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Abstract. We demonstrate that the Kac—-Moody and Virasoro-like algebras
on Riemann surfaces of arbitrary genus with two punctures introduced by
Krichever and Novikov are in two ways linearly related to Kac—Moody
and Virasoro algebras on S'. The two relations differ by a Bogoliubov
transformation, and we discuss the connection with the operator formalism.

1. Introduction

Two-dimensional conformal field theories [1] have been considerably developed
recently. In particular, they are relevant in the study of string multiloop amplitudes,
which amount to the contribution of higher genus Riemann surfaces to partition
functions and expectation values. The application of powerful mathematical results
in algebraic geometry and in complex analysis on Riemann surfaces has led to a
rather detailed understanding of the multiloop structure, especially in the operator
formalism which uses punctured Riemann surfaces to describe scattering amplitudes
[2,3,4].

On the other hand, the older algebraic approach consists of using the
Kac-Moody and Virasoro algebras to describe the Hilbert space of a closed string.
These algebras are then defined on S*. They can be naturally extended to the
Riemann sphere CP, with punctures at z=0 and z = co. This allows, for instance,
the algebraic construction of the non-interacting string partition function.

Krichever and Novikov [5] introduced a natural extension of these algebras
to the interacting string theory by formulating the algebras on a Riemann surface
X of arbitrary genus g with two punctures at P,. Note that for g > 1, these
punctures cannot be moved to two specified points by conformal transformations
as was the case for CP,. The Kac—-Moody algebra is defined as that of Lie
algebra-valued meromorphic functions on X which are holomorphic outside P, .
Similarly, the Virasoro algebra is given by the algebra of meromorphic vector
fields on 2, holomorphic outside P . As in the operator formalism, one associates
a set of local complex coordinates z , with the punctures P, that vanish at the
puncture. As for the sphere, the radial parameter is related to the time parameter
7, such that P_ corresponds to t=o00 and P, to 7= — 00. A coordinate-
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independent way of defining 7 is through the use of the third kind differential [5]

9 TEQP.)
T—Regodln[mj', (1)

where E is the prime form [6]. The contours C, of constant 7 give a snapshot of
the string. In particular, C, is not necessarily connected and the snapshots depend
on the choice of punctures. However for || big enough, i.e. for Q close to P,,C,
will be a circle which we generically denote by C, . The orientation of C, is positive
with respect to P, . As was shown by Krichever and Novikov, the restriction of
these algebras to C , gives the Kac-Moody and Virasoro algebras on S*. These
algebras specify the Hilbert spaces relevant for the ingoing and outgoing string
states.

The natural question to ask is in what sense the algebras formulated by
Krichever and Novikov contain information on the interactions taking place
between T = — o0 and 7 = 00. A strong argument against such a dynamical content
of the algebra is that an algebra is a local structure. The current algebras considered
by Krichever and Novikov [5] are restrictions of the algebra of Lie algebra-valued
meromorphic functions on X (in the sense that the poles of the meromorphic
functions are restricted to the punctures) with a central extension defined in the
following [7]. Let I" be the space of Lie algebra-valued meromorphic functions
on X and I’ its central extension defined by

I'=0Q,/dQ, x T, )

where (, is the space of meromorphic n-forms. Let us label a generic element of
the extension by 4 = (a, F), where a is a non-exact one-form and F is in I". The
commutator of two such elements is given by

[(a, F),(b,G)] = (kTr(FAG — GdF),[F, G]). ©)
One easily verifies that the Jacobi identity is satisfied since
[(a, F),[(b,G),(c, H)]] + cyclic = (— kd Tr(H[G, F]),0) = 0. (4)

There is a map from the space 2, /dQ, (now restricted to forms holomorphic outside
of P,) to the complex numbers, defined by the map

1

1
Q> =—— 5
A i ia 2ni & @ )
which leads to the central extension
k
n(F,G)=— § Tr(FdG) (6)
LI

used by Krichever and Novikov. (They only consider U(1) current algebras, for
which the traces in Eqgs. (3,4,6) are replaced by a factor %). Somewhat more
complicated is the central extension for meromorphic vector fields on X, for which
we refer to the appendix of ref. [7].
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2. The Case of Current Algebras

Although the central extension was formulated independent of the genus g,
constructing a basis for the algebras will crucially depend on the global structure
of the Riemann surface, and in particular on its genus g. The key tool here is the
Weierstrass gap theorem [6] which states that meromorphic functions f having a
pole of order n at a given point cannot be extended holomorphically outside that
point for g values of n between 1 and 2g (for a generic point, n=1,2,...,9).

