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Abstract. Frenkel, Lepowsky, and Meurman have constructed a representation
of the largest sporadic simple finite group, the Fischer-Griess monster, as the
automorphism group of the operator product algebra of a conformal field
theory with central charge c = 24. In string terminology, their construction
corresponds to compactification on a Z 2 asymmetric orbifold constructed from
the torus R24~/Λ, where A is the Leech lattice. In this note we point
out that their construction naturally embodies as well a larger algebraic
structure, namely a super-Virasoro algebra with central charge c = 16, with the
supersymmetry generator constructed in terms of bosonic twist fields.

1. Introduction

A fundamental example of the techniques of conformal field theory arises in the
construction of a moonshine module for the Fischer-Griess monster (the largest
sporadic simple finite group) by Frenke], Lepowsky, and Meurman (FLM) [1].
While this construction explains some of the puzzling connections between the
representation theory of the monster and modular forms (referred to as moonshine
in [2]), many aspects of this connection remain obscure.

In this note we point out a further feature of the construction, namely
the existence of an underlying superconformal algebra in which the fermionic
component of the super stress-energy tensor is constructed in terms of bosonic
twist fields. In Sects. 2 and 3, we will first present a brief summary of the Virasoro
and super-Virasoro algebras and their representations in terms of operator product
expansions. In Sects. 4 and 5, we then present a brief synopsis of the FLM
construction of the monster in the language of conformal field theory. We have
tried to make these sections particularly accessible to string theorists, who may
wish to satisfy their cultural curiosity in the "monstrous game." In Sect. 6 we
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demonstrate the existence of a superconformal algebra in the construction, and
show how the states in the theory are organized by the superconformal symmetry.
In Sect. 7 we give a brief overview of the genus zero function field problem, an
important open problem that links seemingly unrelated fields of mathematics.
Finally in Sect. 8 we close with a discussion of issues related to those of this paper.

Our essential observation is that the Z 2 twist operator for 24 bosonic fields
has dimension 24 (1/16) = 3/2, where 1/16 is the dimension of a single Z 2 bosonic
twist field. These dimension 3/2 operators indeed prove to have all the correct
properties to serve as supersymmetry generators for holomorphic conformal field
theories based on R 2 4 M for any Niemeier lattice Λ, and in particular for the case
A = /lL e e c h used in the FLM construction. We hope that the additional algebraic
structure revealed here will be useful in resolving some of the lingering mysterious
features of the monster. We suspect also that the search for a unified understanding
of all finite groups based on lattices, vertex operators, and loop algebras may be
a mathematical arena where "physics" ideas such as supersymmetry will prove
crucial.

2. Conformal Field Theory

In two-dimensional conformal field theory, analytic conformal transformations of
the form z^>z + εzn + 1 are generated by the moments

Ln = §-—.z T(z) (2.1)

of the stress tensor T(z). The Lπ's satisfy the commutation relations

[L m ,LJ = (m - n)Lm+n + -^(m3- m)δm+n,0 (2.2)

of the Virasoro algebra, where c is a constant ([Ln,c] = 0) known as the central
charge of the algebra. A general conformal field theory will involve as well
anti-analytic conformal transformations generated by Lπ's. The commutation
relations (2.2) are equivalent to the operator product expansion (OPE)

cβ 2 1

where we shall systematically suppress the non-singular terms in what follows. The
equivalence between (2.2) and (2.3) follows from standard contour deformation
arguments. (For introductions to standard conformal field theory techniques, see
e.g. [3].)

Fields that satisfy the OPE

T(z1)φ(z2)~-, ^Φ{zi) + 7 τ^iΦ(z2) + ••• (2.4)

are termed primary fields of dimension, or conformal weight, h. Each primary
field is associated with a highest weight state |/i> = 0(0)|0>, where |0> is the
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vacuum state (associated with the identity operator). Equation (2.4) implies that
L0|/z> = h\h} and Ln\h} = 0, n>0. Applying the "creation" operators Ln,rc<0,
to any highest weight \h) gives a (reducible) representation of the Virasoro algebra
called a Verma Module, which we denote Mft)C. This module has an integer grading
MΛ)C = ®MMJ|)C, where n is the eigenvalue of Lo — h, i.e.

(2.5)

Its character is given by

oo gh-c/24-

ch MhJq) = <f-"2* Σ (dim M"Kc)q" = -£ . (2.6)

Π d-«")
n= 1

From a physical point of view, the factor of q~c/24r introduced in (2.6) arises as a
vacuum energy; from a mathematical point of view, it improves the modular
transformation properties of the partition function (to be discussed below).

Unitarity of representations of the Virasoro algebra in general restricts the
values of h and c [4]. In many cases the Verma module contains null states, which
means that it provides a reducible representation of the Virasoro algebra, and one
must factor out the null states to obtain an irreducible module, denoted by LΛjC.
When c> 1, however, all representations with h^Q are unitary, and all Verma
modules with h > 0 are irreducible, so we have

ch LΛ>C(q) = ch Mhx{q\ c > 1, h > 0,

chL0,c(4) = ^ . (2.7)

In a general conformal field theory, highest weight states are labelled by their
conformal weights (h, h), i.e. their eigenvalues under Lo and Lo respectively. The
genus one partition function of the theory is given by

Zc(g, q) = X Nhj ch hhiC(q) ch L^ c(q), (2.8)
h,h

where Nhjί is an integer equal to the number of primary fields with conformal
weight (h,h). Moreover if we write g = exp(2τπτ), where τ is the modular
parameter for a torus, then Zc(q9q) should be invariant under modular trans-
formations

τ ^ « τ + 5 (a *Λ S L ( 2 > Z ) _ ( 1 9 )

For c>\ this requires that the number of primary fields be infinite [5]. In certain
cases, Zc(q,q) will factorize into holomorphic and anti-holomorphic parts, both of
which are modular covariant, and the anti-holomorphic part may be ignored.
(Even in this case, however, generalization of the partition function to higher
genus Riemann surfaces may require inclusion of both holomorphic and anti-
holomorphic parts [6].) In what follows we shall concentrate exclusively on the
case of purely holomorphic conformal field theories.
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3. Superconformal Field Theory

