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Global Existence for the Relativistic Vlasov-Maxwell
System with Nearly Neutral Initial Data
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Abstract. Global classical solutions to the initial value problem for the
relativistic Vlasov-Maxwell equations are obtained in three space dimensions.
The initial distribution of the various species may be large, provided that the
total positive charge nearly cancels the total negative charge.

Introduction

Consider a plasma which consists of a large number of charged particles. We
assume there are N distinct species of charge and that particles of the octh species
have charge ea and rest mass mα. Their distribution in phase space at time t is
fa(t,x,v\ where xeM3 represents position and veU3 momentum. Thus the charge
and current densities are

and

where

gives the velocity of a particle with momentum v and rest mass mα (c is the speed
of light). The state of the plasma at time t is given by /α(ί, , •) for α = 1,..., N and
E(t, •), B(t, •), where E and B are the electric and magnetic fields. If electromagnetic
effects dominate collisional effects, we may model the time evolution of the plasma
with the system:

ί d,fa + ύa VJa + ea(E + c-%ΛB)-Vvfa = 0

[d,B=-cVΛE, V B = 0
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with the initial data

\fΛ(O,x,υ)=fZ(x,υ)

E(O,x) =

B(09x) =

The goal here is to find conditions on the initial data which ensure the existence
of a smooth solution of (RVM) for all time, thus ruling out shock waves and other
singularities. Two results in this direction are due to Glassey and Strauss: In [4]
it is shown that solutions may be continued as long as the i -support of each fa

remains finite on every finite time interval. In [5] global existence and decay in
time are shown for a class of "small" data. The result of [5] requires that

(we'll denote this by | |/°| |ci) be small for each α, hence the total positive (and
negative) charge must be small. Here we generalize this result by requiring a
smallness condition which allows the total positive charge to be large provided
the negative charge nearly cancels it. Thus the result of this paper applies to more
realistic physical cases than that of [5]. Unfortunately the method of [5] does not
suffice for this result and a substantial new element is required.

More is known about the Poisson-Vlasov system (than (RVM)) in which
magnetic effects are ignored. The interested reader is referred to the survey [2]
and also to [1,3 and 6].

The Main Result

In order to correctly state the appropriate neutrality condition we reindex the
problem in the following way: Define

ga(t9x9u)=fa(t9x9mau)

and

g%(x9u)=fZ(x9rnau).

We define

for any ueU3. By making the change of variables v = mau we see that

lfo

a{x,v)dυ = ml\go

a{x,u)du.

Similarly

j ( eam^a(i,x,w) )du
\ a J

and

Thus we will require Y^eamlga to be small.
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For fc, M, and ε positive define

355

g°xeC2

0(U6); E°, B°eC2

0(U3);

if |x |^fe or \v\^k; E°(x) = B°(x) = 0 if

V B° = 0 and V £° = Aπ\\Yeaimlgo

x jdu;

Theorem. For any k and M positive there exists ε = ε(/c, M ) > 0 such that if
{g°u...,g°N, £°,£°)E^(/c,M,ε(/c,M))? then (RVM) with initial data (/?,...,/£,£°,β°)
has a unique continuously differ entίable solution for all t ^ 0. Here /° is given by

Moreover, for \ x \ < t + k,

|E(t,x)| + |B(t,x)|^C(l +
and

An Outline of the Proof

Consider data in ^(/c,M,ε). Define

k + t + MΓ 3 / 4 (1 - | x | ) " 3 / 4

if

It follows from the continuation result of [4] that a unique continuously
differentiable solution exists on some time interval. For η > ε the estimate

(FSC)

will hold for some time interval. The idea is that the (FSC) ensures that the motion
which occurs is essentially "free streaming"; that is, uninfluenced by E and B. The
proof consists mainly of a sequence of estimates which show that if ε is sufficiently
small, then the (FSC) (with an appropriate choice of η) holds on [0, oo). The first
set of estimates use the neutrality assumption, i.e.

Σv
to show that the (FSC) persists for a long time if ε is small. This is essentially
stability analysis on bounded time intervals. The second set of estimates are similar
to those in the small data result [5]. The structure of the argument is then roughly
as follows: For ε small the (FSC) must hold for a long time, during which the
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solution disperses. By taking ε smaller we force the dispersion to be more complete.
Once the dispersion is sufficiently complete, the (FSC) holds by virtue of the
dispersion only. This line of reasoning is similar to that used in [7].

Preliminaries

Define the characteristics 3fa(s9 ί, x, v) and ^ α ( s , t, x, v\ induced by E and B, by

Λ = ea(E(s,%a) + c~ιr^ B(s,Xa)\ ra(t, ί,x, v) = υ.

It follows from (RVM) that

fa(t, x, i;) =/J(arβ(O, t, x, i?), τTβ(0, ί, x, i;)),

hence also

0β(ί, x, m;* ϋ) =/β(ί, x, υ) =/J(aΓβ(O, ί, x, ι>), τTβ(0, ί, x, i;))

= ^(arβ(O,ί,x,t;),wflΓ
1τrβ(O,ί,x,ι;)),

or equivalently

gfα(ί,x, w) = ^(^ α (0 , ί, x,mΛu\ m'^JO, t,x, mαw)).

Thus ga and /α remain nonnegative.
Constants which may change from line to line are denoted by C. These may

depend on fe, M, eα, and mα, but not on ε. Similarly C(t) denotes the value of an
increasing locally bounded function from [0, oo) to [0, oo). Also | |£(ί) | | c k and
II/αMlie* denote the Ck norms of the mappings xh->£(ί,x) and (x,υ)\-+fa(t,x,v)
respectively. Henceforth the speed of light, c, is taken to be 1. For brevity we will
write

K(t9 x, u) = E(t9 x) + u A B(t, x).

where " Λ " denotes the ordinary vector cross product. We will also write

when no confusion may arise. The Lebesgue surface measure on the unit sphere
in IR3 is denoted "dw."

