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Abstract. We study the propagation of lattice vibrations in models of disorder-
ed, classical anharmonic crystals. Using classical perturbation theory with an
optimally chosen remainder term (i.e. a Nekhoroshev-type scheme), we are able
to show that vibrations corresponding to localized initial conditions do
essentially not propagate through the crystal up to times larger than any inverse
power of the strength of the anharmonic couplings.

1. Introduction: General Ideas and Main Results

In this paper we study the trapping, or localization of lattice vibrations in models
of classical, disordered anharmonic crystals. Localization is a phenomenon
observed in the study of wave propagation in disordered media. When the disorder
is large enough waves can get trapped or propagate anomalously slowly. This
implies that there is no transport of energy in such a system.

Anderson first studied localization in the motion of quantum mechanical
electrons through a random array of scatterers [1]. This is relevant for an analysis
of electrical conductivity in disordered metals. Anderson's arguments have been
made rigorous in [2] (for one-dimensional systems) and [3] (higher dimensional
systems). Electron waves are linear waves whose propagation is governed by the
Schrodinger equation. In contrast, the transport of heat or sound through bulk
matter, or of electromagnetic waves through a non-linear medium, poses a problem
in non-linear wave propagation. One would like to understand, for example, the
transport properties of a disordered, anharmonic crystal. A conventional idea is
that if the disorder is large enough there is no transport of energy in such a system,
or transport is anomalously slow. A proof of this conjecture would require
mathematical control of wave propagation over arbitrarily long time scales. For
a special class of models of classical anharmonic crystals and some very special
initial conditions, such control has been achieved in [4J. But the results in [4] do
not permit one to establish bulk transport properties of those model systems.

Real or computer experiments are performed in a finite, though possibly long
time interval. One might argue, therefore, that it is of interest to study wave
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propagation over long, but finite time intervals. Consider, for example, a classical,
anharmonic disordered crystal with a Hamilton function that is a small perturba-
tion, measured by a parameter ε, of a quadratic Hamilton function. The disorder
in the system renders the frequencies of the harmonic vibrations non-resonant,
with large probability, and those vibrations remain localized for all time. One may
therefore expect that vibrations of the anharmonic crystal with localized initial
conditions remain localized up to times Γ(ε), with T(β)->oo, as ε-»0, faster than
any inverse power of ε. Such a result would explain, to some extent, the absence
of transport encountered in real or computer experiments performed on those
systems.

It is the purpose of our paper to rigorously establish localization of vibrations
in classical disordered crystals which are perturbations of strength ε of disordered,
harmonic crystals, up to times larger than any inverse power of ε. Our method of
proof is classical perturbation theory which is applicable, because disorder renders
resonances highly improbable. We shall construct functionals on phase space which
are integrals of the motion up to some order M in the strength ε of the anharmonic
perturbation. Our main result follows from an optimal choice of M, depending on
ε. This method is inspired by the work of Nekhoroshev [5,6],

We now introduce the models studied in this paper: we consider an infinite
array of oscillators, one at each site of a ^-dimensional lattice, here chosen to be
Zd. These oscillators are coupled by an anharmonic interaction, in standard
canonical coordinates p = {ps}seZ<*, q = {qs}sez

d> tne unperturbed Hamilton function,
H2, is given by

where ω = {&>JseZ

rf is a family of infinitely many independent, identically distributed
random variables. For the sake of concreteness we choose the distribution of a
single frequency, ωs, to be Gaussian, i.e.

-f^/σdωS9 (1.2)

but our methods extend to a rather general class of dp's.
The anharmonic perturbation, H I y is a sum of polynomials Vx, where X is an

arbitrary finite subset of Zd, and Vx only depends on {p,,q,}seX Moreover, Vx is
exponentially small in the cardinality, \X\, oϊ X and becomes small rapidly in the
diameter of X. It need, however, not be of finite range. It has been shown in [4]
that rather realistic models of classical, anharmonic disordered crystals can be cast
in this form. (This follows from the methods of [3].)