Supersymmetric extensions of the Virasoro algebra are obtained by generalizing
conformal transformations to superconformal transformations of supercoordinates
z = (z, 0), where 0 is an anticommuting coordinate (02 = 0). Superconformal
transformations are generated by the moments of a super stress-energy tensor. If
there is only a single anti-commuting coordinate (N = 1 supersymmetry) then the
super stress-energy tensor T(z) = TF(z) + ΘTB(z) has components that satisfy the
operator products

ΊA/Λ 2 1

Ϊ + 7-. Γ-ΰΓB(z2) + - — d2TB(z2),

3/2 1
TB(Zl)TF(z2)~( '—^TF(z2) + ( -d2TF(z2\ (3.1)

[Z1—Z2) [Z1—Z2)

where c — \c. The conventional normalization is such that the stress-energy tensor
for a single free bosonic field x(z) has central charge c = 1 in (2.3), and that for a single
free superfield x(z) -f θψ(z) has central charge c = 1 in (3.1). The second equation
in (3.1) is the statement that TF is a primary field of dimension 3/2.

In terms of the moments Ln of TBi and the moments

^ ) (3.2)

of TF, the OPE's (3.1) are equivalent to the (anti-)commutation relations

-(m 3 -

(3-3)

For integer moding (neZ) of Gπ, the supersymmetric extension of the Virasoro
algebra is termed the Ramond (R) algebra; for half-integer moding (neZ + y), it is
termed the Neveu-Schwarz (NS) algebra. Primary fields are again associated with
highest weight states |h>, satisfying LJh> = Gn |h> = 0, w > 0, and L0\h) = h\h).
Note that (3.3) requires that a highest weight state in the Ramond sector have
eigenvalue h — c/16 under GQ. For c > 1, the only restrictions imposed by unitarity
are /z ̂  0 (NS), and h ̂  c/16 (R), and the Verma modules again provide irreducible
representations unless .the latter inequalities are saturated.

In order to obtain a modular invariant partition function, it is necessary to
include representations of both the R and NS algebras together with a projection
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onto a subset of the highest weight states [7]. This is accomplished by introducing
an operator Γ that commutes with TB and TB, anticommutes with TF and TF, and
satisfies f2 = 1. The modular invariant partition function then takes the form

Z(q, q) = (qqΓmβ(TrNS PqL«qL* + TrR ?qL«qL% (3.4)

where the projection P = (l + Γ)/2. In the Ramond algebra, Go commutes with
Lo and satisfies Gl = L0 — c/16. Thus if h>c/16, highest weight states of the
Virasoro algebra are paired by Go with states having opposite eigenvalue under
Γ. Only the Ramond ground states, with h = c/\6, are not so paired since they
may be annihilated by Go. It follows that the contribution

±(qq)-6/l6TrRrqL°qL<> (3.5)

to the partition function is always a constant (analogous to the Witten index [8]).
The value of this constant is not determined by genus-one modular invariance,
but rather by the requirement of a consistent operator interpretation of the terms
in (3.4). If a nonzero value of the constant is permitted, the two sign choices in
(3.5) generate inequivalent modular invariant theories [9,10], each consistent, and
distinguished from one another by an opposite choice of projection in the Ramond
sector.

It is not always obvious whether a given conformal field theory has a
superconformal symmetry. One problem is that the state with conformal weight
(|,0) created by TF itself cannot survive in a modular invariant theory, since
invariance under τ ->τ + 1 allows only integer spin s = h — hϊov all physical states.
Before projection on Γ — + 1 states however, the Γ = — 1 states of the theory will
include in general states with half-integer spin. Projection by P removes all these
states and leaves a modular invariant local theory. To identify a superconformal
algebra, one must therefore look beyond the physical states and construct a
non-local Z 2 cover of the theory containing a weight (§, 0) primary field that satisfies
the OPE (3.1). The Z 2 cover will consist of the set of all fields in the original
conformal field theory, plus TF, plus any fields needed to close the operator algebra
of TF with the original fields. All OPE's in the covering theory are either local
(i.e. have integer power singularities), or have at worst square-root type singularities.
Finally, there is a projection onto Z 2 invariant operators of some Z 2 symmetry
that yields the original local conformal field theory. (A general method for
constructing this non-local Z 2 cover will be outlined at the end of Sect. 6. It makes
use of the Z 2 symmetry-possessed by any superconformal field theory-that acts as
-f 1 and — 1 on Neveu-Schwarz and Ramond sectors respectively.)

Conversely, given a local theory with a non-local Z 2 cover that contains a
dimension (f, 0) field satisfying (3.1), one can always organize the states into
representations of a superconformal algebra with the (§, 0) field playing the role
of TF. Fields in the Ramond sector will be those with square-root singularities in
their OPE with TF, while those in the NS sector will have integer power singularities.
The intent here is to show that the holomorphic conformal field theory used in
the FLM construction of the monster possesses precisely this structure.
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4. Lattices and Holomorphic Conformal Field Theory

Given an even, self-dual, integer lattice A of dimension r, we can always define a
holomorphic modular-covariant conformal field theory with central charge c = r.
First we introduce r free holomorphic fields x\z\i= l,...,r, that we view as
coordinates on the torus TΓ = W/Λ, i.e. x = x + 2πβ,βeΛ. The operators in their
mode expansions1

x\z) = qι- ipilnz + ί Y — z~n (4.1)
nψo n

satisfy the commutation relations

[ 9 V ] = - iδli, H,<] = nδUδH+mt0. (4.2)

For every lattice vector βeΛ, we can construct a Fock space Fβ. It is built on the
highest weight state \β}, which satisfies αJ/?> = 0 for n>0 and pl\fi} = βι\β}
(βι are the components of β in an orthonormal frame). States of these Fock spaces
are constructed by acting on \β} with the creation operators α_ M ,n>0.