Consequences of (FSC)

The following two lemmas will allow us to estimate the support of/α(ί, , •) as long
as the (FSC) holds.

Lemma 1. There exists ηx > 0 such that if the (FSC) holds for 0<Lt<T with η^ηί9

then the following holds: If \x\ ̂  fe, \v\ < fe, and 0 ^ t < Tthen (for each α)

|^α(ί,0,x,t;)|^2fe,
and

\%a(tΛx,v)\^k + cιt
with c1 < 1.
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Proof Assume the (FSC) holds on [0, T). Fix α,x, and v with | x | < fc and \υ\<k.
Define

0,x,ί;)|g2fc for all se[0,ί]}.

Now for ίeCO,^)

2k

/m2+(2fc)2

so by the (FSC)

+ fc + t + |#"JΓ 3 / 4 (1 + fc + t - I

(1)

-3/4

Thus for ί e ^ T J

|τ^α(ί,0,x,ι;)| S k + \cη{l + τ)" 3 / 2 dτ ^ fc + 2Cη. (2)
o

Now if η is taken sufficiently small, (2) says that

and it follows that 7\ = T. Now the lemma follows by (1) and (2).

Definition.

& = u {(ί, arβ(ί, o, x, ϋ), τrβ(ί, o, x, v)y.
α

ί^O, |x|^fc, and |ι;|^fc},

so that support /α cz ̂ . Also define

α

for each ί ^ 0 and XGIR3, SO that

\fa(t,x,υ)dv= j fa(t,xiv)dv.

Lemma 2. T/zβre ^xfsis η2e(0,η1) such that if the (FSC) holds for 0<^t<T with
η ^ η2, then the following holds:

/or ίe[0, T), (ί,x,t;) and (ί,x,w)e^, and ae{l,...,iV}.

Proo/. Assume the (FSC) holds on [0, T) with ηe(0, η^. We may write (for ίe[0, T))

Xa(s9 ί, x, ϋ) = %a{s, 0, ̂ Γα(0, ί, x, υ\ ra{0919 x, υ))

and similarly for ΊTα. Since (ί,x,t;)G^? |^Ω(0,ί,x,ι;)| ̂  fc and |^α(0,ί,x,t;)| ̂  fc, so
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Lemma 1 applies. Now by Lemma 1 and the (FSC),

I E{s, arβ(s, t9 x,υ)) I + I B{s9 Xfa ί, x, u)) |

^ ( 1 + fc + s)" 3 / 4 (l + /c + s - [k + c l S ] ) ' 3 / 4

^Cη(l+sy3/2 = h(s) (3)

and

|VJCE(s,3Γβ(s,t,x,i>))| + \VxB(s,Sra{s9t,x,v))\ ^ Cη(l + s)" 5/ 2 = g(s). (4)

By the same reasoning (3) and (4) hold if we replace v by w. Now the proof is the
same as that of Lemma 3 of [5], except that the decay rates in (3) and (4) are
slower than those in [5]. Even with the slower decay rates, the proof in [5] works,
the key point being that

f
η\0 0

Lemma 3. Assume the (FSC) holds on [0, T) with ^e(0,ί/2] Then for all
(f,x)e[0, T) x U3 the Lebesgue measure ofS?(t,x) is less than C(l + ί)~ 3

Proof. Let us denote

Sa={v:\ra{09t9x,v)\^k and \Sra(O,t9x,v)\^k}

for a given (ί, x). Note that

If IτTα(0, ί,x, υ)I < fe and |S£a(0, t,x9v)\^ K then by Lemma 1,

I v\ = I τrβ(ί, o, arβ(o, ί, x, 4 τrβ(o, ί, x, i?))| ̂  2*.

Hence

5αc={ ί;:| ί;|^2/c}.

Now suppose also that | ̂ ( 0 , ί, x, w) | ^ /c and | ̂ α (0, ί, x, w) | ^ /c. Then by Lemma 2,

2/c ̂  | # α(0,ί,x,ϋ) - ^α(0,ί,x, w)| ^ Ct\υ - w\.

Hence iSα is contained in a ball of radius min{2/c, 2fc(Cί)~x} and the lemma follows.

Comment. Lemma 3 will be used repeatedly. To illustrate how it will be used we
observe that

as long as the (FSC) holds.

Representation of the Fields

We begin with the representation formula for E and B from Theorem 3 of [4]. Let
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and let $ be the solution of
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Note that by (RVM)

[δ f0α + ώ Vxί

Now following [4] we take

and

and obtain

where

E τ = — J | χ — y\~2 J ( l

• I Σ ectmct 9a\t I χ y
\ «

and

|χ-3Ί<ί

By (5)

so, integrating by parts we obtain

Es=- J |x — y p 1 JVM([1 4-1;

In the same fashion

g.)] |(ί§ Xpll)
= 0. (5)

T=Vx-wdt

\ dudy,

where

1 J

(6)

y,u) AidS,, (7)
/

(8)

dudy.
(t-\x-y\,y,u)

dudy.
(t-\x-y\,y,u)

(9)

(6B)

(7B)

(8B)
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and

Bs= J |x — };|~1jVu([l + M W ] " 1 [w

Here & is defined by the solution of

R. T. Glassey and J. W. Schaeffer

dudy.
(t-\x-y\,y,u)

(9B)

? t(0,x)=-VΛ£°(x).

We point out that the expected cancellation in the sums over α is indeed present
in the formulae (8) and (8B) for Eτ, Bτ, but that this fortunate circumstance does
not hold for ES,BS (compare (9), (9B)). Thus the methods of [5] cannot be applied
to the terms ES,BS.