For simplicity we shall only consider two-body interactions (\X\ = 2) which
are cubic in q and independent of p. But we should emphasize that our techniques
apply to much more general interactions.

Denoting by 5£ the set of unordered pairs of sites in Zd, called lattice lines, the
interaction Hamiltonian can be written in the form

HI(p,q) = H,(p,q)=ΣVι(qs>,qs»), d-3)
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where s', s" are the ends of the line /, and Vl is a cubic polynomial in qs,9 qs»; as
will be explained more precisely later, Vl will be required to decay rapidly with
the length of /. The complete Hamiltonian is then

H (p, q) — H2(p, q) + H3(p, q). (1.4)

Assume our system is given a small initial excitation localized around the
(arbitrarily chosen) origin, i.e. we choose initial conditions satisfying

d

\, (1.5)

where ψ is a suitable function, which decays to zero for large |s|; the precise form
of ψ will be introduced later. Our aim is to prove an estimate from below for the
time-scale at which the initial excitation significantly evolves and, in particular,
delocalizes.

We define Φ2(p, q) = typl + g2), so that H2 = ^Γ ω sΦ2. Clearly, for each seZd.

Φ 2 is an integral of motion of H2, and also an approximate integral for the
complete Hamiltonian: Indeed, the Poisson bracket {// 3,Φ 2] is cubic, so that

ΦS

2 - {#, Φ*2} = { H 3 9 Φ S

2 } = (3(z\ (1.6)

and since Φ 2 is only of order ε2, it needs a rather long time-scale 6)(ε~1) to
significantly evolve. To go beyond this first-order result, one can work perturb-
atively, and look for almost-integrals in the form of polynomials of higher order, say

where Φs

m(p,q) is a homogeneous polynomial of order m in p and q\ ΦS'M should
be localized in some sense around the site seZd, and satisfy

ΦS'M = {H, ΦS'M} - Θ(εM + 1). (1.8)

If one succeeds in this program, then one expects that any initial excitation localized
around the origin takes a time of order ε~M + x to significantly evolve and delocalize.
Moreover, following Nekhoroshev [5,6] (see also [7-10]), one can attempt, for
small ε, to go beyond any finite order in ε; this means one wants the order M to
be a function of ε, with M —> oo for ε — » 0. In the finite dimensional case, it is possible
to let M grow like an inverse power of ε, and get time-scales of oder exp (ε0/ε)α, ε0

and a being suitable positive constants (however, ε0 and a depend on the number
of degrees of freedom, and vanish as n-> oo). In our infinite-dimensional problem,
there are some essential difficulties in proving such a result, and we are only able
to control the motion up to time-scales of the form

'1 2

, (1.9)i

which still grow faster than any finite power of ε~ \ but are definitely much shorter
than Nekhoroshev-like time scales.

In order to provide a formal statement, let us define precisely what we
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mean by "rapid decay" of Vt. For any lattice line / with ends in Zd, with
projections / t , . . . ,/d onto the lattice axes, let | / 1 = \ / t | H — 4- 1 ld |. Denoting Fz(gs< , qs,>) =

Σ vι fί{' 4s"~ 75 we saY that ^ decays rapidly, if there exist positive constants U,
j = o
X, (3, with (5^1, such that one has

£ It;,,. ^ t7e-xi l + l / l ) i . (1.10)
j = o

We also introduce the notations ψ(χ) = (l + x)~ΐ~d, and K = £ ι A ( | s | )
veZd

Our main result is the following theorem.

