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Abstract. We study the quantum dynamics of a particle of mass M in an external
potential V(Q), interacting with a simple model environment—a harmonic
chain of 2N particles with mass m and spring constant k. The classical version of
this model was studied by Rubin and is equivalent to standard models of a
particle interacting with a phonon bath. Setting m = m*/L and k = k*L, we prove
that for a suitable class of potentials ¥V and initial states w,, the time evolution of
the mass M particle converges, when N — oo and L — oo, to the time evolution
governed by the Quantum Langevin Equation (QLE) which has been found by
Ford, Kac and Mazur. Furthermore we show that, for this class of potentials, the
QLE has a unique solution for all positive times, such solution can be expressed
as a convergent expansion in the deviation of ¥(Q) from a harmonic potential.
The equilibrium properties of the particle with mass M can be expressed in terms
of an integral, over path space, with a Gaussian measure which has mean zero
and covariance proportional to [ — A+ nh/M ./ — A]~!; wherey = 2\/1% is the
friction constant, and h is the Plancks’ constant (divided by 27).

1. Introduction

The behaviour of quantum systems in a dissipative environment is a problem of
fundamental and continuing interest [1]. More precisely, one wishes to study the
quantum dynamics of a small system (or selected degrees of freedom) in contact
with a much larger system-—the latter is to be thought of as a heat bath with an
essentially infinite number of degrees of freedom. These dynamics are to take
account, in a hopefully simple way, of the esssential effects produced by the
environment. We shall use the letters S, E, and T to denote respectively the system,
the environment and their union, i.e. the total (isolated) system.

* Supported in part by AFOSR Grant No. 86-0010
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Since the system S is not isolated, we expect its dynamics to contain a stochastic
element (in contrast to the deterministic evolution of the wave function of the
isolated system T, given by the Schrédinger equation). The problem is well under-
stood, conceptually at least, for systems evolving according to classical dynamics,
where the separation into system and bath degrees of freedom is unambiguous.
In particular it is possible to find simple classical examples of a (Brownian) particle,
S, coupled to a model environment, for which one can rigorously prove that, in
a suitable scaling limit, the reduced dynamics are given by the classical Langevin
equation (CLE) [2], [4],

M(t) = p(t), (1.1a)

P(&) + V() = — (n/M)p(t) + F(2). (1.1b)

Here ¢g(t) and p(¢) are the position and momentum of the Brownian particle,
our system (which for simplicity is taken to be one dimensional); M is the mass,
and V,(q) is an effective potential acting on the system (consisting of an externally
applied potential ¥(g) and the adiabatic non-dissipative effects of the bath). The
right side of (1.1) represents the “dissipative” effects of the environment: the first
term is the systematic effect, # being the friction coefficient, while the second term
F(¢) is a fluctuating force; it is Gaussian white noise with

(F(t)) =0, (1.1¢)

CF@F()) = 2(n/B)o(t —1'), (1.1d)

where ™1 is the temperature of the environment.

It is an easily verified fact [3] that there exists a well defined time-homogeneous
Markov process with continuous trajectories, the Ornstein—Uhlenbeck (OU)
process in an external potential V,(q), whose realizations satisfy (1.1). In particular,
starting from any initial configuration g(0) = g, p(0) = p the CLE leads, as t — oo,
to the stationary single time distribution of the OU process, which has the general
form.

ps(@, p)=Z " exp — P[p*/2M + Ve(q) . (1.2)

By requiring p, to be the correct marginal distribution for the system at the
temperature of the bath, when system + bath are in a Gibbs state with reciprocal
temperature f5, Vee(q) is identified. (When exp [ — fV.¢(q)] is not integrable, one
has to understand (1.2) in a generalized sense.)

While it is clear that (1.1) represents an idealization of the effects of the environ-
ment, holding precisely only in an appropriate limit, it is generally accepted that
it is, in many cases, a very good approximation to the actual behavior of a massive
particle immersed in a fluid. In fact the CLE, or its direct generalizations, have
been used as a paradigm for modeling the evolution of a wide variety of open
systems (or the dynamics of a reduced set of variables). Its attractiveness lies in
its intuitive appeal, mathematical simplicity and in the property that as far as
dissipation is concerned all the details of the bath and of the system-bath inter-
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actions are represented by a single parameter, the friction constant #. This is of
course a very welcome simplification which compensates (in most cases) for the
loss of some quantitative details due to the idealization [4].

It is clearly desirable to have a quantum version of (1.1), i.e. one that would
be useful in situations where quantum effects, such as tunneling, are present. An
important step in this direction was taken by Ford, Kac, and Mazur (FKM) in their
seminal paper [5]. They considered a particularly simple model, namely a particle
coupled linearly to a set of harmonic oscillators. Choosing judiciously the frequency
distribution of the latter, they showed that in a certain limit, the classical version
of their model satisfied (1.1) with V(q) equal to V(g). In the quantum case they
argued that in the same limit the Heisenberg equations of motion for the position
and momentum operators will be

MO(0) = P(1), (1.3a)
P(t) + (ih)” '[P, V(Q)] = — (n/M)P(t) + W(v), (1.3b)

with the W(t) a family of non-commuting Gaussian operators representing
“quantum noise” (QN) whose commutators are c-numbers,

2nh =
(W@, W) =5 | dicke ), (130
and whose expectations are,
(W) =0, (1.3d)
'7h e*ik(t*t')k

W)y = (1.3¢)

2n % exp[Bhk]—1
The friction constant # is equal to its classical value and h is Planck’s constant
divided by 27.

N.B.—The QLE (1.3) should not be confused with the “quasiclassical Langevin
equation” in which Q, P and W are treated as c-numbers and the right-hand side
of (1.3¢) is set equal to zero, cf. [1g].

In the limit & — 0, the commutator (1.3¢c) goes to zero and (1.3¢) goes formally
over to (1.1d). For fixed & however the W(t) and consequently also the P(t) are
much more singular objects than their classical counterparts (compare (1.3e) with
(1.1d)). Furthermore the quantum noise is correlated, and thus any solution of
(1.3), if it exists, will be non-Markovian. In particular the noise will be correlated
with the initial values Q(0), P(0). This is very different from the classical situation,
where the Markovian evolution of the reduced dynamics is a consequence of (and
implies) the absence, in the scaling limit, of any correlation between the bath noise
in the future and the present state of the system; a separation between system and
bath which is unnatural, perhaps even impossible, in quantum systems.

To clarify the nature of the difficulties involved let us consider the case in
which V(Q) =1KQ? Then the formal solution of Eq. (1.3) can be easily computed
(cf. Sect. 4); it is given by
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MQ(t) = .2 (0)P(0) + [ — M(;°)(0) + 1¢;°(0)1Q(0) + I%(S) W(s)ds (1.4a)

when ¢;° is the solution of the equation
M(p?)'(s) — n(e") (s) + Ko (s) = Mo,(s), seR. (1.4b)

We can square (1.4a) to obtain,
Q1)) =M™ 292(02CP(0)*) + [M ™ 'n9(0) — (¢°)(0)1°<Q(0)*)
+M* of TdeT¢f°(S)<Pf°(T)< W(s)W(z)) + cross terms.  (L.5)
00

It is easy to check, using (1.3e), that the third term of (1.5) is infinite for all ¢ > 0.
This shows that if we want {Q(t)*) to be finite, we cannot assume that the Q(0),
P(0) are uncorrelated with the noise.

Given the existence of such correlations we clearly need a more complete
prescription of the QLE than is provided by (1.3). More precisely we need to
address the following questions:

i) For which initial states w,, i.e. density matrices, of T is a derivation of the QLE,
formally described in (1.3), valid? In particular what kind of correlations between
Q(0), P(0) and the noise are induced by these states?
ii) What is the nature of the process described by the solutions of the QLE? E.g.
what are the stationary states @, for this stochastic process? In particular does the
Gibbs state w,, for T lead to a stationary state &, for the QLE? One certainly expects
this to be so with the projection p, = trg(w,,) of w,, on S to yield, in the scaling limit,
the single time marginal distribution p, of &;. (The meaning of @, here is analogous
to the stationary measure on path space for the CLE))

Assuming the answer to (ii) is positive, there still remains the important
question:
iii) What other initial states @ for the QLE, if any, evolve, as t —» oo, to @?

These questions were already raised by FKM and studied further in refs [5-8],
(ii) is essentially resolved in the case when V(Q) is a harmonic potential, i.e. V(Q) =
1KQ? In this case the derivation of (1.3) as done by FKM is valid when the
initial state of T is that of equilibrium, i.e. w,.q. It is then clear that w,, leads to
the unique stationary state @, for the process described by the QLE. Properties
of &, can be determined directly from (1.3) or by studying w,, in the proper limit.
This is explicitly calculable since w,, is the equilibrium state of a harmonic system.
One finds the expected correlation between P(0) and the W(t) and that the removal
of the frequency cutoff leads to an infinite value for the expectation of the kinetic
energy @4(P?). This is due to the zero point fluctuation of the environment which
reflects itself also in the singular noise. Despite this the position process is well
defined (this is not the case if the initial state is taken to be a product state). One
may also consider the special harmonic case when K = 0. In this case, there is no
well-defined equilibrium state for the system, but one can easily show that
4((Q(t) — Q(0)?))/t - D as t — oo, where D = 2/5f is the classical diffusion constant.
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Question iii) too can be answered for the harmonic case, see Sect. 6. In addition
it was shown by Maasen [7] that by considering the process described by (1.3) as
holding for all teR, i.e. no initial conditions, one can construct a stationary measure
@, He shows further that states @, which are perturbations of the equilibrium
state, induced by modifying the noise over some time interval (— 7, 0), evolve, when
t — oo, to the equilibrium state @,

As indicated earlier, however, we are primarily interested in the answer to the
above questions in the physical situation where the total system T is prepared,
or known to be, in a specified state at some initial time, ¢ = 0. This is an open
problem particularly for the anharmonic case which we partially answer in this
paper.

