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Abstract. Using the GKS inequality Griffiths and Kaufman showed in [12]
that the susceptibility in the Ising model on the hierarchical lattices is infinite
for T> Tc. In the present work we give an analytic calculation of the dominant
singularity of the susceptibility when /z->0 for T>TC. Moreover we analytically
find the spontaneous magnetization for T<TC and prove that for T< Tc the
susceptibility is finite.

1. Introduction

In the present paper the Ising model on the "diamond hierarchical lattices" (DHL)
is considered. The models of such type were introduced first by Migdal [1] and
Kadanoff [2] in the context of an approximate real space renormalization group
(RG) scheme for the Ising model on Zd. In the following papers of Berker and
Ostlund [3] and Bleher and Zalys [4] it was shown that the Migdal-Kadanoff RG
equations become exact for the models on DHL. In the fundamental paper of
Griffiths and Kaufman [5] general definitions, examples and main properties of
the hierarchical lattices (HL) were given and discussed (the term Ή L " was
introduced first in [5]). After that in many papers (see [6-13]) various spin models
on the HL were studied as independent (from any approximate RG scheme)
objects of the investigation. In our previous paper [14] we analysed (following [5])
the thermodynamical limit of the ferromagnetic Ising model on the HL and proved
that the limit Gibbs state is unique unless T<Tnh = 0, and in that case the number
of pure Gibbs states is equal to 2 (+ and — phases).

An intriguing result was obtained in [12] where it was shown that in the Ising
model on the HL the susceptibility is infinite for T>TC. The main idea of the paper
[12] was a calculation of the (dimensionless) susceptibility at T=co (non-
interacting spins) which turned out to be infinite. Then the required result was
obtained using the GKS inequality which states the magnetization increases with
decreasing of T.

Here, we calculate analytically the dominant singularity of the susceptibility
when h—>0 for T>TC. It turns out to be logarithmic in the two-dimensional case
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and powerlike if the dimension d > 2. Detailed formulae are given below. For
T= oo our results coincide with those of Kaufman and Griffiths [12]. For T< Tc

we find an explicit formula for the spontaneous magnetization and show that the
susceptibility is finite and even infinitely smooth at h = 0 (when /z-> + 0 or — 0). As
was noted in [12] the singularity of the susceptibility for T> Tc is connected with
an unusual behaviour of the zeroes of the partition function of the Ising model on
the HL. Further (in Sect. 4) we obtain a simple equations for the zeroes of the
partition function and present some results of their distributions for different
values of temperature.

The set-up of this paper is the following. In Sect. 2 we recall the definition of the
Ising model on the HL and analyse the system of the RG equations for the model.
In Sect. 3 we present our main results concerning the analytical calculations of the
spontaneous magnetization and the magnetic susceptibility. The distribution of
the zeroes of the partition function, as mentioned above, is discussed in Sect. 4. All
detailed proofs of the main statements of the paper are given in Appendices A, B;
an algorithm of the zeroes of the partition function computation is given in
Appendix C

2. The Ising model on the DHL

The diamond hierarchical lattice which is used later on is generated iteratively with
the help of the following procedure (see [5]). Let Γ be a graph consisting of two
"external" vertices α, τ, and b ̂  1 "internal" ones and 2b edges which connect α and
τ with the internal vertices (see Fig. 1). Γ is called the generating graph for the
DHL. Let Γo be the zero-order DHL which consists of two external (or
"boundary") vertices α0, τ 0 and a single edge connecting these vertices. To obtain
lattice Γn+ ί from Γn one has to replace each edge oϊΓn by the graph Γ identifying the
vertices α and τ with the endpoints of the edge (see Fig. 1). The images an + 1,τn+ίoϊ
the external vertices αw, τn in this replacement are the external vertices of Γn + ί.
Examples of more general HL arising by using the arbitrary connected generating
graph Γ with two external (marked) vertices are given in [5]. The number b ^ 1 is a
parameter of the DHL. The number B = 2bis called the aggregation number of the
DHL (see [5]) and d=\+ (Iogb)/log2 is the "dimensiality" of the DHL because the
d-dimensional Migdal-Kadanoff RG equations are exact for the spin models on
the DHL d 1

Fig. 1
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The Ising model on the DHL is defined in the usual way by associating spin
variables σ{ — ± 1 with the vertices i e Γn and by setting the Hamiltonian

Hn{σn)=-J- Σ σpj-% Σ (*i + *j),
4 <i,j}eΓn I <ίJ>eΓn

where the sums go over all pairs (i,j} of the nearest neighbours in Γn (two vertices /,
j are the nearest neighbours iff they are connected by an edge), J is the exchange
interaction, h is the external field.

The iterative procedure of the DHL construction leads to recurrent equations
for restricted (conditional) partition functions which enable us to obtain analytic
representations for the free energy, the spontaneous magnetization and other
thermodynamical functions. Define the restricted partition function by

where the sum goes over all the configurations σn = {σb ί e Γn} with fixed values of
the external spins σαn, στn. Further we assume the Boltzman factor fc= 1. Denote:

- l ,+l); Rn = Zn(-ί,-ί).

Then the following recurrent equations are valid:

i i b bQbnl K +1 = (tf + Qnf (1)

To prove them first one has to take the sum over all internal spins of the sublattices
Γn forming the lattice Γn + ί, and next take the sum over all external spins of these
sublattices with fixed values of σaLn +1? σTn + ί. So we get the Eq. (1). Note that they are
just the Migdal-Kadanoff RG equations.

Equations (1) are supplied with the initial conditions

J h\ Λ ί J \ ί J h

It is convenient to introduce relative variables,

zn = (RJPn)
1/b; tn = {Q2JPnRnγib, (2)

which will be called the RG variables. From (1) the RG recurrent equations for
them follow:

n

with the initial conditions

2/z \ ( U

The initial conditions motivate the representation

(4)
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where Tn and hn are called the renormalized temperature and external field,
respectively.