Theorem. Let

as defined above. Assume that {ωs}ieZ<ι are independent, identically distributed gaussian
random variables, with variance σ, and that Vl decays rapidly with \l\, as defined in

(1.10). Then there exist a set of frequencies Ω, with mesΩ <γ(κ/σ ^/π), and two
constants .̂ ~, ,̂ depending on d, U, K, δ, 7, such that, for ojφΩ, and any initial
condition (p°,q°) satisfying

(1.12)

with ε small, one has

\Φ'2(p(t),q(t))-Φs

2(p0,q0)\^ε3φ(\s\)3, seZ", (1.13)

for
\t\ g &V' ) ( n f i ] / n n ί ' .

The proof of the theorem is contained in the next three sections. In Sect. 2, we
explain the algebraic scheme of our perturbative construction. In Sect. 3 we show
how one can introduce rigorous estimates in our infinite-dimensional problem.
Finally, in Sect. 4, we obtain the main estimate and conclude the proof of the
theorem.

2. The Algebraic Construction

Denote by Πm the set of homogeneous polynomials of degree m in ps, qs, seZd,
depending only on a finite subset of coordinates. Our purpose is to construct, for

M

each seZd, a polynomial Φs'M(p,q)= £ Φs

m(p,q), with M^3 and Φs

meΠm, for

m = 2,...,M, such that

Since H = H2 + H3 and { f f 2 ,Φ 2 }=0, this equation is immediately seen to be

equivalent to the M — 2 equations
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with

&a, = {H3,Φ>m-1}; (2.3)

indeed, if these equations can be solved, then one has

Each of the equations (2.2) should be regarded as an equation for Φ^,
being a known term. Clearly, one can solve these equations recursively, as far as
one is able to invert the linear operator L= {772, } inside Πm; for this purpose,
one must show that $s

m has no components in the null space, 77°, of L.
Now, as is well known, the operator L, acting on polynomials with finitely

many variables, is diagonalizable: if one introduces complex canonical variables

χs = — F (PS + iqs\ ys = - — F (PS - z&)> (2.5)
\/2 A/2

then L takes the form

L = i Σ ω* ( χ

s^ -- -Vs^— (2-6)

It is then clear that a basis of eigenfunctions in Πm is given by ujk(x,y) = xjyk, for
any;, /ceNz with ]£ (;s + fes) = m; (N denotes here the set of non-negative integers).

seZd

The corresponding eigenvalue is iω-(j — k\ so that the null space 77° is spanned
by those functions ujk, for which ω (j — k) = 0.

We now restrict our attention to the so-called non-resonant case, i.e., we consider
frequencies ω = (ωJ66Zd, such that

ω v = 0=>v = 0, (2.7)

for each veZ z of compact support; in this case 77° is spanned by functions of the
form Ujj = (iβ)Πs(pl + q^ jeZz\

A very elementary argument, taken from [11], shows that in this non-resonant
case, the terms ̂ , m = 3, . . . ,M, cannot have components in 77^, so that Eq. (2.2)
for Φs

m can be solved. Indeed, first of all it is clear that 77^, m = 3, ...,M,
contains only functions which are even in p. Since 773 and ΦS

2 are even in p,
^3 = (7/3, ΦS

2} is odd, and cannot have components in 77^ : consequently, the first
equation can be solved for ΦS

3, and since {772,Φ
S

3} is odd, with 772 even, ΦS

3 is
necessarily even. Proceeding by induction, one finds that, for any m = 3. . . ,M, $s

m

is odd in /?, and all equations can be solved, with the solutions, Φs

m, even in p.
Using the complex coordinates x and y, and introducing the notation

®*m= Σ ®*m.Jkx*yk, (2.8)
/ΛεNz"

the solution of (2.2) can be written in the form
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3. Small Denominators and Diagrams

Our aim is now to supplement the formal scheme outlined in the previous section
by rigorous estimates. For this purpose, for a generic polynomial feΠm written
in the form