We will need to estimate derivatives of E and B, so we again appeal to [4] to
represent the derivatives of E and B. By Theorem 4 of [4] we have

dEι

ττ

Aτs + Asτ
ss,

(10)

where

Aττ= J \y-x\-3ίa(w,ύ)(Σeβm*ga(t-\x-y\,y,u))dudy, (11)
\x-y\<t \ a J

|χ-)Ί<ί

dudy,
(t-\x-y\,y,u)

and

|x-y|<ί

dudy.

(12)

(13)

The kernels α,fc, and c are given in [4]; they are smooth functions for \u\ bounded.
Moreover, a has the property that

j a(w,ύ)dw = 0

for each ύ. Az is the sum of all the data terms, namely

2 f
\χ-y\

(14)

\x-y\ = t

(15)

Here rf and e are again smooth for \u\ bounded. Aττ is derived by an integration
by parts. Due to the cubic singularity in (11), all integrals are taken over ε < | x — y \ < ί,
and then ε is allowed to tend to zero. This limiting procedure gives rise to the
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term Aw:

( \
Aw=- \d(wM ]>>αm30α(ί,x,w) )du. (16)

V« /
A highly similar representation holds for the derivatives of B; we will write it as

— = Az + Aw + Aττ + Aτs + Asτ + Ass. (17)

All the data terms may be dealt with at this point.

Lemma 4. For all (ί,x)e[0, oo) x ίR3, we have

provided the data is in

Proof. It may be shown that

J
\x-y\ = t

for any ̂ eC 0 (R 3 ) for which ψ(y) = 0 if \y\ ^ C. Hence, also for φeC^U3) with

(18)

1 ί Φ(y)dSy)
|χ-yl = ί /

< r J Φ(y)ds}
\x-y\

J Wφ(y)'wdS}
\χ-y\ = t

(19)

Now since we may solve the homogeneous wave equation for 8 as

8 = -— f £t(09y)dSv + —(— f £(0,y)dsA
Aπt J y F)t\ άπt J y I
* 7 U \χ-y\ = t U i \H7U\x-y\ = t /

(and similarly for derivatives of S) we have by (18) and (19)

•ty1

(20)

Again using (18) we have by (7),

ί
\χ-y] = ί

ί

1"

<c

ί c
<c

c

Σ e α W 3

α

Σe«™«3ff2
α

dudSv

min{ί2,!}

^ Cε(l +1)" (21)
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and
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= t
\\w\ = .

έ/Mέ/S,

(22)

We may estimate Az — dEJδxk in a highly similar manner, when we observe that

\Sg°Ay,u)\ = kβw f lr
1x(0,y) v l l^(Λ«)l ^ cβ.

The result is, again,

dEz
A -

dxk

(23)

Now, collecting (20) through (23) we get

However, Ez and Az vanish on the sets \x\<t — C and |x| > t 4- C, so

\EZ\ + \AZ\S Cε(l + fc + ί + | J C | ) " 1 ( 1 + k + ί - |x | )" 2 ^(ί,x).

The estimation of |J5Z| + |,4Z| is very similar and is omitted.

Estimation Using Neutrality

As noted earlier if we take data in ^(/c,M,ε) with ε < η = η2, then it follows from
the continuation result of [4] that a unique continuously differentiable solution
exists and satisfies the (FSC) on some time interval [0, Tε). We may take Tε to be
as large as possible. In this section we make crude estimates using the neutrality
assumption, i.e.

(24)

which show that Tε tends to infinity as ε->0. Although Tε actually depends on
the data, the following estimates depend only ε (and fc,M,mα,eα).

Lemma 5. Let us denote

and
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Then for all (t, x, u)e[0, Tε) x R3 x R3, we have

\ + s)(\\E{s)\\co+\\B(s)\\co)ds,
0

and

Proo/. Recall that

ίf«(τ) = ^ W = K 2 + \
and

τrβ(τ) = eβ[£(τ, ίTα(τ)) + rjiτ)ΛB{τ, X&))\

Note that /

I V ^ ^ ή W I ^ C[||E(τ)||cl|V(J(>1),3Γβ(τ)|

+ |V(Λ,u)-rα(τ)| HBWIIcoH- ||β(t)||c l |V (x>11)ίe β(τ)|]

^ C(| |£(τ)| | c, + ||B(τ)||e.)(|V(Xil l)arβ(τ)| + |V(,,B)τr«(τ)|) (25)

and

I V{je>lO« .(τ)| = I V ( x , u ) # α (τ) | ^ C| V ( x , u ) ^(τ) | . (26)

Now for 0 g s ^ τ ^ t < Tε we use (25), (26) and the (FSC) to obtain

iv ( x > l θ ίr.(s)| + |V ( x > l l )τrβ(s)|

^ C + CJ(1 + ||£(τ)||e, + ||ΰ(τ)|

^ C + c\(\ V(x,u)iTa(τ)| + I V
S

Hence by GronwaiΓs inequality we have

(27)

Note that %a(s)-%M V {xA% M ~ % Ml m;ιra(s)-m;xrM and
,u)(mά1 ^Λs) ~ mΐx ^Λs)) all vanish when 5 = t. Thus for 0 < s < t < Tε9

(28)
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and by (25) and (27)

IW^^ω-mΓ1^^ (29)
s

In the same vein, by (28) we have

co+ \\B(τ)\\co)dτdτ

= c\(τ-s)( || E(τ) \\co + || B(τ) \\co)dτ.

Let " δ " denote partial derivative with respect to any component of x or u. We
compute

Define for ueR 3

and

Then by (27), (28), and (29),

) - r\{s)) i = i β(m;J

\u\2y3l2uku

^m:' r\)\

Thus

^C(t)\(\\E(τ)\\ci+\\B(τ)\\cί)dτ.

I v(x,B)(arβ(s) - x, is)) \ύ\\ v^ir^τ) - r, w) | dτ

The proof is now complete.