Now we are going to discuss some properties of the RG equations (3). Further
we shall assume b>\ everywhere, because there is no phase transition for b = \.

1. If zn = \, then z n + 1 = l and

t;b) = f(Q, (5)

which means that the line zn = l corresponding to the Ising model with h = 0 is
invariant with respect to the RG equations (3). Equation (5) has a unique fixed
point tc in the interval (0, 1) for which

(For a rigorous proof of this and the following statements see the appendices at the
end of the paper.) The fixed point tc is unstable and lim tn = 0 if 0 < t0 < tc and

«-* 00

lim tn = 1 if tc < t0 < 1. The points t = 0 and t = 1 are the low- and high-temperature
n-+ oo

fixed points of the RG equation (5), respectively. They are stable and even
superstable fixed points. Indeed, from (5) it easily follows that //(0) = ///(0)

if 0 < tn < 1 with an appropriate constant C > 0. As a consequence of this the
superexponential convergences tn^C1 exp( — C2b

n\ when tn-+0 and 1— tn

^Cx exp( —C22"), when £w-»l hold. Here and below by C, Co, C 1 ? . . . we denote
various factors which do not depend on n. They can be different even in close but
different formulae. Usually we point out the variables on which these factors
depend.

The equation ίc = exp( — 2J/bTc) (following from (4)) determines the critical
temperature Tc = Tc(b). In Table 1 the values of the reduced critical temperature
TJJ are given for some values of b.

2. From (3) one can easily verify that {0<zw + 1 < l , 0<tn+1<\} if { 0 < z π < l ,
0 < tn < 1}, which means that the square Q2 = (0,1) x (0,1) is invariant with respect
to the RG equations (3). By continuity one can extend the transformation
@t:{zn9tn}^>{zn + 1,tn+ί} determined by Eq. (3) to the boundary of Q2 everywhere
except the point {0,0}. Note that from (3) it follows that zn+i ^zb

n, so all the fixed
points of the RG transformation 01 lie on the lines ZΞΞO and z = l. As ^:{0, t}

Table 1

b

TJJ

2

0.8205

3

1.3854

4

1.915

5

2.4326

10

4.9665

50

24.993

100

49.9999
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Fig. 2

I \
W

V

1 z

->{0,1} for t φθ, the only fixed point on the line z = 0 is {0,1}. This fixed point of
the RG transformation corresponds to the positive external field. It is superstable
and all trajectories starting inside Q2 tend to it. Some of these trajectories are
shown in Fig. 2.

}->{zn commutes with the transform-3. The RG transformation ^ : {zn, tn}

ation S:z-+ -. This property is connected obviously with the invariance of the

Hamiltonian of the Ising model with respect to the transformation σ-> — σ,
h-+ — h. It enables us to prove the following equalities by induction in n:

tn(T,-h) = tn(T,h).

The latter one leads to the equality

Moreover due to (6),

dh
= 0. (6)

δh h = (

As

h = 0

2b

δi

c
X -

dzn

dh

dh

-1 = 1

h = 0

h = 0 H

δh

δz

δzn

2b

1

n

- 1

1

"T
h = 0

dz

δh

δzr

= 1

Λ = 0

1

dh
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Using this equation recurrently we have

dzn

The formulae (6) and (7) obtained here will be used below for a direct calculation of
the thermodynamical functions.

3. Thermodynamical Functions

The free energy of the Ising model on the DHL can be found in terms of the RG
variables {zn, tn} [see (2)]. We start with Eq. (1) which gives

Pn+1= P2nb

Using this equality recurrently we have

7 1 - 1
b J) \b _ _ p(2b)n rπr !
7J — 1 71 — 1/ *•• 0 1 1

J = 0

= exp ^(26)" ( ^ - + %) [ "π" (1 +4-

Let

be the grand partition function. As

Ξn = Pn + 2Qn + Rn = Pn(l + 2QJPn + RJPn) = Pn(l+ 2z»J2tbJ2 + zb

n), (8)

we obtain

| ( ^ +2zbj2tbj2 + zϊ) "π d +ήψ2bv"''' • (9)

In order to get a right relation between the free energy and the magnetization in
the Ising model on the DHL one must take into account the total number of the
terms —hσi9 ίeΓn in Hn(σn) which is equal to (2b)n, so the free energy
F= - T lim (2byn\nΞn, and due to (9)

71—* 00

F=-3--h-Ύ- lim V (2fe)- Ίn(l +ήή)

- \im(2b)-"ln(ί+2zbj2tbj2 + zb).
7J-> 00

Assume O < z o ^ l (which means h^O) and 0 < ί o < l . Then 0 < z ^ l and
00

0 < ί π < l , so the series £ (2b)""ln(l +zb

nt
b

n) converges uniformly and
n = 0

lim (2byn\n{l+2zb

n

/2tb

n

/2 + zb

n) = 0.
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Hence it follows that

Σ
n = 0

415

(10)

It is not difficult to verify that this formula remains valid for h < 0 as well, but we
shall use it only for h ̂  0.

Another formula for free energy can be obtained similarly when one starts with
another variant of relation (8):

J - +2+ £ ) = Q n ( ; h n
\\όn Son/

and uses the recurrent equation for Qn. In this case we get

I 2 0
(11)

To calculate the spontaneous magnetization we differentiate both sides of Eq.
(10) in h and put h-* +0. Using relations (6), (7) we have

dh

T

= l + y ^ Γ Σ (2bΓ"ln(l+zb

nt
b

n)
Z On ( n = 0

bt\_ _ dz,

dh h=+0

Λ= +0

Thus

= 1- Σ Γff d + Φ " 1 - Π
θ L / O 0

M(ί)= Π
0

(12)

where tn+i=4'(2 + tb

n + t~b)~\ to = exp(-2J/bT). It is noteworthy that these
calculations of M(T) must be done very carefully. For instance, similar differentiat-
ing of formula (11) would lead to M(T) = 0. The problem is in the uniform
differentiability in h of the series in formulae (10), (11). As is proved in the
appendices the series in (10) is uniformly differentiable in h for /z^O, while that in
(11) is not.