The basis of meromorphic functions holomorphic outside of P, is constructed
by specifying the order of the poles (or zeros) at P, and P_, such that there are
g zeros outside P, whose positions are fixed by requiring the function to be
single-valued. This is the famous Jacobi inversion theorem [6]. The above needs
two remarks. First, the constant function is clearly an element of the algebra. The
addition of a constant to a meromorphic function is viewed as a gauge freedom.
Indeed, if one takes a meromorphic function with poles both at P, and P_ (a
situation required to occur due to the Weierstrass gap theorem), it cannot be
uniquely specified by giving the order of the poles at P, . Instead one requires
there to be g + 1 zeros outside of P, for the g functions having poles at both P,
and P_. They will then have a one-parameter freedom corresponding precisely to
the addition of a constant. The basis is therefore specified by

Aj(z)~ 2L 71+ 0(z,), 171> 9/2,
~ TR+ 0z 1)), 1192, j#9/2 ™
Ag/2=17

where j is half-integer for g odd and integer for g even. (However, note that one
can just as well define B, = 4, ,/, with n integer for the basis.) The second remark
is that for each given order j, there are special points P, for which the inversion
theorem [6] is not valid. This is easily demonstrated for the torus case (g = 1) and
we illustrate it with P, = + z,. The Weierstrass o-function can be used to factorize
arbitrary meromorphic functions. (For higher genus, the prime form is used for
this purpose [6].) Single-valuedness is easily seen to imply up to a constant

0P (z2—2z,)

IT G 4 4,) CE T 270 LiI#1/2 ®)

When 2z, equals + z, modulo periods, the zero which is supposed to occur outside
of P, will actually coincide with it. For these special values of z, one has to modify
the specification of the basis. Our arguments relating the algebras of Krichever
and Novikov to the algebras on S are independent of the detailed choice of the
basis and we therefore will not dwell any further on this point.

Useful in our further analysis will be the set of meromorphic one-forms dw;,
holomorphic outside of P, and dual to the basis 4; in the following sense [5]:

1 1
2mi c{: i40; 27i C§_ 1405 = 9 ©)

If ¢(z) is the chiral scalar field on the Riemann surface X, Krichever and Novikov
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define the operator expansion as follows:
dop =, dw,. (10)

The chiral creation-annihilation operators are given, for f a meromorphic
function holomorphic outside of P, by [3]

L1 =5 § 0= =5 § 14 (y

such that «,=a[A4,]. One easily verifies that dw,, is exactly the third kind
differential used to define  on X' with two punctures [5]. «,, is then naturally
identified with the momentum flowing through X from P, to P _. The commutation
relations (for central extension k = 1) follow from the general result [3,8]

1 1
= dg= —— d 12
(ol fLalol] =55 § fdo= =5 4 Sdo (12)
such that
[t ] 1§AdA 1§>AdA 13)
O] == =—— =Vym-
n>“'m 271:1- n m 2ﬂi n m ynm
Note that a,/, commutes with all a,, as it should for the momentum operator.
We can now easily construct a linear transformation which relates this algebra

to the standard U(1) Kac—Moody algebra. For this we expand the chiral field with
respect to the coordinates at the punctures

d(z.) =Y a,z3"

dz_
d9(z-) =~ Vb2 =, (14)
such that from Eq. (12) one finds
[ana am] = [bn’ bm] = m5n+m,0‘ (15)
From this it follows that
1 A,z )
= C‘f = oni d mrr 42
1 1 [ A,(z)
= _i—j =5 C§_ e dz_b,, (16a)
or
%, = Appy = B, by, (16b)

with 4,,, and B,,, respectively the Laurent coefficients of 4, at z, and z_. (Observe
that Ay, , = By, , = 0, such that indeed the ingoing and outgoing momenta a,
and b, are equal.)