To do this we investigate in detail a more concrete model system than that
considered by FKM. This model, also studied by Rubin [9], consists of an infinite
harmonic chain with nearest neighbor interactions in which the special particle is
acted on by an external potential ¥(Q). Rubin’s model can be transformed into
the “standard” FKM model where a special degree of freedom is linearly coupled
to an independent phonon bath (see e.g. [6]). To obtain dissipation of the Langevin
type (linear friction without memory) in the FKM model, one removes the curoff
frequency to infinity. This corresponds here precisely to taking the “scaling limit.”
It is then that the noise spectrum becomes that of the black body radiation (1.3a).

In the case where V(Q) is harmonic the analysis can be done through quasi-free
states, where one need only consider convergence of the two point functions in
order to get the convergence of the state on bounded “continuous” cylinder func-
tions of the position, which corresponds to the convergence of finite dimensional
distributions. We cannot hope to obtain this type of convergence for the nonlinear
system through direct computation; this forces us to follow a less direct path. First
we construct a class of “good” initial (quasi free) states w on T in which the particle
is localized at t = 0. (N.B. the “good” initial states do not include simple product
states, which are frequently used in computations.) We then show that, in the
scaling limit, the QLE describes the evolution of Q(t) for all t > 0. This is done by
proving that exp (iAQ(t)) has a convergent expansion in terms of both the noise
operators and the non-quadratic part of the potential whose properties are known.
Finally we prove that the initial states w for T lead to states @ associated with
the QLE; to do this we have to develop some machinery in order to rephrase in
an algebraic language standard results of classical probability theory (e.g. the
Kolmogorov reconstruction theorem).

It should be noted that, since the QLE does not describe a Markov process
on the state (Hilbert) space of S, explicit computations with the QLE are quite
difficult when V(Q) is not harmonic. Thus we don’t ask, at this time, about the
approach to equilibrium or address more refined questions. (In fact we don’t even
prove that w,, leads to a good initial state for anharmonic potentials.) These
problems are however crucial for making the QLE useful in practice, and are the
ultimate motivation for studying it. We hope to use the expansion mentioned
above to say something about the time evolution of the system in a double well.

The rest of the paper is organized in the following way: In Sect. 2 we describe
the model. The reduced equilibrium behavior of the system is studied in Sect. 3.
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We find there a compact form for the reduced density matrix p., in the scaling
limit, cf. Bray and Moore [10]. In Sect. 4, we describe the reduced dynamics and
state the convergence result, which is proven in Sect. 5. Comments about the
solution of the QLE for the harmonic case and related open problems are given
in Sect. 6. Finally, the appendices (and Sect. 5) contain most of the technical work:
the other parts can be read independently.

2. The Model

We take as our total system T a 1-dimensional harmonic chain containing 2N + 1
particles with periodic boundary conditions: 2N of these particles have mass m
and will be regarded as the environment, E, (bath) which interacts with a particle
of mass M > m, the system S. The Hamiltonian of the total system is

H"=H,+V(Q), 2.1)
where

O

2 2 k > 2

3 2 PHayPits ¥ 0 -0 2.2)
j*0

On+1=0_y, and V(Q,) is an external potential felt by the zeroth particle.

The classical version of this model with ¥ =0 was studied by Rubin [9]. He
showed that when the environment was in equilibrium at a temperature f~! then
in the limit N — co the heavy particle diffuses with diffusion constant 2//3\/H.
He showed moreover that, in the limit M > m, the heavy particle obeys, for times
scaled by \/M, the classical Langevin equation with V= 0. Rubin’s work has
been generalized and made rigorous by various authors [11].

Repeating Rubin’s analysis in the quantum case one sees that for large M
quantum effects become unimportant and one obtains the CLE. We therefore
consider a different scaling which is equivalent to the previous scaling in the
classical case, but retains the quantum mechanical properties of the system. Para-
meterizing m and k by m =m*/L and k=k*L we consider the thermodynamic
limit N — co followed by the scaling limit L — co. (We shall sometimes denote by
“scaling limit” both of these limits.)

For technical reasons, we will restrict ourselves to the class of potentials
consisting of a quadratic part plus a bounded part V,

V(x)=3Kx*+ [e*dv(}), xeR, (2.3)
R

where v(s) has even real and odd imaginary parts, and

[ 22]dv(A)] < co. (2.4)

The Hamiltonian H" can be defined as a self-adjoint operator on LA(R?N¥*1),
As shown in Appendix 1, it can be transformed via a canonical transformation
into a diagonal form for the bath variables,
1 2N

1 2N
= Z pi+ ———PZ +3 ‘; A3(g;— 6;0)* + V(Q). (2.5
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Here Q and P stand for Q, and Py, 4; is the eigenfrequency of the j normal mode
(g; p;), and C;= — A35; is the coupling of our system to the j® mode. We note
that Hamiltonians of the form (2.5) are widely used in the literature on Quantum
Brownian motion, see e.g. [1,4-8, 12—-15]. The main difference here is that the
frequencies A; and couplings J; are fully determined by k and m. In particular our
model corresponds, in the thermodynamic limit, to the “ohmic” dissipative model
studied in [6], i.e. in the limit N — oo our “density of states” becomes p(1) =
2(4k/m — 24*)~'/* and the couplings C; become C(4), where

2
. 7’"/12 if |4 <2 /kjm

0 it |A>2k/m

Next we consider the initial condition, i.e. the state of the total system at time
0. For classical systems this is easy: to obtain the CLE for the most general initial
state of S we specify Q(0) and P(0) and take for the bath the thermal equilibrium
state of the whole system T conditioned on the initial momentum and position of
the zero particle. It is not clear how to translate this type of initial state to quantum
mechanics since Q and P cannot be specified simultaneously and the conditioning
is not well defined. A common choice is to start with a product state for system
and bath, i.e. the particle is effectively decoupled from the bath at time 0. As we
have, however, already noted in the introduction and shall show in more detail
later, this leads to singular dynamics in the scaling limit: we believe this problem
to be intrinsic to all models of the QLE.

In the search for suitable initial states an essential desiderata is to localize the
zero particle at the starting time. In order to do so we consider initial states wy,
of the form

C(Aypl

wg,=e M Tre " 2.6)

where Vj(x) =3 K,x? Note that K, need not equal K in (2.3). By adjusting the
value of K, we can localize the heavy particle near the origin. The big advantage
of these states wg, is that they are quasifree (see e.g. [16]), implying that higher
order correlations can be easily calculated as soon as the one- and two-point
correlation functions are known.

3. The Reduced Equilibrium State in the Scaling Limit

Before turning to the dynamics we consider the reduced density matrix p., of the
zeroth particle, S, when T is in the equilibrium state wp;" at termperature f~*
with respect to the Hamiltonian. (We make here explicit the N and L dependence
unless it is completely clear from the context.) As mentioned in the introduction,
it seems extremely plausible that the restriction of this state to S agrees, in the
scaling limit, with the stationary state of the QLE, restricted to functions of the
position at a single time. Our results are consistent with the (properly interpreted)
expressions of Bray and Moore [10], We also find a compact formula for the
imaginary time correlation functions of the particle in the lim lim w"

L—-w N>
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The reduced equilibrium density matrix pYX(x, y) of the zeroth particle is
given by,

fdx;...dx,yexp — BHY 1(X, Xy, ... Xon; Vs Xq5- .- Xop) G.0)

NL(x y)= .
Peg ( ») jdxodxldxz,vexp —ﬁHx,L(Xo,Xp-~x2N§xo,x1-~-XZN)

Given p;* we can calculate the expectation values of the position and momentum

observable of the zeroth particle in this Gibbs state wl;", since:
iyt (expilQ) = [dxpd;H(x, x)expilx, (3.2a)
i (expipP) = [ dxpt(x, x + ph). (3.2b)

We use the Feynman-Kac formula to write down an expression for the kernel
exp — BHY (X, X1, .. Xop53 Y, V1s- > Vo). As usual, since H” is quadratic in the

bath variables we may integrate these out explicitly and get,
h*(x —y)?
PZ;’L(X, y)=Cy exp — W

'Ew{exp — <f V(w(s) + x)ds + IN,L(w)>{w(,B) =y— x}. (3.3)
0

In this expression E* denotes the expectation value with respect to the Wiener
process with mean 0 and covariance E*{w(s)o(t)} = (h*/M)min {s, t}; E*{-|w(p) =
y — x} denotes the conditioning that the process passes through the point y —x
at time f§; Cy,;, is the normalization constant so that [dxpN (x,x) =1 and Iy /()
is the influence functional defined by

B B
Iy (w)= %(f) ds(f) dt Ay (s — D) [w(s) — w(1) 1%, (3.4a)

" cosh<<§— |u1>hzj/\/ri>
T O L
4./m’; sinh (Bh4;/2./m)

Using the results of Appendix I, (3.4b) can also be written as an integral over the

contour [ :
B
‘h . cosh(<§—|u|>hc/ﬁ>

dé )
4ni\/r;}[~ G(&%)  sinh(Bh&/2./m)
where G is defined in Lemma 1.2.
The limit N — oo can be easily taken by applying the Lebesgue dominated
convergence theorem. Note that

where

Ay, (w) = —f=uspB. (3.4b)

Ay (W)= (3.5)

I +a cosh{<5—1u|>hx}
A,(u) = lim AN,L(u)=£ [ dxx/1—(x/a)® . (3.6)

sinh 5 hx
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where a =2L./k*/m* and n=2./k*m*. In the limit L — co, 4; becomes singular
(AL(t) ~t™2) but |w(t)|* ~ t almost surely for t—0 [17], hence the limit needs to
be taken with some care. We consider explicitly the case x = y (similar analysis
can be done for x # y). The right-hand side of (3.3) may be written as