Consider formula (12) more closely. As lim tn = ί for T> Tc, Λf(Γ) = 0 in this
n^0

case. Similarly, M(Tc) = 0 as tn = tc, n^O. Moreover, M(Γ)>0 for T<TC and
lim M(T) = 1, M(T) = C(T)(Tc-T)β as Γ-^TC-O, where C(T) is an oscillating
τ-*o
factor and



416

Table 2
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b

β

2

0.161734

3

0.343271

4

0.463242

5

0.546752

10

0.745762

50

0.943172

100

0.970517

is the critical exponent. To see it let us note that by (12)

(This formula can be considered as the αRG equation" for the spontaneous
magnetization.) If to = tc — ε, εjO, then

h=Ato)*tc-f'(tc)ε and (l+ί&)«(l+ί*),

so
M(tc-f'(tc)ε)κ(ί+ή)M(tc-ε).

Let
M{tc-ε) = C{ε)εβ.

Then

or

For β determined by (13), (\+tb

c)(f'(tc)yβ = \, and hence C(/'(ίc)ε)« C(ε). As
f'(tc)> 1, the last equation means that C(ε) is oscillating periodically when εJ,O. As
M(tc — ε) is positive for ε>0, one can show that C2>C(ε)>Cι >0.

In Table 2 the values of the critical exponent /? are given for some values of b.
Note for comparison that yS = 1/8 = 0.125 in the Ising model on Z 2 and β & 5/16

= 0.3125 in the Ising model on Z3. The corresponding values in Table 2 are those
for b = 2 and 4 (as b = 2d ~ ι ). One can see that the agreement is better for d = 2 than
for d = 3. This reflects the general tendency that the Migdal-Kadanoff approxim-
ation works better near the low critical dimension which in our case is equal to 1.
Moreover, it is exact in the first order of the perturbation theory in the dimension
d=l+ε(see [1]).

The divergence of the "dimensionless" susceptibility χ= — T2(d2F/dh2) was
shown at T= oo by a direct computation in [12]. By the GKS inequality it implies
the divergence of the susceptibility (more precisely of the quantity h~1M(T,h),
where M is the magnetization) for any T>TC. We calculate the dominant
singularity of the susceptibility for T> Tc in the following

d2Fd2F
Proposition 1. Let χ= - —τ, T>Tc,b = 2d~K Then

A\Ί)

2Ύ
,h), if b = 2,

b>2,
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where

A(T)= b

lim r(T,h) = r(T,0) exists, \r(T,0)| < oo. For any argument x>0 function K(x)
Λ->+0

has the following properties:
a) K(bx) = K(x)9

b) K(x) is analytic in x,
c) K(x)>0, if b>2.

Function K(x) is bounded and periodic with respect to the variable log& |x|. The
appearance of such oscillating factors is typical for various asymptotics of
thermodynamical functions of the spin models on the DHL (see [10]).

Proof of Proposition 1 is given in Appendix A. The following statement is
proved in Appendix B.

Proposition 2. For any T<TC the susceptibility χ(T,0) = lim χ(T,h) is finite.

4. Zeroes of the Partition Function

The divergence of the susceptibility at h = 0 implies that the point h — 0 is a limit
point of the set of zeroes of the partition function

for any fixed T. In this section we discuss some properties of the location of zeroes
of the partition function Ξn. To avoid some non-essential technical difficulties we
shall assume that b is even.

According to the Lee-Yang theorem (see e.g. [15]) all zeroes of the partition
function Ξn lie on the imaginary axis in h. If h is imaginary, then \zo\
= |exp( — 2h/bT)\ = l. Let Σn be the set of zeroes of the partition function Ξn

= Ξn(z0,t0) in the cylinder

where

z0 = exp( - 2h/b T) to = exp( - 2 J/b T).

Note first of all that for any fixed T (i.e. fixed t0),

2(2b)n
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mk(T)= Σ Γexp(i/2T) Σ σpλ,

£ <i />

SO

— z 0

2(2b)n

\bk/2

therefore ΞnZo(2ft)n/2 is a polynomial in z0 of the b(2b)n order and ΞM has b(2bf zeroes.
RG equations (3) have the following property: if |zj = l, zn = exp(iφn) and

l, then
exp(ibφn) + tb

n
= 1,

cos(bφn) +

In other words, the RG transformation M maps the cylinder Y into itself.
Moreover, note that in formula (9) for Ξn the only factor (1 +2z^ / 2 ^ / 2 + ẑ ) can
vanish for imaginary h. Indeed, as (zj9tj)eY9 j = 09ί,...,n9 so \ήή\ = ή<ί9 and
hence 1 +zjίj + θ. The equation

leads to

(15)

or cos(foφn/2) + ί̂ /2 = 0. This equation determines the location of the zeroes of the
partition function Ξn. It is useful for us to reformulate it in the following recurrent
equation for the sets Σn:

where denotes the full pre-image of a set Xc Y with respect to 0t9 i.e.

To describe the sets Σn consider some properties of the transformation 0t. Let

Y0=<(z,ήeY z = exp(/φ), π

b-

We call Yo the fundamental domain for 0t. 01 maps the boundary of Yo in the
following way:

2. {O^φ^ , t = 0}9
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Fig. 3

3. {0<,

4. {φ = π/b, 0^ = 2π, t = 0}

(see Fig. 3). For the point {φ = π/b, t = 1} the map 0t is not defined. Let us show that
this point "is mapped" to the curve

y = {{z9t)\z = exp(zφ), t = sin2(φ/2), π ^ φ ^ 2 π } .

