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Abstract. We study the quantum dynamics of a particle of mass M in an external
potential V(Q\ interacting with a simple model environment—a harmonic
chain of 2N particles with mass m and spring constant k. The classical version of
this model was studied by Rubin and is equivalent to standard models of a
particle interacting with a phonon bath. Setting m = m*/L and k — k*L, we prove
that for a suitable class of potentials V and initial states ω0, the time evolution of
the mass M particle converges, when N->ao and L-> oo, to the time evolution
governed by the Quantum Langevin Equation (QLE) which has been found by
Ford, Kac and Mazur. Furthermore we show that, for this class of potentials, the
QLE has a unique solution for all positive times, such solution can be expressed
as a convergent expansion in the deviation of V(Q) from a harmonic potential.
The equilibrium properties of the particle with mass M can be expressed in terms
of an integral, over path space, with a Gaussian measure which has mean zero

and covariance proportional to [ — A + ηh/M^/— Δ] " *; where η = 2^/km is the
friction constant, and h is the Plancks' constant (divided by 2π).

1. Introduction

The behaviour of quantum systems in a dissipative environment is a problem of
fundamental and continuing interest [1]. More precisely, one wishes to study the
quantum dynamics of a small system (or selected degrees of freedom) in contact
with a much larger system—the latter is to be thought of as a heat bath with an
essentially infinite number of degrees of freedom. These dynamics are to take
account, in a hopefully simple way, of the esssential effects produced by the
environment. We shall use the letters S, £, and T to denote respectively the system,
the environment and their union, i.e. the total (isolated) system.
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Since the system S is not isolated, we expect its dynamics to contain a stochastic
element (in contrast to the deterministic evolution of the wave function of the
isolated system T, given by the Schrodinger equation). The problem is well under-
stood, conceptually at least, for systems evolving according to classical dynamics,
where the separation into system and bath degrees of freedom is unambiguous.
In particular it is possible to find simple classical examples of a (Brownian) particle,
S, coupled to a model environment, for which one can rigorously prove that, in
a suitable scaling limit, the reduced dynamics are given by the classical Langevin
equation (CLE) [2], [4],

(l.la)

P(t) + V'^(q) = - (η/M)p(t) + F(t). (Lib)

Here q(t) and p(t) are the position and momentum of the Brownian particle,
our system (which for simplicity is taken to be one dimensional); M is the mass,

and Veff(q) is an effective potential acting on the system (consisting of an externally
applied potential V(q) and the adiabatic non-dissipative effects of the bath). The
right side of (1.1) represents the "dissipative" effects of the environment: the first
term is the systematic effect, η being the friction coefficient, while the second term
F(t) is a fluctuating force; it is Gaussian white noise with

<F(ί)> = 0, (Lie)

t'\ (Lid)

where β~l is the temperature of the environment.
It is an easily verified fact [3] that there exists a well defined time-homogeneous

Markov process with continuous trajectories, the Ornstein-Uhlenbeck (OU)
process in an external potential Veff(q)9 whose realizations satisfy (1.1). In particular,
starting from any initial configuration g(0) = q, p(0) = p the CLE leads, as t -> GO,
to the stationary single time distribution of the OU process, which has the general
form.

ps(q, j>) = Z- * exp - βlp2/2M + 7effte)]. (1.2)

By requiring ps to be the correct marginal distribution for the system at the
temperature of the bath, when system + bath are in a Gibbs state with reciprocal
temperature β, Veff(q) is identified. (When exp[— βVcff(q)'] is not integrable, one
has to understand (1.2) in a generalized sense.)

While it is clear that (1.1) represents an idealization of the effects of the environ-
ment, holding precisely only in an appropriate limit, it is generally accepted that
it is, in many cases, a very good approximation to the actual behavior of a massive
particle immersed in a fluid. In fact the CLE, or its direct generalizations, have
been used as a paradigm for modeling the evolution of a wide variety of open
systems (or the dynamics of a reduced set of variables). Its attractiveness lies in
its intuitive appeal, mathematical simplicity and in the property that as far as
dissipation is concerned all the details of the bath and of the system-bath inter-
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actions are represented by a single parameter, the friction constant η. This is of
course a very welcome simplification which compensates (in most cases) for the
loss of some quantitative details due to the idealization [4].

It is clearly desirable to have a quantum version of (1.1), i.e. one that would
be useful in situations where quantum effects, such as tunneling, are present. An
important step in this direction was taken by Ford, Kac, and Mazur (FKM) in their
seminal paper [5]. They considered a particularly simple model, namely a particle
coupled linearly to a set of harmonic oscillators. Choosing judiciously the frequency
distribution of the latter, they showed that in a certain limit, the classical version
of their model satisfied (1.1) with VQ{f(q) equal to V(q). In the quantum case they
argued that in the same limit the Heisenberg equations of motion for the position
and momentum operators will be

P(t) + (iΛΓ '[Λ ^(β)] = ~ (*l/M)P(t) + W(t\ (1.3b)

with the W(i) a family of non-commuting Gaussian operators representing
"quantum noise" (QN) whose commutators are onumbers,

°°
J

2n -

and whose expectations are,

2rth °° e~ik(t~tl}k
=-J- J dk - FT^Γ-T. (L3e)

2π -oo exp \βhK\ - 1

The friction constant η is equal to its classical value and h is Planck's constant
divided by 2π.

N.B. — The QLE (1.3) should not be confused with the "quasiclassical Langevin
equation" in which Q, P and W are treated as onumbers and the right-hand side
of (1.3c) is set equal to zero, cf. [lg].

In the limit /z->0, the commutator (1.3c) goes to zero and (1.3e) goes formally
over to (l.ld). For fixed h however the W(t) and consequently also the P(t) are
much more singular objects than their classical counterparts (compare (1.3e) with
(l.ld)). Furthermore the quantum noise is correlated, and thus any solution of
(1.3), if it exists, will be non-Markovian. In particular the noise will be correlated
with the initial values 2(0), P(0). This is very different from the classical situation,
where the Markovian evolution of the reduced dynamics is a consequence of (and
implies) the absence, in the scaling limit, of any correlation between the bath noise
in the future and the present state of the system; a separation between system and
bath which is unnatural, perhaps even impossible, in quantum systems.

To clarify the nature of the difficulties involved let us consider the case in
which V(Q) = ̂ KQ2. Then the formal solution of Eq. (1.3) can be easily computed
(cf. Sect. 4); it is given by
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MQ(t) = φ?(0)P(0) + [- M(φ?γ(0) + Wf°°(0)]β(0) + J φt(s)W(s)ds

when φ™ is the solution of the equation

M(φtT(s) - rt<p;*)'(s) + Kφ?(s) = Mδt(s\ seU.

We can square (1.4a) to obtain,

+ M"2 J J dsdτφ?(s)φ?(τ)( W(s)W(τ)y + cross terms. (1.5)
o o

It is easy to check, using (1.3e), that the third term of (1.5) is infinite for all t > 0.
This shows that if we want < Q(t)2 > to be finite, we cannot assume that the Q(0),
P(0) are uncorrelated with the noise.

Given the existence of such correlations we clearly need a more complete
prescription of the QLE than is provided by (1.3). More precisely we need to
address the following questions:

i) For which initial states ω0, i.e. density matrices, of T is a derivation of the QLE,
formally described in (1.3), valid? In particular what kind of correlations between
β(0), P(0) and the noise are induced by these states?
ii) What is the nature of the process described by the solutions of the QLE? E.g.
what are the stationary states ώs for this stochastic process? In particular does the
Gibbs state ωeq for T lead to a stationary state ώs for the QLE? One certainly expects
this to be so with the projection peq = trE(ωeq) of ωeq on S to yield, in the scaling limit,
the single time marginal distribution ps of ώs. (The meaning of ώs here is analogous
to the stationary measure on path space for the CLE.)

Assuming the answer to (ii) is positive, there still remains the important
question:
iii) What other initial states ώ for the QLE, if any, evolve, as ί-> oo, to ώs?

These questions were already raised by FKM and studied further in refs [5-8],
(ii) is essentially resolved in the case when V(Q) is a harmonic potential, i.e. V(Q) =
^KQ2. In this case the derivation of (1.3) as done by FKM is valid when the
initial state of T is that of equilibrium, i.e. ωeq. It is then clear that ωeq leads to
the unique stationary state ώ5 for the process described by the QLE. Properties
of ώs can be determined directly from (1.3) or by studying ωeq in the proper limit.
This is explicitly calculable since ωeq is the equilibrium state of a harmonic system.
One finds the expected correlation between P(0) and the W(t) and that the removal
of the frequency cutoff leads to an infinite value for the expectation of the kinetic
energy ώs(P2). This is due to the zero point fluctuation of the environment which
reflects itself also in the singular noise. Despite this the position process is well
defined (this is not the case if the initial state is taken to be a product state). One
may also consider the special harmonic case when K = 0. In this case, there is no
well-defined equilibrium state for the system, but one can easily show that
ωs((6(0 — 6(0)2))Λ -> £> as f -> oo, where D = 2/ηβ is the classical diffusion constant.
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Question iii) too can be answered for the harmonic case, see Sect. 6. In addition
it was shown by Maasen [7] that by considering the process described by (1.3) as
holding for all ίeίR, i.e. no initial conditions, one can construct a stationary measure
ώs. He shows further that states ώ, which are perturbations of the equilibrium
state, induced by modifying the noise over some time interval (— τ, 0), evolve, when
t -> oo, to the equilibrium state ώs.