CLEL {exp [ — f Viw(s) + x)ds]},

where we have introduced the Gaussian measures, defined on CY([0, 8]), (all
continuous functions which vanish at the end points) by

E () =[E"{exp — I (@)|w(B)=0}17'E" {-exp — [ ()| () =0}  (3.7)

with Iy (w) = lim Iy (o).
N-

If we define a,(f)= jf(t) B dt b(f)=~ jf(t)sm Bk dt, then we

can represent every functlon feCS([0,8]) by the Fourier series f(t)=

& 2mkt 27kt

Y ay( f)<cos—ﬁ—— 1>+bk( ) sin—ﬁ—, where the convergence holds in many
k=1

different senses, three of which are relevant here: 1) in L*([0,8]); i) in

I2(CY([0, 1), E™); iii) pointwise in t almost surely with respect to E*. The first sense
2 »

of convergence implies that I L(w)=—132— Y. (al@)* + b(w)*)(Ay L — Ao,1), Where,
k=1
. . . e 2rkt
using explicitly the symmetries of Ay, A, ()= Y. A, cos T
k=0

Now, an explicit computation yields,

. " Mn2k? nk 71
I}ljr:o E;(aa)) = 25,‘1-_—[}—}-12— + ”W_ )
hm EL(akbj) = 07
L-©

) [ Mn%k? nk
gljfolo E;(bb;) = 20y N +1 W? .

This allows us to compute lim E; (w(s)w(t)), once we take advantage of the other two
L—
senses in which Fourier series converge.

The final results of these computations is,

lim lim p%E(x,y)=0 if x#y (3.8a)
L— o0 N—ow
lim lim ol (expilP)=4,, (3.8b)

L= N—>©
lim lim o;*(expilQ) = [dxp.,(x)expilx. (3-8¢)
L->wN-w®

where
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Eg{exp - jl{ V(w(s) + x)ds}
0

Peg(x) = lim lim pYE(x, x) = (3.8d)

et 5
LreN jdong{exp — [ V(w(s) + xo)ds}
0

Here EY denotes the Gaussian process having mean zero and covariance
M -1
<—PA D+%\/ -4 D) , where A, is the Laplacian with Dirichlet boundary
conditions at 0 and f. To be more explicit, E? is the Gaussian process defined by
E*{w(s)} =0,
E {o(s)o(t)} =f(s) + f(t) — f(s —t) Vs, t:0=<5,t <,

@ 2nk. 2m2k*M kn 17t
f(s)=ﬂk;1<1—cosjﬁi)[——7;lzﬁz +%] .

It follows from (3.8b) that the limiting state w, is no longer normal with respect
to the algebra of operators generated by {expiAQ,expiuP}, i.e. it is not of Trace
class type: see [16]. This implies in particular that, lim lim w"(P?) = c.

L— o N— o

We can also obtain dynamical correlation functions such as F(t—s)=
lim lim w}*(Q(t)"Q(s)™). The standard way to obtain F(u) is to look at the

L— o N>

imaginary-time correlation function H(t)

H, ()= lim lim ol*(Q"QGth), (0<t<p)
L= N—-w
where Q(ith) =exp(—tHY ;) Qexp(¢tHy ). The real-time correlation function
F(u) is then found from H(t) by analytic continuation. Similar computations as
before yield:

where

_ Jdx[dyx"y"K(x, y; 1)
Hn,m(t) = IdxfdyK(x, Vi l) (393.)
where
K, ()= Eg{é(a)(t) +Xx—y)exp — f V(w(s) + x)ds } (3.9b)
0

4. The Quantum Langevin Equation—Statement of Results

The Reduced Dynamics. We consider now the motion of the zeroth particle when
the system evolves according to the Hamiltonian HY. The Hamiltonian (2.5)
determines the dynamics 7, of the system: t,(A4) = exp (itH" /h)A exp(— itH" /h). Let
us denote the domain of an operator 4 by D(A). Because D(q;) and D(p;) > D(H") o
S(R*V*1), we can define 7(g;) and 7,(p;); they are essentially self-adjoint on D(H").
It is then easy to show that for each e D(H"), the time evolution of the Heisenberg
operators in the state y, (i, t,(4) ), satisfy the equations of motion,
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d
& Wmdad) =m0 o), @1a)
d
& 0700 = M, (P @1)
o) = — 20, e~ 5,01, @10

%(lﬁ, T{PW) = z 230, v.La; — 6,019) — W, T(V(Q)W). (4.1d)

Defining the self-adjoint operator W(t) and function y(¢) as

=Zlf5j[(qj 8,0)cos (At//m) + \/_p, 7 sin(A;t/4/m) ] (4.22)

p(6) =Y 2283 cos (A;t//m), (4.2b)
J
we can express the time evolution of S in a simple compact form. (Note that
everything should really have subscripts N, L.)
Lemma 4.1. For each yeD(H"), teR™*,

d d
M 5z (O = = [ = [ -, TS(Q)l//)]dS — W (V(QW) + (4 W),
4.3)

Proof. In (4.1c) we consider (¥, 7,(Q)y) to be given unknown function of z. Solving
(4.1a) and (4.1c), we then get that

(. TdgW) = (b, ga) cos (A;t//m) + —=(, pap)Ai ' sin (At /m)

\/‘

1 ¢ .
+ s disin - I/ m) W, TQW)ds.
The result is obtained by substituting this expression in (4.1d). W

Now, let %(J) (respectively %,(J)) be the completion of the real space C*(J)
(respectively C3(J)) with respect to the norm || f || =|f" O+ /i + IS I
where ||g|l, =f|g(x)|dx and J = R" is a closed set. For each f in #(R*), we then

J

define the self-adjoint operator:
B(f)=fOM™! {f 0-M"" If(t)v(t dt}Q+M ! I W@ f(t)dr. (4.4)

The reduced dynamics of our problem can then be written according to:

Lemma 4.2. The operator t,(¢*9)(ueR;teR™) is the unique solution of the equation



206 P. de Smedt, D. Durr, J. L. Lebowitz and C. Liverani

X(u1) = exp{m[mp,) —iM I [o.(s) [ AX(2, s)dv(mds}},

R
X(p, 0)* = X(— 1), (4.5)
where v(A) is defined in (2.3), the integral is in the strong sense (Bochner) and
@(8) = d(s —t). P(s) is the solution of the equation
Mg (s) fd‘cy T—8)¢'(t) + Kop(s) =0, s<0,
o0)=0, ¢'(0)=—1, and ¢()=0 for s>0.

Proof. We start by multiplying both sides of Eq. (4.3) by a function feZ(R*) with
f(0)=0 and f'(0) = — 1. After some integration by parts, we get:

(4.6)

j)(w, fs(Q)!//)[Mf”(S) Jdrye— 910 + Kf(s)}ds + MW, ()
. I W 2 (T QW) )ds + FO), P)— [f’(O)M - If(S)v(S)dS}

.00+ [ WO 16)ds,
where V is the nonlinear part of V, i.e. V(x)= f exp iAxdv(A) (see (2.3)).

Now, if we make the obvious choice f(s) = ¢,(s), we get that

W, n(QW) = < ¥, {B(fpz) -M"! i %(S)TS(V’(Q))}!II > VyeD(H").

But D(H") > S(R*V*1) is contained in the domains of all the operators involved
and is a domain of essential self-adjointness for 7,(Q). This means that the groups

generated by the self-adjoint operators 7,(Q) and B(ep,) — ljgo,(s)r V'(Q))ds

are the same. Thus t(e™9) satisfies our equation. Moreover one can check, with
the same argument we will employ in Lemma 5.5, that the equation has a unique
solution. H

Using Eq. (4.5) we obtain the following integral equation for Q(t) = 7,(Q):

MO() = idsco,(s)W(s) Lo 0P+ { g dsy()pis) — Mqo;(O)}Q - idsw,(s) 7(0(5)).
4.7)

Quantum Langevin Equation (QLE). It can be shown that the classical analog of
Eq. (4.7) converges to the integral form of the CLE, if we thermalize the particles
in the bath and take the scaling limit. To be more specific, in this limit the objects
F(z), the classical analog of W(t), becomes the classical white noise, while 7(t)

converges to nd(t) with # =2./k*m* and ¢, converges to the square integrable
function ¢;°, defined in (1.4b).
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We want to proceed in a similar fashion in the quantum mechanical situation.
The immediate difficulty we encounter is, as already noted before, just what is the
analog of “we thermalize the particles in the bath?” To repeat again, what are the
initial states, w,, i.e. density matrices on T, for which one can prove a “weak”
convergence of (4.7) in the scaling limit to what would be an integral form of the
QLE (1.3)? To answer this question precisely it is unfortunately necessary to
essentially reformulate many notions of classical probability theory in an algebraic
way. We do this in Sect. 5 following the works of Winnink [19] and of Accardi,
Frigerro and Lewis [18]. Since that work is rather technical we summarize the
main conclusion here and also discuss again the reason why choosing @, to be a
product state doesn’t work.