Global Existence for the Relativistic Vlasov-Maxwell System

Lemma 6. For 0 < t < Γβ,
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and

s)(\\E(s)\\co+ \\B(s)\\co)ds,

C(t)\(\\E(s)\\ci + \\B(s)\\cί)ds.

Proof. First we recall that

ga(t,x, u) = g%(SeΛ(0, t,x, mΛu), m~ι τΓα(0, ί, x, mΛu)\

so we may write

Σe*™l9a(t> x, w) = Σ e«mα [^2(^.(0, ί, ^ , mΛu\ m~' ra{0, t, x, mau)\

Now by (30), Lemma 5, and the neutrality assumption

(30)

^ β + C j ( l + s ) ( II £(5)11,0+
Let "5" denote partial derivative with respect to any component of x or u.

Then again using (30), Lemma 5, and the neutrality assumption we have

^ ( « Ί (0), m;ι r , (0)) δ ^ (0))

Γ1^1(^^
3a°
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The lemma now follows.

Lemma 7. For ίe[0, TJ,

|| E(ή \\cί + || B(t) | | c l

^

(ί) ||co + || Aττ(t) ||co + || XΓ Γ(ί) ||co + II Asτ(t)

II Λw(t) Hco + || Aw(ί) ||co ^ εC(ί).

We point out that it follows from Lemma 7 that Tε tends to infinity as ε -• 0.

Proof. Since t<Tε, the (FSC) holds and hence by Lemma 1 the support of

is bounded. Hence by (8) and Lemma 6

| g J

- ί I
|x-y|<ί

ί I
\χ-y\«

ί-lx-yl

Similarly by (9)

1^ ί \x-y\~1 ί c

αi£(ί-iχ-
r f i γ _
^ J I Λ -

dudy

(31)

- | x -

(32)

Also using the boundedness of the w-support we have by (16) and Lemma 6

rg J C ci)ds). (33)
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It follows from Lemma 4 that

367

(34)

Now we consider Aττ, Asτ + Aτs, and Ass. In light of (14) we may use (11)
to write

\ATT\ =
\x-y\<t \u\<C

J \x-y\ 3 J a(w,ύ)(Σeam
3

aga(t-\x-yly,u)

-Σea™lg*(t- \x-y\,x,u) \dudy
α /

x-yΓ3 J C

x-y\~2C

\x-y\<t \u\<C

1-2

\x — y\dudy

\x-y\<t

dy.

Now by Lemma 6

' J \x-y\-2C(t-\x-y\)ϊε + '
\x-y\<t L

(\\E(s)\\ci + \\B(s)\\cl)ds \dy

(35)

To estimate Aτs + Asτ we integrate by parts (in the u integral) in (12) and use the
identity Sga=-S/uie,m;ιKga):

\ATS 4" Asτ\ — J \x-y\- 2

W\<C

dudy
(t-\x-y\,y,u)

|χ-3Ί<ί

(36)

In order to perform a similar integration by parts in (13), note that

ijdui

and hence

j |x — y\ x J Vu(c(w,ί
|x->Ί<ί \u\<C

|x-y|<ί I«I<C

dudy
(t-\x-y\,y,u)

dudy.
(t-\x-y\,y,u)
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Note also that

S{gaK) = (Sga)K + ga(SK)--
so

where

(SK),

(37)

|x-y|<ί (ί-|x-y|,3;,u)

Π =
|M|<C

dudy,

dudy,
(t-\x-y\,y,u)

111= J ix-yΓ1
i

| M | < C

dudy.

Using the (FSC) and the bounded u support, we have

/|= ί \χ-yΓ

Next note that

|| gΛ(SK)(ή || co + || Vy(gaK)(t) \\ co £ C( || K(t) \\ c

By Lemma 6

(38)

(39)

Kt,y)\£ ί
\u\<C

du ^ C(t)ε + C(ί)J (II £(s) IL. + IIB(s) ||e

so by Maxwell's equations

\\δtK(t)\\co ύ \\K(t)\\cί + C(ί)ε+

By Lemma 5

(40)

= l|VJtβ

= C(ί)

Similarly

so
(41)

Now use of (40) and (41) in (39) yields

II gj
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and hence

^ f \x-yΓιC(t)
\x-y\<t

+ ε + ί j \\\E(s)\\cl +\\B(s)\\cl)ds]dy

(42)

Therefore, by (37), (38) and (42)

] \ (43)]
Now collecting the estimates (31) through (36) and (43) we have (by (6) and (10))

The estimation of \\B(t) ||ci is omitted since it is highly similar and clearly leads to
the same result. Thus if we let

then

In order to apply GronwalΓs inequality we fix Te[0, Tε). Then for all ίe[0, T],

Hence (by Gronwall)

for all ίe[0,T]. In particular

β(T) S C(T)εexp(C(T)T) = C(T)ε,

and the proof is complete.

C°-Estimates Without Neutrality

The estimates of this section rely on dispersion and will be used for large values
of t only. E and B are estimated first; their spatial derivatives will be estimated in
the next section.

To estimate Eτ note first that by Lemma 3,

f
y(t-\χ-y\,y)
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for 0 ̂  |x — y\ ̂  t < Tε. Note that any possible cancellation in the α summation
has already been discarded. Now by (8)

\ E T \ £ C J \ x - y \ - m + t - \ x - . y \ )
\χ-y\<t

On the support of ΘC, where \y\ < t — \x — y\ + k,

so
\ET\ ̂  C J \x — y\~2(\ + k + t — \x — y\ + \y\)~3dy (44)

|χ-jΊ<f

for 0 ̂  t < Tε.
To simplify (44) we will use the following Lemma, which is Lemma 7 of [5].

The proof appears in [5] and is not included here.

Lemma 8. For any continuous functions g{τ,λ) of two real variables, and h(σ) of one
real variable,

J g(t-\x-y\9\y\)h(\x-y\)dy = ^-\ *+J % g(τ,λ)λdλ(t- τ)h(t-τ)dτ,
|x-.y|<ί l ̂ l ° ||x|-f + τ|

where the integration on the left is over a ball in U3.