/= Σ/,**'/, t3-1)

we will make use of the norm

i i / i i - Σ j//* (3 2)
In the finite-dimensional case, it is not too difficult [12] to produce efficient

recursive estimates for the quantities &s

m and Φ"m entering Eq. (2.2). The scheme
is the following: First of all, one makes use of the definition (2.3) of &s

m to estimate
U n r o l l , assuming | | ίf 31| and || Φ m _ ! || are already estimated; then, using (2.9), one
can write

where αm is the absolute value of the smallest denominator appearing in (2.9).
Finally, to estimate αm, one usually introduces a Diophantine condition on ω of
the form

|ω v | ^ y | v Γ " , (3.4)

n being the number of degrees of freedom. In fact, on the one hand such a condition
is satisfied by a large set of frequencies, while, on the other hand, when used in
(3.3), it still prevents too fast an explosion of the estimates.

This simple scheme poses some essential difficulties in our problem with
infinitely many degrees of freedom: it is not easy to replace (3.4) by another
condition, which, although satisfied by a set of frequencies of large Gaussian
measure, leads nevertheless to reasonable estimates. The way out we propose is
based on a rather finer analysis of the solution (2.9) of Eq. (2.2); the main idea is
to replace estimates of the form (3.3), which are rather crude because they treat
all small denominators uniformly, by finer ones, where different terms, with different
small denominators, are estimated separately. To properly classify the terms, we
introduce a convenient diagrammatic technique.

Let & denote the set of lattice lines, i.e. the (non-oriented) segments with ends
on lattice sites. If lε& has projections of length / l 5 . . . , / d on the lattice axes, then
we let I/I = /! + ••• -I- /d. Lines / of null length are also included. Denote by D any
finite connected diagram, i.e. a finite connected set of lines belonging to <£ (the
same line can appear several times). Denote by |D| the number of lines in D, and
by c9%D) the support of D in Zd, i.e., the set of ends of the lines of D. Finally, denote
by & the set of diagrams such that se^(D), and by @s

m the subset {De@s; \D\ = m}.
For later notational convenience, we also include in @s a diagram D with zero
lines, assuming, for this diagram, &*(D) = {s}; the set @S

0 a &s is intended to contain
just this diagram.

Our purpose is to write the polynomials Φs

meΠm we are dealing with, in the form
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where Φs

mtD is a homogeneous polynomial of degree m in pt and qt, te^(D). For
m = 2, ΦS

2 already has this form; thus, assuming that Φs

m has this form for m ̂  2,
let us show that Φs

m + ί can also be written in this form.
As already remarked, the interaction Hamiltonian has the form H3 = ^Vl9

te^

where Vl depends only on the variables attached to the ends of /. From (2.3) one
then has

Σί^Φ».D'}> (3-6)
leSe

and, clearly, the Poisson bracket is different from zero only if at least one of the
ends of / belongs to ^(D'\ i.e., if D'u{/} is connected, and thus belongs to ^,-1-
One then has

«*«+!= Σ ^rn+LD, (3-7)

with ™"->

,̂ + l , D = Σ -iί^ΦU{/}}> (3 8)
/eD μ\l9a)

£>\{/}e@^_ 2

where μ(/,D) is the multiplicity of the line / in the diagram D (which must be
introduced to avoid overcounting). It immediately follows that Φs

m+ΐ = — L~l$s

m+1

can be written in the form (3.5), with m + 1 in place of m, and

Φ s

m + 1,o=-^1^ s

m + 1,D. (3.9)

(Let us notice that LΓ l does not alter the order of the polynomials, nor does it
introduce new variables, so that Φs

m+ιίD has indeed all the required properties.)
The idea is now to work out rigorous estimates for ,̂ m — 3, ...,M + 1,

proceeding recursively as in the finite-dimensional case, but keeping track, at each
step, of the diagrammatic classification appearing in (3.7), (3.9). To begin with, let
us first prove the following elementary lemma.

Lemma 1. IffeΠm and f'εΠm,, then one has \\ {/,/'} || ^ mm' \\ f \\ \\ f ||.

