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Abstract. Global classical solutions to the initial value problem for the
relativistic Vlasov—Maxwell equations are obtained in three space dimensions.
The initial distribution of the various species may be large, provided that the
total positive charge nearly cancels the total negative charge.

Introduction

Consider a plasma which consists of a large number of charged particles. We
assume there are N distinct species of charge and that particles of the o™ species
have charge e, and rest mass m,. Their distribution in phase space at time ¢ is
£(t, x,v), where xeR? represents position and veR3> momentum. Thus the charge
and current densities are

p(t,x)= 4nj<2eafa)dv

and

jlt,x)= 4nj(2eafaﬁa>dv,

where
b, = (mZ +c 20|~

gives the velocity of a particle with momentum v and rest mass m, (c is the speed
of light). The state of the plasma at time ¢ is given by f,(¢,",") fora=1,..., N and
E(t,-), B(t,"), where E and B are the electric and magnetic fields. If electromagnetic
effects dominate collisional effects, we may model the time evolution of the plasma
with the system:

0 fut 0, Vifute(E+c 0,4B)V,f,=0
(RVM){ 3,E=cV,B—j, V-E=p
0B=—cV,E, VB=0
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with the initial data

[:0,x,0) =12 (x,0)
E(0,x) = E°(x)
B(0,x) = B°(x).

The goal here is to find conditions on the initial data which ensure the existence
of a smooth solution of (RVM) for all time, thus ruling out shock waves and other
singularities. Two results in this direction are due to Glassey and Strauss: In [4]
it is shown that solutions may be continued as long as the v-support of each f,

remains finite on every finite time interval. In [5] global existence and decay in
time are shown for a class of “small” data. The result of [5] requires that

I fe Il .ows) + | A Il .o®s)

(we’ll denote this by || f2]|.:) be small for each o, hence the total positive (and
negative) charge must be small. Here we generalize this result by requiring a
smallness condition which allows the total positive charge to be large provided
the negative charge nearly cancels it. Thus the result of this paper applies to more
realistic physical cases than that of [5]. Unfortunately the method of [5] does not
suffice for this result and a substantial new element is required.

More is known about the Poisson—Vlasov system (than (RVM)) in which
magnetic effects are ignored. The interested reader is referred to the survey [2]
and also to [1,3 and 6].

The Main Result

In order to correctly state the appropriate neutrality condition we reindex the
problem in the following way: Define

gd(tﬁ x’ u) =fd(t’ x’ mau)
and
gg(xa u) :fg(x’ m,u).
We define
d=01+c 2|u®)"Yu
for any ueR3. By making the change of variables v = m,u we see that
[ f2(ev)dv=m3 [ g7 (x,u)du.
Similarly
plex) =4 Seumtantonn )
and

j(t,x)=4n| <Zeam2ga(t, X, u))ﬁdu.

Thus we will require ) e,m?g, to be small.
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For k, M, and ¢ positive define
Dk, M,e)={(g3,...,9% E°, B°):
g2€C3(R®); E°, B°eCy(R%); g720; g;(x,0)=0
if |x|=k or |v|=k E°x)=B%x)=0 if |x|=k;
V':B°=0 and V-E°= 4nj<2eam3g2>du;

2lg2llee < M;

Zemmaszgg + ” EO “c2+ ”BO “c2<8}'

Theorem. For any k and M positive there exists ¢=¢(k,M)>0 such that if
@°,...,9%, E° B%e(k, M, e(k, M)), then (RVM) with initial data (f9,..., f%, E°, B%)
has a unique continuously differentiable solution for all t = 0. Here f is given by

f2(x,0) =gz (x,m; o).
Moreover, for |x| <t +k,
|E(t,x)| + |B(t,x)| SC(1 + k+t+|x|) ™31 + k+t—|x[)~3*

and
IVLE(t,x)| +|V.Bt,x)| SCA+k+t+|x])3* A +k+t—|x])” "~

An Outline of the Proof
Consider data in 9(k, M, ¢). Define

Ui Jx| <kt
%(t’x)‘{o it x|kt

It follows from the continuation result of [4] that a unique continuously
differentiable solution exists on some time interval. For # > ¢ the estimate

|E|+ Bl <n(l+k+t+|x])"¥* (1 +k+1t—|x|)7>*Z(t,x)
IVLE|+ |V, Bl En(l+k+t+|x]) 31 + k+t—|x]|)”7*%(t,x)

will hold for some time interval. The idea is that the (FSC) ensures that the motion
which occurs is essentially “free streaming”; that is, uninfluenced by E and B. The
proof consists mainly of a sequence of estimates which show that if ¢ is sufficiently
small, then the (FSC) (with an appropriate choice of #) holds on [0, co0). The first
set of estimates use the neutrality assumption, i.e.

(FSC) {

Zeamggg + ||EO ch + ” BO ||c2 <g,
a 1

to show that the (FSC) persists for a long time if ¢ is small. This is essentially
stability analysis on bounded time intervals. The second set of estimates are similar
to those in the small data result [5]. The structure of the argument is then roughly
as follows: For ¢ small the (FSC) must hold for a long time, during which the
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solution disperses. By taking ¢ smaller we force the dispersion to be more complete.
Once the dispersion is sufficiently complete, the (FSC) holds by virtue of the
dispersion only. This line of reasoning is similar to that used in [7].

Preliminaries
Define the characteristics & ,(s, ¢, x,v) and ¥,(s, t, x, v), induced by E and B, by
{giq, =7, L ttx,0)=x

¥V, =e(E(, X)) +c "V ABG,Z)), ¥ (ttx,v)=no.

It follows from (RVM) that
falt,x,0) = £3(Z,(0,1,x,), 7,(0,2,x,)),

hence also

galt, X, mg 10) = £, (t, x,0) = f2(Z4(0, 1, x,0), ¥, (0, 1, x, v))

= g2(Z,0,t,x,0), m; ¥, (0,1, x,0)),
or equivalently
gult, x, u) = gAZ (0, t, x, myu), m; v (0, t, x, m,u)).

Thus g, and f, remain nonnegative.

Constants which may change from line to line are denoted by C. These may
depend on k, M, e,, and m,, but not on ¢. Similarly C(t) denotes the value of an
increasing locally bounded function from [0, o) to [0, ). Also ||E(t)|+ and
| f.() |« denote the C* norms of the mappings x> E(t,x) and (x, v)r>f,(t, x,v)
respectively. Henceforth the speed of light, ¢, is taken to be 1. For brevity we will
write

K(t,x,u) = E(t,x) + 4 A B(t, x).
where “ A” denotes the ordinary vector cross product. We will also write
|K(t,x)| = E(t, x)| + [B(t, x)|

when no confusion may arise. The Lebesgue surface measure on the unit sphere
in R3 is denoted “dw.”

Consequences of (FSC)

The following two lemmas will allow us to estimate the support of f,(t,-,*) as long
as the (FSC) holds.

Lemma 1. There exists ), > 0 such that if the (FSC) holds for 0 <t < T withn <n,,
then the following holds: If | x| < k, |v| <k, and 0 <t < T then (for each o)

[77,(t,0,x,v)| < 2k,
and

|Z(t,0,x,0)| <k +cqt
with c¢; < 1.
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Proof. Assume the (FSC) holds on [0, T). Fix «, x, and v with |x| <k and |v| <k.
Define

T, =sup {te[0, T):| ¥ ,(s,0,x,v)| < 2k for all se[0,¢]}.
Now for te[0, T,)
2k

S — 1
Jm2 + (2k)? b @

t
|22t 0,%,0)| Sk + [177,(5,0,x,0)|ds S k +
0

so by the (FSC)
|E(t, %)+ 7, ABGLE) SCn(l +k+t+|Z,) 341+ k+t—|2,])" 3

2k -3
<Cn(1+2k+ Ct)‘3/4<1 + [1 ———]t)
/m2 + 4k?