A holomorphic conformal field theory may be defined via a field theory action
as follows. We begin with the action

S = — $dXίdXi + BijdXtdX* = ̂ ~\gahdXadXh + babdXadX\ (4.3)

where the fields X^z^eW/iΛβl i.e. Γ Ξ Γ + 2π(j8f/2), βeΛ. We take the even,
self-dual, lattice Λ of dimension r to be generated by basis vectors ea,a=l9...,r,
so that β = naea, naeZ, and define a metric gab = ea-eb. The coordinates Xa in (4.3)
are defined by Xi = (ea)

ιXa

9 and are thus periodic up to multiples of π,Xa =
Xa + 2π(na/2). Note that the vectors e*a = gabeb, defined in terms of the inverse
metric gab = g~h

ι , satisfy e*a eb = δl, and by self-duality are consequently also a
basis of Λ. Finally bab = ea-B eb = B^e^^e^ are the components of the (constant)
antisymmetric B-ϊ\ύά referred to lattice frames.

The partition function for the theory (4.3) is [11]

Z(q, q) = (qqΓrl24 Tr q ^ = - L ^ JWplfnA, ( 4 . 4 )
Vm) weΛ/2,pe2Λ

00

where η(q) = q1/24 Y[ (1 — qn) is the Dedekind eta function, and pL R = \p — Bw ±
« = i

w = mae*a — \{bab + gab)e*aγί' I n general the summations in (4.4) are not consistent
with a splitting between holomorphic and anti-holomorphic Hubert spaces. But
if the j5-ίield is chosen to satisfy

ea B-eb = ea eb mod 2, (4.5)

(e.g. take bab = ±gab,a^b), the summation in (4.4) is easily seen to decompose
into independent summations over pLeΛ and PREΛ. Equation (4.4) then takes the

Our normalization conventions are such that the operator products satisfy dxi(z)dxj(w) διJ/(z — vv):
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factorized form

(and we would have e.g. the factorization Nh^= NhNF in (2.8)).
In the case at hand, one can show as well that the Hubert space decomposes

into a product of holomorphic and anti-holomorphic pieces and one can therefore
impose a consistent projection onto the purely holomorphic part. This is the theory
that we shall consider in what follows, i.e. we shall retain only the dependence on
the coordinate x(z), where X(z,z) = ̂ (x(z) + x(z)). (This defines what we mean by
holomorphic conformal field theory on Rr/Λ, although strictly speaking we should
probably call it something like W/(2πΛ)1/2.)

The stress-energy tensor of the theory is defined as

T(z)=-±:dzx dzx:, (4.6)

(where the double dots indicate normal ordering), with the corresponding Virasoro
generators given by

I m=+oo

Ln = - Σ «--»•««, nΦO, (4.7)
£ m= — oo

where ocι

o = p\ To define Lo we must resolve the operator ordering ambiguity that
arises due to the non-commutativity of an and α_n. The definition

L0=ΪP2+ Σ «-»•«». (4 8)
« = 1

with the vacuum normal ordering constant instead included in the prefactor to
the partition function, satisfies the commutation relations (2.2).

Primary fields are given by particular products of the dimension one 1/(1)
currents f(z) = idzx

l and the dimension β2β exponentials

Vβ(z)=:eiβ χ™:9 βeΛ. (4.9)

We see that the vertex operators Vβ are well defined under x -> x + 2πα, αe/1, since
then β αeZ. Strictly speaking, (4.9) is incorrect because the OPE of these fields is
not associative. Associativity of the OPE is restored by constructing [12] a
projective representation Ά of the lattice A with two-cocyle ε(α, /?), and including
on the right-hand side of (4.9) a factor c(α) that satisfies c(oc)c(β) = ε(oί,β)c(ot + β).
This projective representation for the Leech lattice is described in detail by FLM.
In terms of the antisymmetric B field mentioned above, we note that we
can represent β{a,β) = eiπa'B'm. It then follows from (4.5) that ε(oc,β)ε~1(β,(x) =
( - \fBβ = ( - l)αΛ as required for associativity of the OPE's of the c(α):β ίαx(z):'s.
(In terms of the momentum operator p, the c(α)'s themselves can be represented
in this case as φ ) = e

iπot'B'p/2.)
The partition function for the theory is given by

(4.10)
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where ΘΛ(q) = ]Γ q(1/2)β2 is the theta function of the lattice A. For c a multiple of
βeΛ

24, Z(q) will be modular invariant; for c = 8,16 mod 24, on the other hand, Z(q)
will be modular covariant, i.e. a weight-zero modular function with non-trivial
multiplier (in other words for the cases above it picks up a phase e2πιc/24~ under
the modular transformation τ-+τ + 1). An example of a holomorphic conformal
field theory arises for the choice A — Γ8, where Γ8 is the root lattice of E8. The
holomorphic partition function is then the character of the (basic) representation
of the level one affine Kac-Moody algebra E8. It is thus given by ΘΓJη8 = j 1 / 3 ,
where the famous weight-zero modular function j is given by j(q) = q ~[ + 744 +
196884^ + •••.

In what follows we shall ultimately be interested in the case A = ALeech, where
the Leech lattice ALeech is the unique dimension 24, even, self-dual lattice with
A2 = 0 (An is the set of points in A with length-squared ft). For this case, the
holomorphic conformal field theory constructed by the above procedure has
partition function

ΘΛ i

ZLeech(4) = — £ ^ = - + 24 + 1968844 + = J(q) + 24, (4.11)
ft24 q

with J(q) = j(q) — 744 (i.e. J has constant term set equal to zero). For c = 24 we
see that the partition function is indeed modular invariant. Part of monstrous
moonshine is the fact that the terms in the expansion (4.11), apart from the constant
term, are simple sums of the dimensions of irreducible representations of the
monster. In the next section we shall review how the FLM construction removes
the unwanted constant term.