Definition 4.3. To write the integral form of the QLE (1.3) in a precise way we
shall consider a Hilbert space #, a set {B(f)}; 4s+ of self-adjoint operators,
with common domain of essential self-adjointness D, and a state @ on the algebra
of linear operators in J# such that

exp [iB(f)]exp[iB(g)]
=6Xp{ihM“ [ 0)/(0) = f'(0)g(0) + 2nM ~ ( ©)f( +§f(S)g(S)dS)]}
-exp[iB(g)Jexp[iB(f)], Vf,geABR"), (4.8)
@(B(f)B(g) + B(g)B(f)) = hyM ~?
[ x coth (hBx/2) f(x)g(x)*dxV f, geBo(R™), (4.9)
R
where “*” is the Fourier transform. Furthermore & is a quasi-free (Gaussian)

state on the subalgebra generated by {e'®"'}., +. The B(f)’s are to be thought of
as a smoothed version of the quantum noise operators W(t) defined in (1.3) and & as
the state with respect to which expectation values are taken there. The position
operators {Q(t)},.z+ will undergo a Quantum Ornstein—Ulenbeck (QOU) process
if they have a common domain of essential self-adjointness D and they satisfy,
with respect to the state @,

Q1) = B(o") + i V(Q(s)oi(s)ds, (4.10)

where p*cZ(R™) is a solution of

{M(w:")”(s)—n(qof)'(swrqu:”(s)=0 sef0.4] i
er)=0; (e))=—1 ¢7(s)=0 s>t '
Remark 4.1. Note that @ is not completely defined by (4.9) because there exists
f such that feZ(R") but not fe%,(R") (e.g. Q(0)= B(¢g)). The choice of @,
compatible with (4.9), corresponds to the choice of the initial conditions that are,
in this sense, buried in the state.

The solution of Eq. (4.10) has to be considered with “respect to the state &”
in the same sense in which the solution of the classical Langevin equation is
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considered with respect to the Wiener process. This also implies that the natural
topology in which to understand (4.10) is the topology generated by the state & itself
through the standard norm || 4|2 = @(A*A). As in the classical case this remark is
not particularly relevant in cases, like the one at hand, in which the drift is not
random.

Our convergence theorem provides a class of quasi-free states for which the
QLE may be solved. There are certainly other states for which the QLE may be
solved, but they are more difficult to characterize. We note however that for the
often considered product states, where the particle is initially decoupled from the
bath, the scaling limit does not exist, so these are not states for which the QLE
may be solved. To see this considered the product state @ with density matrix,

2N

Cp@@m—ﬁ{Z;' +5 Zi,q, } (4.12)
i=1

where p is a density matrix for the zero particle alone and C is a normalization

constant. We can rewrite (4.7) as

MQ(r) + f dso(s)V"(Q(s) fdsq)t(s W) + 0P — M@ (0)Q,  (4.133)

where
W(t) = W(t) + y()Q. (4.13b)

W(t) now plays the role of the quantum noise as can be readily checked using the
results of Appendices I and I1. The divergence due to the noise term is now however
no longer compensated by a divergence due to the momentum. Assuming that
V'(x) is bounded, it is then straightforward to check that

lim lim o(Q()Q(s)) = + o Vt,s>0. 4.14)
L—- o N—-ow
The product states (4.12) therefore do not lead to a reasonable dynamics in
the scaling limit. While (4.14) might seem strange at first, it is easily explained if
we go back to our initial Hamiltonian (2.5). The state (4.12) describes a bath of
independent harmonic oscillator. In the limit we consider however, the zeroth
particle is very strongly coupled with (and strongly couples) the bath variables.
Hence the product state corresponds to a state with a large amount of energy,
which in the scaling limit gives rise to the singular dynamics.
Our main theorem is then:

Theorem 4.1. The quantum stochastic process determined by the Hamiltonian (2.5)
and the state (2.6) converge in the limit N, L — co, to the solution of the QLE with
a quasi-free state @ such that V f,geB(R™)

A\
&(B(f)B(g)) =hnM~? | x coth (?)S o(f )(X)Sjo?g)(X)*dx (4.15)

with S, as defined in Lemma I11.3. The convergence is in the sense of finite dimensional
distributions.
We note that the concepts of convergence of Quantum Stochastic Processes
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(QSP), are not standard as yet. In the literature convergence of QSP is normally
interpreted as convergence of moments or as convergence of finite dimensional
distributions and a reconstruction theorem [ 18] is sometimes used to produce the
limit state. This is clearly a more limited sense of convergence than the classical
concept of weak convergence. The importance of considering observables for which
the convergence of the finite dimensional distributions is not adequate may be
questionable, from a physical point of view. Still more strong or flexible concepts
of convergence for QSP may be necessary for technical reasons and we think it
is important to try to clarify what can be done in this direction. This is necessary
also if we want to compare classical and quantum results. In particular we feel it
would be interesting to have for QSP a concept of convergence that reduces to
weak convergence on continuous functions in the classical case. Moreover, in our
particular problem, we want to have a setting in which the different approximated
dynamical equations can be compared directly with each other. For these reasons
we will construct explicitly the algebras of observables for our QSP’s, which in
the classical context are determined by the choice of the path space and we will
study the convergence of states on these algebras.

To prove the theorem we note that (4.10) can be regarded as a way of expressing
the position operator, when ¥’ # 0, in terms of the position operator in the harmonic
case. It is therefore natural to show that (4.10) has a solution in some suitable
Banach space. This runs into the problem that (4.10) involves unbounded operators.
To overcome this we exponentiate the equation, which gives us Eq. (4.5). A more
serious difficulty is that the obvious Banach space on which to study (4.5) depends
strongly on N and L. This forces us to study the convergence of Eq. (4.5) on a
rather abstract space formed by the operators B(f), fe#(R™). In our construction,
these operators have no natural commutation relations. Particular commutation
relations are selected by a special class of states. The program worked out in the
next section consists of the following steps:

i) Construct a C*-algebra ¥, generated by the operators exp [iAB(f)], which
has sufficient structure to do integrations.

ii) Find a suitable Banach space of functions from R x R* — . On this space,
define the map

t
Fy1:B— B;(Fy  X)(ut)=exp i{B((pN,LJ) —iM™! g dSqDN,L,t(S)jdv(’UAX(L 5) }

iii) Show that this map has a fixed point Xy ;(4, t) = expiAQy ,(0).

iv) Show that, on the C*-algebra ¥, expiuQy ,(t) converges in some sense to
exp inQ .(t), which is the fixed point of the map F, — the map Fy ; with @y ; ,
replaced by ¢;°.

v) Prove that &g, (B(f)B(g)) = lim lim @x;“(B(f)B(g)) exists. This is done in

L= N— o

Appendix III. Finally, show that Vm,t,....t,, ty,..., L,€R

lim lim cbﬁ;,’“( [Texp iujQN‘L(tj)> = cb}}°0< [T exp i,ujQw(tj)>.
ji=1 j=1

L= w N— oo
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5. Rigorous Derivation of the Quantum Langevin Equation

Abstract Preliminaries. In order to circumvent the problem of the representation
of our operators we adopt an algebraic point of view. To describe the noise induced
by the environment on the system, we introduce the set A" = {E(f)}ym*)
Eventually, we are going to identify E(f) with BV,

Following Winnink [19] we mimic algebraically the Kolmogorov reconstruc-
tion theorem. The first step is to consider the free associative algebra .o/ ; generated
by 4 and the identity 1; moreover we need to introduce a topology; we do that
through the norm

M M; j
\CH $ 5w, ITEG)
F1iE T

VM, M;eN; C,a;eC; f,€B(R™) such that Vj,n,meN (n#m)IleN: £, # .
Clearly (5.1) is a Banach norm, so the closure ./, is a Banach algebra. We
need now to introduce a minimum of structure. We define the involution generated

by

M M;
=Y ¥ lagl+IC| (5.1)
0o Jj=1k=1

E(f)*=E(— f) VfeABR™)
(C1*=C1 YCeC
(AB)* = B*A*;(A + B)* = A*+ B* VA,Bed,.

Now we consider, in the Banach *-algebra ./ s> the smallest closed two
sided *-ideal I, generated by the elements (E(0)—1) and E(Af)E(uf)—
E((A+pf) 4, ueR; feBR™).

Taking the quotient «/ , with respect to I, and equipping it with the natural
norm we get the new Banach*-algebra .o/, = ./ /I,,. The algebra o/, is however
far too small for our purposes. In order to overcome this we devise a general
strategy to introduce weak norms on </,.

Lemma 5.1. Let # = /% (the dual of </,) be a convex set with the following
properties: for each we M,

i) o(l)=1
il) w(A*A) =0 for each Aeof |
ili) Aesl|, w(A*A)#0=>w, eM, where the state w, is defined by
@ 4(B) = w(A*BA)/w(A* A) for each Be s ;.

Then
4]l 4 =sup/w(4*4)
weM

is a C*-seminorm on sf ;. Moreover if we set 1, ={Aeo/ | | Al , =0}, and define
o ,= A /1, where the closure is taken with respect to the norm ||, induced on
the quotient space by |||l ,, we have that s/ , is a C*-algebra.

Proof. The triangle inequality follows from the Cauchy—Schwarz inequality for
positive functionals (|w(4*B)|?> < w(A*A)w(B*B)). Moreover if w(A*A) =0 then
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w(A*B*BA) =0 for each Be.«/, so, calling /4 , = {weM|w(A*A) #0} we have
w(A*B*BA)

2 _
1BA % = :611; —mw(A*A) <141%IB|?, (52)
A
Next, using Cauchy—Schwarz again,
A% <supw(A*AA*A) < | A*A |7, (53)

we M
Combining (5.2) and (5.3) we find that |4, <[ A*|,. Since this holds
for any A, this implies that ||A| ,=[A4*|, and, again using (5.2), (5.3),
||A*A||4{=||A||fl{. Finally it is easy to check that I, is a closed two
sided *-ideal so /I, is well defined and || , is a C*-norm on it. W

Remark 5.1. The seminorms |- , are similar to the seminorms used to define
the Mackey topology t(</, #¥) (see [20]), the main conceptual difference being
that we do not require .# to be closed.
The next thing we need in order to represent the dynamics in our algebra, is
a theory of integration adapted to our purposes. We introduce, for each closed
J < R", the algebra of functions
CoON)={fJcR" > /| flo<o0;Vwed,te],ececR*,I5eR":
o(lft+h—fOILft+h—f0)])<e VheR" ||h| <5}, (54)

where

1/ = sup If @O 4 (5.5)

We define now a weak form of Pettis integral.
Let 4 = span (.#), where the closure is taken with respect to the norm topo-
logy, then VfeCY%(J) and any finite measure v on J we define f fdv to be the
J

element of .#* defined by

w(jfdv>=ja)(f)dv Voed. (5.6)

This definition clearly has the drawback that the integral can fail to belong to
« ,. For this reason we are going to enlarge our algebra again (we get in this
way the classical analogue of the norm closure of the observable involving only
finitely many times).