S Cn(l+1)732
Thus for te[0, T;)

t
1774(6,0,x,0)| Sk + [Cn(1 +7)"*2dr <k +2Ch. )
0

Now if # is taken sufficiently small, (2) says that
[77,(t,0,x,v)| < 3k,
and it follows that T, = T. Now the lemma follows by (1) and (2).

Definition.
S = [aj{(t, Z,(,0,x,0), 7 ,(¢,0,x,0)):
t20, |x|<k, and [|v|Zk},
so that support f, = &. Also define
SL(t,x)= g{Va(t,O,y,v):lyl <kl|v|<k, and Z,(t0,y,0)=x}

for each t =0 and xeR3, so that

j.fa(t’x,v)dvz I fu(t,X,U)dU.

L(t,x)

Lemma 2. There exists n,€(0,n,) such that if the (FSC) holds for 0 <t < T with
1 < n,, then the following holds:

|Z,0,t,x,v) — % ,(0,t,x,w)] = Ct|v — w]|
for te[0, T), (t,x,v) and (t,x,w)e¥, and ae{l,...,N}.
Proof. Assume the (FSC) holds on [0, T) with #€(0, %,). We may write (for te[0, T))
X (8,8, %x,0) = X ,(5,0, % (0,1, x,0), ¥ (0, £, x, v))
and similarly for ¥”,. Since (¢, x,v)e %, |Z,(0,t,x,v)| < k and |7,(0,t, x,v)| £ k, so
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Lemma 1 applies. Now by Lemma 1 and the (FSC),
[E(s, Z (s, t, x,0))| + | B(s, Z (s, t, x, 0))|
Sl +k+97* 1 +k+s—[k+c;s]) >
S Cn(l+5)"%2 = h(s) 3)
and
IVLE(s, Zos, 1, %, 0))| + |V B(s, Z (s, 1, x,0))| < Cy(1 +5) 72 = g(s). )

By the same reasoning (3) and (4) hold if we replace v by w. Now the proof is the
same as that of Lemma 3 of [5], except that the decay rates in (3) and (4) are
slower than those in [5]. Even with the slower decay rates, the proof in [5] works,
the key point being that

tim | [sg(s) + h(s)1ds = 0.
0

mo

Lemma 3. Assume the (FSC) holds on [0,T) with ne(0,n,]. Then for all
(t,x)e[0, T) x R3 the Lebesgue measure of ¥ (t,x) is less than C(1+1)~3.

Proof. Let us denote
S,={v:|7,0,t,x,v)| <k and |Z,0,tx,v) <k}
for a given (t, x). Note that
L(t,x)= laJSa.

If |7,0,t,x,0)| <k and |%,(0,t,x,v)| < k, then by Lemma 1,
o] =|7",(t,0,%,0,1t,x,0),7,0,t,x,0)| < 2k.
Hence
S, = {v:|v| < 2k}.
Now suppose also that | ¥7,(0, ¢, x, w)| < k and | Z,(0, t, x, w)| < k. Then by Lemma 2,
2k 2|4 ,0,t,x,v) — Z,(0,t,x,w)| = Ct|v — w|.
Hence S, is contained in a ball of radius min {2k, 2k(Ct)~ '} and the lemma follows.

Comment. Lemma 3 will be used repeatedly. To illustrate how it will be used we
observe that

lpt.x) < | Ylelfalt,x,0)dv<C(1+10)73

SLt,x) *

as long as the (FSC) holds.

Representation of the Fields

We begin with the representation formula for E and B from Theorem 3 of [4]. Let

w=[y—x|["1(y—x),
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and let & be the solution of
E,—A8=0
&(00,x) = E%(x)
&,0,x)=V A B°(x)—j(0, x).
Note that by (RVM)
[0:ga+0-Vog, + Vi (eamy ' Kgo) Uiy = 0. ©)
Now following [4] we take

T=V,—wd,
and
S=0,+4V,,
and obtain
E=EZ+ET+ES (6)
where
E,=6-1"' [ a1 +a-w)'l(w—(ﬁw)a)(ZeamsgS(y, u))dudsy, ()
Ix—yl=t a
Er=— [ lx—y[72[(1+dw)~2(1 = |a)w+d)
Ix—yl<t
'<Zeamgga(t—|x—y|ay,u)>dudy9 (8)
and
Eg=— | [x—yl'lf(l+ﬁ'w)"1(w+ﬁ)<2eam3Sga) dudy.
[x—yl<t @ (t~=Ix—yly.u
By (5)
Sga= - Vu'(eama:lKga)a
so, integrating by parts we obtain
Es=— [ |x—y|7' V,([1+a-w] '[w+ ﬁ])(Zefmfg(,,)K} dudy.
|x—yl<t ® (t—1x—yly.u)
)
In the same fashion
B=Bz+BT+BS> (6B)

where
B.=2#+t"" | [Q+aw '(wa m(Zeami’g;’(y,u)) duds,. (7B)

[x—yl=t
Br= | Ix—=y[72f(1+da-w)7 (1 —|a’)(w A 0)

Ix—yl<t

.<Zeam2ga(t_|x_y|7yau)>dudy, (8B)
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and

dudy.
(t—1x—yly,u)
(9B)

Bs= [ |x=yl 'V ([1+a-w]"'[wA ﬁ])(Ze§m§Qu>K

Ix—yl<t

Here 4 is defined by the solution of
B, —AB=0
2(0,x) = B°(x)
%,0,x)= —V A E°(x).

We point out that the expected cancellation in the sums over a is indeed present
in the formulae (8) and (8B) for E, By, but that this fortunate circumstance does
not hold for Eg, By (compare (9), (9B)). Thus the methods of [5] cannot be applied
to the terms Eg, Bg.

We will need to estimate derivatives of E and B, so we again appeal to [4] to
represent the derivatives of E and B. By Theorem 4 of [4] we have

OF!
5x_=Az+Aw+ATT+ATS+AST+ASSs (10)
k
where

Arr= | ly—xl*fa(w,ﬁ)(Zeamsga(t—|x—y|,y,u)>dudy, (11)

Ix—yl<t

Ars+ Asr= | |y—x|_2jb(w,d)<2eam25ga> dudy, (12)
Ix—yl<t * (t=lx—yly,u)
and
Ass= [ ly—x|! IC(w,ﬁ)<ZeamiSzga> dudy. (13)
[x—yl<t @ (t—Ix—yly,u)

The kernels a,b, and ¢ are given in [4]; they are smooth functions for |u| bounded.
Moreover, a has the property that

| a(w,d)dw=0 (14)

wi=1

for each 4. A, is the sum of all the data terms, namely

A, = OE. . -2 [ [dw,a (Ze m3g? y,u))dudSy
axk Ix—yl=t
+t7t [ fe(wd <Ze m2Sg°(y, ))dudSy. (15)
[x—yl=t

Here d and e are again smooth for |u| bounded. At is derived by an integration
by parts. Due to the cubic singularity in (11), all integrals are taken over ¢ {|x — y|{t,
and then ¢ is allowed to tend to zero. This limiting procedure gives rise to the
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term A,
A, = —[dw, ﬁ)(Zeam;’,’ga(t, X, u))du. (16)
A highly similar representation holds for the derivatives of B; we will write it as
0B .~ L - - N N
Ox. =A,+ A, +App + Aps + Agp + Ags. (17)
k

All the data terms may be dealt with at this point.
Lemma 4. For all (t,x)e[0,0) x R3, we have
.| +[B,| + | 4,| + | A < Ce(l + k+t+|x) ™ (1 +k+ 1 —|x]) 222, %),
provided the data is in D(k,M,¢).
Proof. It may be shown that
[ WS, < Cl1y [ omin{e, 1} (18)

|x—yl=t

for any yeCy(R?) for which ¥(y)=0 if |y| = C. Hence, also for ¢eC}(R?) with
dp(»=0if |y|=C,