Given a modular invariant conformal field theory with a discrete symmetry
group G, it is often possible to construct a new conformal field theory by the
procedure of "modding out" or "twisting" by G [13]. This procedure can be applied
to holomorphic conformal field theories based on even, self-dual lattices /I, and
modular invariance puts stringent restrictions on G. In the simplest case G will be
a Zπ automorphism of A, generated by the SO(r) rotation (in a diagonal basis)

q — (jiag(e2πί<= l/λί

 e2πiξι/n. e-2πiξι/n e~2πiξι/n\ (4 12)

where / = r/2. Then the restriction on G is [13,14]

(4.13)
' f mod n n odd

i=ι ι [mod 2/1 ft even'

For ft even, there is an additional restriction particular to asymmetric bosonic
orbifolds [15,16],

β-gn/2β = 0mod2, for all βeA. (4.14)

Since even, self-dual, lattices exist only in 8/c dimensions, a twist by an involutive
automorphism g defined to take x -• — x, and hence lattice vectors β -> — /?, will
always satisfy (4.13)—(4.14). This is because — β2 = Omod 2, and we have n = 2 and
all the ξt = 1 in (4.12), giving Σξf = 1 = 4k. In the same way that we can view the
conformal field theory determined by A as corresponding to string compactification
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on the torus Ύr = Rr/Λ, we can view the twisting procedure as corresponding to
string compactification on the orbifold T r/Z 2 . Note that the Z 2 twists that we
consider here have the simplifying feature that they leave no sublattice of A
invariant, so the fixed points are classified by Λ/2Λ.

To implement the twisting procedure for Z 2 twists, we first construct the
untwisted Hubert space Hi + ) as a direct product of the Fock spaces Fβ. Hi + ) has
a Z 2 grading induced by the action of the generator g of G = Z 2 , and we define

Ht+) = {veH{ + )\gv=±v}. (4.15)

To construct a twisted Hubert space H{_p we take fields xι(z) satisfying boundary
conditions x\e2%iz) — — x\z) (mod A) with mode expansion

xi(z) = qί + ί X %~\ (4.16)
neZ+1/2 ft

where αj, obey the same commutation relations (4.2) as before.
For a Z 2 twist acting on both holomorphic and anti-holomorphic parts of

X(z,z) = \(x(z) + x{z)\qi would take values in the Ύ dimensional fixed-point set
of g, given by Λ/2Λ. Because the twist acts only on the holomorphic field x(z), the
situation is more subtle [1,15,16]. The two-cocycle ε(α, j8) determines a Z 2 central
extension of A, and also a Z 2 extension of A/2A — (Z 2 ) 2 4 (viewing the lattice A as
an abelian group). This central extension of A/2Λ has a 2 1 2 dimensional
irreducible representation, acting on a space T with basis elements \σa} = σα(0)|0>,
a = 0,1,...,212 — 1. The \σa} are particular linear combinations of the 2 2 4 states,
denoted \qby, with definite values of q:

q\qb> = qb\qb>, where 2qbsΛ/2Λ. (4.17)

(The factor 2 1 2 can also be regarded as the square root of the number of fixed
points of the transformation X'(z,z)-> — X\z,z). The 2 2 4 fixed points transform
as a (2 1 2 ,2 1 2 ) representation of the holomorphic and anti-holomorphic symmetry
groups. The projection onto the holomorphic Hubert space removes the right 2 1 2

degeneracy.) The twisted Hubert space is then constructed as the tensor product

//(_) = Γ ® F ( _ ) 9 (4.18)

where the twisted Fock space F ( _ } is constructed by acting with the α _ n , n > 0
(neZ + 3-), on the Fock vacuum. H(-) also has a Z 2 grading induced by the action
of g as in (4.15), and we refer to the corresponding eigenspaces as Hf_y

Using (4.6) and the mode expansion (4.16) gives for the Virasoro generators
acting in the twisted Hubert space

^ meZ+1/2

L o = £ α _ m - α m + -^. (4.19)
m=l/2 10

The vacuum normal ordering constant r/16 for Lo in the twisted sector (relative
to the untwisted vacuum) is required in order that (4.19) satisfies the Virasoro
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algebra (2.2) (as can be seen using \ £ (n
o

L. Dixon, P. Ginsparg and J. Harvey

ι=-K(-i) = A=-A + τ6)
« o

(An alternate derivation of the constant will appear shortly.)
The full partition function of the twisted theory is given by

l ' Ό)

where the traces run over the indicated Hubert spaces, and P = (1 + g)/2. An
intuitive understanding of the modular properties of the terms appearing in Z t w

comes from the path integral interpretation of the traces appearing in (4.20). A
term of the form TrH h gqLo evaluated in the Hubert space Hh twisted by the group
element ft, denoted by

' ' (4.21)0

can be computed as a path integral over a torus with modular parameter τ and
boundary conditions twisted by g and ft in the "time" and "space" directions
respectively (in (4.20) we have H( + ) = Hί and i/ (- } = Hg). A modular transformation
τ -> (aτ + b)/(cτ + d) acts as a global diffeomorphism of the torus and changes the
boundary conditions to

g' h"

Z t w in (4.20) is given by the sum
θchd

+ g + 1 + 9

(4.22)

(4.23)

I I g 9

which is modular invariant provided that (4.13) and (4.14) are satisfied.
In conformal field theory the 2 r / 2 degenerate twisted ground states belonging

to T are created from the untwisted ground state by primary conformal fields
known as twist fields, and denoted by σa. Because the σa change the sign of dzx,
they have the non-local OPE

dxi{z)σa(w) ~ (z - w ) " 1 / 2 τ i a ( w ) + •••, (4.24)

where τ is an excited twist field of dimension 2 that creates excited states in H ( _ } .
The projection onto states in Hf+) and H^) keeps a set of operators that have
mutually local OPE's.