Wo= {Ae/_/l*/ﬂ] < R" closed, feC%(J), v finite measure on J:A4 =jfdv}.
J
(5.7
The preceding definition is justified by the following.

Lemma 5.2. % =%, is a C*-algebra.

Proof. We start noticing that property (iii) in Lemma 5.1 implies that if we#,
then w(4-), for each Ae.«/ ,, is an element of .#. This implies that, if | fdv, =
J1
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jfzdvz, then jAfldv1 jAfzdv2 VY Aes ,. In fact the latter is certainly true if v,

and v, are ﬁmte linear combmatxons of point mass measures, if not then they can
be approximated via a sequence of point masses measures v{", ie{1,2}, so, for
each we./#, we have

w(jﬁdvi> fw(f,)dv = lim j'a)(f)dv"’)

n— o J;

and

<I Afldv1> = lim | w(4f,)dv§ = w(_[ Afzdvz).
J2

n—>ow Jz

What we have seen so far is enough to show that if 4, = [ fidv,e# ie{1,2} then
Ju

the product
A4y = I J1/2d(vy X v,) (5.8)
JyxJy
is well defined.
To check this let A;={fidy;, then Ywe.l w< Ldvy x v2>
4 PARS
|

5<J_’jj y)_ = m(ljflfzdvz)dyl -

[ fifadvy x v2>, where we have used Fubini theorem and exchanged the
JyxJy
order of integration. H

<5 flfzdv1)d"2 =
J2

{1

Remark 5.2. Lemma 5.2 could be avoided noticing that .#* is a von Neumann
algebra. This can be seen by using a construction similar to the one used to produce
the universal enveloping algebra of A ,. Unfortunately .#* is too big for our
purposes if .# # ., where the closure is in the weak sense, (essentially .#*
corresponds, in the classical case, to the algebra of all bounded measurable func-
tions). Note that in the classical (commutative) case it is possible to choose .#
weakly-* closed (allowing us to work in .#*) using the various characterizations
of tightness. At this stage however our understanding of compact sets in the
non-commutative case is not sufficient to proceed here in the same manner.

Before the next lemma we define Se C%(R) to be a .#-continuous unitary one
parameter group of operators if

S©0)=1, (5.92)
S(— Ay = S(4), (5.9b)
S =S+ Vi peR. (5.9¢)

Lemma 5.3. For each ./-continuous unitary one-parameter group S we introduce
Exps:#" — CY(R), defined as follows: Y AW, Exps(A) is the unique solution of the
equation

X() =S+ if S(2 — 0)AX(0)do VieR. (5.10)
0
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If A* = A, Expg(A) is a unitary M -continuous one-parameter group, and for each

self~adjoint A, BeW  the following estimate holds:
[ Exps (4)(4) — Exps(B)(A) || , = A A — B . (5.11)

Proof. We will prove the first part of the lemma showing the existence
of a unique fixed point for the maps F ,:C%([— A, A])—C%([— A,A]) AeR*
defined by

2
FAf)(A)=8(A)+i[S(A—0)Af(0)do Yie[—A,A] feCyU[—A,A]).
0
The first thing to notice is that, by induction

n—1 AkAk Al™ A" AN Al
IFu s 3 (V) A g g e S0 1y,

A" A"
IES) = F@)l o S 1 =gl V1, geCS(T- A, AT)

Here we have used || S|, = 1.

This implies that, for each feC%([ — A, A]), the sequence {F*%(f)},. is @
Cauchy sequence, the limit is independent of f, and is the unique fixed point of
F ,. Since A is arbitrary we get the result VAeR. Now, from (5.10), it is clear that
Exps(A4)(A)~! exist for small A. A direct computation then shows that VueR,
X(u) = Exps(A)(u + ) Expg(A4)(4) ~ ! satisfies (5.10). The group property (5.9¢) VueR
and A small then follows from the unicity of the solution (5.10). This implies the
existence of Expg(4)(4) ™! for each AeR and, consequently, the group property for
all A, p. Last we check that Expg(A4)(4) is unitary. In order to do so we introduce
the adjoint equation

X(A)=S8(—A)— if X(0)AS(c — A)do = F J(X*)(H*.
0

The same arguments used before show that this equation has a unique solution,
clearly the solution is Expg(A)(4)*. Therefore

1 Exps(A)(4) — Exps (A)(— A)* |l ,

A A
E‘;Exps (A)(— A+ 0)*4S(0) — gS(A — 0)A Expg(4)(o)

M

A
= g [Exps (4)(— 4 + 0)* — Exps(4)(A — 6)]1 45(0)

MH

A
+

[do | deS(i— o — )4 Exps (945(0)
0 0

- fdafdrS(i — 0)A Exps(— o + 1)*A4S8(7)
o 0

M

+ ” g S(4 — 0)A[Exps(4)(0) — Exps (4)(— 0)*]

M
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It is then easy to show that when A is restricted to be in the interval [ — A, A],

I Exps(A)* — Exps(4) ™'l < 21|41 ,A | Exps(4)* — Exps(4) ™" |
AZ
504 1% 1 Exps(A)* — Exps(4) ™ || -

So Exps(A4)(A)* = Expg(A)(4)~! for small 1. The result for all values of A now
follows from the group property. Finally, formula (5.11) follows from the easy
estimate

I Exps(A)(4) = S(A) | , = |41 All,

and the equality Expg,, (4 — B)=Expg(4) that can be verified, similarly to
what we just did, writing the equation satisfied by EXPgyp (A — B) and noticing,
after some algebraic manipulation, that it is just (5.10) again. W

Remark 5.3. For each representation (w, #’) continuous with respect to the topo-
logy o(#', # ) on # and the strong topology on Z() it is immediate to see
that 7(S(A)), n(Expg(A4)(4)) are strongly continuous one parameter groups ons#.
Hence, by Stone’s theorem, there is a self-adjoint operator B on # such that
n(S(1)) = e*. The content of Lemma 5.3 is then:

n(Exps(A) (1)) = 2B+ ),

Application to the Concrete Model. We can now translate the reduced dynamics,
Eq. (4.5), into our new language.
We start by defining

Tyl — L(LA(RN*1)),
iy L(E(f)) = eBviD) Y fe B(R). (5.12)

These, clearly, determine representations of the algebra .o/,. It is now time to
choose our /.

M= {eAdTNAcd ; feBRT),ceR*IeR " :B(A*A) > 0;0(1) = 1;
D(A*[E(f) — E(9)T*[E(f) — E(9)14) <& VgeBR )| f —gll <d}. (5.13)
The first result is

Lemma 54.
d’%bl‘ = (nN,L)*(sz,L)E%,

where (my  )*: L(LHR*NTN))* > .ot is defined by (nyp)*(0)(A)=w(ny (A4))
VoeZ(LHR*™M )%, Aess | and w} " is the state specified by (2.6). Moreover my .
extends to a representation ny ;W — L(LH(R*N*1).

Proof. During this proof we will drop the script N, L. From Appendix III we have

HBU)+B@) — eiB(f)eiB(g)eiﬂ(f,y)/Z’

Wy (€PV)) = e~ CUNI2, (5.14)
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This implies that (n*wg )(AE(f)E(g)B) = (n*wg )(AE(g + f)B)e ™ °9/2 and we can
therefore check by induction that 7n*(wg )e.#. For the second statement we prove
first that if w(A4*A4) = 0 Ywe ./ then n(A4) = 0. This follows from 0 = (n*wg )(4*A) =
wg, (n(A)*n(A4)). So we have a representation = of &/ , in L(LX(R*V*1)). In order
to obtain a unique extension on all #” we remark that o/ , is dense in #” in the
topology generated by the seminorms || A||2 = w(A*A). Indeed for each Ae¥,,
A={ fdv, we can find a sequence of point masses measures v, on J converging
J

weakly to v (implying that v, x v,=>v x v), from which follows that

sl [ pro [ o= ) -

As a consequence we may extend n on #  provided we show that if a net
{A,} = # converges to 0 in the preceding topology then {n(4,)} converges to 0
in the strong topology. To see this we first observe that the uniform principle and
the theory of representations implies || n(4,) || < || 4, , < C for each a. Moreover,
recalling that wg ()=Y (¥, ¥,)e PEn, where {y,} is a orthonormal base for

LZ(RZN“) and E ~o0, we have that (m*wg,)(4¥4,)—0 is equivalent to
hmz e FrEn =,

From this we have VoeI2(R?"*1), ¢ = Za,,lp,,, eeRY,

In(4)¢ | < | n(A4,) (Z ant//n>

+Ce = Z |a,le™ B2 | n(A ), || e~ PEH2 + Ce,

k 1/2
< <Z|an|2e'ﬁ"E") e, + Ce <e,

n

where we have chosen «, k big enough. W
A consequence of the previous lemma is

Lemma 5.5. Let ¢, be defined as in (4.6) with any regular cut off on the negative
axis and let S,(1) = E(Ap,), then the equation

X(u,t)= Expst< —iM! _t[ qo,(s)[f AX (A, s)dv(/l):|ds>(,u) wAeR, te[0,T],
0 R

X(p t)* =X(—n1) (5.15)
has a unique solution and n(X(p, t)) = e*2®.