As indicated earlier, however, we are primarily interested in the answer to the
above questions in the physical situation where the total system T is prepared,
or known to be, in a specified state at some initial time, t = 0. This is an open
problem particularly for the anharmonic case which we partially answer in this
paper.

To do this we investigate in detail a more concrete model system than that
considered by FKM. This model, also studied by Rubin [9], consists of an infinite
harmonic chain with nearest neighbor interactions in which the special particle is
acted on by an external potential V(Q} Rubin's model can be transformed into
the "standard" FKM model where a special degree of freedom is linearly coupled
to an independent phonon bath (see e.g. [6]). To obtain dissipation of the Langevin
type (linear friction without memory) in the FKM model, one removes the curoff
frequency to infinity. This corresponds here precisely to taking the "scaling limit."
It is then that the noise spectrum becomes that of the black body radiation (1.3a).

In the case where V(Q) is harmonic the analysis can be done through quasi-free
states, where one need only consider convergence of the two point functions in
order to get the convergence of the state on bounded "continuous" cylinder func-
tions of the position, which corresponds to the convergence of finite dimensional
distributions. We cannot hope to obtain this type of convergence for the nonlinear
system through direct computation; this forces us to follow a less direct path. First
we construct a class of "good" initial (quasi free) states ω on T in which the particle
is localized at t — 0. (N.B. the "good" initial states do not include simple product
states, which are frequently used in computations.) We then show that, in the
scaling limit, the QLE describes the evolution of Q(t) for all t > 0. This is done by
proving that exp(//lg(ί)) has a convergent expansion in terms of both the noise
operators and the non-quadratic part of the potential whose properties are known.
Finally we prove that the initial states ω for T lead to states ώ associated with
the QLE; to do this we have to develop some machinery in order to rephrase in
an algebraic language standard results of classical probability theory (e.g. the
Kolmogorov reconstruction theorem).

It should be noted that, since the QLE does not describe a Markov process
on the state (Hubert) space of 5, explicit computations with the QLE are quite
difficult when V(Q) is not harmonic. Thus we don't ask, at this time, about the
approach to equilibrium or address more refined questions. (In fact we don't even
prove that ωeq leads to a good initial state for anharmonic potentials.) These
problems are however crucial for making the QLE useful in practice, and are the
ultimate motivation for studying it. We hope to use the expansion mentioned
above to say something about the time evolution of the system in a double well.

The rest of the paper is organized in the following way: In Sect. 2 we describe
the model. The reduced equilibrium behavior of the system is studied in Sect. 3.
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We find there a compact form for the reduced density matrix peq in the scaling
limit, cf. Bray and Moore [10]. In Sect. 4, we describe the reduced dynamics and
state the convergence result, which is proven in Sect. 5. Comments about the
solution of the QLE for the harmonic case and related open problems are given
in Sect. 6. Finally, the appendices (and Sect. 5) contain most of the technical work:
the other parts can be read independently.

2. The Model

We take as our total system T a 1 -dimensional harmonic chain containing 2N + 1
particles with periodic boundary conditions: 2N of these particles have mass m
and will be regarded as the environment, E, (bath) which interacts with a particle
of mass M > m, the system S. The Hamiltonian of the total system is

, (2.1)
where

QN+I — Q-N> and V(Qo) is an external potential felt by the zeroth particle.
The classical version of this model with V = 0 was studied by Rubin [9]. He

showed that when the environment was in equilibrium at a temperature β'1 then

in the limit N -> oo the heavy particle diffuses with diffusion constant 2/β^/km.
He showed moreover that, in the limit M » m, the heavy particle obeys, for times

scaled by ^/M, the classical Langevin equation with Feff = 0. Rubin's work has
been generalized and made rigorous by various authors [11].

Repeating Rubin's analysis in the quantum case one sees that for large M
quantum effects become unimportant and one obtains the CLE. We therefore
consider a different scaling which is equivalent to the previous scaling in the
classical case, but retains the quantum mechanical properties of the system. Para-
meterizing m and k by m — m*/L and k = k*L we consider the thermodynamic
limit N -* oo followed by the scaling limit L— > oo. (We shall sometimes denote by
"scaling limit" both of these limits.)

For technical reasons, we will restrict ourselves to the class of potentials
consisting of a quadratic part plus a bounded part V,

V(x) = ±Kx2 + J eiλxdv(λ\ xeR, (2.3)
R

where v(s) has even real and odd imaginary parts, and

$λ2\dv(λ)\<ao. (2.4)
R

The Hamiltonian Hv can be defined as a self-adjoint operator on L2(U2N+1).
As shown in Appendix 1, it can be transformed via a canonical transformation
into a diagonal form for the bath variables,

1 2N 1 1 2N

' - "' + 2M p2 + 2 Σ *''<«• - s'Qf
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Here Q and P stand for β0 and P0, λj is the eigenfrequency of the/h normal mode
(qj9 PJ), and Cj = — λjδj is the coupling of our system to the /h mode. We note
that Hamiltonians of the form (2.5) are widely used in the literature on Quantum
Brownian motion, see e.g. [1,4-8,12-15]. The main difference here is that the
frequencies λt and couplings δt are fully determined by k and m. In particular our
model corresponds, in the thermodynamic limit, to the "ohmic" dissipative model
studied in [6], i.e. in the limit N -»oo our "density of states" becomes p(λ) =
2(4k/m-λ2)~1/2 and the couplings Cj become C(λ\ where

Next we consider the initial condition, i.e. the state of the total system at time
0. For classical systems this is easy: to obtain the CLE for the most general initial
state of S we specify Q(0) and P(0) and take for the bath the thermal equilibrium
state of the whole system T conditioned on the initial momentum and position of
the zero particle. It is not clear how to translate this type of initial state to quantum
mechanics since Q and P cannot be specified simultaneously and the conditioning
is not well defined. A common choice is to start with a product state for system
and bath, i.e. the particle is effectively decoupled from the bath at time 0. As we
have, however, already noted in the introduction and shall show in more detail
later, this leads to singular dynamics in the scaling limit: we believe this problem
to be intrinsic to all models of the QLE.

In the search for suitable initial states an essential desiderata is to localize the
zero particle at the starting time. In order to do so we consider initial states ωKo

of the form

— βH /TΠ*. — βH /'Λ /τ\
OK — € / LL 6 , v ̂  W

where V0(x) = ̂ K0x
2. Note that K0 need not equal K in (2.3). By adjusting the

value of K0, we can localize the heavy particle near the origin. The big advantage
of these states ωKo is that they are quasifree (see e.g. [16]), implying that higher
order correlations can be easily calculated as soon as the one- and two-point
correlation functions are known.

3. The Reduced Equilibrium State in the Scaling Limit

Before turning to the dynamics we consider the reduced density matrix peq of the
zeroth particle, S, when T is in the equilibrium state ω^L at termperature β'1

with respect to the Hamiltonian. (We make here explicit the N and L dependence
unless it is completely clear from the context.) As mentioned in the introduction,
it seems extremely plausible that the restriction of this state to S agrees, in the
scaling limit, with the stationary state of the QLE, restricted to functions of the
position at a single time. Our results are consistent with the (properly interpreted)
expressions of Bray and Moore [10], We also find a compact formula for the
imaginary time correlation functions of the particle in the lim lim ω^L.

L-> oo N-+ oo
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The reduced equilibrium density matrix p^L(x, y) of the zeroth particle is
given by,

N = IdXj. ..dx2NQxp - βHv

NtL(x, xί9... x2N; y, xί9... x2N)
eq ' j dx0 dx1 dx2N exp - βH%ίL(x0, x^.. x2N; x0, x^ . . x2N) '

Given p^L we can calculate the expectation values of the position and momentum
observable of the zeroth particle in this Gibbs state ω^L, since:

ω^L (exp iλQ) = f dxp^L(x, x) exp iλx, (3.2a)

ω£L(exp iμP) = J dxp^L(x, x + μh). (3.2b)

We use the Feynman-Kac formula to write down an expression for the kernel
exp — βH^^L(x,x1,...x2N',y,yί,...,y2N). As usual, since Hv is quadratic in the
bath variables we may integrate these out explicitly and get,

(3.3)
ί (β

iw < exp - J V(ω(s) + x)ds + INtL(ω)
( \ o

In this expression Ew denotes the expectation value with respect to the Wiener
process with mean 0 and covariance Ew{ω(s)ω(t)} = (/z2/M)min {s, t}; Ew{- \ω(β) =
y — x} denotes the conditioning that the process passes through the point y — x
at time β; CN L is the normalization constant so that ^dxp^L(x,x) = 1 and IN.L(ω)
is the influence functional defined by

/NL(ω) — -^ds^dtANL(s — i)[ω(s) — ω(ί)]2, (3.4a)

where

cosh I I u\ \hλj/^/m

^ ^ ' -β^u^β. (3.4b)

Using the results of Appendix I, (3.4b) can also be written as an integral over the
contour Γ :

kh

where G is defined in Lemma 1.2.
The limit ΛΓ->oo can be easily taken by applying the Lebesgue dominated

convergence theorem. Note that

+ o o > h - | « | f c x
AL(u) Ξ lim AKtL(u) = J dχXJl-(x/a)2 - , (3.6)

JV-.00 4π -a . β
smh — hx
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where a = 2Lv//e*/m* and η = 2Λv//c*w*. In the limit L-> oo, AL becomes singular
(AL(f) ~ ί~2) but |ω(ί)|2 ~ t almost surely for t->0 [17], hence the limit needs to
be taken with some care. We consider explicitly the case x = y (similar analysis
can be done for x ^ y). The right-hand side of (3.3) may be written as

ί Γ ft 11
QEjexp -]v(ω(s) + x)ds M>,

I L o JJ

where we have introduced the Gaussian measures, defined on C°([0, β~]\ (all
continuous functions which vanish at the end points) by

EL( ) = [Ew{exp - l L (ω)\ω(β] = $}Y1EW( exp - I L ( ω ) \ ω ( β ] - 0} (3.7)

with /L(ω) = lim INίL(ω).