Proof, iΐf=Σfjkχjyk, /' = Σ fj'k'χj'yk'> then one has

jk j'k'

{fj'} = Σ Mr* Σ OX-jifcs)^" V"% (3.ιo)
Jkj'k' seZ

d

where <?seNz has all components vanishing except the one corresponding to the
site s, which has the value 1. One then has

I I {/,/'} I I ^ Σ \fjk\\f j'k' Σ OX +;'&). (3-11)
Jkj'k' seZ

d

Now, since js) ks ^ m, one can write ΣOX + ksJ's) = mΣθs + ^«) = mm\ and the
s s

conclusion is immediate. D

This lemma can be applied to Eq. (3.8), to get the estimate

ι , D l l ^ Σ 3m| |KJ | |Φ s

m M [ / } | | (3.12)
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(the multiplicity of lines in the diagram D has been disregarded, as it hardly could
be used to improve the estimates).

We now pass to the most crucial step: We introduce our Diophantine condition
for ω. The idea is that, for each diagram, more precisely for all seZd, m §; 3, and
for any De^-2» one writes the condition in the form

ω v |>α s

m , D V|v gm, suppvc^(D); (3.13)

the numbers v?m D are chosen as large as possible (in order to have good estimates)
with however the requirement that condition (3.13) is satisfied by a set of ω's of
large measure. Our choice is the following:

7 (8κ)~ ( m~2 ) 1

where y is a (small) positive constant, while K denotes the sum of the convergent
series £ (1 -h \$\)~d~l . With this choice, the set of frequencies which do not satisfy

seZd

condition (3.13) has measure of order y, as guaranteed by the following lemma.

Lemma 2. The set, Ω, of frequencies ωeRz which do not satisfy condition (3.13),
with us

m D given by (3.14), has gaussian measure estimated by

mes/2<— ̂ -_-, (3.15)
σ^/π

where σ is the variance of the gaussian distribution.

Proof. For seZd, m ̂  3, De^_2, veZz" with suppv^^(D), denote

Ωs

m,D(v) = (ωeRzd; |ω v| < <»}; (3.16)

then one has

. (3.17)
s m D v

The measure of Ωs

mtD(v) is easily estimated by

where \\v\\e is the euclidean length of v. This follows from the invariance of the
Gaussian distribution under rotations, by integrating out all components but the
one corresponding to the direction orthogonal to v.

To perform the sum over v, one must recall that the number, Jn > m, of integer

vectors veZ", with | v | = m, is I ), as is easily seen by recurrence; in our
\ m J

/ Ί 1\

case n is the cardinality of ^(D\ which is I D I + 1 = w — 1 , and thus Jnm = \ }<
' V m J

22m 2. The sum over D of the products over leD is also easily accomplished, and
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one gets

Σ ΠίlT^<(™-^-2; (3.19)
De9?n_2

l*D" + m )

this corresponds to the fact that (with some overcounting) all diagrams of £$m-2

can be obtained by diagrams of ^m_3, by attaching to any of the m — 2 vertices
a line, whose free end runs freely over Zd. One then has

(3.20)

as claimed. D

Let us now show how the Diophantine condition is used in our estimates.
From (3.9) and (2.9) one has, by taking into account (3.13),

I I Φ UII^^N^ rn^2. (3.21)

In turn, this inequality, together with (3.12), gives rise to an iterative scheme, whose
result, for any SEZd, m ̂  2, DE^,_ j , is easily recognized to be

1,1)11 ^3"-^! | | Φ S

2 | |Π II ̂ Mm.D, (3-22)
leD

where Λs

mtD — 1 for m — 2, and

<D = Σ -s - j --- (3.23)
/ ! , . ,lm _ ! ̂ .DXί/j} ' ' ' ^ZΛl/i}- \{'m-2}

for m > 2, the sum being extended over the set

}\..Λ{^-2}e^1}. (3.24)