It may be instructive to verify by explicit computation that Eq. (13) is satisfied
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when using (15) and (16) only (C, is a contour around z)

k
[amam] - ZkAnkAm -k= § § —A (Z)Am(W)Z < >

_ 9I2|>IWI — 0IWI>I2I
§ 2m é, 2m An(D) An (W) (z—w)2
§ dw A,(2) Am(W) _ dz ( ) - a7

27:1 domi (z—w)

We can easily extend the result to non-abelian Kac-Moody algebras where
the chiral commutation relations in terms of the Lie algebra-valued functions are
given by (see Eq. (6))

ol 1 alg1] = al [, 611 £ § To(7do) (19)
The chiral field is written as _
dp =0T, dw, (19)
with T, a basis of the Lie algebra such that
[T, ] =ifu' T, To(T,T,)=%0m, (20)
which leads to the algebra
(o, O] = U e b5 + KO Y @1
with .
dyn = 2L A, A, dw, s (22)

Note that one can easily show that v, is zero for |n + m|>r and that d;,, is zero
for |s| > r with r of the order of g. (The detailed behaviour is not interesting for
us.) The fact that d5,, is non-zero for more than one value of s is interpreted by
Krichever and Novikov as a generalized grading [5]. But as in the U(1) case, this
is just a consequence of the choice of the basis. The commutation relations (21)
can be rederived by using

oy = Apmas, = B, b, (23a)
with 4 and B as in (16) and
Lan, an] = if s s+ kmd™ 3, 4 0, (23b)
[b2, b5 ] =if b4y + kmO™ S, o (23¢)
Finally the use of the following “addition theorem”
;A"(”_')A"” § Zd; ¢, 2mi zz_f%/:v'?—??




254 J. Alberty, A. Taormina and P. van Baal

dz 1

dw 0 —0
— = A A [w]> |z [wl<lz]
¢, 2mi ZPt1 c§+ 27 (D) An(w) w—z

dZ A (Z m(Z) dZ An+m+s(z)
§ 2mi P! Z . § | 2mi ZPY
= Zdn,m n+m+s,p (24)

leads to
[aﬁb ai’n] = ifabcAnkAmla2+l + kéab’))nm

= if‘abcz dfl,m n+m-+s,q q + kéabynm’ (25)
5,q

which coincides with (21).

We have thus seen quite explicitly that the Kac—-Moody operator algebras
constructed by Krichever and Novikov on X are in a simple linear way related
to Kac-Moody operator algebras on the circle, and hence the general grading is
just a consequence of the choice of basis functions.

However, the linear transformation depends on the particular puncture
considered. To understand how the information of X is encoded in the algebra
we recall that the two circles C, have a well-defined interpretation. C, can be
identified with an ingoing string state while C _ is identified with an outgoing string
state. Since the string interacts, an ingoing string in a certain vibrating mode
redistributes its excitation over the allowed states due to the interaction. This
means that the b oscillators are related to the a oscillators by a Bogoliubov
transformation which is uniquely determined by the interactions. This information
is thus contained in the Krichever—Novikov algebra. After all, from Eq. (16) we
simply obtain

bm :(B_l)mkAknan' (26)
There is a nice and compact expression for this Bogoliubov transformation based

on the observation

_ 1 m
(B D= — 5. § 2" doylz-), 27
i
which follows from

1
61(1 = — EE C§_ Aldwk

$ By, zZ"(B™ 1)z Mz

ol
=Blm(B_l)mk' (28)
Consequently,
1 d
b, — —m§ 2 A,z )a, (29)

" 2wl
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with
Az, w) =) Ay(z)dw(w), (30)

which satisfies

49(e) = 59 W) A2, 61

where C is any curve homologous to C, .

3. The Connection with the Operator Formalism

We can now make contact with the operator formalism [9]. Let us first concentrate
on the puncture P,. We will closely follow the elegant formalism developed in
ref. [3] which allows one to work entirely in a chiral sector (for fixed loop momenta).
The state | X, P, > obtained by integrating over the Riemann surface minus the
disk around P, is annihilated by all the operators a[ f] for f holomorphic outside
P.,ie. for feH°(¥ —P,). As a basis we can choose f,=A4_,_,,,n=12,....
However, as observed in ref. [3], this is not a complete set of commuting operators
and this does not specify the state |, P, > uniquely. In fact, a[h] (for h having
constant shifts around the non-trivial homology cycles and holomorphic outside
P ) will commute with all the above annihilation operators. Modulo H°(X — P.,)
there are 2¢g such functions (e.g. for the torus, the two functions are easily seen to
be the functions z and {(z), where ( is the Weierstrass { —function).