%(t-l J qs(y)dsy)gt-z [ oS, +e71| | Vo) wds,
Ix—yl=t lx—yl=t |x—yl=t
<C|¢|lmin{l,t"1}. (19)

Now since we may solve the homogeneous wave equation for & as

1 0
= - £| té",(O ,y)dS, +8t(4 —_ j;l té"(O y)dS)

(and similarly for derivatives of &) we have by (18) and (19)
|61+ |V <t71C|&,(0)| s min{t3 1} + C||E(0)| . min {1,711}
S C(IIV AB° = j(O) [l + | E®[l) min {1, 1}

3g%du

<C<I|B°ch+

+ ||E0”c2>(1 +0)7!
<Ce(l+1) L (20)

Again using (18) we have by (7),

E,—&<t™ [ [ C

Ix—yl=t Juj<C

Y emigy

a

2 emzgz

2

duds,

<t | € du| min{¢% 1}

lul<C

<Ce(l+1)71 (21

(4
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and

IVAE; = &)

=t

Vx< J j(l+ﬁ‘W)_l(W—(ﬁ'W)lﬁ)<Zeam§’g2(x+tw,u))dudw)

Iwi=1

=Y [ Ja +a.w)—l(w—(a-w)ﬁ)Vx<Zeam3g2> duds,
Jx—yl=t @ (y,u)
St7IC|[Y egmigldul min{t?,1} < Ce(1+1)7 " (22)

We may estimate A, — 0E,/0x, in a highly similar manner, when we observe that
1Sg2(y,u)| = le,m; ' K(0,) V,g5(y,u)| < Ce.
The result is, again,

0E
A _ z
0

<Ce(l+1t) L 23)

Xk
Now, collecting (20) through (23) we get
|E,|+ |4, < Ce(1 +1)~ 1.
However, E, and A, vanish on the sets |x| <t — C and |x| >t + C, so
|E,| +|A,| S Ce(1+k+t+|x]) M1+ k+t—|x|)2Z(t,x).

The estimation of |B,| + |4, is very similar and is omitted.

Estimation Using Neutrality

As noted earlier if we take data in 2(k, M, ¢) with ¢ <5 =1,, then it follows from
the continuation result of [4] that a unique continuously differentiable solution
exists and satisfies the (FSC) on some time interval [0, T,). We may take T, to be
as large as possible. In this section we make crude estimates using the neutrality
assumption, i.e.

Yemigs| +IE%|a+B<e, (24)

which show that T, tends to infinity as ¢ »0. Although T, actually depends on
the data, the following estimates depend only ¢ (and k, M, m,,e,).

Lemma 5. Let us denote
Va(s) = ,Va(s’ t’ x’ mau)
and

I (s) =X (5,8, X, mu).
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Then for all (t, x,u)e[0, T)) x R® x B3, we have
I 1 0) = mi 144 (0)] + 12,(0) — 2, 0)
< CJ(1+9)(1 Bl + | BO)a)ds,
1V 1 1974(0) = 17 9 O] + 1V (2,(0) — 7, 0)]
= CO (1B + | BO)L)ds,

and

IV(x,u)'%‘u(O)l + lV(x,u)aVa(O)l é C(t)

Proof. Recall that

T @) =7 (1) =m2 + |V (1)}~ 1129 (1)
and
V(1) = e, [E(t, Z (1)) + 7 (1) 4Bz, 7 ,(1))].

Note that /

IV(x,u) A1/01(7:)| é C[ ” E(T) “:1 IV(x,u)'%ﬁa(T)‘
Ve s B@) o + [ B(t) |11 Vi, Za()]]
S CULE@ e + IB@ ) (| Vi, Z o0 + Vi ¥ WD) (25)

and
Ve @20 = Vi, 7 (0] £ C1 Vi 0] (26)
Now for 0=Ss<1t=t< T, we use (25), (26) and the (FSC) to obtain
Vi@ 28]+ Ve 7 a(5)]

=C+C j (1 +TE@ e + I BEH( Ve Z D] + Vi ? o0))dr

!
_—<—_ C + Cf(lv(x,u)'%\a(‘tn + |V(x,u) 41/01(":)‘)(11:‘

Hence by Gronwall’s inequality we have
,V(x,u)'%‘a(s)’ + fV(x,u) y/a(s), é C(t) (27)
for all se[0,z].
Note that Z,(5) = Z1(5), V(@) — 1 (), m; ¥ ,(s)—mi 14", (s), and
Ve (mg ' 4(s) —my * ¥ ((s)) all vanish when s=t. Thus for 0<s<t< T,
t . .
Img 27 o(s) —my Y () S [(Img 1,0+ Im M ()] de

< CIIE@ o + | B@))de, 28)
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and by (25) and (27)
[Vieuy(mg 29 4(s) —=mi 71 ())| £ CO) [ (| E®@) [ + (| B(D) [[1)dr. (29)

In the same vein, by (28) we have
t -~ -~
|Zos) = Z ()| S [V ol7) = 771 (x)] de

j m; Y, m{ Y,
sl/1+ mg 197, f+|mf1V|

éCIlmJl“f/a—mfl’VlldféCHC(II E@®@)|co + [ B(7) || 0)dTdT

=C f E =) E@) |0 + || B(D)||,0)d7.

Let “0” denote partial derivative with respect to any component of x or u. We
compute
AT =T ) = =} + |V )2V 0V 4 (4 |V, 2) "V 20v
+(m3 |V )TN 0V — (i + |V D)oV
Define for ueR?
Bw)= —(1+ [ul*)"*u‘u
and
Ew) =1 +u®)™
Then by (27), (28), and (29),
10(75(s) = Fh () = 1BOmg 1 97)-8my ¥ ) — Bmy ¥ 1)-dmi ' 47)
+&m, 7 )0(mg MY g) — Emy * Y1) 0(my Y
<|Bmg 'V MOmg *V y—my V)|
+1Bm; 1V ) — Blmy 7))l 0(my 1Y)
+1&m; VI omg G —my )
+1&m, 1 97,) — Emy )| 0my 7))
sClom, 'Yy —mi ')
+Clmg 9y —m V10974

< COJ(1E@ |+ | B@))ds

Thus
Vi (Za(5) = Z1 ) S [ |V (F o(1) = 71 (1)) de

< C(t)i(n E@) |l + | B@) )dide

D S A ——

<C j|)Ez)n,+||B(r)ll 1)dt

The proof is now complete.
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Lemma 6. For 0<t<T,,

Y€, 4, (t) JSet Ci(l + ) ES) o + [ B(s)ll0)ds,

and

Y e,ma g, (t)

=COe+ C(t)i( IE®) e + [ B(s) lc1)ds.

Proof. First we recall that
9a(t, %, u) = g2 (Z 40,1, x, myu), my V7,0, 8, x, m,u)),
SO we may write
Yoeamgalt, X, u) =Y e,m3 [g(% (0, t, x, myu), my ' 97,0, 1, x, m,u)),
) a—gg.(% 0,t, x,myu),m; 19 ,(0,t,x, myu))]
+Ze m3g2(X ,(0,t, x,myu),m; v ,(0,t,x,m u)). (30)

Now by (30), Lemma 5, and the neutrality assumption

< Yledmi g2 1 (12,(0) — Z1(0)|

2. €am3g,(t, X, 1)
a

+1m 1V (0) —myi 174 (0)]) +

c0

<ot cj)(l + (I EG) o+ | BS) [ o)ds.