It means that curve y is the set of limit points of My when _y-»(exp(πi/£>)5 l ) j e Yo.
Let ί = 1 — ε/fc, φ = (π — ωε)/b, where ω > 0 is fixed and ε > 0 goes to 0. Then
calculations in the major order in ε give tb& 1 — ε,

zb = exp(τπ — ωεi) = — exp( — ωεi) = — cos(ωε)

+ i sin(ωε)« — 1 + (ωε)2/2 + iωε,

so

z =
(ωε)2/2 —

(ωε) /2 — ε — ίωε 1 + iω

where φ'= — 2arctgω or ω = tg( — φ'/2). Next,

~b + z~b + 2 (ωε)2

t' =
tg2(-φ'/2)

t g

2 (- Φ 72)+:

Thus φ' = — 2 arctgω, ω > 0 varies from — π to 0, or from π to 2π and t' = sin2(φ72)
as was stated.

Consider the open domain Y1cY enclosed with the curve

(see Fig. 3). 0t maps Yo onto Yγ diffeomorphically. Each segment Is = {0 ̂  φ ̂  π/fe,
ί = s, 0 ̂  s < 1} stretches to curve Γs = {0 ̂  φ' ̂  2π, ί' = ^ ( φ ^ ^ ( 2 π ) = 0} (see Fig. 3)
and dφ'/dφ^lbil+t'Γ^b.

Let us return now to Eq. (16). For simplicity assume that b = 2. For n = 0, Σo

= {cosφ + t = 0} (see Fig. 4). Turn to Σΐ=&~ί(Σ0). According to our previous
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Fig. 4
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Fig. 5
π/2

/ / // // /i
/ / /I / / //

/in i n
I / I I / / I I j i

/ 1 i / / 1 i i I i

\ \ \
u \ \

\ \ ΈA
π 3π/2 2π Ψ

analysis the pre-image 01 1(Σ0) in the fundamental domain 70 consists of "two
threads" descending from the point (π/2,1) to the ones (π/8,0) and (3π/8,0) (see
Fig. 4). These are the pre-images of two parts of curve {t= — cosφ} going from
(π, 1) to (π/2,0) and (3π/2,0). The full set Σx can be obtained from these two threads
by the symmetry with respect to the line {φ = π/2} and by a shift in π (see broken
curves in Fig. 4). As a result Σ1 consists of two groups of threads, four threads in
each, descending from the points (π/2,1) and (3π/2,1).

To construct M~1(Σι)nY0 note that the curve γ = {t = sin2(φ/2), π^φ^2π}
intersects the threads in Σ1 descending from the point (3π/2,1). The inverse map
0l~γ "cut off the upper parts of these threads lying above the curve γ and "tie
together" their lower parts lying below the curve γ at the point (π/2,1). So in Σ2

there are four threads descending from the point (π/2,1) to the points (φ = 9π/32;
llπ/32; 13π/32; 15π/32, ί = 0) and four symmetric threads with respect to the line
{φ = π/2} descending from (π/2,1) to (φ = 17π/32; 19π/32; 21π/32; 23π/32, ί = 0).
Similarly eight threads descend from the point (3π/2,1) (see Fig. 5). Moreover,
there are four threads in the fundamental domain Yo descending from the point
(π/4,1) which are pre-images of the threads descending from (π/2,1) in Σv By
symmetry we have also similar "bunches of threads" descending from the points
(3π/4,1); (5π/4,1); (7π/4,1) (see Fig. 5).

Continuing this procedure one can see that in Σn there are bunches of
2~j+1 . 4"" 1 threads descending from the points

π
)j+\ '

3π

W1 2j+ι -A

A characteristic feature of the distribution of zeroes of the partition function Ξn

is that at any fixed T (i.e. fixed ί0) the distance between any two neighboured zeroes
on the circle {|zo| = 1, z0 = exp( — 2h/bT)} does not exceed 2π6~", so they are dense
on the circle {|zo| = 1} in the limit n-^co. Note that in the Ising model on Zd at high
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temperatures the zeroes of the partition function lie near the point z=—ί,
z = Qxp( — 2h/T) and are not dense on the circle {|z| = l}.

Figures 4, 5 were obtained with the help of a computer. The algorithm of these
computations is presented in Appendix C.

5. Conclusion

The Migdal-Kadanoff approximation is often applied in the consideration of
various models of statistical physics and quantum field theory. It acts most
effectively near the low critical dimension, when the critical temperature is low. At
the same time, as is seen from the present paper, this approximation can
demonstrate an anomalous behaviour of the thermodynamical function (in our
case of the susceptibility) in the high temperature region as well (see also [12]). This
phenomenon is strongly connected with the anomalous behaviour of the zeroes of
the partition function which, in the thermodynamical limit, form an everywhere-
dense set on the unit circle |z| = l.

Appendix A

In this Appendix we shall prove Proposition 1, dividing the proof into several
lemmas. For convenience, further we shall use new variables vn and ηn of the RG
equations which are related to tn and zn by

*/„); ίn = e x p ( - v j .

In these variables the RG equations (3) are rewritten in the form

(18)
cosh(bηn)+ί

V M 4 . I = — 1 ~ '

with the initial conditions

ηo = 2h/bT; vo = 2J/bT. (19)

Now we prove in detail properties of the trajectories (ηn, vn) which were formulated
in terms of (zn, tn) in Sect. 2.