Let us now use the expression (3.14) for a.s

m>D. One has

λ s _ Λ . - m + 2/ι i I ι \ ( d + l ) ( m - 2 ) / o \ ( l / 2 ) ( m - l ) ( m - 2 )
^ m . D " / I1 i PI; lδ/<:;

•(m-2)!.»l! I Ξ^ ι/m 2, (3.25)
/ I , - .,/„-!

with

Π (i + |ί|)"
D X ί / i } \ { / m _ 2 l

<Π(1 + l / D ( d + 1 ) ( m " 2 ) (3 26)
/eD

One can then estimate the sum over / 1 ? . . . ,/m_ t by a factor (m — 1)!, and use this
result in (3.22), to get

(3.27)
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the factor || ΦS

2 \\ has been omitted, since, by its very definition, one has || ΦS

2 1 | = 1.
From this expression one sees that, in order to dominate the last factor, || Vl \\

must decrease with | / | more rapidly than any inverse power of | / | . It is then natural
to assume

||FJ^£^K(1 + I/I)', (3.28)

where E and K are arbitrary positive constants, and 0 < δ g 1. This is exactly what
we assumed in Sect. 1, E depending on the constant U introduced there. Using
the well known inequality

xαe~ / ϊ*^αα<Γαj8~α, (3.29)

with x - (1 + I / I ) 5 , α - (d 4- l)(m - 2)/<5, β = K/2, and the trivial estimate 2\...m\<

•Π - ~ β^ 'Ή (3.30)d /
Such expression can be given the form

oQ ( m"1 )m<1 / 2 ) m ( m^1 )(l + |s|) ( < i + 1 ) ( m-2 )Πe~ ( K / 2 ) ( 1- t l ' l ) ' ί, (3.31)
I

with suitable constants Aθ9 B0, C0, depending on d, δ, y, X, E.

4. The Main Estimate

As already remarked in the introduction, we are interested in studying the evolution
of initial excitations localized around the (arbitrarily chosen) origin of our
^-dimensional lattice. We thus consider initial data in the set ̂ 0 given by

(pϊ + q*)ll2£εψ(\s\), seZ", (4.1)

where ψ(x) = (l +x)~ d ~ 1 , and try to work out a lower bound for the time-scale
at which the initial excitation starts to significantly evolve; say the time at which
the orbit escapes the slightly larger domain ,̂ defined by

(P2

s+q2

s}
ll2^^(\s\\ sεZd, (4.2)

i.e. by 02 = ε 2 lA(M)2 Let us insert the latter inequality in our estimates. From the
definition (2.5) of xs and ys, it follows that, for (p,q)e&, |xs |, \ys\ < ε^(|s|).

For a polynomial /e/7m, let us now introduce, besides the already considered
norm || / 1|, the supremum norm in 2%, precisely || / 1|* = sup(pg)e^ \f(p9s)\. If feΠm

has support S c Zd, then one clearly has that || / 1| * ̂  εmψ(η)m \\f\\, with η = minse5 \s\.
From (3.31) one then concludes that

.m
( l / 2 ) m ( m - l ) I I \(d+ l)(m- 2)l)Q + I s I \(d+ l)(m- 2) ΓT

leD

where η =
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We now distinguish between two cases:
i. η^^\s\. In this case one has ψ(η}^ 2d+1/(l •+- \ s \ ) d + 1 , and consequently one

obtains (l + |5 |)
( ί ί + 1 ) ( m-2VWm + 1^2( ί ί + 1)(w + 1V(|5|)3.

ii. η <i|s|. In this case one cannot make any use of the factors ψ(η); however,

now one has that £ | / |^ | s | /2 , and consequently /7Z£T(K/2)(1 + I/I)^ e-(WW+w*

Using the inequality (3.29),

with x = (1 + |5|)a, α = (Γ V + 1)(»J + 1), β = 2'd~2K, one obtains

_ (44)
L <5 J feD

For &s

m+ίiD, one obtains in both cases an estimate of the form

(4.5)

with suitable constants A1 , B1 , C1 (in particular, the change from C0 to G! accounts
for the leading term (m + i)(* + ι > ( « + i ) / * in (4.4)).