If we define ak(f) = — ί f(t) cos ——- dt; bk(f) = — f f(t) sin —— at, then we
P O P P o p

can represent every function /eCo([0,j?]) by the Fourier series f(t) =

Σ ak(f}\ COS~B 1 ) + bk(f)sin—-~, where the convergence holds in many
k=l \ P / P

different senses, three of which are relevant here: i) in L2([0,/Γ)); ii) in
L2(Co([0, β~]\ Ew); iii) pointwise in t almost surely with respect to Ew. The first sense

β2 °°
of convergence implies that /L(ω) = —- Σ (αk(ω)2 + bk(ω)2)(AkίL — AQ>L), where,

oo 2τckt
using explicitly the symmetries of AL, AL(t}= Σ A,LCOS~77~

Now, an explicit computation yields,

ΓMπ2/c2 π

This allows us to compute lim EL(ω(s)ω(t)\ once we take advantage of the other two
L-»oo

senses in which Fourier series converge.
The final results of these computations is,

lim lim p£jL(x, y) = 0 if x Φ y (3.8a)
L-* oo JV-> oo

lim lim ω£L(exp iAP) = δλo (3.8b)
L-> oo N-+OO

lim lim ω^jL(expUβ) = Jdxpeq(x)exp^x. (3.8c)
L^ oo N-* oo

where
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f β ")
£*j exp - J K(ω(s) + x)ds f

peq(x) = lim lim p™(x, x) = L_ °_ I__ (3.8d)
> GO N-* 00 ί 0

J ώc0EN exp - j V(ω(s) + *0

( o

Here Έ? denotes the Gaussian process having mean zero and covariance

4 ' 4 , where ΔD is the Laplacian with Dirichlet boundary
h

conditions at 0 and β. To be more explicit, Έ? is the Gaussian process defined by

=/(s) + /(ί) -/(s - ί) Vs, ί : 0 g 5, ί ̂  0,

where
2 2

It follows from (3.8b) that the limiting state ωeq is no longer normal with respect
to the algebra of operators generated by {exp iλQ, exp iμP}9 i.e. it is not of Trace
class type: see [16]. This implies in particular that, lim lim ω^L(P2) = oo.

L -» GO N -> oo

We can also obtain dynamical correlation functions such as F(t — s) =
lim lim ω^L(Q(t)nQ(s)m). The standard way to obtain F(u) is to look at the

L—» oo N-* oo

imaginary-time correlation function H(t)

Hn,m(t) = lim lim ω^L(QnQ(ith)m)9 (0 g t ̂  β\
L—> oo N~* oo

where Q(ith) = exp( — tH^tL) QQxp(tH^L). The real-time correlation function
F(u) is then found from H(t) by analytic continuation. Similar computations as
before yield:

HΛiW(ί) = = (^—f T ^/ ^ ? .$dx\dyK(x9y;i)

where

r /5 "j
K (t) = E* < δ(ω(t) + x - 3;) exp - J V(ω(s) + x)ds V. (3.9b)

( o J

4. The Quantum Langevin Equation-Statement of Results

The Reduced Dynamics. We consider now the motion of the zeroth particle when
the system evolves according to the Hamiltonian Hv. The Hamiltonian (2.5)
determines the dynamics τ, of the system: τt(A) = Qxp(itHy/h)AQxp( — itHv/h). Let
us denote the domain of an operator A by D(A). Because D(qi) and D(pt] ID D(HV) =>
S(U2N+ί), we can define τt(qt) and τt(p& they are essentially self-adjoint on D(HV}.
It is then easy to show that for each ψeD(Hv\ the time evolution of the Heisenberg
operators in the state ψ, (ψ, τt(A) ψ), satisfy the equations of motion,
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2N

vr, , r v./ r /

 ; ]Γ λ-jδj(ψ, τt[_qj — δjQ]ψ) — (Ψ,ΐt(V(Q))Ψ)- (4-Id)
at j = ι

Defining the self-adjoint operator W(t] and function γ(i) as,

Γ 1 Ί
I = Σ λ'j δj\ (qj — δjQ) cos (λjt/^/m) H—-= Pjλ^~1 sin (λfl^Jm) , (4.2a)

y(ί) - Σ ̂ ,2^2 cos (λjt/Jm), (4.2b)
j

we can express the time evolution of S in a simple compact form. (Note that
everything should really have subscripts N9 L.)

Lemma 4.1. For each \jjεD(Hv\ ίe[R+,

~ - (ψ, τt(V'(Q))ψ) + (
dί 2 v r ?

(4.3)

Proof. In (4.1c) we consider (ψ, τt(Q)ψ) to be given unknown function of ί. Solving
(4.la) and (4.1c), we then get that

j
(ι/f, τt(qί)ψ) = (ψ, q^} cos (λ tl^Jm) -\—j=(ψτ Pi^MΓ: sm(

J /l^j sin (λi(t — s)/^/m)(\l/9 τs(Q)φ)ds.
lm o

The result is obtained by substituting this expression in (4.Id).

Now, let ^(J) (respectively 3SQ(J}) be the completion of the real space C l ( J )
(respectively Cj(J)) with respect to the norm ||/|| = |/'(0)| + \\f\\l + | | / Ί l ι >
where \\g\\i =\\g(x)\dx and / c [RΛ is a closed set. For each / in J*((R+), we then

j
define the self-adjoint operator:

B(f) = f(U}M~lP - \ /'(O) - M"1 ]f(t)y(t)dt \Q + M'1 j W(t)f(t)dt. (4.4)

The reduced dynamics of our problem can then be written according to:

Lemma 4.2. The operator τt(eiμQ)(μEU; ίe!R+) is the unique solution of the equation
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ί Γ r Ί
X(μ9t) = exp<iμ\ B(φt)-iM 1 J [φt(s) \λX(λ9s)dv(λ)']ds

( [_ O R J

(4.5)

where v(λ) is defined in (2.3), the integral is in the strong sense (Bochner) and
φt(s) = φ(s — t). φ(s) is the solution of the equation

Mφ"(s) - J dτy(τ - s)φ'(τ) + Kφ(s) = 0, s < 0,
(46)

0(0) = 0, 0'(0) = - 1, and φ(s) = 0 for 5 > 0. V ' )

Proof. We start by multiplying both sides of Eq. (4.3) by a function /e^(lR+) with
/(O) = 0 and /'(O) = — 1. After some integration by parts, we get:

\ds +

OA, τs(F'(β))ιA)/(s)^ + /(0)(<A, P^) - /'(0)M -
o |_

where V is the nonlinear part of V, i.e. K(x) = J exp iλxdv(λ) (see (2.3)).
u

Now, if we make the obvious choice /(s) = φ,(s), we get that

-M-1] φt(s)τa(V'(Q))}ψ} VψεD(Hv}.
° J /

But D(HV) =3 S'([R2]V+1) is contained in the domains of all the operators involved
and is a domain of essential self-adjointness for τt(Q). This means that the groups

t ^
generated by the self-adjoint operators τ,(β) and B(φt) — M"1 §φt(s)τs(V'(Q))ds

o
are the same. Thus τt(eiμQ) satisfies our equation. Moreover one can check, with
the same argument we will employ in Lemma 5.5, that the equation has a unique
solution.

Using Eq. (4.5) we obtain the following integral equation for Q(t) — τt(Q):

MQ(i) = dsφt(s)W(s) + φt(0)P + dsγ(s)φt(s) - Mφ',(0)Q - dsφ,(s)V'(Q(S)).
o ( o J o

(4.7)

Quantum Langevin Equation (QLE). It can be shown that the classical analog of
Eq. (4.7) converges to the integral form of the CLE, if we thermalize the particles
in the bath and take the scaling limit. To be more specific, in this limit the objects
F(t\ the classical analog of W(t\ becomes the classical white noise, while y(t)

converges to ηδ(t) with η = 2^/k*m* and φt converges to the square integrable
function φf°°5 defined in (1.4b).
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We want to proceed in a similar fashion in the quantum mechanical situation.
The immediate difficulty we encounter is, as already noted before, just what is the
analog of "we thermalize the particles in the bath?" To repeat again, what are the
initial states, ω0, i.e. density matrices on T, for which one can prove a "weak"
convergence of (4.7) in the scaling limit to what would be an integral form of the
QLE (1.3)? To answer this question precisely it is unfortunately necessary to
essentially reformulate many notions of classical probability theory in an algebraic
way. We do this in Sect. 5 following the works of Winnink [19] and of Accardi,
Frigerro and Lewis [18]. Since that work is rather technical we summarize the
main conclusion here and also discuss again the reason why choosing ω0 to be a
product state doesn't work.