When h = 0 from (18) the recurrence relation follows:

\ +1 = /(vΛ) = - ln[2(l + cosh(K))"*] (20)

[see (5)], for which the following statements hold:

Lemma 1. Let {vπ>0, n = 0,1,...} be a sequence for which (20) holds. Then there
exists a unique fixed point v c >0 such that vc = /(vc), f'(vc)> 1 and

1) if v o < v c> then v o > v 1 > v 2 > . . . and lim vn = 0. Moreover there exist
«-• 00

constants Cί = C^VQ, b) > 0 and C2 = C2(v0, b) > 0 such that 0<vn<C1 exp(- C22"),

2) if v0 > vc, then v0 < vί < v2 < ... and lim vn = oo.
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Proof. Using elementary properties of the hyperbolic trigonometric function, the
following relations and estimates can be directly obtained:

/(v) = 21ncosh(bv/2);

/'(v) = b tanh(bv/2) > 0; /"(v) - (b2/2) cosh " 2 (bv/2) > 0;

/(0) = /'(0) = 0; /"(0) = £2/2; lim (/(v)/v) = & > 1.
v-> oo

Consequently /(v)~i>2v2/4<v, when v<^l and /(v)~fcv>v, when v > l , which
means that function /(v) — v changes its sign and there exists vc > 0 such that f(vc)
— γc = 0. Since this function is strictly convex there can be only two simple zeroes of
it: v = 0 and v = vc, so vc is the only critical point and f'(vc) > 1. Moreover /(v) < v,
when 0<v<v c , so v1 = /(v 0 )<v 0 , v2 = /(v 1 )<v 1 , etc., when 0 < v o < v c and,
similarly, v0 < v1 < v2 < ..., when v0 > vc.

Let us estimate now the rate of the convergence of vn, when v0 < vc. First, note

that as v o > v 1 > . . . > 0 , lim vn = v% exists and /(v^) = lim f{vn)= lim v^^v^, so

v^ - 0. Second, since f\ϋ) = f(0) = 0, C = C(v0, b) exist such that /(v) ^ Cv2 for 0 < v
<v 0 . So vn + 1^Cv2, Cvn+ί ^(CvJ 2 , and consequently

Cvn S (Cvn _ ,) 2 g (Cvπ - 2 ) 4 ̂  . . ̂  (Cv J 2 " " w .

Choose m such that C v m < l . Then Cvm = exp(-C 1 ), C ^ O and CvnS(Cvm)2n~m

= Qxp(-Cι2
n-γn) = exp(-C22

nl C2 = C12~m. Thus v ^ C " 1 exp(-C22
n), as was

stated. Lemma 1 is proved.
In Lemmas 2-6 {(ηn, vn), n = 0,1,...} will be a sequence which satisfies recurrent

formulae (18), (19).

L e m m a 2. 1) If ηn, vn^0, then bηn^ηn+ί^2bηn, vn+ί^/(vJ,

2) ι/0 < v0 < vc, ί/ien v0 > v1 > ..., and there exist constants Cx = C^VQ, b) > 0 and
C 2 = C2(v0,fr)>0 such ίhaί

0 < v w < C i e χ p ( - C 2 2 " ) . (21)

Proof 1) Validity of the statement 1) follows directly from the relations

. exp( —fc n̂) + exp( &vj
) = mm F V /n/ y π/ = exρ(-2by?w);

vn>o e x p ( ^ ) + e x p ( 6 v j

vn>0

coshί&iyj +
m m exp( — vrt + J = m m

2) Inequality vπ + 1 ^/(v π ) and Lemma 1 imply v c > v 0 > v x > .... To obtain (21) we
introduce an auxiliary sequence {vn, n = 0,1,...}, which is defined by the recurrent
equation vn + 1 =f(vn\ vo = vo. Let us prove by induction that vn^vn. When n = 0
this fact follows from the definition of v0. Let it be valid for some number n. Due to
statement 1) of the present lemma vn + 1rg/(vn), and since function /(v) is
monotonous, we have
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Consequently, v Λ + 1 ^v n + 1 , which completes the inductive proof. Now ac-
cording to Lemma 1 for v o <v c we have that vn^C1 exp(— C22"), and hence
vn^Cι exp( —C22") which ends proof of Lemma 2.

Now we rewrite the formula for the susceptibility in new variables. According
to (10) we have

= _d2ι=τ » _ _ „ d2

or in the new variables

X = ? Σ ^
2 n=o on

By differentiating twice in h we obtain the following formula:

T °

(22)

The following four lemmas contain various estimates concerning the deriva-
tives in formula (22).

Lemma 3. (estimations of the first derivatives of the RG transformations). If ηn,
vπ^0, then

1.

2.

3.

4.

5.

dvn

^b2 tanh2(bvn)t<mh(bηn);

^ b t<mh{bvn

2b

Proof The estimates 1-4 can be obtained by differentiating in ηn and vn of both Eq.
(18) and using properties of the hyperbolic trigonometric functions.

For statement 1 we have

= b
fevπ) + cosh{bηn)

cosh(bvn) -h cosh(bηn)
(23)

because exp(Z?vπ) = cosh(bvn) + sinh(Z?vπ). Estimates 2-4 can be obtained similarly.
Let's prove 5. Using (23) we have

2b

dηn l + e x p ( - K )

b tanh(fovn/2) [1 - c o s h ^ J ]

cosh(b vπ) + cosh (bηn)
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and the required estimate is a consequence of the inequality:

11 - cosh{bηn)\ = sinh2(bηn) [1 + cosh(bηn)] ~x ^ tanh2(bηn) cosh(bηn).

Lemma 4. (estimations of the second derivatives of the RG transformations). If ηn,
vn^0, then

1

2.

4.

6.

41
dηndvn

dv2

δη2

dηndvn

d2vn+l

dv2

^ b2 tanh(6vπ) t&nh(bηn);

<b2.

Proof. These estimates are obtained in the same way as in the previous lemma. For
example, differentiating (23) in ηn, we have

S2ηn+ί = b2

[cosh(bvn) + cosh{bηj]2 '

so

<b2 sioh{bvn)smh(bηn)

2 cosh(bvn) cosh(bηn)
< b2 vπ) ta.nh(bηn).