Let “0” denote partial derivative with respect to any component of x or u.
Then again using (30), Lemma 5, and the neutrality assumption we have

l(?(Zeamfga(t, X, u)) = Zeami [V<92(Z ,(0),m; ' ¥, (0))-0(Z ,(0))
+ Vg5 (£, 0),m; 1 ¥7,(0)-0(mg ' ¥7,(0) = V.92 (X1 (0), my ' ¥71(0))- (%1 (0))

= Vg2 (&1 (0),my 1971 (0)-0my 1 ¥71(0)]

+| Y em[V.g2(%1(0), my *¥1(0)):0(Z1(0))

+ Vg2 (& 1(0),my 1¥71(0)-0my 71 (0))]

< CZ(Ilng les L10(2 (0) — Z'1 ()] + [0(m, ' #7,(0) — my 171 (0)]]

Vg (Z,0),m, 1 V74(0) = Vg2 (@1 (0),my ' 71 (0)[10(Z1(0))]
+ Vg2 (Z 0, mg *47(0) = Vg (@1 (0),my 971 (0))]|60my 1771 (0))])

Ze m; )l +0(m; 71 (0)])
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= C(t)<z g2l )f IE(s)[ler + [ B(s) lle1)ds

+ CO)Y 190 1a(120) — 2, (0)] + [mS ¥ ,(0) — my 47, (0)]) + C(0)e
< C(t)e + C(0) j)( VE) o + | BS) o) ds.

The lemma now follows.
Lemma 7. For te[0, T,),

HE@ et + 1 B@ s + I Er(@) o+ | Br(®) o + | A2(D) lco + | Arr(©lleo + | Asr(2)
+ Ars@lleo + [ Asr () + Ars@) leo + [ Aw() o + [ 4,0 o < £CC0).

We point out that it follows from Lemma 7 that T, tends to infinity as ¢—0.

Proof. Since t < T,, the (FSC) holds and hence by Lemma 1 the support of
Uy e,m3 g,l(t, x, u)

is bounded. Hence by (8) and Lemma 6

[Erls | Ix—yI7% | |[CYe;mig,(t—Ix—y])| dudy
|x—yl<t Juj<C @ c0
SC | lx—=yl2[Cle—Ix—yle

[x—yl<t

t—lx—yl

+C—Ix—yl) g (IE(s)ller + 1 B(s) |c1)ds]dy

<c@ | Ix —yl_2<8 + :I)[H E(s)llc+ + 1 B(s) Ilcx]d5>dy

[x—yl<t
= C(t)<8+ (f:[ll E(s)ller + 1| B(s) IIa]dS>. (31

Similarly by (9)

|Esls | Ix—yI™" | C

Ix—yl<t lul<C

(E@E—1x=yD e+ 1Bt =[x — ] [l 0)dudy
SC [ Ix—=yITHUEE—Ix—=yDllo+ [ Bt —|x—yDw)dy

lx—yl<t

= C(t)i(ll E) i + 1 B() I, )ds. (32)

YeZmZg,(t—|x—yl)

a 0

Also using the boundedness of the u-support we have by (16) and Lemma 6

4,/ | C

lul<C

Y e.m; ga(t)

a

duz C(t)<8 + I(I[ E($) e + [ B(s )Hc‘)dS)' (33)
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It follows from Lemma 4 that
|Ez| +14,| = Ce. (34)

Now we consider A;y, Agr + Aps, and Agg. In light of (14) we may use (11)
to write

|Arel=| [ Ix—=yI7 | a(WM(Zemgat—Ix yl,y,u)

[x—yl<t Jul<C

_Zeami}ga(t— Ix —,VI,X, u)>dudy

< § bl | C|Temiat =y v yidudy
§IX_I'<t|x—y|‘2C g‘,eamiga(t—lx—yl) i
Now by Lemma 6 y
AnlsC | |x—yr2ca—|x—y|)[a+'_"j;”(||E(s)||cl+uB(s)||cl)ds]dy
< C(r)[s + j (1EO) s + | Bs) ucl)ds} (35)

To estimate A;g + Agr we integrate by parts (in the u integral) in (12) and use the
identity Sg, = — V,"(e,m, ' Kg,):

(Aps+ Agrl=| | Ix—y" | Vu[b(w,a)]-(zeingm) dudy]
Ix—yl<t lul<C a (t—|x—yl,y,u)
< [ lx—yl 2 CLIE®—|x—yD) o+ | BE—1x— y])lo]dy
x—yl<t
e j)( VE(s) e + | BS) o) ds. (36)

In order to perform a similar integration by parts in (13), note that

Szga = S(_ Vu.(eama- lgaK))

= - Vu'(S(eama_lgaK)) + Zau M

Ou; 0x; ’
and hence
Ass= | Ix—=y|™" | V,(cw,1) (Zezmzs(ga )) dudy
x—yl<t lu/<cC (e~ 1x—ylyw)
on; (g, K
+ [ Ix=yI7t | cw,d)) eZm ; 3gK) dudy.
Ix—yl<t lul<C « 07 Ou; 6yj (¢~ Ix— yl,y)



368 R. T. Glassey and J. W. Schaeffer

Note also that
8(9.K) = (S9,)K + 9,(SK) = — (V,(e,m;  Kg,)K) + g,(SK),

o)
Ags =1+ 11 +1II, (37)
where
_ 0%(c(w, 1t
1= | ey [ gTEOs o, dudy
x—yl<t m<cii OU « (-\x—yl,y,u)
O= | |x—y|™*' | Vu(c(w,d))'(ZefmﬁgaSK> dudy,
x—yl<t lul<C a (t—|x—yly,u)
M= | |x—y/™" | cw, u)Zem )‘ dudy.
Ix—yl<t lujl<C a a —[x—yl,y,u)

Using the (FSC) and the bounded u support, we have
t
s | |x—=yI"'CIK(E—|x—yD]&dy < C(t)g(HE(S)Hco + 1 B(9)llco)ds.  (38)
[x—yl<t
Next note that
[9(SK)(@) [0 + V(g K)D) |0 < CUIK @)l e + 10K () o) + I K@) | co [l ga®)| 2. (39)
By Lemma 6

Y e ga(t,y,u)|du < C(t)e + C(t)f(ll E(s)[le + 1 B(s) [[c1)ds

a

lieyls |

juj<C

so by Maxwell’s equations
10.K (@)l = 1K() |1 + C(t)e + C(1) i (LE) s + | B(s)ll 1) ds. (40)

By Lemma 5
IVgalt, )| = |V [g3(Z (0,8, x,myu), my 97,0, 1, X, m,u)) ]|
S 1V92 ol Vo2 (0, 1, x, mau) | + [[V,,92 o] V¥ 74(0, £, x, myu) m, !
<C()
Similarly
IVug.(t, y,u)| = C(1),

SO

lg2(0)ll s = C(0). (41)
Now use of (40) and (41) in (39) yields

lg(SK)®)lco + IV(gK) (D) [[c0 = C(t)[ K@) e + e+ i(ll E(s)fler + HB(S)II.:x)dS],
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and hence

[+ s | [x—yl7'C)

Ix—yl<t

t—|x—y|
'[H Kt —Ilx=yDla+e+ g (I EGS)llex + 11 B(s) ch)dSde

RS C(t)[8+i(ll E(s) [l + 1 B(s) ch)dS]. (42)
Therefore, by (37), (38) and (42)

[Assl = C(t)(e + i LIE(S)ller + [ B(s) Hcl]dS>- (43)
Now collecting the estimates (31) through (36) and (43) we have (by (6) and (10))

IE@e = C(t)<8 + i[llE(S) lles + IIB(S)Ilcx]dS)-

The estimation of || B(z)||,: is omitted since it is highly similar and clearly leads to
the same result. Thus if we let

0O =IE® |+ 1 BOI .,
then

o £ C(t)(s + jQ(s)ds).