Given a choice of marking (a canonical homology basis {4;, B;},_, ., where
only A; and B; intersect), one chooses h,, and hp such that

alh JIZ P, 5> =plE P, ),

1 0
a[hB.-:”Z’P+>=E7;lTa“p.|ZsP+>- (32)

We will need the properties [3]:
§'dhA1‘ = — j.thi = 5ij’

$ hDdco— ,§dcu, D=A; or D=B, (33)
2 i c, Tl b
where dw is an arbitrary one-form, holomorphic on {¥ — P, }.

We can likewise consider the puncture P_. A basis for H°(X — P_) is now
given by f, = A, ,2,n=1,2,..., and the additional 2g non-single-valued functions
denoted by h satisfy tfle same properties as in Eq. (33) if we replace C, by C_.
We observe that hy — hy, is single valued and

L § (hy—Fip)doo = § hpdo = §d
b - T 2mi g @

2mi ¢,

~ 1 -~
=2—ni $ hpdow = o $ (hp—hp)dw (34)

C_ C_
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for any holomorphic one-form dw. Therefore, we can choose the following for the
Krichever—-Novikov basis:

Ay =12mi(h,, — zAi)’

dag, ;=dk, i=172,...,4, (35)
where dA,; form the basis of the holomorphic one-forms such that
§d,1 = 0yj §di =1, (36)

where 1;; is the symmetric period matrix. Our choice for the g basis elements in
Eq. (35) deviates by an irrelevant S#(g, C) transformation from the choice specified
by Eg. (7). As we observed before, 4,,, =1, a,, corresponds to the momentum
flowing through the diagram and dw,,, is the third kind differential and is identified
with dr.

Having completed a description of the Krichever—Novikov basis in terms of
functions associated to each of the punctures, we can also express the state vector
for the two-punctured Riemann surface in terms of the Krichever—Novikov basis.
This state vector was already given by Alvarez—Gaumé et al. [2] in terms of the
prime form and the holomorphic differentials as a vector in #, ® # _ with #,
the standard Hilbert spaces associated with P_. But we prefer working in
H . ® A", because P_ corresponds to T— + co. In this way, the operators b,,
with m >0 naturally act as creation operators in #" as is suggested in Eq.
(14). If |0, > are the standard vacua in 5, one finds [9] for the state vector in

H, QAN

1 dz; . dw, 0%1 ,
<xp>=(0-fo( - I e R Y w)
pk={+,—} CJj

i 27
0, > (37

where ¢ , is the creation part of the chiral field (depending on the puncture). This
equation follows from the requirements:

a[fn]<Z9Pi>:a[fn]<2api>:0a
a[hA,J<z,Pi>=a[ﬁAiJ<2,Pi>=pi<z,P >, (38)

.exp<ina[i=1pa azlip[i+ Z Do Z §dzj¢+(zj)j’a(zj)>

a=1 j= {+‘_}C,»

alhp1<ZP, > = a[hgJ(Z,P, ) = i < P

which can be seen to be equivalent to [3]:

0%1 ;
e R BN 1 e e RIC] E LR

={+-} ¢
(39a)

£<2,Pi>=[2mzraﬂpp+ Y §¢+(z,)dia(z,)]<21’+> (39b)

j={+-}Ci



Relating Kac-Moody, Virasoro and Krichever—Novikov Algebras 257

Using the fact that
1
pa<29pi>=§E§Ag/2—ad¢<29pi>s (403)

we can rewrite Eq. (39a) as

d
dp(2)(EP,> = gz—:i dp(w)Aw,2)< P, >, (40b)

where C is any cycle homologous to C,. Using Eq. (38), one shows that the
splitting into the contributions of P, will automatically amount to replacing ¢ by
the appropriate creation part. B
Note that there is a relative minus sign in Eq. (39a), which arises due to the
fact that
§ dzhy(2)0,0,log E(z,w) = — 2ind;(w), (41)
Cy
according to the definition of the prime form [6]. Another reason to see the need
for this relative minus sign in Eq. (39a) is by rewriting for example

< § —qS w)0,,0,log E(w, z)+2mZpaia(z)>|2 P> (42a)

as
¢ . (w)
§ 2mi

Cy

[a log E(w, z +2mZh (W) 4, (z):||ZP 5 (42b)

with the function within square brackets single-valued as a function of w.
Recognizing that Eq. (40) is implied by Eq. (31) establishes the connection
between the Krichever—Novikov algebra and the operator formalism.