Using the OPE (4.24), one can derive the conformal dimension of the fields σα,
which is also the normal-ordering constant for the vacuum in the twisted sector.
Consider the correlation function

w
<0|σ(oo)σ(0)|0> {z-wf

(4.25)

of bosonic fields in the twisted sector, where σ is a twist field for all r bosonic
coordinates x1. With the normal ordered stress-energy tensor T(z) defined as
— %[dx(z) dx(w) + r/(z — w)2]z_>w, we infer the leading operator product T(z)σ(0) ~
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(r/16)z~2σ(0)+ •••, and hence from (2.4) we have h = r/16. In a canonical nor-
malization for the twist fields, their OPE's with each other are given by

σa(z)σb(w) ~δab(z-wyr/8 + .> . (4.26)

For the c = 8 E8 holomorphic conformal field theory, it is known that the
above twisting procedure gives back an isomorphic theory. (In terms of the level
one D8 subcontent, the projection in the untwisted sector removes the D8 spinor
representation, leaving the character for the D8 basic representation; and the
projection in the twisted sector removes the D8 vector, leaving the character for
the other D8 spinor [1]). In the c = 16 case, it is known [13,17] that this twisting
procedure simply interchanges the two holomorphic conformal field theories based
on the E8 x E8 and Spin(32)/Z2 lattices. The first case for which the procedure
produces new interesting holomorphic conformal field theories occurs at c = 24,
and the most interesting of these comes from modding out the conformal field
theory based on the Leech lattice.

5. The Moonshine Module

In the construction of the monster, the need for the Z 2 twisting described above
is motivated by finite group theory [1]. The conformal field theory determined by
the Leech lattice has a large symmetry group that acts as an automorphism group
of the operator product algebra. Naively, one would expect this to be just the
automorphism group Ό of the Leech lattice, which is also known as the Conway
group. Due to the cocycle factors that appear in the definition of the vertex
operators, however, the automorphism group is actually an extension of Ό by the
abelian group (Z 2 ) 2 4 , denoted by 224(Ό). This group has an analog in the theory
of Lie algebras of type A, D, E. There one finds that the order two reflections in
simple roots that generate the Weyl group W lift to automorphisms of the Lie
algebra which are of order four. This yields an automorphism group of the Lie
algebra that is an extension of W by (Z2y, where r is the rank of the corresponding
root lattice [18].

The group 224(Ό) is very similar in structure to the centralizer of an involution
that appears in the monster. (An involution, /, is an element of order two; its
centralizer in the monster consists of all elements g of the monster for which
g~γig = i.) This centralizer, denoted by C = 2+ + 2 4 ( l), is given by an extension of
•l = 0/Z2 (the simple Conway group) by an "extra-special" group denoted
2+ + 2 4 , the latter having a 212-dimensional irreducible representation. The group
2 + + 2 4 is isomorphic to the Z 2 central extension of Λ/2Λ discussed previously.
The extra-special groups that arise in this way from Z 2 twists have simple
representations constructed in terms of y-matrices (see e.g. [17] for an explicit
construction). For example, a Z 2 twist of the SU(3) root lattice gives rise to an
extra-special group that has a two-dimensional representation given by the
conventional Pauli σ-matrices. These facts inspired FLM to consider a Z 2 twisted
version of the Leech theory in order to remove the unwanted 24 states that contribute
to the constant term in the partition function, and to obtain the appropriate finite
group structure. From an orbifold point of view, the centralizer of an involution
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in the monster has a very suggestive form. The group 1 can be regarded as the
automorphism group of the Leech lattice with lattice elements identified with their
negatives (i.e. after identifying x-> — x), and, as seen in the last section, 2 1 2 is the
degeneracy factor required in the twisted sector for a purely left-acting Z 2 twist
of 24 coordinates. The involution i itself will turn out to be the symmetry of the
operator algebra of a Z 2 orbifold in which untwisted (twisted) states are assigned
+ 1 ( - 1 ) .

We now construct explicitly the Z 2 twisted version of an arbitrary c = 24
holomorphic conformal theory based on R24~/Λ, where A could be any of the 24
even, self-dual, Niemeier lattices in 24 dimensions. The conformal field theory of
interest for the monster will then be given by the choice A = ALeech With g: x -> — x,
the untwisted Hubert space H^ + ) decomposes into g = + 1 eigenspaces as

H{-+) = {«'!„, -α'iV2

Z, βεA), and we find

+ I - /!»} + {«'!„, -*%k{\β> - I - β))} (5.1)

(5.2)

The twisted Hubert space H(_} decomposes as

{α\
(5.3)

), so that

Q(l_^-1/2)24 f] (1+^-1/2)
\n=l n=l

1 1

The partition function for the twisted theory is thus given by
(5.4)

(5.5)

1)) - 24) = J + 12Λ,
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where h = \Λ2\βA is the Coxeter number of the lattice, and 9{ = 9^0, τ) are the
usual Jacobi theta-functions. The last line of (5.5) follows from the fact that Z t w is
a modular invariant function with a single pole with unit residue at q = 0 (the cusp
τ = foo) and otherwise holomorphic, and it must therefore equal the modular
function J up to an additive constant. For A = ΛL e e c h as considered in (4.11), we
have Λ2 = 0, and (5.5) gives

ZΓeechte) = ZLcech(q) - 24 = J(q). (5.6)

We see that the twisting procedure preserves modular invariance while removing
the 24 unwanted states αf_ x |0>.

The twisted theory contains 196884 dimension 2 operators, including the stress
tensor T= —jdx-dx. In the untwisted Hubert space there are 24-25/2 operators
dxidxj and 196560/2 more dimension 2 operators (eip'x + e'ip'x)/^/l (pe/l4). The
remaining dimension 2 operators are the 24-212 operators τίa (see (4.24)) that create
states αI_1/2 |σ

f l> in the twisted Hubert space. FLM define a closed algebra in terms
of the Fourier components φn, of these dimension 2 fields by defining a
"cross-bracket,"

Φlxφ{=τilΦtn+l,Φi-ll + lΦi+l,Φ\n-ll), (5.7)

where i, j label different dimension 2 fields. They then show that this cross bracket
of dimension 2 fields closes on the Fourier components of other dimension 2 fields.
This gives a commutative, non-associative, vertex operator algebra only slightly
similar to the more familiar affine Lie algebras constructed from fields of
dimension 1.