In order to apply Gronwall’s inequality we fix Te[0, T,). Then for all t€[0,T],

00 < C(T)[s ¥ iQ(S)dSJ-
0
Hence (by Gronwall)
Q(t) = C(T)eexp(C(T)1)
for all te[0, T]. In particular
Q(T) = C(T)eexp(C(T)T) = C(T)e,

and the proof is complete.

C°-Estimates Without Neutrality

The estimates of this section rely on dispersion and will be used for large values
of t only. E and B are estimated first; their spatial derivatives will be estimated in
the next section.

To estimate E; note first that by Lemma 3,

JA+aw)™(1 —[a?)@ + W)<Zeamiga(t —Ix —yl,y,u))du

<c | Ylfdt—Ix=ylLyo)ldv<CA+t—|x—y) Xt —|x—yl,y)

L—lx—yly)
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for 0 <|x—y| <t < T,. Note that any possible cancellation in the ¢ summation
has already been discarded. Now by (8)
|EflSC [ |x=yI2A+t—=Ix—y) Xt —|x—yl,y)dy.
[x—yl<t

On the support of &, where |y| <t—|x —y|+k,

L+k+t—|x—yl+yl=CA+1—]x—yl)
o)
|Efl<C | |x—yl2(L+k+t—|x—yl+]y})~>dy (44)
x—yl<t
for0<t<T,.
To simplify (44) we will use the following Lemma, which is Lemma 7 of [5].
The proof appears in [5] and is not included here.

Lemma 8. For any continuous functions g(t, 1) of two real variables, and h(o) of one
real variable,

t Ix|+t—1

§ogt=lx=yLlyDh(x—yDdy =1 [ g(z,)AdA(t — 7)h(t — 7)dx,

x—yl<t X101y "4

2n

where the integration on the left is over a ball in R3.
Lemma 9. For all xeR? and t =0 with |x| <t +k,

[ Ix=yI 2+ k+t—Ix—yl+Iy) Pdy<CA+k+t+r)" A +k+t—r)~ L

Ix—yl<t

Proof. By Lemma 8§
[ olx=yI2A+k+t—=lx—yl+]y)"3dy

x—yl<t
2n1|x|+t—1
== [ (I+k+t+A)732dAr—1) 'dr. (45)
le O |lx|—t+1|
We denote
r=|x|
and
(t—r), = t—r if t—rz0
Tl 0 if t—r<0.

Case 1. Assume r<i(1+k+1). fO<t<t—r, then
M=) 'St—t+nit—1) ' St—1t+t—1(t—-17)"1=2
Hence

t r+t—t
[ (U+k+c+)72AdAt—1) "de
0lr—t+1|
a=r,t—c+r
<2 [ | (4+k+t+ ) 3dhdr
0 t—t—r
t rtt—z
+ | [ Q+k+c+A)72dA(t—1)""dr

t=r,r—t+te



Global Existence for the Relativistic Vlasov—Maxwell System 371

t=r, t
<2 [ 2r(4k+r+[t—t—rD)Pdt+2 | (I+k+t+[r—t+1]) ?dt
0

@,
Sdrt—r) (A +k+t—r3+2r(l +k+t—r)"2
<6r(l+k+t—r)2<6r(l+k+t—3[1+k+¢])?
<Crl+k+t4+r) "A+k+t—r" (46)
Case 2. Assume r = 4(1 + k + t), then

trt+t—rt
[ ] (4k+r+)32dat—1) "dr
Olr t+1

tr+t—
< j 1+k+1:+/1)_2d/1(t—r)“1dr
Olr—t+

. -n,
§2j(1+k+r+|r—t+1|)‘2dt:2 | Q+k+t—r)2de
0 0

t
+2 [ (I+k+2t+r—02de

§2(1-(It-kr)-itt—r)—2(t—r)++(1+k+2[t—r]++r—t)_1
SCl+k+t—r)'<Cr(l+k+t+r" "1 +k+t—r)""1 47
Now, if we use (46) and (47) in (45) we obtain the desired result.
Lemma 10. For 0<t<T,,
|[Ep|+ By SCA+k+t+|x)) 1A+ k+t—|x|)~1Z(t, x).

Proof. Note first that E; =0 on |x| > k + t by (8) and the support property of g,.
The estimate for E; now follows from Lemma 9 and (44). The estimate for By is
similar.

To estimate Eg and Bg we will use the following lemma which is a space-time
version of Gronwall’s inequality.

Lemma 11. Given T, > 0, define
% =Co({(t,x: 0=t < T,, xeR?, |x| S k + t}).
Given D >0, A >0, pe(0,1], and qe[0,p + 1], define £:€ — %€ by
Luy=A1+k+t+]x]) P01 +k+t—I|x]|)72
+ [ Z—Ix—yLylx—=yIT' DA +k+t—]x—yl+|y) 3

Ix—y|<t
u(t—[x—yl,y)dy.
If ve¥ satisfies v < L (v) (on |x| Lk +1), then
v<24ePp Y1+ k4+t+|x) P01 +k+t—]|x|)¢
on|x|<k+t.

Proof. Standard techniques show that .# has a unique fixed point u €%, and that
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£"(u)—>u, for every ue%. We will construct ze% such that #(z) < z. Then
VELW S LW S L)y,

and
U LRSS LS LDz

In particular v < z, which will give the desired inequality.
Take r=|x|<t+ k and

z(t,x) = oz (t + 1)z, (t — 1),
where
(&) =(1+k+ &7
M =Q0+k+n)"exp[BD(1 —[1+k+n]"")],

and a, f are to be chosen later. By Lemma 8

[ Ze—Ix—yLylx—y ' DA+k+t—|x—yl+[y) " >z(t—|x—yl,y)dy

[x—yl<t

_ ZT’Ig |_j;|% D=1 1D+ k414 A)2az, (¢t + Azt — HAdAt —1)dr,
where we are abusing notation by writing
Z(1,y) = Z(,yl)
Making the change of variables
E=14+4 np=1—14,
we obtain

JoZ@—lx=yLylx =y DA +k+t—|x—yl+|y) " z(t —x—yl,y)dy

Ix—yl<t

< Dot [ (1+k+972,(0) [ 20— ndnde

gCDocr‘1<t:j”(1+k+6)_2_”d6><t]r22(11)dn>. (48)

—k
To estimate the ¢ integral note that if r > 3(1 + k + ) then
t+r 1
-1 1+k T2TPdEL —— (A +k+t—r)"17P
’ tir( Tk §_I+k+t1+p( Tkt

<Cl+k+t+n) Y(1+k+t—r"177 (49

Ifr<i(l+k+1),

t+r

P (k48 2 PdE < ) (14 ki —r) 277

S2l+k+t—3[l+k+t]) A +k+t—r) """
SCU+k+t+r) A +k+t—r)" L7 (50)
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For the # integral in (48) note that
t—r
_jk z,(n)dn
t—r
S(A+k+t—r?* 79 f 1+k+n) "7 texp[ D1 —[1+k+n]"7)]dy
—k
=(l+k+t—r)?*179BDp)~ texp[BD(1 — [1+k+n]" ") ]I
S(A+k+t—rP 17 9BDp) texp[D(1 —[1 +k+t—r]7P)]. (51)
Now we substitute (49), (50), and (51) into (48) to obtain

[ Z@—Ix=yLylx—yI7 DU +k+t—|x—yl+|y) "zt —|x—yl,y)dy

x—yl<t
SCDa[C(L+k+t+n) " A +k+t—r)177]
(L+k+t—r)* 1 ~4(BDp) " exp[BD(1 —[1 + k+1—r]77)]
=CB™'p A +k+t+r) 'z
Hence