Definition 4.3. To write the integral form of the QLE (1.3) in a precise way we
shall consider a Hubert space ffl , a set {^(/)}/6^(R+) °f self-adjoint operators,
with common domain of essential self-adjointness D, and a state ώ on the algebra
of linear operators in ffl such that

= exp \ihM- 1 Γ0'(0)/(0) - /'(0)0(0) + 2ηM-ι ( g(0)f(0) + ] f ( s ) g ' ( s ) d s } \
( L \ ° /J

, (4.8)

ώ(B(f)B(g) + B(g}B(f}} = hηM~2

$xcoih(hβx/2)?(x)0(x)*dxVf9 0e^0(R+), (4.9)

where "Λ" is the Fourier transform. Furthermore ώ is a quasi-free (Gaussian)
state on the subalgebra generated by {eiB(f)}feΛQ(κ+γ The B(f)'s arc to be thought of
as a smoothed version of the quantum noise operators W(i) defined in (1.3) and ώ as
the state with respect to which expectation values are taken there. The position
operators {Q(t)}teR+ will undergo a Quantum Ornstein-Ulenbeck (QOU) process
if they have a common domain of essential self-adjointness D and they satisfy,
with respect to the state ώ,

β(ί) = B(φ?) + I V'(Q(s))φ?(s)ds, (4.10)
0

where φf°°e^([R+) is a solution of

"(s) - η(φ?)'(s) + Kφ?(s) = 0 se[0, ί]

\φ?(t) = 0; (φ?)'(t)=-l'9 <#"(*) = 0 s>t.

Remark 4.1. Note that ώ is not completely defined by (4.9) because there exists
/such that /e^((R+) but not fe^0(U+) (e.g. Q(Q) = B(φ%)). The choice of ώ,
compatible with (4.9), corresponds to the choice of the initial conditions that are,
in this sense, buried in the state.

The solution of Eq. (4.10) has to be considered with "respect to the state ώ"
in the same sense in which the solution of the classical Langevin equation is
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considered with respect to the Wiener process. This also implies that the natural
topology in which to understand (4.10) is the topology generated by the state ώ itself
through the standard norm \\A \\ ? = ώ(A*A). As in the classical case this remark is
not particularly relevant in cases, like the one at hand, in which the drift is not
random.

Our convergence theorem provides a class of quasi-free states for which the
QLE may be solved. There are certainly other states for which the QLE may be
solved, but they are more difficult to characterize. We note however that for the
often considered product states, where the particle is initially decoupled from the
bath, the scaling limit does not exist, so these are not states for which the QLE
may be solved. To see this considered the product state ω with density matrix,

( 2N Ό2 ι 2N ~)

Cp®exp-/ί Z^r + ̂ Z^2 , (4.12)
( i = i Zm 2 1 = i J

where p is a density matrix for the zero particle alone and C is a normalization
constant. We can rewrite (4.7) as

MQ(f) + } dsφt(s)V'(Q(s)} = J dsφt(s)W(t) + φt(0)P - Mφf

t(Q)Q, (4.13a)
o o

where
W(t) = W(t) + γ(t)Q. (4.13b)

W(t) now plays the role of the quantum noise as can be readily checked using the
results of Appendices I and II. The divergence due to the noise term is now however
no longer compensated by a divergence due to the momentum. Assuming that
V'(x) is bounded, it is then straightforward to check that

lim lim ω(Q(t)Q(s)) = + oo Vί, s > 0. (4.14)
L-» oo JV-> oo

The product states (4.12) therefore do not lead to a reasonable dynamics in
the scaling limit. While (4.14) might seem strange at first, it is easily explained if
we go back to our initial Hamiltonian (2.5). The state (4.12) describes a bath of
independent harmonic oscillator. In the limit we consider however, the zeroth
particle is very strongly coupled with (and strongly couples) the bath variables.
Hence the product state corresponds to a state with a large amount of energy,
which in the scaling limit gives rise to the singular dynamics.

Our main theorem is then:

Theorem 4.1. The quantum stochastic process determined by the Hamiltonian (2.5)
and the state (2.6) converge in the limit N, L— > oo, to the solution of the QLE with
a quasi-free state ώ such that V/,

ώ(B(f)B(g)) = hηM-2$xcoth s f)(x)sg)(x)*dx (4.15)
R \ Z /

with S^as defined in Lemma 1 1 1.3. The convergence is in the sense of finite dimensional
distributions.

We note that the concepts of convergence of Quantum Stochastic Processes
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(QSP), are not standard as yet. In the literature convergence of QSP is normally
interpreted as convergence of moments or as convergence of finite dimensional
distributions and a reconstruction theorem [18] is sometimes used to produce the
limit state. This is clearly a more limited sense of convergence than the classical
concept of weak convergence. The importance of considering observables for which
the convergence of the finite dimensional distributions is not adequate may be
questionable, from a physical point of view. Still more strong or flexible concepts
of convergence for QSP may be necessary for technical reasons and we think it
is important to try to clarify what can be done in this direction. This is necessary
also if we want to compare classical and quantum results. In particular we feel it
would be interesting to have for QSP a concept of convergence that reduces to
weak convergence on continuous functions in the classical case. Moreover, in our
particular problem, we want to have a setting in which the different approximated
dynamical equations can be compared directly with each other. For these reasons
we will construct explicitly the algebras of observables for our QSP's, which in
the classical context are determined by the choice of the path space and we will
study the convergence of states on these algebras.

To prove the theorem we note that (4.10) can be regarded as a way of expressing
the position operator, when V' / 0, in terms of the position operator in the harmonic
case. It is therefore natural to show that (4.10) has a solution in some suitable
Banach space. This runs into the problem that (4.10) involves unbounded operators.
To overcome this we exponentiate the equation, which gives us Eq. (4.5). A more
serious difficulty is that the obvious Banach space on which to study (4.5) depends
strongly on N and L. This forces us to study the convergence of Eq. (4.5) on a
rather abstract space formed by the operators B(f\ fe^(U+). In our construction,
these operators have no natural commutation relations. Particular commutation
relations are selected by a special class of states. The program worked out in the
next section consists of the following steps:

i) Construct a C*-algebra 'W, generated by the operators exp[U£(/)], which
has sufficient structure to do integrations.

ii) Find a suitable Banach space of functions from 1R x [R+ -+W. On this space,
define the map

B; (FN,LX)(& t) = exp UB(φNtLιt) -iM~l\ dsφN^t(s)\dv(λ}λX(λ, s)

iii) Show that this map has a fixed point XNjL(λ, t) = exp iλQN L(t).
iv) Show that, on the C*-algebra W, expiμQNjL(ί) converges in some sense to

exp /μβoo(ί), which is the fixed point of the map F ̂  — the mapFN^L with φN,L,t
replaced by φ™ .

v) Prove that ώ%Q(B(f)B(g)) = lim lim ώ%0

L(B(f)B(g)) exists. This is done in
L-> oo N-+ oo

Appendix III. Finally, show that Vm, ί 1 ?...,ίm, μ l 5 . . . ,μ m e[R

lim lim ώ£L Π expiμjQNtL(tj) =
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5. Rigorous Derivation of the Quantum Langevin Equation

Abstract Preliminaries. In order to circumvent the problem of the representation
of our operators we adopt an algebraic point of view. To describe the noise induced
by the environment on the system, we introduce the set Λ" = {E(f)}fe#(R+r

Eventually, we are going to identify E(f) with elB(f\
Following Winnink [19] we mimic algebraically the Kolmogorov reconstruc-

tion theorem. The first step is to consider the free associative algebra ^f generated
by Jf and the identity 1; moreover we need to introduce a topology; we do that
through the norm

M

j = l k = l 1=1

M

= Σ
j = l k = l

VM,M, eN; C,ajkeC;fjklε@(R+) such that Vj9n9meN (n Φm)3leN: fjnl Φfjml.
Clearly (5.1) is a Banach norm, so the closure st$ is a Banach algebra. We

need now to introduce a minimum of structure. We define the involution generated
by

£(/)* = £(-/)

(C1)* = C1 VCeC

(AB)* = B*A*; (A + B)* = A* + £* V A,

Now we consider, in the Banach *-algebra jtff, the smallest closed two
sided *-ideal /0 generated by the elements (E(O)-l) and E ( λ f ) E ( μ f ) -
E((λ + μ)f) λ, μe(R; /e <%(R+).

Taking the quotient j/f with respect to /0 and equipping it with the natural
norm we get the new Banach*-algebra j^ = Jtff/I0. The algebra jtf^ is however
far too small for our purposes. In order to overcome this we devise a general
strategy to introduce weak norms on j^.

Lemma 5.1. Let Jί^s^\ (the dual of <$# ±) be a convex set with the following
properties: for each

ii) ω(A*A) ^ 0/or each
iii) Aej/i, ω(A*A)^Q=>ωAeJί, where the state ωA is defined by

ωA(B) = ω(A*BA)lω(A*A)for each

Then

is a C*-seminorm on <$# ±. Moreover if we set I± = {Aestf \ \ || A \\^ = 0}, and define
30 M = eβ/1// l 5 where the closure is taken with respect to the norm \\'\\^ induced on
the quotient space by \\ ||^, we have that stf ' ̂  is a C*-algebra.