The above construction is easily understood from the OPE point of view. We
have a conformal field theory with no dimension 1 fields, primary fields φι of
dimension 2, a stress tensor T(z) which is a descendant of the identity operator,
and some set of primary dimension 3 fields γ\ The OPE of φι(z) with φj(w) then
has the general form

φι(z)φj(w) ~ — ! —
(z wy (z — w) \

4 \ •••, (5.8)

where Bose statistics requires symmetry of the coefficients bijk in the first two
indices i, j , and antisymmetry of the cijk in z, j . The commutators in (5.7) can be
extracted as usual from the singular terms in the OPE (5.8). In the cross bracket,
the terms involving χι then cancel due to antisymmetry of the cιjk.

Specializing to the case c = 24, we obtain (using also the OPE's (2.3) and (2.4))

φ ι

m x φJ

n = bιj

m x φ ι

m = l φ m + n, w ^)
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FLM have shown that the infinite dimensional closed algebra defined by this
"cross-bracket" gives an affinization of the Griess algebra B, which appears as the
dimension 196884 zero mode subalgebra (i.e. represented by the φι

0's). The
automorphism group of the Griess algebra is known to be precisely the monster
[19]. From a "physical" point of view, the monster acts on this conformal field
theory as a symmetry, commuting with the Hamiltonian and leaving the operator
product coefficients invariant. The affinization of the Griess algebra is an example
of a rather enlarged chiral algebra.

To give a better feeling for the monster, we recall that it can be generated by
the centralizer C of the involution i together with another involution denoted σ
[19]. As mentioned at the beginning of this section, the involution i is here the
generic Z 2 orbifold symmetry operation that acts as + 1 on untwisted and — 1
on twisted states. Because the group C commutes with i, each of its elements takes
untwisted to untwisted states, and twisted to twisted states. The action of the
additional symmetry σ, on the other hand, exchanges twisted and untwisted states.
To identify the symmetry σ in our language, it is useful to regard the monster
conformal field theory not as a Z 2 orbifold of the conformal field theory based on
the Leech lattice, but rather as a Z 2 x Z 2 orbifold of the conformal field theory
based on the Niemeier lattice ΛA2*. (This is a lattice constructed by adjoining to
the SU(2)24 root lattice additional weight vectors specified by the Golay code
(see e.g. [20]).) The two elements generating the Z 2 x Z 2 group are g:x-* — x and

h:x^x + 2π<\2t*h (5.10)
T" i= 1

where αf are the 24 positive roots of SU(2)24. The Z 2 x Z 2 orbifold can be
constructed in two steps, first modding out by the Z 2 generated by the translation
h, and then by the Z 2 generating by g. The first step simply changes the lattice on
which x(z) is defined from ΛA2* to /l L e e c h [1], and the second by definition gives
the monster conformal field theory.

Acting directly on the ΛA2* theory, on the other hand, g,h, and gh are all
equivalent as Z 2 twists. This may be seen by considering their actions on the level
one SU(2)24 current algebra of the theory,

h: J\-+-J\, J2->-J2, J\-^+J\, (5.11)

(ί= 1,...,24) where

φx' + e-Φ*^ Ji

2=^~(ei^2χl-e-
ί^2χl), Ji

3 = idxi (5.12)

represent the currents. The three symmetry actions in (5.11) are equivalent due to
the S3 permutation symmetry of SU(2) that interchanges the 3 currents. This triality
symmetry is a symmetry of the full theory due to the SU(2)24 symmetry. Because
g, h and gh have equivalent Z 2 actions, the Z 2 x Z 2 orbifold conformal field theory
also has an S3 permutation symmetry that permutes fields in the 3 twisted sectors
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Hg,Hh, and Hgh among one another, and also permutes fields within the untwisted
sector H1. The (odd) permutation that exchanges g and h is the symmetry σ that
together with C generates the monster.

6. Superconformal Symmetry in the Moonshine Module

It is now straightforward to identify the superconformal symmetry in the FLM
construction. The direct sum of the untwisted and twisted Hubert spaces,
f/( + )©if (_ ) 5 before g projection, gives rise to a Z 2 non-local covering theory that
contains 2 1 2 primary dimension 3/2 twist fields σa. In general, the 2 1 2 states \σa}
(belonging to T, as discussed after (4.16)) are linear combinations of the 2 2 4 states
\qb) located at fixed points. However, it is always possible [16] to take one of the
states, say |σ°>, to be located at any particular fixed point, say the origin. The
remaining linear combinations of states \qb} are then generated by taking
operator products of the distinguished twist field σ° with all the Z2-invariant
combinations of exponentials (along with their cocycles) from the untwisted
sector. We tentatively identify σ° (up to normalization) with the field TF of
a superconformal field theory. In order to check that (3.1) is satisfied, we need to
determine the OPE of σ°(z) with σ°(w). Fields Θ(w) appearing in this OPE
must create states in the untwisted Hubert space and must have non-vanishing
three-point function <σ°(z)$(y)σ°(w)> / 0 . These three-point functions are deter-
mined by SL(2,R) invariance, up to an overall factor that can be determined
by calculating the expectation value <σ°|$|σ°> of Θ(y) between twisted ground
states <σ°| = <0|σ°(oo) and |σ°> = σ°(0)|0>.

The space group selection rules [21] show that the only exponentials eiβ'x{z)

appearing in the OPE of σ°(z) with σ°(w) have βe2Λ, and none of these has
dimension 2 (required for a singular contribution to the OPE). The three-point
functions needed to determine the coefficient of dxιdxj in this OPE can be easily
calculated using the expansion (4.16), with the result that this operator appears
only for i = j , and with coefficient independent of j . Thus the only dimension 2
operator that has a non-vanishing expectation value between the same twisted

24

ground state is the stress tensor T = — \ Σ dxldx\ The coefficient of T in the OPE
ί = l

is determined by associativity of the Tσσ OPE (given that σ° is primary with
dimension 3/2 and canonically normalized, as in (4.26)) to be 2 (3/2)/c = 1/8.
We see that TF = 2σ0 satisfies (3.1) and can therefore serve as a super symmetry
generator.