F)SAQ+k+t+r) PA+k+t—r) 7+ CB 'p 1z (52)
Now we take o =2A so that
AQ+k+t+r) P1+k+t—r) 95z
and hence by (52)
L@)<F+CP 'p )z
Finally taking B =2Cp~?, we get
ZL(2) =z,

so (as shown before)
_ _ 2CD B
v=Sz=2A0+k+t+r)"?(l+k+t—7) "exp[T(l—[1+k+t—r] ”)]

<2Aexp(CDp™ Y )(1+k+t+r) " ?(1+k+t—r)"%
The proof is now complete.
Lemma 12. There exists a function D:(0,n,)— (0, 00) such that
liI;i+ D(e)=0

and
|E(t,x)] + |Bt, )| D)1 +k+t+|x)~3* A + k+t—|x|) " 3*%Z(t,x)

for0<t<T,.
Proof. Note first that by Lemmas 4, 7, and 10,

|E | +|B,|+|Ep| +|Br| £ Ce(1 + k+t+|x)) 11 +k+t—|x) 12, x)
+min{C(t)e, C(1 +k+t+|x)) " '(1 + k+t—|x|) " 2(t,x)} (53)
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for 0 =t < T,. Before proceeding let us simplify this estimate. Writing r =|x| and
taking r <k +t, we note that
(I+k+t+r* 1 +k+t—r)*min{C)e, Cl+k+t+r) *A+k+t—r)""}

Smin{C()e(1 +2k+ 202, CA+k+t+r) "V *(1+k+t—r) 14

<min{C(t)e, C(l+k+1)""*} <Cmin{C(t)e,t~**}. (54)
Define D(e) to be the maximal value of the mapping

te(0,00)> Cmin{C(t)e, t~1/4}.
Note that
lim D(e)=0, (55)

e=0+
and that by (54)

min{C(t)g, cQ +k+t+r)‘1(1 +k+t—r)_1}
SDE)(L+k+t+n) (1 +k+t—r)~3*

for r<k+t. Hence by (53),
|E,|+|B,| + |Eq| +|Bg| £(Ce+D(e))(1 + k+t + |x|) " 3* (1 + k+t—|x|)"3*%(t,x)

(56)
for0<t<T,.
Now we consider Eg. By (9)
Esl< | Ix—yIm JIVLL +d-w] ™ [w + d])| <Ze3mfga>K dudy.
Ix—yl<t ] (t—|x —yl.y.u)
By Lemma 1 the u support is bounded for 0 <t < T,, so by Lemma 3
A B (R VA ey
[x—yl<t Flt—|x—yly) *
(EN+ BNy @y
SC | Ix=yT' e —Ix—yl,yCA+t—|x—y))7>
[x—yl<t
'(|E|+|B|)'(t7|x—y|,y)dy' (57)

Note that for |[y| <t —|x—y|+k,
A+t—|x—y) > SCA+k+t—|x—yl+|y)~>

The same analysis of By reveals that |Bg| is bounded by the right-hand side
of (57). hence (for 0=t < T)),
|Esl+|Bs|<C | |x—yl"'Z(t—Ix—yl)

[x—yl<t

(k4 t—1x =yl + 1D UE +BDl, o ypdy. (58)
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Now using (56) and (58) in the representations (6) and (6B) we get

|[E|+[B| £ (Ce+ D)1 +k+t+|x|)"¥* (1 + k+t—|x]|)"¥*Z(t,x)
+C | lx=yI7' @ —Ix—y,y)A+k+t—]x—yl+]y)~?

|Ix—yl<t

(|E| + |B|)|(z—\x—y|,y)dy' (59)
We now apply Lemma 11, with g = p = 3/4, and obtain
|E(t, x)| + | B(t, x)| £ 2(Ce + D(g))e“(1 + k +.t + |x|) ¥4 (1 + k +1—|x|)~¥*

for0<t<T,and |x| <t + k. Now since E and B vanish on |x| >t + k, the lemma
follows.

Corollary to Lemma 12. For 0 <t < T,, we have
1j(®)llco < CD(E)(1 + 1)~ 4,
where D(g) is as in Lemma 12.

Proof. By Lemmas 6 and 12 we have

<5+ C§(1 T+ LIES) o + | BS) leo]ds

Y em3g,(1)

0
t
<e+CD()[(1+5)*ds < CD(e)(1 +1)>*.
0
Now using Lemma 3 we have

< CD(e)(1 + 1)~ "4,

c0

i, x)| < C(1+1)~3

Y eam3 g, (1)

C!-Estimates Without Neutrality

Our goal in this section is to obtain the analogue of Lemma 12 for derivatives of
the fields. Explicitly, we will show that there exists a function D(¢) mapping
0 < ¢ < n, into (0, co) with the properties that D(¢) = o(1)ase—>0andon 0=t < T,,

|E((t, )| + | By(t, x)| S D(e)(1 + k +t 4 |x|) 341 + k + ¢t — | x])~7*& (2, x).

This will enable us to establish the validity of the (FSC) for all times ¢ > 0.
We begin with the representation (10):

0 .
Ox E'=A,+ A, + Arp + Ars + Asy + Ass, (10)
k

where the various terms are given in (11)—(13), (15)—(16). We will estimate 0E'/dx,
only, since the estimates for dB!/dx, are nearly identical.
By Lemma 4, we already know that

|A,| < Ce(l +k+t+]|x) (1 +k+t—|x]) 22, x). (60)

In order to estimate A, we require
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Lemma 13. Let n, be chosen as in Lemma 2, and let the (FSC) hold for 0 <n <1,,
0 <t < T,. Then there exists a constant C depending on k, 1, e,, m, (but independent
of t) such that for all ueR?, |x| <k +1t, 05t < T, we have

max |V.g,(t, x,u)] £ Cmax | g; |1,
a a

max|V,g,(t x,u)| £ C(1 + t)ymax [ g [ c:-

Proof. This is a slightly modified version of Lemma 5 of [5]. Indeed, the (FSC)
shows that the kernel I(s) (appearing in (25) of [5]) now becomes (1 + s)~*'%. The
pointwise inequality for V,g, appearing above Eq. (26) of [5] now has the kernel
c(1 +5)~ %2, which is integrable. The argument is concluded by simply noting that
(1 4 s)I(s) = c(1 + 5)” 32 remains integrable.

Now we can estimate A,, and Ar:

Lemma 14. Let r =|x|. There exists a constant C independent of t such that for
rt+k 0<5t<T,,

A |+ A SCA+k+t+7r)" (M +k+t—r)"?log(l +k+t+rZ(t,r).
Proof. From (11) we have

ATT: I Iy_x,_sja(w’ﬁ)<zeamsga(t—|x—y,’y9u)>dudyﬂ (11)

Jx—yl<t
and the kernel a has zero mean value over |w|=1 by (14). Consider the
integral A%} defined to be that taken over the set 1=<|y—x|=<t We
have
IA(T}T)’Iéc _[ '%"ly_xl_z’ I Zlfa(t—lx")’I,y’U)ldU

1€ly—x|st Fl—x—yly) *
Z(t—|x—yl,y)dy
lgley|§t|y —xls(l +t—|x _Y|)3 ’

where we have used Lemma 3 to bound the measure of &. On the support of Z,
where

IIA
a

IYISk+t—|x—yl,
we have

L+k+t—|x—yl+|y SCAL+t—|x—yl)
hence

Zit—|x—yl,yd
AgH<C | o {
1§|Y—x|§t,y—x| A+k+t—|x—yl+]y])

and by applying Lemma 8 we arrive at

t—1 r+t—t
AL < Cr1 | dt X (r,A)AdA

—_— 61
o =12, _p_y(I+k+1+2)] 1)

This integral is split up into integrals over [0,t/2] and [¢/2,t —1]. We assume
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without loss of generality that ¢t is large. Then

t/2 4 t/2 r+t—t dl
d A
f tz I T|r ‘!.+1|(1 +k+T+ﬂ')2
4‘/2 t+r—1)—|r—t+r1|

(1+k+t+r)(1+k+t+|r—t+r|)