Proof. The triangle inequality follows from the Cauchy-Schwarz inequality for
positive functional (\ω(A*B)\2 ^ ω(A*A)ω(B*B)). Moreover if ω(A*A) = Q then
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ω(A*B*BA) = 0 for each Be^^ so, calling Jί A = {ωεJt\ω(A*A) Φ 0} we have

|| A4 1| i = sup ω(A****A) ω(A*A) ^ \\A \\ $ \\ B \\ \. (5.2)
ωeJfA

 ω(Λ Λ)

Next, using Cauchy-Schwarz again,

\\A || ̂  ̂  sup ω(A*AA*A) ^ \\ A* A \\ ̂ . (5.3)
ωeJt

Combining (5.2) and (5,3) we find that \\A\\ ̂  ̂  M*||^. Since this holds
for any A, this implies that ||^4||^= ||A*||^ and, again using (5.2), (5.3),
||>4*^4||^= || A||^. Finally it is easy to check that / x is a closed two
sided *-ideal so i/ι//ι is well defined and || ||^ is a C*-norm on it.

Remark5.L The seminorms || ||̂  are similar to the seminorms used to define
the Mackey topology τ^^j/ί) (see [20]), the main conceptual difference being
that we do not require Ji to be closed.

The next thing we need in order to represent the dynamics in our algebra, is
a theory of integration adapted to our purposes. We introduce, for each closed
J c= [R", the algebra of functions

VλεRM|λ| |«5}, (5.4)

where
|| / 1| „= sup || /(ί)IL. (5.5)

ίeJ

We define now a weak form of Pettis integral.

Let M = span (Jt\ where the closure is taken with respect to the norm topo-
logy, then V/eC^(J) and any finite measure v on J we define J/dv to be the

j
element of Jl* defined by

(5.6)

This definition clearly has the drawback that the integral can fail to belong to
sίjt. For this reason we are going to enlarge our algebra again (we get in this
way the classical analogue of the norm closure of the observable involving only
finitely many times).

ΊT0 = \AεJt*βJ c Rn closed, /eC^(J), v finite measure on J:A = $ f d v > .

(5.7)

The preceding definition is justified by the following.

Lemma 5.2. if = iP"0 is a C*-algebra.

Proof. We start noticing that property (iii) in Lemma 5.1 implies that if
then ω(>4 ), for each Aes/^, is an element of Jt. This implies that, if J f
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ί /2^V2> then j Λfίdvί = J Af2dv2 VAεjtf^. In fact the latter is certainly true if v^
J2 Jι J2

and v2 are finite linear combinations of point mass measures, if not then they can
be approximated via a sequence of point masses measures v\n\ ie{l,2}, so, for
each ωeJt, we have

idvt = f ω(fi)dvi = lim f ω(/^vf>
\J, / Ji n->ooJi

and

ωf f 4/ΊΛΊ ) = lim f ωμ/2)dv?) - ω( J A/2
\Jι / n-+ooJ 2 \Jz

What we have seen so far is enough to show that if A{ = ^ ftdViEi^0iE{l,2} then

the product

A,A2= J fJ2d(vlxv2) (5.8)
J l X J 2

is well defined.

To check this let A ί = J/ίίίvί, then MωeJί ωί J /ι/2^vι x V2 ) =

if " V i i X i f e " /

ί ω( J fJ2dγ2]dγ1 = { α/ J fJidvλdv^ = J
~

ω J /ι/2^vι x V2 )? where we have used Fubini theorem and exchanged the
ί χ J 2 /

order of integration.

Remark 5.2. Lemma 5.2 could be avoided noticing that ^* is a von Neumann
algebra. This can be seen by using a construction similar to the one used to produce
the universal enveloping algebra of AM. Unfortunately M* is too big for our
purposes if Jt Φ Jt, where the closure is in the weak sense, (essentially ^*
corresponds, in the classical case, to the algebra of all bounded measurable func-
tions). Note that in the classical (commutative) case it is possible to choose Jί
weakly-* closed (allowing us to work in ^*) using the various characterizations
of tightness. At this stage however our understanding of compact sets in the
non-commutative case is not sufficient to proceed here in the same manner.

Before the next lemma we define SeC^(U) to be a ^-continuous unitary one
parameter group of operators if

S(0) =1, (5.9a)

S(-A)* = S(λ), (5.9b)

S(λ)S(μ) = S(λ + μ) VA,//eQl (5.9c)

Lemma 5.3. For each Jt '-continuous unitary one-parameter group S we introduce
Exps:ι*F->C^([R), defined as follows: VAε'W, Exps(,4) is the unique solution of the
equation

X(λ) = S(λ) + i J S(λ - σ)AX(σ)dσ VλεU. (5.10)
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If A* = A, Exps (A) is a unitary Jί-continuous one-parameter group, and for each
self-adjoint A,Bei^ the following estimate holds:

\\Exps(A)(λ)^Exps(B)(λ)\\^\λ\\\A-B\\/r (5.11)

Proof. We will prove the first part of the lemma showing the existence
of a unique fixed point for the maps FΛ:C^([—/I,/!])-> C ,̂([ —/!,/!]) /lelR +

defined by

The first thing to notice is that, by induction
n~1

00^ k\ ) n\

^II/-0IL:

n\

n\

Here we have used || S \\ ̂  = 1.
This implies that, for each /eC^([ — /!,/!]), the sequence {Fn

Λ(f)}neN is a
Cauchy sequence, the limit is independent of /, and is the unique fixed point of
FΛ. Since A is arbitrary we get the result VΛeίR. Now, from (5.10), it is clear that
Exps(A)(λ)~l exist for small λ. A direct computation then shows that VμeIR,
X(μ) = Exps(A)(μ + λ)Exps(A)(λ)~l satisfies (5.10). The group property (5.9c)Vμe!R
and λ small then follows from the unicity of the solution (5.10). This implies the
existence of Exps(A)(λ)~1 for each ΛeίR and, consequently, the group property for
all λ, μ. Last we check that Exps(A)(λ) is unitary. In order to do so we introduce
the adjoint equation

-il X(σ)AS(σ - λ)dσ = FA(X*)(λ)*.

The same arguments used before show that this equation has a unique solution,
clearly the solution is Exps(A)(λ)*. Therefore

\\Exps(A)(λ)-Exps(A)(-λr\\jr

J Exps (A)(-λ + σ)*AS(σ) - ] S(λ - σ)A Exps(A)(σ)

J [Exp s(A)(-λ + σ)* - Exps(A)(λ - σ)] AS(σ)

λ λ-σ

\άσ J dτS(λ-σ-τ)AExps(τ)AS(σ)
o o

J dσ ] dτ S(λ - σ)A Exps (- σ + τ)*AS(τ)
o o

\S(λ - σ)A[βxps(A)(σ) - Expsμ)(- σ)
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It is then easy to show that when λ is restricted to be in the interval [— Λ, /I],

)- 1 1| „ g 2 \\A \\MA \\ Exps(A)* - Exps(A)~ l II oo

So Exps(4)(λ)* = Exps(A)(λ)~1 for small λ. The result for all values of λ now
follows from the group property. Finally, formula (5.11) follows from the easy
estimate

\\Exps(A)(λ)-S(λ)\\jr^\λ\\\A\\J,

and the equality ExpExps(β)(/l — B) = Exps(A) that can be verified, similarly to
what we just did, writing the equation satisfied by ExpExps(β)(/l — B) and noticing,
after some algebraic manipulation, that it is just (5.10) again.

Remark 5.3. For each representation (π, 3?) continuous with respect to the topo-
logy σ(W\ Jt '*) on Of and the strong topology on <£ (jtf) it is immediate to see
that π(S(λ)\ π(Exps(A)(λ)) are strongly continuous one parameter groups onJf .
Hence, by Stone's theorem, there is a self-adjoint operator B on 2tf such that
π(S(λ)) = eiBλ. The content of Lemma 5.3 is then:

Application to the Concrete Model. We can now translate the reduced dynamics,
Eq. (4.5), into our new language.

We start by defining

(5.12)

These, clearly, determine representations of the algebra s^1. It is now time to
choose our Jί.

+): \ \ f - g \ \ <δ}. (5.13)

The first result is

Lemma 5.4.

where (πN)L)*:^(L2([R2]V+1))*-^^f is defined by (πNtI)*(ω)(A) = ω(π
^ωE^(l}(U2N+ 1))*, A<E$4V and ω^L is the state specified by (2.6). Moreover πN,L

extends to a representation πNtL:i^ -*^(L2(U2N+1)).