The remaining five estimates can be obtained analogously.
For convenience, further we shall use the notation

^ - Π γ{ + exp( - bvj)'

Lemma 5. (estimations of the first derivatives in h). If ηo^.0 and 0 < v 0 < vc5 then

dh
ύ ^ (4b)" tanh(K _ J tanh (bηn _,),

01

where v_ί =v 0 , η-1=η0 by definition,
2. there exist constants Co = Co(vo,b)>0 and C = C(vo,b)>0 such that

dh

3.
dh
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5.

dηn 2

~dh~bTA

dηn bT

~dh ' 2Anb
n

2 n~ι

—Ajy1 v '
> 1 / = o

Proof. We shall prove these statements by induction. It is obvious that all
inequalities are valid when n = 0, which gives us an initial step of the induction.
Let's assume their validity for some n>0 and show it for n+1.

We have:
Svn+ι =dvn + 1 dvn | dvn+1 dηn

dh dvn dh dηn dh '

dηn+ι =Sηn+1 dvn | dηn+1 dηn

dh dvn dh dηn dh '

(24)

(25)

Using these formulae we prove 1-5.
1. Applying the estimates of Lemma 3 and our inductive assumptions to (24),

we obtain

Sbtanh(bvn)—(4b)n tanh(K-1)tanh(H,-1)
bldh

According to Lemma 2ηn^ηn_u and so tanh (bηn) ̂  tanh(^ n _ 1 ) . Moreover,
, and consequently

^ (4b)n+1 tanh(fovn) t a n h ( ^ ) . Q.E.D.
bTdh

2. Continuing the last inequality we have

2b

dh

which enables us to prove estimate 2. Namely, according to Lemma 2, the
sequence vn decreases with the superexponential rate as n-» oo, while ηn increases as
a simple exponent; hence \dvjdh\ decreases superexponentially as well. So

and consequently

0 < vn S C o exp( - C2"); ηn ^ 2h(2b)n/bT,

^ (4b)n + \2b)n(2/T)2 \h\ C o exp( - C2" + 1/2).

(26)

dh

Let Cj=C/4 and C 2 = max (8fc)2"(2/T)2C0exp(-C2" + 1/4), then

- C X 2 " + 1 ) . Q.E.D.
dh
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3. Analogously, applying Lemma 3 to (25) we obtain an estimate for
\dηn+1/dh\.

4. Furthermore,

ηn + i 2b dηn

dh 1+Qxp(~bvn) dh

dηn+ί 2b

dηn l+exp(-ftvπ)

n + 1 t a n h ( K - 1

dh dvn dh

To obtain the last inequality we used the fact that vn^1 ^ vn and, hence tanh(fovj
^ tanh(ί?vn_ j). Now under the inductive assumption and previous estimation we
have

jίr-wA *<b"'
2b

l+exp(-K)
η" 2 Ah"
h~bfAnt

— (4b)n+1 tanh(K- 1

+ 01

^

where the last inequality is valid because An+ί>l. Q.E.D.

5. To prove the last estimate we note that by (26)

j=0 j=0

Hence the required result follows from 4. So Lemma 5 is proved.

Lemma 6 (estimations of the second derivatives in h). If η0 ^ 0 and 0 < v0 < vc, then

1.
d2vr

dh2
(bT)2

where v_2 = v_1 = v0 by definition,
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2. there exist constants Co = Co(vo,b)>0, C = C(vo,b)>0, such that \d2vn/dh2\

3.

4.

5.

8
2
η

n

dh
2

S
2
η
n

dh
2

S
2
η
n

dh
2

bT
(4b)2",

Mτψ) A"b" V (46)2^+2tanh(fovJ._2)tanh(^),
7 = 0

Proof. As in the previous lemma, all the statements are valid for n = 0, because
d2vjdh2 = d2ηo/dh2 = 0. Let's assume validity of these statements for some n > 0
and prove the same for n +1.

Differentiating formulae (24), (25) in h we obtain

d
2
v
n
 + i 8v

n + 1
 d

2
v
n
 dv

n + ί
 d

2
η
n

vn+ 1
dh2 dv» dh2 dh2

dvndηn dh dh dη2 \dh

Sηn+i d2vn dηn+1 d2ηn <

dv2 V dh
2

dh dvn dh2 dηn dh2

2
d2ηn+ί (K dηn d2ηn + 1

dvndηn dh dh dη2 \dh

dv2 V dh
2

1. Now using the estimates obtained in Lemmas 3-5 and our inductive
assumptions by direct calculations we have the following inequalities:

S(2/bT)2b(4b)2"tanh(bvn)tanh(bvn..2)δh2

+ (2/b T)2b(4b)2n tanh (bηn) tanh 2 (bvn)

+ (2/bT)22b2(4b)2n tanh(bvn) tanh(bvn_

(Here we used also the fact from Lemma 2 that vn_l>vn>0 and consequently
tanh(bvn_!)>tanh(ί)vn)>0.) Q.E.D.

2. From (21) and the previous estimate it follows that

dh2 ύWψ) (4^)2"C0eXp(-C2"-2)^C1exp(-C22"). Q.E.D.
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3. As in the first estimation of this lemma one can easily obtain the inequalities:

dh2 ^(2/bT)2b(4b) 2n

n)tanh(bvn_2) +

+ (2/b T)2b2(4b)2" tanh (b vn) tanh2 (b vn _ t

+ (2/bT)22b2(4b)2" tanh(bvn_ t

δηn δh2

J t a n h 2 (617,, _ t )

+ (2/bT)2b2(4b)2ntanh(bvn)tanh(bηn)S " + 1 Άn

dηn dh2

+ (2/b T)26b2(4b)2n tanh (bvn _ 2) tanh (&»/„). (27)

Because \δηn+1/dηn\ S2b (according to Lemma 3) and \δ2ηJdh2\^(2/bT)2(4b)2n

(according to inductive assumption) we have finally the required estimate

2 \ 2

 2 2 π / 2 N 2

ybf) + \bT,dh2 -«(^Y. QE.D.