We can now organize the primary fields into Ramond and Neveu-Schwarz
sectors. Fields in the R sector have square-root type branch cuts in their OPE
with TF. From (4.24) we see that the Ramond fields are those that create states in
//(

+_) or #(~+). Similarly, NS fields create states in i/(

+

+) or H[iy The Z 2 twist
generator g plays the role that would be played by Γ in a general superconformal
theory, in that projection onto the g invariant states H^+)QH^L) gives a local,
modular invariant theory. The 24 states α ι_1|0>e/ί(~+) created by the untwisted
fields δxι (which are Ramond fields with respect to TF = 2σ°) are Ramond ground
states with Lo = 6/16 = 1. Go pairs the 24 2 1 2 = 98304 (Γ = 1) dimension 2 Ramond
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fields τia with the 196560/2 + 24 = 98304 (Γ = - 1) fields (eip'x-^ίί?x)/z\/2 and
d2x\ This pairing of Ramond states into pairs with opposite eigenvalue of Γ = g
is easily verified at all higher levels. To see this note that q~1ΎvH-+ qLo — 24 =
q~1TrH+_ qLo, as follows from the identities implicit in (5.5) (in general we have

H_

In the NS sector, on the other hand, superconformal invariance organizes the
fields into primary superfields. The identity operator is a NS field of dimension 0.
It gives rise to a dimension 3/2 descendant G_ 3 / 2 | 0 ) and a dimension 2 descendant
L _ 2 | 0 ) (recall that the vacuum is annihilated by G_ 1 / 2 and L_ t ). The remaining
2 1 2 — 1 of the dimension 3/2 NS fields σa are lowest components of primary
superfields of dimension 3/2. The highest components of these superfields are
the descendants with respect to G_ 1 / 2 of the lowest components, i.e. they
correspond to the states G_ 1 / 2 |σ f l>. Subtracting these out, we are left with
196560/2 + 300 - 2 1 2 = 94484 primary superfields of dimension 2.

In general, the NS primary superfields can be classified according to their
dimension and the Γ eigenvalue of their lowest component. To count primary
superfields we must subtract all the states that are descendants under the
superconformal algebra. Since the identity operator is annihilated by G_ 1 / 2 and
L_ 1 ? it must be treated specially. We first subtract from Z(

+

+) and Z ( Ί } the
descendants of the identity with Γ eigenvalue + 1 and — 1 respectively. This yields

1- π f~m) +Π (i-<r

no-«")
n = 2

00

•<r1/2)-Πo-<r1/2)
( , ( , s

Π (!"<?")
#1 = 2

We let

(6.1)

(6-2)

(6.3)

be the generating function for primary NS superfields (other than the identity)
with Γ eigenvalue ± 1, where N±(h) is the number of NS primary superfields of
dimension h and Γ eigenvalue ± 1. Writing Y(

+

+) and y(~_} in terms of primary
fields and their descendants and then solving for P+ gives

(6.4)

Π (i + <f-1/2) π (i-<f~1/2)
_ « = l « = l

While it is relatively easy to count the number of primary superfields at a given
level, it is more difficult to determine precisely which combinations of fields
correspond to these superfields. This involves a more detailed analysis of the structure
of the Leech lattice and the two-cocycles ε(α, β) than will be attempted here. In
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any event we see how the numerology associated with the coefficients of the
expansion of the modular invariant J of (4.11) may be further refined by recognition
of the superconformal symmetry in the FLM construction.

Now that we have identified the superconformal symmetry in the FLM
construction, it is possible to give a superconformal interpretation of the removal
of the 24 unwanted states from the Leech theory (4.11). Every superconformal
theory has a Z 2 symmetry that we denote (— l)F s, defined to act as + 1 on states
in the antiperiodic (NS) sector of the worldsheet supersymmetry generator, and as
— 1 on states in the periodic (R) sector. (We refer to this symmetry as (— l) F s since
it resembles the action of an operator (— l) F s in string theory, where Fs would be
the spacetime fermion number.) In Appendix A of [10], it was shown that modding
out by this symmetry (i.e. take g = {— l ) F s in (4.23)) gives another superconformal
theory with opposite sign for the term (3.5). (Modding out the resulting theory
again by (— l)Fs gives back the original theory.) Modding out the twisted Leech
theory by (— l) F s thus gives back a superconformal theory in which the 24 Ramond
ground states are restored. This theory is in fact the original Leech theory Z L e e c h ,
which we now recognize to possess a superconformal symmetry as well. One way
to see this is to recognize that the action of (— l) F s on the states of the twisted
Leech theory ( + 1 on /ί(

+

+) and — 1 on H^}) is identical to that of the Z 2 symmetry
that would generically undo the orbifolding by x -> — x (i.e. the involution i, defined
to act as -f 1 on the untwisted sector, and — 1 on the twisted sector). In
superconformal language, then, the modification that removes the 24 unwanted
states from the Leech theory can be equally well taken to be the Z 2 symmetry
generated by (— l)F s, and the argument preceding (3.5) gives the natural explanation
in this language for why the partition function is changed by a constant.

Having introduced the symmetry (— l)F s, we can now complete the discussion
at the end of Sect. 3 concerning when a given conformal theory is superconformal.
A key role in this identification is played by the Z 2 symmetry (— l)F s, because it
is a symmetry of any superconformal field theory (holomorphic or not). If a modular
invariant superconformal theory is twisted by this Z 2 symmetry, the operator TF

appears in the twisted Hubert space /f(_} (i.e. before projection onto Z2-invariant
states—the final Z 2 projection, giving a modular invariant partition function,
would again eliminate TF). To determine whether a conformal field theory is
superconformal or not, one may thus twist by all Z 2 symmetries of the operator
algebra, and in each case look for a dimension (§, 0) field in the twisted sector that
obeys (3.1), and also has the appropriate local behavior with respect to the Z2-even
(Neveu-Schwarz) fields and a square-root type non-local behavior with respect to
the Z2-odd (Ramond) fields. If there is such a symmetry, then the combined
untwisted plus twisted Hubert space before Z 2 projection, if ( + ) ©if ( _ ) } provides
the desired non-local Z 2 covering theory. The Z 2 symmetry that projects back
onto the original modular invariant theory, now recognized as superconformal, is
simply that assigning + 1 (— 1) to states in H^^H^j).