4 =Ny 2r p 2(t—1)dr
<- -
:t2(1+k+t+r){ J dot | }

o l1+k+t—r =, 1+k+2t—t+r
< 4 2r + ! 2(t d
S +k+t4n " 1+k+t—r“jr (t =)
SCr(l+k+t+r) 20 4+k+t—r)" 1 (62)

since r £t + k. For the integral over the complement we have

t—1 t _3l—lr+t—r. d t —3¢-1 d

12 42 jr_tq g2 L—1
t
<Cr(l+k+ t)’3-10g<5> <Cr(l+k+t+r3logl+k+t+7r), (63)

since again r <t + k. Using (62) and (63) in (61) we certainly get
AR SCA+k+t+r) A +k+t—r) " 2logl+k+t+r)ZEr). (64)
Returning to the formula (11) for A4, we can write the integral over the set
ly—x|<1 as

IA(%%IE j Iy_xl_aja(w’ﬁ)zeamaat[ga(t_lx—ylay5u)

[x—yl<1

_ga(t - Ix - )’l,x’ “)]dudy >

since [ adw=0 by (14). Again, by Lemma 3, the u-integration is taken only
{wl=1

over a set of measure less than C(2 4+t — [x — y|)~>. Now we apply the mean-value
theorem to the integrand of A%}, noting that |V,.g,(¢, x,u)| is uniformly bounded
by C|/g%|.: in view of Lemma 13. Thus

i Z(t—|x—yl,y)dy
x—yl<1 ly—xPQ+t—|x—y|)?
3

| AP} < Cmax || gg ||
a

For large t, this integral is clearly dominated by Ct™°, and hence also by

C(1 + k+t+r)"3, hence also by
CA+k+t+r A +k+t—r1)2Z(r),
since r £t + k. Using this bound and (64), we see that
[Arp| SCA+k+t+r) A +k+t—r)"?log(l +k+t+r) Z.
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This is the desired estimate for A;r.
Turning to A,,, we have from (16)
Aw = ’—jd(W, d)zeamgga(t9 X, u)du~ (16)
By Lemma 1, the kernel d is uniformly bounded, as are the g,’s. By Lemma 3, the

u-integration in (16) is taken only over a set of measure less than C(1 +1¢)73.
Therefore A,, satisfies the same estimate as 4,4, so we have proven Lemma 14.

Corollary to Lemma 14. For r<t+k and 0=t < T, we have
[A,|+ A, |+ |App| SCA+k+t+r) YA +k+t—r)"2log(l +k+1t+7)
This follows immediately from (60).
Lemma 15. There exists a function D,(g) on (0,7,) into (0, 00) such that
D,(e)=0(1) as &—0,and
[A|+ Ayl +Arrl SDy ()1 +k+t+7) ¥ * A+ k+t—r)""*2(t,7)
for0=t<T,.

Proof. By Lemma 4, 7, and 14, we have
[A,| +1A4,| +|Arp| S Cmin {Ct)e,(1 +k+t+7r)"*
(I+k+t—r)2log(l+k+t+7)}
for r <k +t. Note that for r <k +1¢,
A+ k+t4+r)*1 +k+1t—r)"*min {C(t)e,
A+k+t+r)" A +k+t—r)log(l+k+t+7r)}
< Cmin {C(t)e, ¢t~ '8}
Define D, (¢) to be the maximal value of the mapping

tr>min {C(t)e, t 118},
Note that
lim D,(e)=0

=0+
and also

min {C@)e,(1 +k+t+7)" A +k+t—r)2log(l +k+1+r)}
SCD ()1 +k+t+1) A+ k+t—r)7*

for r <t + k. Hence
|4, + A, + A7l SCD ()L +k+t+1) ¥ * A+ k+t—r)""*
for r <t + k. But
14,1+ 14, +1A77| =0

if >k +t, so the proof is complete.
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Lemma 16. There exists a function D,(¢) on (0,7,) into (0, 00) such that
D,(e)=o0(l) as &—0,and
|Asr+ Ars| S D)1+ k+t+1)* A +k+t—r) "*X(t,r)
forO<t<T,.
Proof. By Eq. (12) we can write

Ars+Asp= | Ix—yI_ZIb(W,ﬁ)<Zeamnga(t—Ix—yl,y,u)>dudy, (12)

[x—yl<t
where the kernel b is bounded for bounded u, as is the case by Lemma 1. Since
Sg, is the u-divergence of —e,m; *Kg,, we can integrate (12) by parts in u (as
was done in (36)) to obtain, with & =%t — |x — y|, y),
|[Ars+ Asp|SC | Ix—y|7%

[x—yl<t

I YIK@E—=Ix =yl fo(t —x = yl, y, v)dvdy.

Ft—Ix—yly) *

By Lemma 3, then,
|[Aps+ Asr|SC [ |x =y 21K =[x =y, )I(1 +1—[x—y|)~*dy.
Ix—yl<t
We may replace (1 +¢—|x—y|)"3by C(1 + k+t—|x— y|+|y|)” 3 on the support
of Z, and apply the bound for K from Lemma 12 to get
|Ars+ Asp| = C
2D(e)dy

[y =xPP(U+k+t =y =x|+ [y A +k+ 1=y —x|+]y)>*(1+k+t—|x—y|—[y])¥*

|x—yl<t
where D(¢) = o(1) as € » 0. The factor 1 + k +t — |x — y| —|y| exceeds unity on the
support of Z, and moreover
l+k+t—|x—yl+yl21+k+t—r,
so that
Z@—|x—yl,y)dy
e ey = xPA+ k4t =y —x|+y])?
SCDE) 1 +k+t+r) YA +k+t—r)""*%@,r),
where we have used Lemma 9 in the last line. This is stronger than what is required
in Lemma 16.
Lemma 17. For all xeR3,t =0, p = 3, and qe[0, 1) we have

= | Ix=yI"'A+k+t—|y—x|+[y)7?

|x—yl<t
A+k+t—|y—x[—|y) 1%~y —x|,y)dy
SCl—g) M 4+k+t+r M1 +k+t—r)3"P792(@,r)

|Ars + Asr| SCDE)(1 + k+1t—r) 34



380 R. T. Glassey and J. W. Schaeffer

Proof. By Lemma 8 we have for [x|<k+¢

2 tr+t—t
I=0 ] (k442 +k+1— )9 (x, H)Adide
Or—t41
tr+t—t
S [ | (U4 k+T+ D) TP+ k47— A) (5, M) dAde.
Olr—t+1]

Changing to the variables ¢ =1+t and =1 — A, we obtain

t+rt—r

FSCrt [ [ (+k+O (1 +k+ ) dnde
t—r —k
SO =g (k1= [ (L4 k+ 9P,

By the computations in (49) and (50) we see that

t+r
rt (L +k+ ) PAdESCL+k+t+r) M +k+t—1)277,
)

and hence (for |x| <k +1)
ISCl—g M+k+t—n 0 4+k+t+r) (A +k+t—rP"2
The Lemma now follows since ¢ =0 if | x| >k +¢.