Proof. During this proof we will drop the script N, L. From Appendix III we have

) _ eiB(f)eiB(g)eiσ(f,g)/2

(5.14)
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This implies that (π*ωκJ(AE(f)E(g)B) = (π*ωKo)(AE(g + f)B)e-iσ(f>9}/2, and we can
therefore check by induction that π*(ωKo)eJP. For the second statement we prove
first that ifω(A*A) = 0 Vωe<Jf then π(A) = 0. This follows from 0 = (π*ωKo)(A*A) =
ωKo(π(A)*π(A)). So we have a representation π of s$ M in j£?(L2([R2N + 1)). In order
to obtain a unique extension on all 'W we remark that si M is dense in W in the
topology generated by the seminorms \\A\\% = ω(A*A). Indeed for each Aei^0,
A = J/dv, we can find a sequence of point masses measures vn on J converging

j
weakly to v (implying that vn x vn => v x v), from which follows that

As a consequence we may extend π on ifΓ provided we show that if a net
{ylα} c ̂  converges to 0 in the preceding topology then {π(Aa)} converges to 0
in the strong topology. To see this we first observe that the uniform principle and
the theory of representations implies || π(Aa) \\^\\AΛ\\Jί<C for each α. Moreover,
recalling that ωKo(') = Σ(\l/n,'ψn)e~βEn, where {ψn} is a orthonormal base for

L2((R2N+1) and En^oo, we have that (π*ωKo)(A*AΛ)-+Q is equivalent to

From this we have VφeL2(R2N+1), φ = ̂ anφn,
n

Ss 7Γ(y4α) I 2, flnΨn I ~f~ ^^k = / > I ^n I ^ " II ̂ \A(χ)ψn \\ & " H~ Cε .̂

II \ » / I »
1/2

where we have chosen α, k big enough.

A consequence of the previous lemma is

Lemma 5.5. Let φt be defined as in (4.6) with any regular cut off on the negative
axis and let St(λ) ~ E(λφt\ then the equation

ί f Γ Ί \
ί -iΛf-^ςφ) J λX(λ,s)dv(λ) Ids )(μ) μ,AeR, ίe[0,T],
V o LR J /

(-μ,t) (5.15)

has a unique solution and π(X(μ, ή) = eιμQ(t\

Proof. It follows from Remark 5.3 that iίX(μ, t) is a solution of (5.15) then π(X(μ, ί))
is a solution of (4.5).

The last statement follows then from Lemma 4.2. We are thus left with the task to
prove the existence and unicity of the solution of (5.15).

We study the equation in the space i^v defined as the closure of
(/eCi(Rx[0,T])//(A,ί)*=/(-A,ί)} with respect to the norm ||/||v =
sup J||/(/l,s)||Jl|dv(A), notice that if /eτTv then Vωe^, ίe[0,Γ], ω(/( ,f))e

se[0,T] m

so the integration is still well defined for this function.
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Let Fτ:i^v^i^v be given by

Fr(/)(μ, ί) = ExpJ - iM- * } φt(s)\$λf(λ, s)dv(λ)]ds](μ).
\ o |_R J /

The first thing to notice is that ί J λf(λ, s)dv(λ) is self-adjoint for each se[0, T].
R

Lemma 5.3 then implies that FΓ:ιΓv-»^v,

and
M~nΓτ

from which, after noticing that

1 / ϊ "\sup \\Fτ(f)(μ,t)-Fτ(g)(μ,t)\\J,^\μ\M [ }\φτ(s)\ds | |/-0||v,
ίe[0,Γ] \0 /

the result follows.

We can now study the limits we are interested in. The thermodynamic limit
is well understood, the existence of the dynamics for the full system is known [22],
so we will not treat it explicitly, although we could handle it in the same way as
the scaling limit. From now on we will consider the thermodynamic limit already
taken and we study the limit L -> oo for the reduced dynamics of the heavy particle.
The first step is the weak convergence of the states ώ|0.

Lemma 5.6, VAei^ we have

where ώ^QeJί is defined by

i^^ M A9 Bei^, /,ge^(R + ) (5.17)

with CQO, σ^ as in Appendix Ill-Lemma III.3.

Proof. It is easy, using the results of Lemma III, to check the convergence of
ώκ0(A) for each Ae<stff. The theorem follows then from the fact that ^f = ̂ ^
and the extension to if is a consequence of the Lebesgue dominated convergence
theorem.

We are now ready to prove the results we are interested in.

The Harmonic Case. As we already noticed, if the potential is harmonic (v = 0)
Eq. (5.15) tells us that the one parameter group generated by the position of the
particle at time "ί" is given by E(λφ^\ Classically, in this situation, we have the
weak convergence of the stochastic process determined by the reduced dynamics
to the Ornstein-Uhlenbeck process. We can do something very similar (although
weaker) in the present context. We introduce the algebra of observables for the
zero particle using the same abstract construction used before for the observables
of the noise, with the following changes, ^B = [EB(f)}fei9 , where 38± is the
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closure in the norm topology of finite linear combinations of point mass measures
on the interval [0, T], stf\ is constructed as stf±. Further we take

J{B = {ωE(j/f)*/\Mej/f; ίe[0, T], AelR, εeίR+3^elR+ :ω(A*A) ^ O ω(l) = 1;

ω(A*[EB(λδι) — EB(μδs)^*[EB(λδt) — EB(μδs)^A) 5Ξ εVμeR,56[0, T]:

μ-μ| + |ί-s|«3}.
We have now the right space to study the convergence of our process to the

"Quantum Ornstein-Uhlenbeck" process. In order to study our problem in this
new space we define πB:i^

B^i^ through πB(EB(δt)) = E(φ^) and the requirement
that πB be a *-homomorphism. It is easy to check that this can be done. So we have

Theorem 5.1. ώ£0 - (π£)*(ώ£0) -̂ » ώ£0 in the σ(M& i^B) topology where ώ|

is defined by ω%0(E(λδt)) = e*-2^*?^,

ω£0(AE(λδt)E(μδs)B) = ώ%0(AE(λδt + μδs}B}e~λμσ<"(φT^] VA, Bεi^B.

Proof. Lemma IΠ.2-3 and lim || φ\ — φ™ || = 0 imply immediately that

lim ώL

Ko(E(λδt)) = ώ%0(E(λδt)) Vίe[0, T],

and the same holds for finite products and sums of E(λδ). We thus have that

Finally notice that, again by Appendix III, (π^(Jί) c= JίB so if /eC^, (J)
we have π£(/)eC^(J) and

, Λ \ f f e \lim ώi0 ] f d μ 1= lim ]ώL

Ko(f)dμ =) ώ%0(f)dμ = ώ%0( J f d μ I,
L-» oo \J / L-^ooJ J \J /

where we have used Lebesgue dominated convergence theorem.

Remark 5.4. The content of the theorem is that for a certain class of function F
of the observables Q(t) we know lim lim ω^L(F(2)) Notice that this class does not

L-»ooN-» oo

contain any polynomials, this situation, however, occurs also in the classical case
[11] and it is due to technical not conceptual reasons.

The General Case. We consider the general case as a perturbation of the harmonic
one.

First of all we have the analogue of Lemma 5.5. This means that the dynamics
is determined by the following equations for XL(μ9 )eCQ,,H(U x [0, T]),

lλXL(λ, s)dv(λ)]ds\
R J /

XL(μ, t) = ExpE - iM^φϊ(s)lλXL(λ, s ) d v ( λ ) d s μ )

XL(-μ,t)* = XL(μ,t)9 LeR+u{oo}. (5.19)

The fundamental fact is given by
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Lemma 5.7.

lim ||XL-XJLB = 0.
L-»oo

Proof. As we did in Lemma 5.5 we define

, ί) =
J

so Eq. (5.15) can be rewritten as XL = Fγ(XL). The first thing to notice is that
V/eC^B((Rx[0, T]) with /(- μ, t)* = /(μ, t), Lemma 5.3 implies

^^

So, using the explicit form of φ\, we have

lim \\F$(f)-F

Moreover, in the proof of Lemma 5.5, we have already obtained the estimates

where we may choose D independent of LeίRu(oo). From all this it follows that
^, if L is chosen big enough,

|| XL - X^ II v ̂  II (FL

T)
n(XL) - (FL

TT(XJ II v + II (FL

T)
n(XJ ~ (F^XJ II v

so it is enough to choose Dn/n\<\ to prove that lim \\XL — X^ ||v = 0 and
L-» 00

this implies, using again (5.19), lim \\XL — Xao\\^ =® *
L->oo

We can interpret the last lemma in terms of convergence of states, in the spirit
of Theorem 5.1. In order to do so we have to construct the quantum stochastic
process that describes the position of our particle. For this we denote a copy of
the algebra ϋ^B by i^Q. In order to describe the observables and to define a
quantum stochastic process on it we introduce the maps

defined by π%(EQ(λδt)) = XL(λ,t) VLetRu{oo}. (5.20)

This can be done because, again, (πρ

Theorem 5.2.

(π5)*(ώ^0) m the σ(^Q^Q) topology.

Proof. The first step is to show that
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Km\\v%(A)-n$(A)\\s=0 V AeWQ. (5.21)
L-* oo

From Lemma 5.7 we have that (5.21) is true for each A that is a finite linear
combination of finite products of EQ(λδt). Now, UQ being a representation of
dM in i^B, we have || π%(A) \\^β ^ \\A\\j, V,4ej/^ . This implies that (5.21) is true

VAEjt^Q. Finally if /eC^(J) then π£(/)eC^β(J), so π £ ( f / d μ j =

ί πa (f}dμ and (5.21) follows from Lebesgue dominate convergence Theorem. Now

Theorem 5.1 implies that VΛeiT Q, εeR+,

+ \ώL

Ko(π$(A)) - ώ%0(π%(A))\ < ε

if L is big enough.