4. On the other hand according to estimate 5 of Lemma 3

^ l + e x p ( - K ) + M a n h ( K ) t a n h 2 W '

which allows us to write the chain of inequalities continuing (27),

2b

dh2 dh2

+ {2/bT)2b2{4b)2n tanh (bvn) tanh2 (bηn)

+ (2/bT)26b2(4b)2n tmh(bηn) tanh(fcvn- 2)

2b

l+exp(-bvΛ) dh2

Now applying inductive assumption 4 of the present lemma, we obtain

n - 1

dh2

+ (2/b T)2 (4b)2n + 2 tanh (bvn _ 2) tanh (bηn)

i). Q.E.D.

5. The last statement follows directly from 4 and (26) (cf. the proof of the
statement 5 of Lemma 5). Lemma 6 is proved.

To prove Proposition 1 we shall need some estimates of the dependence of the
RG trajectories on h and n. Let's unite them into the following
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Lemma 7. Let 0 < v o < v c be fixed and the sequence {(vn(h\ ηn(h), n = 0,1,...} be
defined by recurrent relations (18), (19). Then there exist constants Co = C0(v0, b) > 0,
C = C(vo,b)>0 such that

1. \vn(h)-vn(0)\^Coexp(-C2n)h2.

2. lim " π 2[l+exp(-fcv 7 (/z))Γ1 = lim An(h) = A(h)>0 exists and \A(h)-A\
n^oo j=O n—• oo

^C0h
2, where A = A(0),

\An(h)-A(h)\^Coexp(-C2»).

3. lim b~n(dηn(h)/dh) = B(h) exists and
«-• 00

\b - "(δηn(h)βh) - B(h)\ S Co exp( - C2"),

\B(h)-2A/bT\SCoh
2.

4. lim b~"ηn(h)=Ψ(h) exists and

\b-"ηn(h)-Ψ(h)\^Coexp(-C2"),

\Ψ(h)-2A/bT\SC0\h\3.

Note. For brevity we do not indicate the dependence of all functions on T.

dv (h)
Proof. 1) According to the Lagrange formula vn(h) — vH(0) = h " , where
h^h^O. By Lemma 5, δ h

dvn(h)
SC0\h\ exp( - C2") ̂  C o \h\ exp( - C2"),

dh

which implies

WΛ) - vB(0)| ύ C0h
2 exp( - C2"). Q.E.D.

2. Denote a(h)= lim an(h\ where
M—• 00

n- 1

As
2[1 + exp( - bv̂  )] ι = 1 + tanh(bvy2)

and O^ln[l +tanh(fevy2)]^bvy2, we obtain the following estimate:

00 GO

j=n j=n

where we have used inequality (21). Moreover

\a(h)-a(O)\ =
j=o

- ln[l + tanh(fev/0)/2)]}

S Σ |v/Λ)-v/0)|^CΛ 2.
j=0 £
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\An(h) - A(h)\ = |exp(fln(Λ)) - exp(a(λ))| g Ct \an(h) - a(h)\ S C o exp( - C2").

Analogously

\A(h) -A\^ C\a(h) - α(0)| ^ C0/z2. Q.E.D.

3. Let's consider the difference of the derivatives

fo-("H

δh

b-n(b-idηn+1 λdηn { b

dηn J dh

ηn+ί dvn

dvn dh

According to Lemma 3,

fe-i^±i_i - 2[1 + exp( - fcvj
n/2) tanh2(bηn)

So, using Lemmas 2 and 5, we have

which means that lim b "(dηjδli) = B(h) exists with the corresponding rate of the
convergence. " ^

Now according to Lemma 6

V ^> D W7
dh2

which implies \B(h) — B(O)\^Cιh
2. To end the proof of 3 its remains to note by

Lemma 5 that

5(0) = l i m f o - " ^
M^OO on r!Zw = bτ Q E D

4. Using the previous estimations we have

h dn (h) h

lim b~nηn(h)= lim j b~n -Jfϊ~-dh> = J B(h')dh' =Ψ{h)9
n->oo n-+oo 0 (yfί o

and

Moreover, by 3

\b-nηn(h)-Ψ(h)\^Co\h\exp(-C2").

\Ψ(h)-2A\h\/bT\ =HB(h')-2A/bT]dh
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Lemma 7 is proved.
Now we turn to the proof of Proposition 1. Estimates of Lemmas 5 and 6 show

that dvjdh and d2vjdh2 decrease with the rate Co exp( — Cγ2
n\ when n-> oo, where

Co, Cx do not depend on h, while dηjdh and d2ηjdh2 increase not faster than
C0(4fo)2". Hence, the terms in formula (22) containing derivatives δvjdh and
d2vn/dh2 bring the finite contribution and have a limit when h JO. Let's turn to the
analysis of the terms of (22) without these derivatives. One of them is

2 Λ ] δh2'

Due to Lemma 6

so

bT °°
IZol^Ci— Σ 2-"|Λ|^C2|Λ|,

2 n = O

and, consequently, lim χ0 = 0.

The other term in (22), without the derivative of vn, is

Tb2 «

To investigate the behaviour of χγ when /z->0, we introduce an auxiliary function

Th2 °°
Σ (2bynii+cosh(bn+1Ψ(h))r1(bnB(h))

0

Σ
n = o

Then

" + x Ψ{h))~\ ~11 (b"B(h))

+ {Tb2/A)

Using the estimates of Lemmas 2 and 7, we have

n-b" Ψ(h)\ S Co exp( - C2"),
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and

£)' -<MW
where C, Co >0 do not depend on n and h, so quantity |χ2 — χx\ remains finite and
has a limit when h[Q.

To describe the asymptotics of χ2 when h[0, we shall need some auxiliary
statements which are connected with those of Proposition 1.