Proof . 1t follows from Remark 5.3 that if X(u, t) is a solution of (5.15) then n(X(y, 1))
is a solution of (4.5).

The last statement follows then from Lemma 4.2. We are thus left with the task to
prove the existence and unicity of the solution of (5.15).

We study the equation in the space ¥ , defined as the closure of
{feCYURx[0, T])/f(At)* =f(—At)} with respect to the norm | f],=
sup j|| f(4,9) |l 4,1 Aldv(%), notice that if fe¥?”, then Ywe#, te[0,T], w(f(,1))e

se 0,T]
(IR M]v(i)) so the integration is still well defined for this function.
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Let Fr:¥",— 7", be given by

Fr(f)(1, 1) = EXP&( —iM™! i <P:(S)I:£ Af @, S)dV(l)]dS>(u)-
The first thing to notice is that i [ A f(4, s)dv(4) is self-adjoint for each se[0, T].
Lemma 5.3 then implies that Fp:¥" Dj—» v,
IF () 1)l =1

-n

and

IF3(N) - Fi@)ll, s 2
n:

[ilsoT(S)ldST[ j mdva)l]"uf—gn .
from which, after noticing that

sup Pl = Frla)n ), < |u|M“1<§|<pT(s>|ds) I gl
the result follows. W

We can now study the limits we are interested in. The thermodynamic limit
is well understood, the existence of the dynamics for the full system is known [22],
so we will not treat it explicitly, although we could handle it in the same way as
the scaling limit. From now on we will consider the thermodynamic limit already
taken and we study the limit L — oo for the reduced dynamics of the heavy particle.
The first step is the weak convergence of the states @, .

Lemma 5.6. YV Ae¥# we have
lim d%,(4) = B,(4), (5.16)
L— o

where c?i,‘?oe/% is defined by
BE(E() = eC=),

Do (AE(N)E@G)B) = (AE(f + g)B)e™ "=V VA, BeW', f,geBR")  (5.17)

with C, 0, as in Appendix I11-Lemma I11.3.

Proof. 1t is easy, using the results of Lemma III, to check the convergence of
@k,(A) for each Aes/ ;. The theorem follows then from the fact that o/, = .o/ ,
and the extension to #" is a consequence of the Lebesgue dominated convergence
theorem. M

We are now ready to prove the results we are interested in.

The Harmonic Case. As we already noticed, if the potential is harmonic (v =0)
Eq. (5.15) tells'us that the one parameter group generated by the position of the
particle at time “t” is given by E(d¢f). Classically, in this situation, we have the
weak convergence of the stochastic process determined by the reduced dynamics
to the Ornstein—Uhlenbeck process. We can do something very similar (although
weaker) in the present context. We introduce the algebra of observables for the
zero particle using the same abstract construction used before for the observables
of the noise, with the following changes, A"y = {Ep(f)}, 5, Where %, is the
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closure in the norm topology of finite linear combinations of point mass measures
on the interval [0, T, «/% is constructed as .o7,. Further we take

My={we(L})/NAeA} te[0,T], leR, eeRTI0eR™ :0(4*4) 2 0; 0(1) = 1;
(A*[Ep(28,) — Eg(uds) I*[Ep(4d,) — Eg(1ds)14) < eV ueR, se[0, T:
|[A—pul+|t—s| <8}

We have now the right space to study the convergence of our process to the
“Quantum Ornstein—Uhlenbeck” process. In order to study our problem in this

new space we define ns: %2 — % through n5(Eg(6,)) = E(pF) and the requirement
that 7 be a *-homomorphism. It is easy to check that this can be done. So we have

- X A O

Theorem 5.1. O%, = (nh)*(@%,) EREN %o inthe o(M g, W ) topology where g € M g
is defined by wg, (E(49,)) = el ’,

w2 (AE(AS)E(ud)B) = dF,(AE(AS, + ud)Be ") y o BeW p.
Proof. Lemma I11.2-3 and lim || ¢* — @2 | =0 imply immediately that

L— o0

lim &% (E(A3,)) = dE,(E(A8)) Vte[0, T],

L—
and the same holds for finite products and sums of E(15). We thus have that
lim &g, (A4) = dg,(A), VAed ,,

L— o

Finally notice that, again by Appendix II1, (nh)*(#) < My so if feCS, )
we have nj(f)eC%/(J) and

lim @éo(; fdu) = lim [0 (/) du = [ O (/)du = cﬁﬁ@ fdu>,

L— o
where we have used Lebesgue dominated convergence theorem. B

Remark 5.4. The content of the theorem is that for a certain class of function F
of the observables Q(r) we know lim lim wg:;“(F(Q)). Notice that this class does not

L->oN->x

contain any polynomials, this situation, however, occurs also in the classical case
[11] and it is due to technical not conceptual reasons.

The General Case. We consider the general case as a perturbation of the harmonic

one.
First of all we have the analogue of Lemma 5.5. This means that the dynamics
is determined by the following equations for X (1,-)eC", (R x [0, T]),

Xy (1) = ExpE,,@,)( ~ M7 905(3)[5 Xy, s)dvu)st)(u)
R

X (—uwty*=X(ut), LeR"U{o0}. (5.19)

The fundamental fact is given by
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Lemma 5.7.
lim |1XL—Xw||ﬁB=O.

L~ o0

Proof. As we did in Lemma 5.5 we define

Fr(f)(p 1) = EXpEB(-é,)< —iM™! i (Df(S)[f Af (4, s)dv(4) ]ds )(u),

so Eq. (5.15) can be rewritten as X, = F%(X,). The first thing to notice is that
erC?,,B([RX[O, T7) with f(— u, t)* = f(u, t), Lemma 5.3 implies

IFZN) () = FE( 1 )] 4y S M”Iulilfpf(S)— @I S (4, 9)1|y, | dv(A)|ds
SM7US L Ter — o I1] A% dv(A).

So, using the explicit form of ¢f, we have
Llirn IFE(f) = FF (NI, =0.

Moreover, in the proof of Lemma 5.5, we have already obtained the estimates

IER) — (FRY@ 1L <1 f gl

where we may choose D independent of LeRu {co}. From all this it follows that
VeeR™, if L is chosen big enough,
1X, =X oIl S NFR'(X L) — (FRX ), + 1 (FPX o) — (FFYX )

n

D
e D
n:

so it is enough to choose D"/n! <1 to prove that lim | X; —X_||,=0 and
L- o0

this implies, using again (5.19), lim | X - X[, =0. W
L— oo

We can interpret the last lemma in terms of convergence of states, in the spirit
of Theorem 5.1. In order to do so we have to construct the quantum stochastic
process that describes the position of our particle. For this we denote a copy of
the algebra #2 by #°2. In order to describe the observables and to define a
quantum stochastic process on it we introduce the maps

ng: W' e— W defined by n§(Ey(46,)) = X(4,1) VLeRU{c0}.  (5.20)
This can be done because, again, (ng)*(.4 ) < M .

Theorem 5.2.
() *(dk,) —Lﬁ»(ng)*(é?o) in the o(M o, W2) topology.

Proof . The first step is to show that
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lim || 75(4) — ng(A)]l ., =0 VAeW. (5.21)

L—-w

From Lemma 5.7 we have that (5.21) is true for each A that is a finite linear
combination of finite products of Ey(Ad,). Now, 1§ being a representation of
dﬁa in %, we have || ng(A) Iy = Al J,QVA e, sy ThlS implies that (5.21) is true

VAes/ ,, Finally if feCﬂ,JJ) then 75(f)eCY (J), so né@fdu) =
[ g (f)du and (5.21) follows from Lebesgue dominate convergence Theorem. Now
{Fheorem 5.1 implies that VAe# ¢, eeR™,
() *(@%,)(A) — () DK )(A)]
< |0k, (T(4)) — Ok (mE(A)| + |0k, (1F(A) — DF,(1F(A))]
< | mg(A) — 15 (A) | g, + 1 D% (75 (A) — (G (A)] <&
if L is big enough. W

6. Solutions of the QLE in the Harmonic Case

In this section we discuss the behavior of the solutions of the QLE in the case
where V(x)=1Kx?. The integrated form of the QLE then becomes very simple,
see (5.15):

exp iAQ(t) = exp iAB(o,). (6.1

Therefore, the time correlation functions of the position operator of the particle
are very easily expressed in terms of the correlation functions of the noise operators
B(f). We note that B(f) contains both the usual QN as well as the position and
momentum operator of our particle at time zero. For this reason, the expectation
value of operators constructed out of the B(f) depend on the initial state. However,
as is shown in Appendix IIL for a given initial state wy,, B(f) can be identified with
some integral over the regular QN, W(t), whose properties are listed in the
introduction. More specifically, if we define the operator S, as in Appendix III:

S (f)s)={f(s)+07(s)}, (6.2)

where 07 is the square integrable function satisfying
M@OFY'(®) —n@F)(®) + Kof7 (@) =0;  07(0) = f(0); (67)(0)="(0), (63)
then, as far as the state wg, is concerned MB(f) can be identified with the regular
QN, W(S,(f)), where W(f)= j dtf(e)W(t), Vfe#(R). The W(f) have the

following properties:

(WU Wia)] = —2nh | dkf(~ Rya(kyk (6.4a)
and

+ o . k
W) =21h [ AT~ g (6:4b)
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We now discuss the following three cases:

i) KO = K,
il) Kog# K and K #0,
iii) K=0.
N.B. We always have K, > 0.