Lemma 9. For all XGU3 andt^O with \x\ ̂  t + k,

\χ-y\<t

Proof By Lemma 8

J \x — y\~2(l + k + t — \x — y\ + \y\)~3dy

= — J j (1 + k + τ + λ)~3λdλ(t — τ)~ιdτ. (45)

We denote

r = |x|
and

\t-r if t-r>0

^ ] 0 if t-r<0.

Case 1. Assume r < ^(1 + k + ή. If 0 < τ < t — r, then

Hence
t

ί
01

r + t-τ

ί
r-t + τ\

—

(1 +

0 t

t

fc + -

— τ + r

-τ-r

r + ί-f J
) +
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(t-r)+ t

^2 J 2r(l+fc + τ + [ ί - τ - r ] Γ 3 d τ + 2 J (1 + fc + τ + [r-t + τ]Γ2dτ
0 (ί-r) +

^ 4r(ί - r) + (l +/c + ί - r ) ~ 3 + 2r(l +/c + ί - r Γ 2

^ 6r(l + fc + t - r ) " 2 ̂  6r(l + fc + ί - ^ [ 1 + fc + ί ] ) ~ 2

^ Cr(l + fc + ί + r)~ x ( l + fc + t - r)~ \ (46)

Case 2. Assume r ̂  ̂ (1 + k + ί)>

0 |r-ί + τ|

°\r~t + τ\

t (t~r) +

- ί + τ|)-2^τ = 2 J (1 + /c + t-r)~2dτ
oo

2 J
( ) +

+ ί-r)-2(ί-r)+-h(l+/c + 2[ί-r]++r-ί)- 1

k + ί + ̂ -Hl+Zc + ί-r)-1. (47)

Now, if we use (46) and (47) in (45) we obtain the desired result.

Lemma 10. For 0 ̂  t < Tε9

Proof. Note first that £ Γ Ξ 0 O Π |X| > k + t by (8) and the support property of ga.
The estimate for Eτ now follows from Lemma 9 and (44). The estimate for Bτ is
similar.

To estimate Es and Bs we will use the following lemma which is a space-time
version of GronwalΓs inequality.

Lemma 11. Given To > 0, define

eg = C°({(ί,x): 0 S t g To, xeR 3, |x| g fc + ί}).

Given D>0, A > 0 , pe(0,l], and ^e[0,p + 1], de/ϊne ^:^^^ by

|x-y|<ί

w(ί — | x —

IfveW satisfies v g Jδf(ι ) (<9Π |x| ̂  fc + t\ then

on |x| gfc + ί.

/. Standard techniques show that S£ has a unique fixed point ufe^, and that
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y?n(u)^>uf for every ueΉ. We will construct ze^ such that JSf(z) S z. Then

and

ufs&n{z) ^ ^ ^ 2 ( z ) ^ JSf(z) ̂  z.

In particular v^z, which will give the desired inequality.
Take r = | x | ^ ί + fc and

z(ί,x) = αz1(ί + r)z 2 ( ί-r) ,
where

and α,j8 are to be chosen later. By Lemma 8

\x-y\<t

= —} } aΓίτ^Kί-τJ-^

where we are abusing notation by writing

Making the change of variables

ξ = τ + λ, η = τ — λ,

we obtain

J
\x-y\<t

] z2(η)(ξ-η)dηdξ
-k

(48)
-k

To estimate the ξ integral note that if r > | ( 1 + k + ί) then

2 1 . ,

-r)~1-p. (49)

(50)
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For the η integral in (48) note that

t — r

ί
-k

[l+fc + ί- r ]- ί > ) ] . (51)

Now we substitute (49), (50), and (51) into (48) to obtain

J

Hence

£'(z)^A(l + k + t + r)-p(l + k + t-r)-q + Cβ-1p-1z. (52)

Now we take α = 2A so that

A{l+k +

and hence by (52)

Finally taking β = 2Cp~1, we get

so (as shown before)

P

^ 2Aexp(CZ)p" x)(l + k +1 + r)~p(l + /c + r - r)~q.

The proof is now complete.

Lemma 12. There exists a function D:(0,η2)->(0,oo) such that

lim D(ε) = 0

for0^t< Tε.

Proof Note first that by Lemmas 4, 7, and 10,

(53)
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for 0^t<Tε. Before proceeding let us simplify this estimate. Writing r = \x\ and
taking r ̂  k +1, we note that

(54)C(l + /c + ί)~1/4} ^ Cmin{C(ί)ε,ί~1 / 4}.

Define D(ε) to be the maximal value of the mapping

ί£(0,oo)h»Cmin{C(ί)ε, Γ1/4}.

Note that

lim D(ε) = 0, (55)

and that by (54)

min{C(ί)ε,

for r ̂  /c + 1 Hence by (53),

t + \

for 0 ̂  i
Now we consider Es. By (9)

(t-\x-y\,y,u)

By Lemma 1 the u support is bounded for 0 ̂  t < Tε, so by Lemma 3

(56)

dudy.

j ix-yr'ί J

|x-y|<ί

(57)

Note that for \y\^t-\x-y\

The same analysis of Bs reveals that | β s | is bounded by the right-hand side
of (57). hence (for 0 ̂  t < Tε),

| £ s | + | β s | ^ C j \x-y\-i&(t-\x-y\,y)

•(1 +k + t-\x-y\ + \y\Γ3(\E\ + \B\)\ίt_u_yly)dy. (58)
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Now using (56) and (58) in the representations (6) and (6B) we get

\E\ + \B\ ̂  (Cr, + D(ε))(l +k + t + [-x|)"3/4(l + k + t - |x |

We now apply Lemma 11, with q = p = 3/4, and obtain

(59)

for 0 ^ t < Tε and \x\^t + k. Now since E and B vanish on | x \ > t + /c, the lemma
follows.