Only the term Agg in the representation (10) for (9/0x,)E* has yet to be estimated.
From (37), we have

Age=T1+T1+111,

where the terms are given explicitly beneath (37), and will be written again below.
Since the velocities u are bounded by Lemma 1, the kernels (3%/0u,du;)c(w, 0), etc.
are uniformly bounded. For the first expression we have

. 0%
H=| [ ly=x"fY ﬁuﬁu‘(w’u)egmaguKin
1 J

ly—xf<t b
dy
1y~x|<t|y — x| Fe~1x—yllyl)

SC [ Ix=yI"' D)X +k+t—|y—x|+]|y])"*2
ly—x|<t
A +k+t—[y—x[—[y) 722~y — x|, y)dy
SCD*e) [ |ly—xI"'A+k+t—ly—x|+[y) P2t~y —x|,y)dy,

ly—xl<t

ydudy

(t=lx—yly.u

<C

[K(t—1x =y, )Y fult =[x — y|, y,v)dv

where we have used Lemmas 3 and 12. Now using the fact that D(¢) = o(1) as ¢ —»0
and Lemma 17 (with p =9/2 and ¢g = 0) gives us

I SCD*e)(l+k+t+r) A +k+t—r) 3227
SCDE)1+k+t+r) 31U +k+t—r)"*%(t,r)

for ¢ sufficiently small.
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Now for terms II and III, we have from (37)
H+I= | |x—y['Z[Y e2mZH(t—|y—x|,y,u)dudy, (65)

ly—x<t
where
H(t_ ’y_xlayau)= Vuc(wsﬁ)'ga(t_ ly_xLy’u)SK(t_ 'y_xlay9u)

+eln) Y, 2 (g k) (66)

J (t—|y—xl,y,u)

By the definition of S, |SK| = C(IK, |+ |K,|), and by Maxwell’s equations
[Ki(t,x)| = CIK (t,x)] + ] j(t, x)].

Moreover, by the Corollary to Lemma 12,

ISK| = C(IK,(t,x)| + D(e)(1 +1)~7/%). (67)
The last term in H involves
0 0K; dg
- K . 4
3 9.K)=9 o, P

The first of these is of the same form as above. Hence we can write
H(t—1y—x|,y,u)
=0[ga(t—ly—XI VK (t—1y—x|, )|+ D)1+t —|x—y])~"*}]

09,
+elw, u)z ,K (1= 1y =) 52y = x|, ) (68)
j
To handle the integral of the last term here, we again replace 0/0y; by appropriate
combinations of the operators T; and S beneath (5). Letting ¢;;(w,d)=
c(w,1)0i1;/0u;, we obtain for the integral of the last term in H from (68), the
expression

j |x—yr%ze3m551<,-a.-[1+ LV fak )

ly—x|<t

w;il
+<5ﬂ 144 >Tlgaj|dudy, (69)

where 4 = Z(t —|x —yl,y), and we employ the summation notation. The first of
the terms in (69) is integrated by parts in u, resulting in an integral which is
estimable as I was (because |V,K|< C|B|). The last term in (69) is integrated by
parts in y. There results a term involving only the data, which is estimated exactly
as in Lemma 4, and terms bounded by

C | Zlx=yI" gt =y — x|, p.u) Ky(t =y — x|, y)ldudy

ly—x[<t

+C | Zly—xI"2[g,t—|y—x|,y,u)|K(t—|y—x|,y)dudy.

ly—x|<t
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Thus by (69), the integral of the last term of H in (68) is dominated for small ¢ by
CD(e) (1 +k+t+r)3* A +k+t—r)"*%Z(t,r)
+C | Z{lx—yl gK,
ly—x|<t

1y = X172 K[}y 0 dudy, (70)

where D(¢)=o0(1) as ¢—0.
Now using (70) and (68) in (65), we obtain for small ¢

L+ 101 < CD(e)(1 + k+t+7) (1 +k+t—r) 742 (t,r)

+Z<CD(8) [ Zly—xI"'0+t—1y—x1)""*[g,(t =y — x|, y,u)dudy

ly—x|<t
+C j %|y_x|_ljga(t_|X—Y|,yau)|Kx(t—IX—Y|’}’)|d“dy

ly—xl<t

+CJZ|y —x|7?[g.(t —1x —yl, p,w)| K(t — | x —yl,y)ldudy>~ (71)

The second term here is dominated by

CDee) | Zly—xI"'(1+t—|y—x))""*dy, (72)

ly—x|<t

where we have used Lemma 3. On the support of Z, we have
A+t—ly—x))"PF=CA+k+t—[y—x|+y) "

Hence, using Lemma 17 with p = 19/4 and g = 0, the second term of (71) is bounded
by
CDee) [ Zly—x|"'(I+k+t—|y—x+|y)~"*"dy

ly—x|<t

SCDE)(1 +k+t+r " M+k+t—r)~7"

Thus the second term of (71) is bounded by the first.
The last term in (71) is, by Lemmas 3 and 12, dominated by

C | Ix=yI2ZDE +k+1—|y—x|+[y) 754U +ke+ e~y — x| = [y)~¥*dy

ly—x|<t

SC | lx=yI72ZDE)(1+k+t—r A +k+t—|y—x|+]y]) 3dy

ly—xl<t

SCD(E)1+k+t+r) A +k+t—r)7*2(,r)
by virtue of Lemma 9.
Therefore the bound (71) simplifies for small ¢ to
I+ OIS CDE)(1 +t+k+r)* 1 +k+t—r)"*2(,r)
+C [ Zly—xI"MA+k+t—|y—x|+y) KL —|x—yl, )y, (74)

ly—xl<t

where D(g) = o(1) as e >0 and we have used Lemma 3 again. Our bound for the
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term I above (65) is the same as that displayed in the first term of (74). Summarizing,

we have proved

Lemma 18. There exists a function D,(g) on (0,n,) into (0, 00) such that
Di(e)=o0(l) as &—0, and

|Ags| D5(e)(L + k+t+1) 3+ A+ k+t—r) 742 (t,7)
+C | Zly—xI"'A+k+t—|x—yl+y) 73Kt —[x—yl,y)|dy

ly—x|<t

on0=t<T,.
Lemma 19. There exists a function D(€) on (0,1,) into (0, c0) such that

De)=o0(1) as ¢—0, and

aiEi(t, )| EDEEFENA+k+t4+r)" A +k+t—r) 74
Xk
+C | Zly—xI""A+k+t—y—x|+1y) 73Kt —|x—yl, )dy
ly—x|<t
on0=t<T,.

Proof. By the representation (10) and Lemmas (14)—(18), the result follows
immediately.
Now, since the same estimates hold for (6/0x,)B(t, x), Lemma 18 yields the

inequality
|K (t,x)| < CD(e)(1 + k+t +7)"* 1+ k +t— 1)~ "*%(t,r)

+C | Ix=yIT Akt =]y —x[+]y) @K —x =yl y)dy

ly—x|<t

over 0 <t < T,. We can now apply Lemma 11 with the choices p =3/4, ¢ =7/4,
u(t, x) = | K,(t, x)|. This gives us the inequality

|K (6, X)| < CDE)(1 + k+t 477341 + k+t—r)"*2(,r), (75)

where 0 <t < T,, C is independent of ¢t and D(g) = o(1) as ¢ —»0. Now we observe
that from (75) and Lemma 12, the (FSC) holds on 0 =<t < T, whenever ¢ is chosen
sufficiently small.

Proof of the Main Theorem. From the above, we know that

|E|+ Bl < D(e)(1 + k4t +|x]) 341 + k 4+t —|x|) 341, x)
IV.E|+|V,BI<D(e)(1 +k—+1t+]|x|)"*1 +k+t—|x|)”7*%(t, x)

holds for te[0, T,), provided ¢ is sufficiently small. But recall that T, is just the
maximal time for which the (FSC) holds with n = 5,. Now take ¢ sufficiently small
that D(e) <1#,. Assume T, is finite, then by (76) and continuity we see that the
(FSC) actually holds for te[0,T,+ ) for some 6>0. This contradicts the
maximality of T,, and hence T, must be infinite. Hence the stated decay rates hold
for all time and by Lemma 1 the v-support of each density f,(t, x,v) is uniformly

(76)
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bounded for all o, xeR?, 0 < ¢ < co. This is a sufficient condition for global existence,
as we know from [4], and the proof is complete.
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