Case i) It is easy to check that, in this case,

So(@)(s) = P(s — 1) = (T, ¢)(s)
(where ¢ is as in Lemma 4.2 and T, is the time translation). We then find that

hny ** exp ik(s — t)k
t =— | dk .
Ox(QOQW) =" [ [(MK® — K)? + n2k?] exp [Bhk] — 1
As expected, wy, is a stationary state of the QLE with V(x) =3Kx> We note
that expectation values involving momentum operators can be found by simple
differentiations, i.e.

dd hM?n k3 exp ik(s —t)
a1 ds V(@)= — [dk [(MK2— K + n?k*Texp fhk — 1
(6.6)

(6.5)

ok, (POP(s)=M?

Taking the limit s—¢ in (6.6), we then see that the integrand behaves like 1/k for
k — oo, which leads to a logarithmic divergence.

Case ii) Since ¢(s) and ¢'(s) converges to zero as S tends to minus infinity, one
easily checks that S, (¢,)— T,¢, in the I? sense, as t— + co. Consequently,
lim wg (Q(t + a)Q(s + a)) = wx(Q(H)Q(s)). We thus find that all initial states wg,

a— oo

approach, when time tends to infinity, the stationary state wy.

Case iii) In this case no stationary state exists for the system and the particle
diffuses. A straightforward calculation yields that

1 (expikt—1 M —nt K,
S k)= ——<1-
(@)K =—== {ik(ikM s { “PM }(ikM +)(— MKZ + ink + Ko)
A
. 6.7
+—Mk2+i11k+K0} ©7
We are interested in the behavior of wy (Q(1)Q(s)) for large ¢ and s,

000 =208 | dS (0 )RS(0)0K) + 21k | dkS(0)0)S (oK)

k
'{exp Bhk—1 1}‘ ©8)

The second term on the right-hand side of (6.8) is easily verified to remain finite
when t,s tend to infinity, while the main contribution to the first term in (6.8)
comes from the first term on the right-hand side of (6.7). Thus for large s, t values
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Wi (Q1)Q(s)) is approximately equal to
(1 + expik(s — t) — expiks — exp — zkt)

Znﬁ La MK+ )
After some elementary analysis, we then find
o Ox(Q00) _ 2 69)

simo  Min[s,t]  nf’

Note that the diffusion constant (6.9) does not depend on h. So while the short
time behavior depends on the value of h, the long time behavior does not.

We remark that (6.9) holds even before taking the scaling limit L — co. This
can be verified by the method sketched above, using the results of Appendix III.
We also remark that our result (6.9) is a special case of the analysis done by
Schramm and Grabert [14]. They study the diffusive behavior for Hamiltonions
of the form (2.5) with V(Q)=0 and arbitrary coefficients 4; and ;. The type of
diffusive behavior depends strongly on the choice of these coefficients.

Appendix I

In this appendix we carry out some useful canonical transformations and study
their properties. The technique employed is modeled after [21]. We first diagonalize
the Hamiltonian which determines the initial state.

A. Equilibrium.
HVO_H0+ Qo, M>m; KO;O. (I.l)

We perform the diagonalization in two steps, the first is just a Fourier transform:
Q=Atm™ % P=(A")"'ym'?, (L2)

where

kn
N+ 1) k,ne{—N,...,N},

Q,PeR?N* 1 and & nev y = {zeC*N* 1 /zpeR. Im(z, +z_,) =0, Re(z, —z_,) =0}.

Aw=02N+1)"?exp <2ni

In the new coordinates we have

HYo = 1(3,m) + (11,9"?7)+2(6,926)+ﬁ & 20,
=1 f="0 B gl (13)

~ 2k .k 172

Next we look for a new transform
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iyt fz’,";@iw . (L49)
such that
H" =3 {(z, 1) +(Q, 4?Q)}, (L5)
Hij = Ot
This implies
EE*=1+ap, (E% 'E 1=0%+p2. (1.6)

As a consequence we get that

WP=E" Y22+ a2+ p)E=E"'TE, p=K,/M. (L.7)
So the first step in order to find a matrix satisfying (1.6) is to diagonalize T. Now,
if we set v’ =ic;(6; —d_j) je{ —N,..., — 1}, it is easy to check that

To) = 2oV,

This gives us N eigenvalues, in order to find the other N + 1, we will assume
adi + p #0 for each ke{0,1,..., N} (it is however easy to remove such a hypo-
thesis). The components of an eigenvector with eigenvalue u? # @7 Vk must satisfy
the following equation:

v =(— i + #f)_ Ye, [a2? + p110V)e;, ec=Agp; JjZO0. (1.8)

So, if we introduce @((), = e,((*> — dF) "', we have that v = c;d(u;), this and
(I.8) implies that F({) =1— (e, [a2* + p1]i(()) has the properties F(u;)=0 for
each j.

The function F is a rational function and it is easy to prove that it has N + 1
real, positive, distinct zeroes >0 and < @% this accounts for all the eigenvalue
of T.

It is enough to choose c;eR for each j in order to obtain that ER¥™N 1) =
¥ . The last thing we need to show is that it is possible to choose ¢; such that
(L.6) are satisfies when &, = v{".

We notice that (I1.6) implies, after some computation,

i for j<O0

2_ |2
-1
oFQ) ] for j=O0.
{=u,

ci=
(ol + p)[ e

This allows us to obtain the following
Lemma L1. Let I be the following closed curve on the complex plane:

f]f

v J .
D_y —Hol Ho Dy

and g any function analytic in the interior of I, continuous on I" and such that
g(x) = g(— x) for each xeR then
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1 8@l + p)a)i0)ng () Qi+ Oin [ {9

2n 3 F(©) 27 10— b} aL.

[Z9(M)E*], =

Proof. By direct computation. W

Using this formula it is immediate to check that (1.6) hold. Moreover it is useful
to notice that, as a consequence of Lemma 1, we have

e S 2w -5 19O H0)

B. Dynamics. Next we want to find a more convenient form for the Hamiltonian
that determines the dynamics:

ac. (1.9)

HY = H, + V(Q,). (L.10)

We proceed in analogy with the preceding case. The first canonical trans-
formation is just a useful renumeration:

0=00 P=P

4;=0;; pi=P; —N=j<0 G=RQ R:R2N+1 L, R2N
§;=0;s1; Pj=P;s; N>j=0 p=RP. L.11)
After this we can rewrite
B = G p) oo PP+ N G—eQ AlI— Q)+ V@,  (L12)
=om , D M ) q—ed,Alg—e 3 .
where
e,=1 ke{—N,...,N—1}, (L13)

Ain =+ 1~ 20kn + Ok— 1,0+ O, — 10n,0 + O,00m, - 1-
Now we perform, again, a discrete Fourier transformation

0=0;, P=P,
g=A;; p=A")"'n,

A =02N)"1? exp(m‘%) k,ne{—N,...,N —1},

with §, peR*N and &, ne¥ y={2eC?"/zo,z_yeR,Im(z, + z,) = 0, Re(z, — z_,) = 0}.
The Hamiltonian in the new coordinates reads

1 1
HY =%{;(1’/, n) + MPZ +(E—0A%, T[L— QA*e])} + V(Q), (I.14)
Tnm = Qr%m + KAOOAln + KAOO/TIma

n 1/2
Q.= 5nm[2k< 1-— cos<m‘ ﬁ))] sign (1) = 0, @,

Next we diagonalize T, namely we find 5:R*N — ¥, such that
ETITE=2% dum= Opmin (I.15)

In

E*=1,
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Last we use the canonical transformation
0=0; P=0,
= =g, Enedy, (1.16)
n=(E")""p, q,peR?®,

to rewrite the Hamiltonian in the form

HY =3{m™'(p,p) + M™'P +(q— Q9, A*[q — Q3] } + V(Q), (I.17)
(S = E*A*e = E*eo; (eo)n = 5noA0_01
The equation for the eigenvalue of T reads

(A2 — op)v, = k[t (z',0) + 7, (2%, 0) ],
(L18)
T =Ag0; Tn=Ap
A direct computation shows that (I.18) has no solution for A?=w?
ne{—N,...,N —1}, so we restrict ourselves to the case 1 # w,.
If we introduce the vectors a((),=kt2((* —w?)™ Y B), = kti((* —w?) 71,
we get v = D ja(4,) + C;B(4;). Substituting this in (I.18) we get a solution if F({) =0,
where

@B =1 @)
TeLB0) L)1) (1.19)

Indeed a direct analysis shows that F has exactly 2N real, positive, distinct
zeroes and, more precisely, w? <13, A3;,, <wi., je{l,...,2N}; so we have
found all the eigenvalues. The eigenvectors are of the form

oW = CjX(’lj);

P S (9)
HO=HO+~ o oy

Notice that the expression (I.20) it is meaningful because the equalities
@, BQ) = % Q) () = (% B()) imply E()=[1—(°%B()]*— (% «(())
and (z° B({)) = (1 — {%/2k)(z°, ({)) + 3 shows that (z° «(()) = 0=>E({) = § #0. Fin-
ally, being T self-adjoint, if we choose =, = v{" the (1.15) are satisfied, provided that
i = 1/(uA) 2(4)).

Moreover, it is possible to get a representation of the type given in Lemma I.1
however we need only a specialized form of it.

E©)

(1.20)
«(0).

Lemma L2. Let g, I be as in Lemma 1.1 and G({) = [1 — (z°, B()) — (z°, a(©))], then

w o =,y ke 90
j;l 5?9(/11) = (eg, Eg(4)E*ey) = i i__ﬁG(C)

Proof. We start noticing that a direct computation yields

dc.
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E©) =GO — (% BO)) + (% a£)) ],
ek 1= (% B4) + (%, a(2))
s (<%, a(4)) '
This clearly means that G({)=0=F({)=0 and F(4;)=0, G(4)#0=6,=0
(these are modes that do not interact with the zero particle).
Now, in order to get the formula, we need only to notice that 0G({)/0(?|,_ =

(x(A]), x(4;"))1/2k, where ;" are the zeroes of G, and to compute the mtegral
explicitly. B

Appendix 11

In this appendix we compute the quantities of interest in the thermodynamic limit
taking the limit of the corresponding quantities for the finite system.