Corollary to Lemma 12. For 0 ^ t < Tε, we have

where D(ε) is as in Lemma 12.

Proof. By Lemmas 6 and 12 we have

co 0

^ ε +

Now using Lemma 3 we have

S CD(ε)(ί + ί ) 5 / 4

^CD(ε)(l + ί ) " 7 / 4

C1-Estimates Without Neutrality

Our goal in this section is to obtain the analogue of Lemma 12 for derivatives of
the fields. Explicitly, we will show that there exists a function D(ε) mapping
0 < ε < η2 into (0, oo) with the properties that D(ε) = o(ί) as ε -> 0 and on 0 ^ t < Tε,

fe + ί - | ί ? x) .

This will enable us to establish the validity of the (FSC) for all times t > 0.
We begin with the representation (10):

d .
- Eι = Az + Aw + Aττ + Aτs + Asτ + Ass, (10)

where the various terms are given in (11)—(13), (15)—(16). We will estimate dEl/dxk

only, since the estimates for dBi/dxk are nearly identical.
By Lemma 4, we already know that

). (60)

In order to estimate Aττ, we require
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Lemma 13. Let η2 be chosen as in Lemma 2, and let the (FSC) hold for 0 < η ̂  η2,
0<t<Tε. Then there exists a constant C depending on fc, η2, ea9 mα (but independent
oft) such that for all ueU3, \x\^k + t,O^t<Tεwe have

max|V^α(ί,x,w)|^Cmax||^||ci,
α α

max|Vugfα(ί,x,M)| g C ( l +ί)max||fif2llci
α α

Proo/. This is a slightly modified version of Lemma 5 of [5]. Indeed, the (FSC)
shows that the kernel I(s) (appearing in (25) of [5]) now becomes (1 + s)" 5 / 2 . The
pointwise inequality for Vuga appearing above Eq. (26) of [5] now has the kernel
c(l 4- s)~3 / 2, which is integrable. The argument is concluded by simply noting that
(1 + s)I(s) = c(l + s)~3 / 2 remains integrable.

Now we can estimate Aw and Aττ:

Lemma 14. Let r = \x\. There exists a constant C independent of t such that for

\ΛJ + \ATT\ S C(\ + k + t + r)~\1 + k 4-1 - r)~2 log(l + k + t 4- r)ΘC(t,r).

\ From (11) we have

Aττ= J ly-xΓ^Λίw.
|x->Ί<ί

and the kernel α has zero mean value over |w| = l by (14). Consider the
integral A(j]

τ defined to be that taken over the set \^\y-x\^t. We
have

\A%\^C f %-\y-χΓ3 J
i£\y-x\zt ?{t-\χ-y\,y)

where we have used Lemma 3 to bound the measure of «5̂ . On the support of 3C,
where

we have

hence

f
and by applying Lemma 8 we arrive at

This integral is split up into integrals over [0,ί/2] and [ί/2,ί — 1]. We assume
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without loss of generality that t is large. Then

A}ί/2 At/2 r + t-τ

ί < f A f

_ 4 ' / ? r-τ)-\r-t

t2 ί (1 + k •

4

) T

2r
T1 + f e + ί - r

1 '

t-r
f 2(t-τ)dτ

(tjr)+

(62)

ί - i J

f /

J

2 ί - τ

^ O(l + fe-f- ί + r) 2(l+fe + ί —r) \

since r ̂  ί + fe. For the integral over the complement we have

r-l / Λ " 3 ί - l r + t-

Γ < [ i + k + - J f f
t/2~\ 2/ f/2 | r - ί + τ| ( ί - 1 ) 2 V 2 / ί/2

^ Cr(l + fc + ίΓ 3 ' k )g ( l- j ^ Cr(l + fe + ί + r)" 3 log( l + fe + ί + r), (63)

since again r :g ί + fe. Using (62) and (63) in (61) we certainly get

\Aψτ\ ^ C(l + fe + ί + r)" x ( l + fe + ί - r)~2log(l + fe + ί + r) ^(ί,r). (64)

Returning to the formula (11) for ylΓ Γ, we can write the integral over the set

\y — x\ < 1 as

\Aft\ =

-ga(t-\x-y\,x,u)]dudy

since j αdw = 0 by (14). Again, by Lemma 3, the u-integration is taken only
I w l = 1

over a set of measure less than C(2 + t — \x — y\)~3. Now we apply the mean-value
theorem to the integrand of Aψτ, noting that |Vx0α(ί,x,u)| is uniformly bounded
by C||#£||ci in view of Lemma 13. Thus

tf||cl J
X(t-\x-y\,y)dy

For large ί, this integral is clearly dominated by Ct 3, and hence also by
C(l + k + ί + r ) " 3 , hence also by

C(l + k + ί + r)" x(l + fc + ί - ry2-%(t, r),

since r S t + fc. Using this bound and (64), we see that
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This is the desired estimate for Aττ.
Turning to Aw, we have from (16)

\ m l g a { t i x i u ) d u . (16)
α

By Lemma 1, the kernel d is uniformly bounded, as are the #α's. By Lemma 3, the
u-integration in (16) is taken only over a set of measure less than C(l +1)~ 3.
Therefore Aw satisfies the same estimate as Aττ, so we have proven Lemma 14.

Corollary to Lemma 14. For r^t + k and 0St<Tεwe have

\AZ\ + \AJ + \ATT\ < C(l + k + t + ry \1+ k + t - r)~2log(l + k + t + r).

This follows immediately from (60).