Next we want to sum over De^_ l 9 to get our final estimate on \\^m+ΐ ||*. It
is not difficult to recognize that one has

Γ Π m - l
! Σ ^(K/4)(1+|sΊ) I '

Ls'eZd J

this follows by induction, noting that all diagrams De^ can be obtained from
diagrams Z>'e^_ l 9 by attaching a line at any one of the n vertices of Z)', and
letting the other end, s', of / range over Zd. Our basic estimate can then be given
the form

Moreover, one can find constants F1 and F2, such that, for any m ̂  3, one has

m(l/2)m(m-l) <p /m _ 3\(3/4)(m - 3)2

^12BJCJ(W-1) g F2(m - 3)(1/4^--3)2 (4.8)

(for m = 3, one sets 0° = 1); the quantity (m - 3) has been introduced here for later
convenience. Using (4.8), our estimate (4.7) for ^fm+1 takes the simpler form

(4.9)

where F = FίF2. This constant F depends on all constants entering the problem,
more precisely on d, δ, γ, K, E.

Let us now choose m = M, in order to arrive at an estimate for our final
remainder $S

M+1. At this point we introduce the basic analytic idea underlying
Nekhoroshev estimates: We let M be a suitable function of ε, such that M -* oo,
as ε -> 0. The idea is to choose the ε-dependence of M in such a way, that, for each
ε, the right-hand side of (4.9) is as small as possible. Here we find an important
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difference in comparison with the finite dimensional case: Instead of taking M to
be an inverse power of ε, the best we can do here is to let M be of order

1; a convenient choice is

" (4.10)
2 In In ε l 2 In In ε 1 '

which yields, as is checked immediately,

(InfΓ 1) 2

(M - 2) In ε ~ 1 - (M - 3)2 In (M - 3) ^ £ / ' . (4.11)
In In ε i

One then has the estimate

which is much worse than Nekhoroshev exponentials. Yet, for ε->0, it tends to 0
faster than any power of ε. Let us recall that this estimate is correct for (p,q)θ&,
i.e., provided one has

Φ2<ε2ι/φ|), seZd. (4.13)

M

Next we need an estimate for Φ i>M — Φ 2 = X Φs

m. Following almost literally

the estimates for $s

m, it is not difficult to get

I I Φs

m II* ̂  εmψ(s)*G(m - 3)(m~3)2, m ̂  3, (4.14)

G being a suitable constant, and thus

3 X (ε(m-3)m~3)m~3

M - 3

£ (ε(M-3)M~3)m. (4.15)
m = 0

Since M — 3 ^(lnε~1)/(21nlnε~1), one has (M — 3)M~3 < ε"1 / 2, so that, for ε<^,
say, one finds

|| φ s'M — φs

21|* <g 2Gε 3ι//( |>s|) 3. (4.16)

Now we choose initial data (p°,q°) satisfying (4.1), i.e., Φs

2(p°,q°)^
(ε2/2)^(|s|)2. As far as the orbit p(t\ q(t) remains in .̂ , as given by (4.2), we can
use our estimates (4.12) and (4.16). We note that

Φs

2(p(t\q(t)) - Φs

2(p\q°) = Φs

2(p(t\q(t)) - Φ*>M(p(ί\q(i)}

+ Φs'M(p(t\q(t})-Φs'M(p^q°)

+ Φ "'M(p°, q°) — Φ lip0, q°), (4.17)

and use (4.12), (4.16) to estimate the right-hand side.
Recalling that Φ 5'M - {H, Φ S'M} - .̂ S

M + 1 , one concludes from (4.17) and (4.16)
that

|^4Gε3ι/φ|)3 + |£|||^M + 1 U * . (4.18)
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Thus, for t satisfying

\t\^ — e(imnε~1)2/l"lnΓ\ (4.19)
~~ F

one has

Φ*2(p(t\q(t}}- Φs

2(p0,q°)\ ^ 5G^(s)V, (4.20)

i.e., the initial excitation essentially does not evolve. Let us notice that, for
ε<(10G)Λ one has from (4.20) \Φs

2(p(t\ g(t))| < ε2t/φ)2, so that (p(t)9q(t))e&,
as required for consistency.