6. Solutions of the QLE in the Harmonic Case

In this section we discuss the behavior of the solutions of the QLE in the case
where V(x) = ̂ Kx2. The integrated form of the QLE then becomes very simple,
see (5.15):

exp iλQ(t) = exp ίλB(φt). (6. 1 )

Therefore, the time correlation functions of the position operator of the particle
are very easily expressed in terms of the correlation functions of the noise operators
B(f). We note that B(f) contains both the usual QN as well as the position and
momentum operator of our particle at time zero. For this reason, the expectation
value of operators constructed out of the B(f) depend on the initial state. However,
as is shown in Appendix III, for a given initial state ωKo, B(f) can be identified with
some integral over the regular QN, W(t\ whose properties are listed in the
introduction. More specifically, if we define the operator S^ as in Appendix III:

= {/(*) + #/(*)}, (6-2)

where Θ™ is the square integrable function satisfying

M(θf)'\t)-η(θ?)'(t) + KQθf(t) = Q 9 θj?(0) = /(0); (θ?)'(0) = /'(0), (6.3)

then, as far as the state ωKo is concerned, MB(f] can be identified with the regular

QN, W(Sαo(f))9 where W(f)= f dtf(t) W(t\ V/eJp). The W(f) have the
— 00

following properties:

LW(f), W(g)l = - 2ηh dk?( - k)g(k}k (6.4a)
- oo

and

<(W(f)W(g)y = 2ηh +f dk?( ~ k)g(k) . (6.4b)
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We now discuss the following three cases:

i) K0 = K,
ii) K0 ± K and K Φ 0,

iii) K = 0.

N.B. We always have K0 > 0.

Case ί) It is easy to check that, in this case,

(where φ is as in Lemma 4.2 and Tt is the time translation). We then find that

= - T dk r.M,2 ~ Γ,..Ί Γ (6-5)
π -oo [(Mίr — KY + fp/r] exp [p/z/c] —

As expected, ωKo is a stationary state of the QLE with V(x) = ̂ Kx2. We note
that expectation values involving momentum operators can be found by simple
differentiations, i.e.

_ ,
(6.6)

Taking the limit s -> ί in (6.6), we then see that the integrand behaves like 1/k for
fc-> oo, which leads to a logarithmic divergence.

Case ii) Since φ(s) and </>'(s) converges to zero as S tends to minus infinity, one
easily checks that S^cpJ-tTrf, in the L2 sense, as ί-> + oo. Consequently,
lim ωKo(Q(t + a)Q(s + α)) = ωκ(β(ί)6(s)) We thus find that all initial states ωKo

a-> oo

approach, when time tends to infinity, the stationary state ωκ.

Case iii) In this case no stationary state exists for the system and the particle
diffuses. A straightforward calculation yields that

1 fexp i fc ί -1 M j -ηtl
β(φί)()~72Π^^

_ _

We are interested in the behavior of ωKo(Q(t)Q(s)) for large ί and s,

(6 8)

The second term on the right-hand side of (6.8) is easily verified to remain finite
when ί, 5 tend to infinity, while the main contribution to the first term in (6.8)
comes from the first term on the right-hand side of (6.7). Thus for large s, t values
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ωKo(Q(t)Q(s)) is approximately equal to

2η +

f°° (1 + exp ik(s — ί) — exp iks — exp — ikt)

After some elementary analysis, we then find

lim *°. I'* 1 =-^ (69)

s,ί-*oo mm [5, ί] ?/p

Note that the diffusion constant (6.9) does not depend on h. So while the short
time behavior depends on the value of /z, the long time behavior does not.

We remark that (6.9) holds even before taking the scaling limit L-»oo. This
can be verified by the method sketched above, using the results of Appendix III.
We also remark that our result (6.9) is a special case of the analysis done by
Schramm and Grabert [14]. They study the diffusive behavior for Hamiltonions
of the form (2.5) with V(Q) — 0 and arbitrary coefficients λi and b{. The type of
diffusive behavior depends strongly on the choice of these coefficients.

Appendix I

In this appendix we carry out some useful canonical transformations and study
their properties. The technique employed is modeled after [21]. We first diagonalize
the Hamiltonian which determines the initial state.

A. Equilibrium.

HV° = HQ+-^-QI\ M>m; K0^Q. (I.I)

We perform the diagonalization in two steps, the first is just a Fourier transform:

A £-m~ 1/2. p ί A T\—1^.^,1/2 /T ^\— j\cτn , r = \2\ ) Y\YYI , IΛ ^v

where

and ξ,ηeyN = {ZeC2N+1/z0eR. lm(zk + z_ k ) = 0, Re(zk -z_k] = 0}.

In the new coordinates we have

Hy° = ifo, η) + fa &η) + i«, Ω2ξ) + ^(ξ,

« = ̂ -i; β~; &kn = Λ2

00,
1/2

Next we look for a new transform
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ξ = ΞQ, ξ,ηe^N,

η = Ξτ~1π, β,πeR2Λί+1, { '

such that

(1.5)

This implies

ΞΞ* = l +<*&>, (Ξ*Γ1μ2Ξ~1=Ω2 + β^. (1.6)

As a consequence we get that

μ2 = Ξ~l(Ω2 + u&Ω2 + p)Ξ=Ξ~1fΞ9 p = K0/M. (1.7)

So the first step in order to find a matrix satisfying (1.6) is to diagonalize f. Now,
if we set υ^ = ic^δμ - δ-fl) j<={ — N, . . . , - 1), it is easy to check that

This gives us AT eigenvalues, in order to find the other N + 1, we will assume
αώfc + p Φ 0 for each fce{0, 1, . . . , N} (it is however easy to remove such a hypo-
thesis). The components of an eigenvector with eigenvalue μ2 Φ ώ\ V f e must satisfy
the following equation:

))et, ek = Λ00; jZO. (1.8)

So, if we introduce u(ζ)k = ek(ζ2 — ώ^)"1, we have that v(j) = cjύ(μj)9 this and
(1.8) implies that F(Q = 1 -(e,[αβ2 + pl]ώ(ζ)) has the properties F(^) = 0 for
each 7.

The function F is a rational function and it is easy to prove that it has N + 1
real, positive, distinct zeroes > 0 and < ώ2^ this accounts for all the eigenvalue
of f .

It is enough to choose c7 e!R for each j in order to obtain that Ξ(U2N + 1) =
i^N. The last thing we need to show is that it is possible to choose c7 such that
(1.6) are satisfies when Ξkn = v£\

We notice that (1.6) implies, after some computation,

"
for

This allows us to obtain the following

Lemma LI. Let Γ be the following dosed curve on the complex plane:

ω_

and g any function analytic in the interior of Γ, continuous on Γ and such that
g(x) = g(—χ)for each xe(R then
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Proof. By direct computation.

Using this formula it is immediate to check that (1.6) hold. Moreover it is useful
to notice that, as a consequence of Lemma 1, we have

B. Dynamics. Next we want to find a more convenient form for the Hamiltonian
that determines the dynamics:

HV = HQ + V(QQ). (1.10)

We proceed in analogy with the preceding case. The first canonical trans-
formation is just a useful enumeration:

(1.11)

After this we can rewrite

H" = ~(P, P) + ~P2 + f (ξ ~ eQ, A[q - eQ]) + V(Q), (1.12)

where
ek=\ ke{-N,...,N-ί}, (1.13)

Now we perform, again, a discrete Fourier transformation

Q = Q; P = P,

q = Λζ; P = (ΛτΓlη,

Λkn = (2NΓll2^p(πi^\ k,ne{-N,...,N-ί},

with q,peM.2Nand ξ,ηei^N={zeC2N/z0,z_NeU, lm(zk + zk) = 0, Re(zt - z_ t) = 0}.
The Hamiltonian in the new coordinates reads

V(Q\ (1.14)
[m

Tnm = Ω2

nm + KΛ00Λln + KΛ00Λlm,

Γ / / n \ \ T / 2

Ωnm = δnm\ 2fe( 1 - cosl πi— I I sιgn(n) = δnmωn.

Next we diagonalize T, namely we find Ξ M2N -+'f~N such that

ΞΞ* = 1, Ξ~ίTΞ = λ2; λnm = δnmλn. (1.15)
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Last we use the canonical transformation

(1.16)

= (ΞτΓ1P, q,

to rewrite the Hamiltonian in the form

Hv=±{m-\p,p) + M-1P + (q-Qδ,λ2ίq-Qδ])} + V(Q), (1.17)

δ = Ξ*Λ*e = Ξ*e0; (e0)n = δnoΛ^

The equation for the eigenvalue of T reads

(I2 - ω2K = k[τ°(τl,v) + τ^τV)],

(1-18)
τn ~ ̂ 00? τn = ΛIH.

A direct computation shows that (1.18) has no solution for λ2 = ω2

ne{ — N9 . . . , N — 1}, so we restrict ourselves to the case λ Φ ωn.
If we introduce the vectors α(Qn = kτ°n(ζ2 -ω'Γ1; β(ζ)n = kτl

n(ζ2 - ω*Γl,
we get vu) = DjθL(λj) + Cjβ(λj). Substituting this in (1.18) we get a solution if F(ζ) = 0,
where

£(0 =
-l (τ°,α(0) (1.19)

Indeed a direct analysis shows that F has exactly 2N real, positive, distinct
zeroes and, more precisely, ω2

j<λ2

2p λ2

2j+l<ω2

j+l je{l,...,2N}; so we have
found all the eigenvalues. The eigenvectors are of the form

'
Notice that the expression (1.20) it is meaningful because the equalities

(τ1,/?(0) = (τ°,α(0); (τ1,α(ζ)) = (τ0,jϊ(0) imply F(Q = [1 -(τ°,jί(0)]2 -(τ°,α(0)2

and (τ°, j8(Q) - (1 - C2/2/c)(τ°, α(Q) + \ shows that (τ°, α(Q) = 0 => F (C) = i ̂  0. Fin-
ally, being T self-adjoint, if we choose Ξkn = 4W) the (1.15) are satisfied, provided that

Moreover, it is possible to get a representation of the type given in Lemma I.I
however we need only a specialized form of it.