Lemma 15. There exists a function D^ε) on (0,η2) into (0, oo) such that

D1(ε) = o(l) as ε-^0, and

Proof. By Lemma 4, 7, and 14, we have

\ΛZ\ + \AW\ + \ATT\ ^ Cmin{C(ί)e,(l + /c + ί

for r ^ fe + t. Note that for r ^ fe + ί,

(1 + k + ί -4- r)3/4(l + ĉ -f ί - r) 7 / 4 min {C(ί)ε,

•(1 + k + ί + r)'\\ + fe + t - ry2 log(l + fc + ί + r)}

Define D^ε) to be the maximal value of the mapping

ί^min{C(0ε,ί" 1 / 8 }.
Note that

lim D1(ε) = 0
ε->0 +

and also

min {C(ί)β,(l + /c + ί + r)-\l + /c + t - r)" 2 log(l + /c + t + r)}

^ CDγ(ε){l + fe + ί + r)~ 3 / 4(l + Jfc + ί - r)~ 7 / 4

for r ^ ί + /c. Hence

\AZ\ + M w | + \ATT\ £ CZ)1(ε)(l + fe + t + r)" 3 / 4 ( l + k + ί - r ) " 7 / 4

for r ^ ί + k. But

|AJ + μ j + μ Γ Γ | = 0

if r > k H- ί, so the proof is complete.
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Lemma 16. There exists a function D2(ε) on (0, η2) into (0, oo) such that

D2(s) = o(l) as ε->0, and

\AST + Aτs\ ̂  D2(ε)(ί +k + t + r )- 3 / 4 ( l + k + t - r)-ηι*X{t9r)

forO<t<Tε.

Proof. By Eq. (12) we can write

Aτs + Asτ= J \x-y\-2ft(w9u)(%earnlSga(t-\x-y\9y9u))dudy9 (12)
\χ-y\<t \ α /

where the kernel b is bounded for bounded u, as is the case by Lemma 1. Since
Sga is the u-divergence of —e^m^Kg^ we can integrate (12) by parts in u (as
was done in (36)) to obtain, with ΘC = 9£{t — \x — y\,y),

\ATS + AST\^C J \x-y\~2X
\χ-y\<t

• I Σ\κ(t-\χ-y\>y)\fΛt-\χ-y\,y,v)dvdy.
Sf(t-\x-y\,y) '

By Lemma 3, then,

\Aτs + Asτ\ίC J ^-y^i^Kit-lx-yίym+t-^-y^dy.
\x-y\<t

W e m a y r e p l a c e ( 1 + t — \x — y \ ) ~ 3 b y C ( l + k + t — \ x — y\ + \y\)~3 o n t h e s u p p o r t
of 3£, and apply the bound for K from Lemma 12 to get

where D(ε) = o(l) as β->0. The factor 1 + k + t — \x — y\ — \y\ exceeds unity on the
support of 9C, and moreover

so that

^ CD(ε)(l + k + t + r ) " 1 ^ + fc + ί - r)~

where we have used Lemma 9 in the last line. This is stronger than what is required
in Lemma 16.

Lemma 17. For all xeM3, t ̂  0, p ̂  3, ami ge[0,1) we have

/= J \x-y\-1(l+k + t-\y-x\ + \y\yp

'{l+k + t-\y-x\-\y\Γ<Sr(t-\y-x\9y)dy

S C(l — ̂ )"1(1 +fc + t + r)"1^ + fe + ί -
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Proof. By Lemma 8 we have for |x | :g fe + t

S2πr~1\r J ' ( l + fc + τ + ̂ - ^ l + fc + τ - ^
0 | r - ί + τ|

Changing to the variables ξ = λ + τ and fy = τ — A, we obtain

J Π
t-r -k

fe + <ΪΫ~P(\ + fc + ηyqdηdξ

S Cr~x(l - q ) " x ( l + k + ί - r)1 ~q Y ( H - fe + ξ) 1 ~ p d£.
ί-r

By the computations in (49) and (50) we see that

r " 1 JP(1 + k + ξ)1 ~pdξ ^dl + k + t + ry^l + k + t- r)2~p,
t — r

and hence (for |x| <Ξ fc + ί)

/ ^ C(l - ήf)- x(l + fe + ί - r)1 "«(1 + fe + t + r)" x(l + fe + ί - rf ~p.

The Lemma now follows since </ = 0 i f | x | > f e + ί.
Only the term A5 S in the representation (10) for (d/dxk)Eι has yet to be estimated.

From (37), we have

where the terms are given explicitly beneath (37), and will be written again below.
Since the velocities u are bounded by Lemma 1, the kernels (d2/duiduj)c(w,ύ% etc.
are uniformly bounded. For the first expression we have

(t-\x-y\,y,u)dudy
|y-x|<f iJ^OUiCU

\y-x\<t\y ~ X\ &>{t-\x-y\,\y\) *

\y-x\<t

.(l+k + t-\y-x\-\y\)-V25r(t-\y-xly)dy

\y-x\<t

where we have used Lemmas 3 and 12. Now using the fact that D(ε) = o(ί) as i
and Lemma 17 (with p = 9/2 and q = 0) gives us

| I | <£ CZ)2(ε)(l + fe + i + r)~ 1(l + fc + i — r)" 3 / 2 ^(ί , r )

^ CD(ε)(l + fe + t + r ) " 3 / 4 ( l + fe + ί - r ) ' 7 / 4 ^ ( ί , r )

for ε sufficiently small.
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Now for terms II and III, we have from (37)

I I + 111= j \x — y\~1H£§ΣelmlH(t — \y — x\,y,u)dudy, (65)
\y-x\<t α

where

-\y-x\9y,u) = Vuc(w9ύyga(t-\y-x\9y,u)SK{t--\y-x\,y,u)

(66)
Uj UUi Vyj {t-\y-x\,y,u)

By the definition of S, \SK\ ̂  C(\KX\ + \Kt\), and by Maxwell's equations

\Kt(t,x)\^C\Kx(t,x)\ + \j(t,x)\.