The inequalities (4.19) and (4.20) are our final result and coincide with (1.12),
(1.13) of the theorem stated in Sect. 1, provided one sets ^ = 5G and 9~ = G/F.

5. Summary and Outlook

In this paper, we have established a Nekhoroshev-type estimate for some
Hamiltonian systems with infinitely many degrees of freedom which are anharmonic
perturbations of infinite systems of uncoupled, non-resonant harmonic oscillators.
The anharmonic perturbation couples finite subsets of oscillators; the couplings
decrease rapidly in the cardinality and the size of those subsets. For models in
which the frequencies of the harmonic oscillators are independent, identically
distributed random variables with smooth, e.g. Gaussian distribution, we have
shown that our non-resonance conditions on the frequencies hold with large
probability. The main result is that if the non-resonance conditions hold we can
control motions of our systems with localized initial conditions, in the sense of
inequality (1.12), up to times, Tε, of order exp [const. (Inε^/lnlnε"1], where ε
measures the strength of the anharmonic perturbation (for the given initial
condition).

Such motions are close to integrable motions and essentially remain localized
in a bounded lattice region, in the sense of inequality (1.13), up to times ^ TE.

Our result suggests that, in such systems, transport of energy is anomalously
slow. But, in order to establish transport properties of our systems, we would
have to control their motions over arbitrarily long time spans and relax our
non-resonance conditions. We would have to admit configurations of oscillator
frequencies in our analysis with the property that small, dilute subsystems of
oscillators are at resonance. It is expected that the large region of non-resonant
oscillators surrounding small subsystems at resonance will still provide an effective
barrier preventing rapid transport of energy. Such a situation has been studied in
[13], but, in that paper, motions are controlled only up to times of order ε~l

(which makes transport properties entirely inaccessible).
Nearly resonant subsystems appear in the analysis of [3], and the results in

[3] provide control over motions on arbitrarily long time scales. But the dynamics
of the systems studied in [3] is linear. This has a very important consequence: the
location of nearly resonant subsystems is time-independent. In contrast, if the
dynamics is non-linear, resonant subsystems may be born and disappear again, as
time evolves. We do not know any methods that would yield control over the
disappearance of resonant situations in finite subsystems, as time evolves.
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A drawback of most currently known methods is that they attempt to control
the motion of a system on a "microscopic level." For our goal of establishing
transport properties of Hamiltonian systems with infinitely many degrees of
freedom we should pass to "coarse-grained" descriptions of the dynamics of finite
subsystems, based on following the motion of collective degrees of freedom. Our
description ought to become more and more coarse-grained, as time grows. This
would render resonant situations in small subsystems more and more "invisible."
This is the idea behind the analysis in [3]. It is reminiscent of the renormalization
group strategy, but we do not know how to implement it in practice for non-linear
dynamical systems. We thus lose control over the motions of our systems after
large, but finite times, (although existence of dynamics for all times is usually easy
to prove).

Our methods could be applied to translation-invariant systems of plane rotors
weakly coupled by forces of short range. Thanks to the anisochronicity condition
satisfied by the unperturbed Hamilton function resonances can be avoided by a
suitable choice of initial conditions of finite total energy. See also [13,14] for results
concerning systems of coupled rotors.

Control of transport properties at positive temperature (initial conditions with
finite energy density, but infinite total energy) looks largely inaccessible at present.
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