Lemma II.1.

lim (@), €)= ———== 1,
N—- o 4 k 2 V D(C)
Y
m

where the square root has a cut on (— 2\/k/(m, 2\/W ) and agree with the arithmetic
square root for (eR |{] > 2ﬁ/m moreover the limit is uniform in { outside each
open set containing the cut.
Proof . In fact, clearly we have

lim (@(0), e)=~21~ i ! =" ! dz,

e 2 K X
N (2 =2=(1—cos ) 2mike , <2 g2>

where ¢ = {zeC/|z| = 1}. The result follows computing the last intcgral. W

An analogous computation gives us

lim £ = 3~ L= FL 0 L)
Jim GO =31+ DG/ m)(E/y/m) 2]

Finally, we have the equivalent of Lemmas [.1-1.2.

Lemma IL2. In the thermodynamic limit the following hold:

A A m?  2J/kim x2g(x)/4k/m — x?
(e, Eg(p)=*e) = M? 3 V- dx,
—2/km M

e x*(dk/m — x?) + (ax? + p)?
2. /kfm

| x'zf(xﬂ) 4k/m — x? dx,

1
(eqs E f(A)E*ey) =—
T —2kim
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where x2g(x) and x~2f(x) are analytic in a neighborhood of [ — 2. /k/m, 2. /k/m].

Proof. First modify the contour I', so that it contains 0 in its interior, and
eventually subtract the contribution of the pole at zero. Consequently we can take
the limit N — oo inside the integrals using formulas (I1.1).

The last step is to shrink the contour on the real axis, remembering the definition
of D({), and taking into account eventual divergences at zero that cancel the therm
coming from the modification of I". W

Appendix 111

Here we compute the quantities of interest for the quantum noise.
Let us recall a few definitions:

2N
W(t)= Y. 228,[(¢;— Q0 cos (Am~20) + m™V2pA7 tsin(Am~ 2] (IIL1)

i=1
B(f)=fO)M™'P— {f’(o) -M7 ] f(t)v(t)dt}Q +M7 [ WO f(@)dt, feBR).

The first result is

Lemma IIL1. Let wg, be the state specified by (2.6) with K, > 0, then we have for each
YeS(R*N ) f,geB(R™)

[B(f), B(9) 1Y = iha(f, g)¥, (I11.2)

where

a(f,9)=M"'{g(0)f(0) - /' (0)g(0)}
+M7? {Q(O) [ fpde+ | f0)g (e — S)dtdS}
R (R+l2
and h is the Planck’s constant.
Setting for each f,ge A(R™)
Re {wg,(B(f)B(9))} = C(f, 9)-
We have that
IC(f.9I=DIfIl gl (IIL.3)

with DeR™" independent of N. Moreover for each f,geCF(R™),

1 (e, 4(8))h coth (mBE/2)

9= ; d¢ O (I11.4)

| e—iw-s’[f"(t) ~M7 =0 @+ pf(t)]

(R+)2

[ §(5)— M~ | y(s—g'0) + pg(s)]dtds.
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Proof. Formula (IIL.2) is the result of a straightforward computation. In order to

deal with the form C in (IIL4) we diagonalize the Hamiltonian defining wyg,,

according to Appendix I, through the canonical transformation § =m™'2AZQ;

p=mPAT1ET 1. We have B
wKo(Qn) = wKo(En) = Oa

0ko(QnQm) = Oum(21,)~ thcoth (hB,/2),
wKo(QnEm) = %6nm’

wKO(EnEm) = %5nm:unh COth (hﬁ.un/z)
Moreover, according to Appendix 1 again, we have
do=0Q; Po=P; q=E"'A"'Rg; p=E"A'Rp.

This allows us to compute, for each f,geB(R™),

C(f.9)= (f(O)m”zM‘ 157l
+MTIETIATIR*AE | Asin(m™ V2 40) f(1)dtd, ph coth (hBp/2)

R
-[m”zM' 'g0)E e+ MTIETIATIR*A | Jsin (m"”@t)g(z)dta])
R+

+ ( —m 2 0)E* e+ m T VPM T E*ATIR*AE

h
| A*cos(m~ l/zilt)f(t)é,zﬁcoth (hBu/2)
rR* z
[ —m™12g(0)E*e +mPM I E*ATIR*AE [ 2% cos(m” ”@t)g(t)dté]).
R+
This unpleasant formula can be simplified using our knowledge of the dynamics.

The idea is to consider the classical evolution determined by the Hamiltonian
defining wg,; on the one hand, performing the transformation defined in Appendix

I—(A), we get
Q(t) =m™2(eq, AE {cos wrQ(0) + .~ * sin utn(0)});

on the other hand the transform defined in Appendix I — (B) leads us to the equation

MO(D) = — g (€ — )0()ds — KoQ(0) + W),

substituting the first expression in the second, and taking into consideration that the
equality holds for each initial condition, we obtain the following algebraic relations:

t
{ — My?cos put + y(t)1 — [ y(t — s)usin psds + K, cos ,ut}E*A *e,
! U

= E*A T 'R*AZ}% cos (m™ Y2 At)d,
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t
{— Mysin pt + | y(t — s)cos psds + Kou™* sinp_tt}E*A*eO
0

=m'2E~1A"'R*AE isin (m™ 2A)0.

From these formulas, the integral representations described in Appendix I, and
the parity properties of the functions involved follow (I11.4).
For (I11.3), we note by explicit computation that

lu=*E*e| > =mK ',

which implies

1
< [
IC(f,9) = ve;ggl K,

lvii=1

-[f"(t) -M a0 + pf(r)]

<V, {;_zh coth (hufi/2) j e iE=s)

®*y?

B

~[g"(s) —M fv(s —0g'(0) + pg(s)]drds} )

<£2./k/m for each seR*. M

which proves (IIL3) after noticing that | y(¢)dt
0

Now we state the results concerning the thermodynamic limit.
Lemma IIL2. For each f,geB(R*) we have
o'(f,9)= lim o(f,9)=iM"* | S(f)()S(g)(s)y(t — s)dtds, (ITL5)
N—- R

ZJil_ix coth (hBx/2)\/4k/m — x* S/(\f )(x)S{(?})(x)*dx,
k/m

CHJg) = lim CUJg) =z

(IIL6)
where “*” stands for the Fourier transform,
fy tz0
L. +y_, : L — ,
SL:B(RY)— B(R) is defined by S“(f)(t) {0?(0 <0
where 0. B(R™) is the unique solution of
0
05 ()) = M~ [yt — )0 (S)ds + pOHt) = M7 [ yoo(t = )f (s)ds,
! R (I1L.7)

0H0) = f(0);  (6")(0) = f"(0),
moreover y (t) = limit y(¢), p = Ko/M.

Proof . Tt is easy to check that the Fourier transform of 6, is given by
0%(x) = 2m)'2[M ~*H ;(x) — f'(0) — ix(0) + M~ f(0)" (x)]
[—x2—iM~xI(x)+ p] %,
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H(9)= | e [ po(t—s)f ()dsde,
R™ R
T'(x)= [ e" ™y (t)dr.
a-

This makes sense because, according to (4.2b) and Appendix L, II, we have

m 2/kim
Yol®)=— [ e ™ /4K/m—x*dx
n -zm
and a direct estimate shows that y,eL!(R). From this it is clear that I"({) is
holomorphic for Im { > 0; more precisely we have

4K¢
re= C2+ iDEY Im{>0,
I'(x)= lim I'(x+ig), xeR.
e—=0+

Moreover from [x2(@%(x)— (x — i)~ f'(0) — (x> — 1)~ £(0))]Je[AR) we have
that 6%, (6", (6")'e LA(R ") and, because || f || < DIl f [l + I f'l|], 0% (6"Y eL'(R ™)
finally using explicitly (ITL.7) we get (6%)" e LN(R ™) or e #(R ~). Consequently (II1.5)
can be verified by direct computation, the same is true for (II1.6) as long as we
restrict ourselves to f,geCZP(R™). We can nevertheless show that the formula
holds for each f,ge#(R*) using (IIL.3) and the fact that the expression in (IIL.6)
is continuous in f and g. M

Finally we want to handle the limit L — oo, where m = L™ 'm* k = Lk*.

Lemma IIL3. V f, ge (R "), we have

o”(f,9) = lim o (f,9)=2inM 2 [ S o (f)(X)S (g) (x)dx, (I1L.8)
C*(f,9) = lim CXf.9)
= nM 2 j x hcoth (ﬂx/2)S f )(x)Sw(g)*(x)dx (IT1.9)
with n=2./k¥m*, S_:B(R*)>B[R) given by S (f)(t)= {j;("g(t) tig’ where
07 €B(R™) is the unique solution of d
07)'(t) —nM =1 (OF)(2) + p87P(t) =0 t<O0 IIL10
{0?(0) =10 Y0 =110 ' (10

Moreover the convergence for | f|~*llgl~'e™(f,9), If1 " Igl~'CXf.g) is
uniform.

Proof. The crucial point is to notice that
yH(t) = Ly(L1),

where
m* 2. /k*/m*

YO=— [ e /ak¥/m* —x?dx,

T -2 /k*/m*
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and that C* can be rewritten as

CH(f.q)= /% M~ x coth (kB 207 +8H())S R0 ().

The result follows then from the fact that VeeR*ILeR™:

IS5f)=S=(N)l <ell fII VL>L,
Iy“«f=2nfly<elfl VL>L,

where the second is implied by the estimate |y(f)| <c,t"? Vpe(0,3). MW

Finally notice that if supp (f) = R*, then S ,(f) = f and we obtain formulas (1.3)

(their weak form-to be more precise).
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