Lemma 1.2. Let g, Γ be as in Lemma LI and G(ζ) - [1 - (τ°, β(ζ)) - (τ°, α(Q)], then

2N ]<

Proof. We start noticing that a direct computation yields
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F (C) = G(C)[1 - (τ°, β(ζ)) + (τ°, α(0)],

= cjk\-(τ^β(λ)} + (τ\*(λj)}
j λ] (τ°,αμ,.))

This clearly means that G(0 = 0=>F(Q = 0 and F(^) = 0, G(̂ ) ^0=>δj = 0
(these are modes that do not interact with the zero particle).

Now, in order to get the formula, we need only to notice that dG(ζ)/dζ2\^ + =
(χ(/ί/), χ(/ί/))l/2/c, where λf are the zeroes of G, and to compute the integral
explicitly.

Appendix II

In this appendix we compute the quantities of interest in the thermodynamic limit
taking the limit of the corresponding quantities for the finite system.

Lemma II.l.

where the square root has a cut on(—2^/k/m, 2^/k/m] and agree with the arithmetic

square root for ζe(R \ζ\ >2v//c/m moreover the limit is uniform in ζ outside each
open set containing the cut.

Proof. In fact, clearly we have

1 π 1 m 1
lim (ύ(ζ),e) = — J dθ = ̂ ^[ Γ——^ dz,

N->oo ^7C — π j K fΓΓΊ ' ™

m

where c = {zeC/|z| = 1}. The result follows computing the last integral.

An analogous computation gives us

" "r.^" (H 1)
N->oo

lim

Finally, we have the equivalent of Lemmas 1.1-1.2.

Lemma II.2. In the thermodynamic limit the following hold:

m2 x g x m -
*

πM2 -

M
Y^yX2(4/c/m — x2) + (αx2 + ί

1

(e0,Ξf(λ)Ξ*eΰ) = -
n-



226 P. de Smedt, D. Dϋrr, J. L. Lebowitz and C. Liverani

where x2g(x) and x~2f(x) are analytic in a neighborhood of [— 2^/fc/m, 2^/fc/m].

Proof. First modify the contour /*, so that it contains 0 in its interior, and
eventually subtract the contribution of the pole at zero. Consequently we can take
the limit JV-> oo inside the integrals using formulas (II. 1).

The last step is to shrink the contour on the real axis, remembering the definition
of D(ζ), and taking into account eventual divergences at zero that cancel the therm
coming from the modification of Γ .

Appendix III

Here we compute the quantities of interest for the quantum noise.
Let us recall a few definitions:

2N

W(f)= Σ ^^[te-ρ^cos^m^^O + m-^VΓ'sin^m-1/^)] (ΠI.l)

e + M-1 J W(ήf(t)dt, fe@(U+).
R + U +

The first result is

Lemma III.l. Let ωKo be the state specified by (2.6) with K0 > 0, then we have for each
>2]V+ 1\.

where

σ(f,g) = M'

+ M~ 2 j 0(0) J /(ί)y(ί)Λ + f /(ίMΦ(ί -s)dίds

and /z is ί/ie Planck's constant.

Setting for each f,gε^(U + )

Re{ωKo(B(f)B(g))} = C(f,g).

We have that

\ C ( f , g ) \ Z D \ \ f \ \ \\g\\ (IΠ-3)

with DeR+ independent of N. Moreover for each f,geCQ(K+),

(ΠI.4)

- τ)/'(τ) + p f ( t ) \
J

) + pg(s)dtds.
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Proof. Formula (III.2) is the result of a straightforward computation. In order to
deal with the form C in (III.4) we diagonalize the Hamiltonian defining ωKo,
according to Appendix I, through the canonical transformation q = m~1/2ΛΞQ;

- - ~ ~

<%0(gJ = θ}Ko(πn) = 0,

ωKo(QnQJ = δnm(2μnΓ
 1 fc coth (hβμn/2\

ωK0(Qn^m) = 2^nm^

<%0(Mm) - $δnmμnh coth (hβμJ2).

Moreover, according to Appendix I again, we have

<7o = δ; Po = P; q = Ξ~ίΛ-ίRq; p = ΞτΛτRp.

This allows us to compute, for each

J ;.

+ -m

• -m-^^'ίO^^ + m-1/^-1^*/!-1^*/!^ J λ2cos(m-l/2λήg(ήdtδ \\
L p+ J/

This unpleasant formula can be simplified using our knowledge of the dynamics.
The idea is to consider the classical evolution determined by the Hamiltonian
defining ωKo; on the one hand, performing the transformation defined in Appendix
I — (A\ we get

Q(t) = m-l/2(e0,ΛΞ{cosμtQ(Q) + μ~l sinμίπ(O)});

on the other hand the transform defined in Appendix I — (B) leads us to the equation

MQ(t) =~\y(t- s)Q(s)ds - K0Q(t) + W(t\
o

substituting the first expression in the second, and taking into consideration that the
equality holds for each initial condition, we obtain the following algebraic relations:

ί *|
— Mμ2 cos μt + γ(t)l — j γ(t — s)μ sin μ sds + K0 cos μt >Ξ*Λ*^0

0 J

- Ξ*Λ ~ lR*ΛΞλ2 cos (m" ί/2λt)δ,
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-Mμ sin μt + J y(ί - s) cos μ sds + K0μ
 1 sin μί > Ξ*Λ

" o J

- m1/2£- M - lR*ΛΞλ sin (m

From these formulas, the integral representations described in Appendix I, and
the parity properties of the functions involved follow (III.4).

For (III. 3), we note by explicit computation that

which implies

\ C ( f , g ) \ ^ sup (v,\μhcoth(hμβ/2) J *-««-'>
V Γ (R

+)2

•0"(s) - M- 1 J y(s - t)g'(t) + pg(s \dtds >v }

which proves (III.3) after noticing that for each

Now we state the results concerning the thermodynamic limit.

Lemma III.2. For each /,#eJ*([R+) we have

σL(f, g) = lim σ(/, g) = ίM~2 J 5(/)(ί)%y(s)7oo(ί - s)dtds9

J x coCL(f, g) = lim
]V-^oo

where "A" stands for the Fourier transform,

SL:@(U+)-+@(R) is defined by SL(f)(t)

where θfE&(U+) is the unique solution of

(̂ )"(ί) - M- 1 f 7oo(ί - s)(θL)'f(s)ds

(111.5)

(111.6)

=

- s)f'(s)ds,

moreover y^t) = limit y(ί), p = K0/M.
N->ao

Proof. It is easy to check that the Fourier transform of θf is given by

θL

f(x) = (2πγi\M^Hf(x) - /'(O) - iχf(0) + M^f(Q)Γ (x)]

(III.7)
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Hf(x) = $ e->*' $7cc(t-S)f'(s)dsdt,
R- R +

Γ(x)= I e-to

This makes sense because, according to (4.2b) and Appendix I, II, we have

m
y.W = -_

and a direct estimate shows that y^eL^lR). From this it is clear that Γ(ζ) is
holomorphic for Im ζ > 0; more precisely we have

Γ(x)= lim Γ(x + iε), xeR.
ε->0 +

Moreover from [x2(^(x)-(x- O'V^-ίx2 - l)-1/(0))]eL2p) we have
that θL,(θL)',(θLr6L2(R-) and, because H / h gD[||/| |2 + ll/ΊUl^ί^yeLHR')
finally using explicitly (IIL7) we get (β^'eL^R") or 0Le^(IR~). Consequently (IIL5)
can be verified by direct computation, the same is true for (III.6) as long as we
restrict ourselves to f,geCo(U+). We can nevertheless show that the formula
holds for each f,gE&(U+) using (III.3) and the fact that the expression in (III.6)
is continuous in / and g.

Finally we want to handle the limit L-> oo, where m = L~1m*, k = L/C*.

Lemma III.3. V/,0e#(R+), we have

σ»(/, g) = lim σL(/, g) = 2iηM~2 J S

K

= η AT 2 f x /ι coth (jSx

wiί/i = 2kW, S0 rt ,(ί) ί<ϋ
is the unique solution of

WΐKt) + pθf(t) = 0 ί < 0
(III. 10)

Moreover ίne convergence for \\ f \Γ11| g \\~ VL(/, g), || /1| ~ 1 1| g \\~l CL(f, g) is
uniform.

Proof. The crucial point is to notice that

yL(t) = Ly(Lt\
where

7(0 = — f
K -2Jk*l
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and that CL can be rewritten as

CL(f, g)= -M~2h$x coth (hβx/2)^L(f)(x)S*ig)*(χ)dx.
V π R

The result follows then from the fact that VεelR + 3Le[R + :

ιW)-s°°(/)iι<βiι/ιι VL>I,
\\f'*f-2ηf\\l<ε\\f\\ VL>L,

where the second is implied by the estimate |y(ί)| < cpt~
p Vpe(0,f).

Finally notice that if supp (/) c [R+, then S^f) = f and we obtain formulas (1.3)
(their weak form-to be more precise).
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