It is easy to see that the supersymmetry in the twisted Leech theory terminates
at N = 1. This is because higher supersymmetry algebras involve as well dimension
one currents not present in the theory (5.6). The monster group, although an
automorphism group of the full conformal field theory, does not preserve the
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supersymmetry generator, and the supersymmetric structure we have identified is
invariant only under a subgroup (contained in the subgroup C) of the monster
group.

7. The Monster and Genus Zero Function Fields

Perhaps the most mysterious element in the monstrous game is the relation between
elements of the monster and genus zero function fields. In this section we will give
a brief summary (again oriented towards string theorists) of what is known about
this relation. A more detailed discussion can be found in [2,22].

The fundamental domain for the modular group, H/5L(2, Z) (where H is the
upper half-plane) is a familiar object to string theorists. After adjoining the point
at infinity (τ = zoo), this space can be given a topology and a complex structure
so that it becomes a compact Riemann surface. The modular function j provides
a map of this compactification of H/SL(2, Z) to the Riemann sphere C u oo which
is one-to-one and onto. As a result, we see that the Riemann surface associated
with H/5L(2,Z) has genus zero. It follows that the field KSL{2Z) of meromorphic
functions on this Riemann surface consists of all rational functions of 7 with complex
coefficients, i.e. any keKSL(2Z) satisfies

n

/ b: Ί
£__i I J

with fl ^ eC. KSL{2Z) is said to be a genus zero function field, and the modular
function is the generator, or hauptmodul of this function field.

This discussion can be repeated for other discrete subgroups Γ cz SL(2, R),
known as groups of genus zero, that have the property that the appropriate
compactification of Ή./Γ yields a Riemann surface of genus zero. The field of
rational functions on the compactification of H/7" is a genus zero function field
with generator j Γ , analogous to the modular function j in the case Γ = SL(2, Z).
Examples of such genus zero subgroups of SL(2, R) are provided by the congruence
subgroups Γ0(p), where p is a prime such that p— 1 divides 24. Here Γ0(N) is
defined as

(7.2)

Another group of interest, denoted Γ0(N) + , is obtained by adjoining the Fricke
involution τ-> — 1/Nτ to Γ0(N).2 It was observed in [24] that the primes p for
which Γ0(p)+ has genus zero are precisely the primes that divide the order of the
monster!

Since the monster acts as a symmetry of the (super) conformal field theory
constructed by FLM, it has a well-defined action on each graded subspace, and

See [23] for an application of these groups in a string theory context
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one can define the series

Tg(q) = q-1TrgqL°9 (7.3)

where g is an element of the monster, and the trace runs over all states in the
theory. These series are known as Thompson-McKay series. Conway and Norton
have conjectured that the Thompson-McKay series associated to each rational
conjugacy class of the monster is a hauptmodul for a genus zero subgroup
Γ c SL(2,R) that contains Γ0(N) and is contained in the normalizer of Γ0(N) in
SL(2, R). (The normalizer of a subgroup H c G consists of all elements geG such
that g~1hgβH for all heH. A rational conjugacy class is one whose character is
a rational number.)

The Thompson series Tg(q) can be viewed as a path integral over the torus
with modular parameter τ and boundary conditions given by g Π In the spirit of

1

orbifolds, it is natural to consider more general boundary conditions on the torus.
If g and h are two commuting elements of the monster, then it makes sense to
consider the path integral (4.21) with boundary conditions twisted by g and h in
the "time" and "space" directions. This corresponds to the trace

(7.4)

evaluated in the Hubert space twisted by h. The standard orbifold result that
Z(g, h; q) is invariant under simultaneous conjugation of both g and h, and the
result that the boundary conditions (4.21) transform as in (4.22) under modular
transformations, appear as parts one and three of the conjecture by Norton in the
appendix of [22]. Norton also conjectures that these generalized Thompson-
McKay series are invariant under genus zero subgroups oϊSL(2, R). This conjecture
strengthens our suspicion that holomorphic orbifold (super) conformal field
theories may provide the proper setting for trying to obtain a conceptual
understanding of the relations between the monster and genus zero function fields.

8. Discussion

It would be interesting to investigate other orbifold holomorphic conformal field
theories in an attempt to generalize the FLM construction of the monster to other
sporadic groups, and to study the structure of twisted vertex operator algebras. It
is easy using (5.5) to check that Z 2 twists of the other 23 Niemeier lattices lead in
some cases to holomorphic conformal field theories which are not graded
isomorphic to any of the untwisted theories based on Niemeier lattices. It might
be illuminating to investigate the structure of the cross-bracket algebra in these
cases as well. We point out that the arguments given in the second paragraph of
Sect. 6, showing that the twist field is a supersymmetry generator, apply equally
well to Z 2 twisted versions of the c = 24 holomorphic conformal field theories
based on the remaining 23 Niemeier lattices. According to (5.5), the x—• — x
modification always removes 12/z + 24 states, which may then be restored by
modding out the resulting superconformal theory by (— \)F% thereby manifesting
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as well a superconformal invariance in the untwisted Niemeier theories. Since the
Niemeier conformal theories in general possess spin one states in their spectra, we
suspect the occurrence of higher (N > 1) superconformal algebras in many cases
(depending on the detailed structure of the cocycles).

It is also possible that one may need to consider holomorphic conformal field
theories invariant only under a subgroup of the modular group. In [1], for example,
FLM provide some evidence that a twisted version of compactiίlcation of the
left-moving superstring on the Es lattice also has moonshine properties for 1. This
theory also has an underlying superconformal symmetry, but again it is not clear
what role, if any, it plays in the moonshine.

The main outstanding problems related to the moonshine module are the
understanding of the relation between elements of the monster and genus-zero
function fields; and a generalization of the techniques reviewed here to other
sporadic groups, particularly the "pariahs" which are not involved in the monster.
We reiterate our hope that the techniques of (super) conformal field theory will
play a useful role in the solution to these problems.
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