Moreover, by the Corollary to Lemma 12,

\SK\ £ C(\Kx(t,x)\+D(ε){l + ί)- 7 / 4 ) . (67)

The last term in H involves

dyj dyj dy}

The first of these is of the same form as above. Hence we can write

Σ p ^ 9 u ) . (68)
tj dui dyj

To handle the integral of the last term here, we again replace d/dyj by appropriate
combinations of the operators Tj and S beneath (5). Letting Cij(w,ύ) =
c(w,ύ)dύj/duh we obtain for the integral of the last term in H from (68), the
expression

b>-χ|<f α

{ L ) ] (69)

where & = %'(t — \x — y\,y), and we employ the summation notation. The first of
the terms in (69) is integrated by parts in u, resulting in an integral which is
estimable as I was (because \VUK\^C\B\). The last term in (69) is integrated by
parts in y. There results a term involving only the data, which is estimated exactly
as in Lemma 4, and terms bounded by

C J ^\x-y\-^ga(t~\y-xUu)\Kx(t-\y-xly)\dudy
\y-x\<t

+ C j 3r\y-xΓ2lgΛ(t-\y-x\,y,u)\K(t-\y-x\,y)\dudy.
\y~x\<t
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Thus by (69), the integral of the last term of H in (68) is dominated for small ε by

CD(ε)(l + k +1 + r Γ 3 / 4 ( l + k +1 - r)-ηl*X(t,r)

+ c J
\y-x\<t

2 (70)

where Z)(ε) = o(l) as ε->0.
Now using (70) and (68) in (65), we obtain for small ε

|II + IΠ| ̂  CD(ε)(l + k +1 + r)~ 3 / 4(l + k + 1 - r y Ί / 4 ^ ( t , r )

\y-x\<t

+ C f &\y-x\-1lgα(t-\x-y\,y,u)\Kx(t-\x-y\,y)\dudy
\y-x\<t

+ ClX\y-x\-2lgα{t-\x-y\,y,u)\K(t-\x-y\,y)\dudyj. (71)

The second term here is dominated by

CD(ε) f 9C\y-x\-'{\+t-\y-x\Γί9^dy, (72)
\y-χ\<t

where we have used Lemma 3. On the support of 9C, we have

(1 + ί _ \y _ χ | ) - 19/4 ^ C ( 1 + / c + ί _ | } ; _ χ | _ h 1^1)- 19/4

Hence, using Lemma 17 with p = 19/4 and q = 0, the second term of (71) is bounded
by

J
f k + t + r)-\l+k + t-

Thus the second term of (71) is bounded by the first.
The last term in (71) is, by Lemmas 3 and 12, dominated by

C ί \x-y\
\y-x\<t

^C J |x

k + t + ry\\ + fc + ί - r)" 7 / 4 ^( ί , r )

by virtue of Lemma 9.
Therefore the bound (71) simplifies for small ε to

|II + ΠI| ̂  CD(β)(l + ί + fc + r)~3 / 4(l + k + t - r)~ 7 / 4 ^(ί,r).

+ C J %\y-x\-1{\ + k + t-\y-x\ + \y\)-2\Kx{t-\x-y\,y)\dy, (74)

where D(ε) = o(l) as ε^>0 and we have used Lemma 3 again. Our bound for the
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term I above (65) is the same as that displayed in the first term of (74). Summarizing,
we have proved

Lemma 18. There exists a function D3(ε) on (0,^2) into (0, GO) such that

D3(ε) = o(l) as ε->0, and

\ASS\ S D3(ε)(l + k + t + r ) " 3 / 4 ( l + k + t - ryΊ/4^(t,r)

+ Γ* I QΓ I 1J V I ί\ - J - If -L- f I V ΛJ I —I— I 17 I ̂  I J^ i t I V 1

V_̂  I ίJC/ y Λ I JL " i /v i " v I Λ y \ ~\ \ y \ ) \ -* * - χ \ I J
|y-x|<ί

Lemma 19. There exists a function D(ε) on (0,η2) into (0, oo) such that

D(ε) = o(ί) as ε -• 0, and

— E%x) ^D(ε)a!'(t,r)(l + fc + t + r)~3 / 4(l + /c + ί - r ) ~ 7 / 4

| j -x |<ί

Proof By the representation (10) and Lemmas (14)—(18), the result follows
immediately.

Now, since the same estimates hold for (d/dxk)B(t, x), Lemma 18 yields the
inequality

IKx(t,x)I S CD(ε)(ί + k + t + r)" 3 / 4 ( l +k + t-r)~7/4^(ί,r)

over 0 rg ί < Tε. We can now apply Lemma 11 with the choices p = 3/4, q = 7/4,
u(t,x) = \Kx(t,x)\. This gives us the inequality

\KJt,x)\ ^ CD(ε){l + k + t + r)~3 / 4(l +k + t- r)-η^ΘC{t,r\ (75)

where 0 ^ ί < Tε, C is independent of ί and 5(ε) = o(l) as ε->0. Now we observe
that from (75) and Lemma 12, the (FSC) holds on 0 ^ t < Tε whenever ε is chosen
sufficiently small.

Proof of the Main Theorem. From the above, we know that

3'4%(t,x)

| x | ) - 7 / 4 ^ ( ί x ) l j

holds for ίe[0, Tε), provided ε is sufficiently small. But recall that Tε is just the
maximal time for which the (FSC) holds with η = η2. Now take ε sufficiently small
that D(ε)<^η2 Assume Tε is finite, then by (76) and continuity we see that the
(FSC) actually holds for ίe[0,T ε + <5) for some <5>0. This contradicts the
maximality of Tε, and hence Tε must be infinite. Hence the stated decay rates hold
for all time and by Lemma 1 the i -support of each density fa(t9x,v) is uniformly
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bounded for all α, x e (R3,0 ̂  t < oo. This is a sufficient condition for global existence,
as we know from [4], and the proof is complete.
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