4. The Case of Virasoro Algebras

Let us now turn our attention to the generalization of the Virasoro algebra
considered by Krichever and Novikov [5]. They consider the meromorphic vector
fields on X, holomorphic outside of P, and specify the basis ¢; such that there
are g zeros outside of P, which are uniquely fixed by requiring single-valuedness.
The Riemann—Roch theorem states that for g > 1 the number of poles minus the
number of zeros of a meromorphic vector field is 2(g — 1). The basis is specified by

e~ zEIT0RT(] 4 O(Zi))i,

i 43)

except for special values of i and points P, but this is not important for the
following. Observe that for the torus, e; = 4,0/0z. If T(z) is the stress-energy tensor
on X and the covering of X is part of a projective structure (i.e. the transition
functions are in S7(2,C) such that the Schwarzian derivative vanishes [1,2,3]),
then for a given meromorphic vector field £ on ¥ which is holomorphic outside
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of P, one has the Virasoro generator
1
LEl=+-— ¢ ¢T (44)
i,

(remember that T is a two-form). The Virasoro algebra with central extension is
given by

d3
(LIS O] = LT ] £ 50 4 do. 82 e ), s)

with [&,#] the Lie derivative of the vector ﬁelds and the central term is given in
local coordinates (£ = &(z,)0/0z ).

Following Krichever and Novikov [5] one can introduce a basis of two-forms
£, dual to the vector fields e; in the sense

— § eQ,=0,;, (46)
and expand the stress-energy tensor T in terms of £,
T=L;Q,. 47
Then we clearly have L, = L[e;] and
3g/2
[L,L]1= 23 , &iLivj—s+cxlese;), (48)
s=-13g
with the central term and the coefficients cj; given respectively by
d>n(z
AEn = g § a2 1), 9)
24 z3
ij =+ %i Le: ej]'Qi+j—s' (50)

As for the current algebras, the two punctures allow us to define two standard
Virasoro algebras

T(z,)=K;z;%"Pdz, ®dz,,

T(z_)=1,zt""2dz_Q®dz_, (1)
such that K; = L[ —z'}10/0z, ] and I, = L[zZ'*18/0z_] satisfy
L ¢ . ,
[K;, K] :(l_])Ki+j+E(l3_l)5i+j,0’
c
[Iw 1]_(l .])11+] 1 ( 1)51+]0 (52)

A simple computation shows that
Lkzcann=Danm (533)
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with C,, and D,, the Laurent coefficients of e, at z, and z_ respectively,

1

=—§ z;" %edz, @dz,,
2ni ¢,

kn

1 -
Dy, = “omd zi" 2 dz_®dz_. (53b)
Krichever and Novikov [5] also wrote a Sugawara form for the Virasoro algebra.
For this one needs to introduce a normal ordering. One possible choice would be

“OL, 0y = OO, RS,

" " - (54)
= 0,0, H>m,

but there is a large amount of freedom which leads to finite constant shifts in the

Virasoro generators given by [5]:

S _ 1 gk <« ”,
Lk__fnm Ly Xy 5

1
k= i2—ni $ edw,@dw,,. (55)

Cs

Using Egs. (10) and (14) to substitute «, dw,=a,z:"dz, /z. , one finds:

1

L= <ﬂ. § ezi ™™ 2,0,z ®dZ+) + s (56)
2mi ¢,

with v, a constant which occurs due to the normal orderings involved (: : is the

standard normal ordering for 5, ). Using Eq. (53b), we therefore find:

Li = CanE + Vg

a,:, (57)

Ki=- Y a

p
2p+q=n

where K3 satisfies Eq. (52) for ¢ =1. A similar result is easily derived for the
expansion with respect to P _.

Finally, we observe that the constant v, can be understood as coming from the
Schwarzian derivative related to a particular choice of coordinates compatible with
the chosen normal ordering.

5. Conclusion

In conclusion, we have shown that the generalized grading of the Krichever—
Novikov algebra is a consequence of the choice of a globally defined basis for the
meromorphic functions and vector fields, holomorphic outside of P, .

Based on each puncture, there is a linear transformation between the Krichever—
Novikov basis and the standard basis at P, . The global nature of the Krichever—
Novikov basis however does contain information on the genus of the Riemann
surface, since one can use it to describe the operator formalism on the two-
punctured Riemann surfaces.
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