliptic on the branch for which (8c2 + ISc^p^ < 0,
and hyperbolic on the other branch. If 8c2 + 18cx ^0, the same conclusion holds
for the points on the curve in Fig. 5. If the parameters in N satisfy the identity
8c2 = 18c1? one has to analyze in (4.14) the terms or order two in ε. One finds that
for this value of the parameters the non-zero eigenvalues zre σ1 = ± i3λ/2ε|p?p2|.
Therefore also for this choice of parameters condition (3.22) is satisfied and, if ε is
sufficiently small, for every point on the curve in Fig. 5, with the exception of the
points A and B, one has periodic solutions of (3.3) which are elliptic.

Remark. One sees that in both cases, for every fixed a > 0, solutions satisfying
|z2 | +z2 | rgα 2 exist only if the parameter μ is in a range μι(#)^μ^μ2(0). For
every ε > 0, if μ is sufficiently large, one is beyond the range of applicability of the

c/c 2 >0
c/μ > 0

^ inst.
\

\

A/

6c,

Fig. 4
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V2c2-

St. χ^^~*

A/

P2
c / c 2 < 0

c / μ > 0

B

^^^ inst.

\

\

\ A

/£ /i
V^c, V6c t

Fig. 5

Inverse Function Theorem. Therefore, in the limit of "large detuning" (i.e. when
the frequencies are not in resonance) one cannot conclude in general that in a
neighborhood of the origin there are periodic solutions of (3.3) with minimal period
not approximately equal to either τj or τ°, in accordance with Lyapunov's analysis.
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