Lemma 8. For any x > 0, b ̂  2, denote

oo /fΛπ

Σ [l+cosh(2"x)]-1-|log2-, if b = 2,
n = 0 X

Σ (^"[l+cosh^x)]"1, if fo>2,

where γ = 1 — log2

 : fc. T/ẑ « ί/ẑ  function K{x\ x > 0 Λί/5 ί/ẑ  following properties: a)
), b) X(x) is analytic in x>0 ? c) X(x)>0, if b>2. Moreover,

lim[C/(x)~(log2(l/x))/2-K(x)]=0, if 6 = 2,

-x"yK(x)] = C 0, |C 0 |<oo, if 5>2.

Proo/ 1. Case b = 2. Let's denote

V{x)= Σ Σ
= 0

[l+cosh(2nx)]

Since

so

and consequently

:+cosh(2"x)]~1-i|=i

< x 2

(28)
xiO

On the other hand
— 1 oo

yθΎ\— y rr-j _LΓπςίΊ/o«+iγ^"|-i_l) _L y ri 4-roshί2"+ 1v)1 ~ :

n = 0

{[l+cosh(2f[x)]-1-|}+ £ [l+cosh(2*x)]-1-i,

n— — oo

fc=-oo
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which yields V(2x) = V(x)—\. By definition

K(x)=V(x)-±\og2(\/x). (29)

Then

Since the series defining the function V(x) converges in a complex neighbourhood
of any point x > 0, so this function is analytical in x > 0 and consequently the
function K(x) defined by (29) is analytic too.

2. Case b > 2. Now by V(x) denote the series

V(χ) = £ (b/2f
n — — oo

Then

lim I V(x) - U(x)\ = lim £ (b/2)n [1 + cosh(£"x)]
n= - oo

£ ίyι = C0. (30)
π = 1

On the other hand (here k = n + 1 again)

= (2/b) Σ
k= - o o

We have

)-\ (31)

and

^(ftx) - V(bx) (bxf = ~ V(x)byxy = K(x).
b

Reasoning analogous to the previous case implies analyticity of the function K(x)
defined by (31). It completes the proof of Lemma 8. It is noteworthy that the
properties a) and b) of function K(x) from Lemma 8 imply the estimate

x>0. (32)

Now when b = 2 by (28) and (29) we have

χ2 = (Tb2/4)B2(K T)H\og2(2\Ψ(h, T)\)-'+K{2Ψ{K T)) + ro(h, Γ)] ,

where lim ro(h, T) = 0 (here and below we indicate the dependence of all functions

on T again).
Using estimates from Lemma 7:

\B(h,T)-Λ(T)(2/bT)\^Ch2; \Ψ(h,T)-A(T)(2\h\/bT)\^C\h\\
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finally, due to (32), we obtain the representation

IT

When b>2 by (30) and (31) we have

χ2 = (Tb2/4)B2{h, T)[\bΨ{K T)\-yK{bΨ{h,

where lim ro(h, T) = Co, |C 0 |<oo.

Analogously as in (33) we obtain

,33)

fo(Λ, T)] ,

Since \χ2 — Xi\ has a limit when h^0, formulae (33) and (34) are equivalent to the
asymptotics of the susceptibility formulated in Proposition 1. The properties of
function K are established in Lemma 8. Thus proof of Proposition 1 is completed.

Appendix B

To prove Proposition 2 we will use another variant of the RG variables, namely ξn

and zn. Then from (10) it follows

(35)

Sequence {(ξn,zn\ n = 0,l,...} satisfies recurrent equations:

(36)

with the initial conditions ξo = exp( — (/z + J)/bT\ zo = Qxp( — 2h/bT). Note that

£B + i = τ ^ 2 F = g ( £ , ) > (37)

when zn = l. Let ξc = γTc be the fixed point of the map ξ-*g(ξ). If ξo<ξc, then
iterations ξ w + 1 = g ( ξ j go to zero and there exist constants C 0 = C0(ς0,b)>0,
C = C(ξo,b)>0 such that

0<ξ n <C o exp(-Cfo«). (38)

(The function g(ξ) has zero of the order b at the point ξ = 0.) If zn ̂  1, then by Eq.
(36) ξM + 1 ̂ g(£w), so for ξo<ξc, (38) can be shown analogously as in Lemma 2.

By induction in n in the same way as in Appendix A it can be proved that

dh'

d'zn

w
{ 3 9 )
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where i = 1,2,..., κt > 0. Hence it follows that the susceptibility χ(h, T) given by the
series

χ = (Γ/2) J ^

converges uniformly in h ̂  0, and consequently there exists lim χ(h, T) = χ(T). This

completes the proof of Proposition 2. hi°
From estimates (39) the existence of all derivatives of the free energy at h = + 0

when T^TC follows directly.
On the other hand estimates obtained for quantities dvjdh and dηjδh in

Appendix A enable us to prove the existence of the limit of the spontaneous
magnetization M{T)= lim M(h,T), when T>TC.

We have h^ + o

M(KT)=-^-=ί-(bT/2)
On }

According to Lemma 5

~dh = ° A | ϊ - ~ 1 " ' dh

hence the series in the formula of the magnetization converges uniformly when
h -• + 0 and lim M(h, T) = M( T) exists. A posteriori it means that M( T) = 0, when

T>TC (see Sect. 3 above).

Appendix C

To find a convenient representation for computations of transformation 0l~γ let
us rewrite Eqs. (3) in the form

Z

b _|_ fb

 Z

2 b _L tbZb

ί« 4- 1 — u —u

Now using the substitution

we obtain

f . + 1 =

 Φ + 1 / . (40)
n + 1 i+u'

Let's solve these equations on u and v. From the first one

v2-;
u =

n+
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and from the second equation (40)

t _ Zn + i-1 v 2 - z n + ι

Zn+ί \V~i)

where u + + l . Sowe have

zn+ίtn+1(v2-2v + l) = {zn + 1-l)(v2-zn+ί),

or the following quadratic equation for v = zb:

v2(zn+1tn + ί - z n + 1 + l)-2zn+1tn + ίv + (zn + 1tn + 1-zn+1+z2

+1) = 0.

Solving this equation we obtain v, and further from (41) we find u.
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