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Abstract. The problem of second class quantum constraints is here set up in
the context of C*-algebras, utilizing the connection with state conditions as
given by the heuristic quantization rules. That is, a constraint set is said to be
first class if all its members can satisfy the same state condition, and second
class otherwise. Several heuristic models are examined, and they all agree with
this definition. Given then a second class constraint set, we separate out its
first class part as all those constraints which are compatible with the others,
and we propose an algebraic construction for imposition of the constraints.
This construction reduces to the normal one when the constraints are first
class. Moreover, the physical automorphisms (assumed as conserving the
constraints) will also respect this construction. The final physical algebra
obtained is free of constraints, gauge invariant, unital, and with the right choice,
simple. This C*-algebra also contains a factor algebra of the usual observables,
i.e. the commutator algebra of the constraints. The general theory is applied
to two examples—the elimination of a canonical pair from a boson field theory,
as in the two dimensional anomalous chiral Schwinger model of Rajaraman
[14], and the imposition of quadratic second class constraints on a linear boson
field theory.

1. Introduction

The classical treatment of degenerate systems by the Dirac procedure [1] has
reached a high degree of mathematical maturity in the symplectic formulation of
Gotay, Nester and Hinds [2]. As for the quantum setting, these systems still remain
within heuristic formulations [3] without drawing much from their classical rigor,
due to the dubious nature of quantization [4]; geometric quantization [5] as yet
being only a prequantization. It is our aim here and in our previous papers
[6-8] to give a quantum mechanical procedure for eliminating degeneracy in a
mathematically consistent way, and we do this in a C*-algebra framework.
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The usual stated intention for applying the Dirac-Bergmann algorithm, is to
prepare the classical theory in a suitable Hamiltonian form for quantization, the
latter process is then implemented by an altered set of heuristic rules [3]. Now
since only linear theories can be consistently quantized, we expect that the Dirac
procedure will not in general solve the mathematical difficulties of quantum
degenerate systems. For instance, it is meant to remove all second class constraints
so that these do not enter the theory at all. However, second class constraints can
easily arise in the quantum framework, cf. [17] since there are quantum degeneracies
without classical counterparts, for which one may wish to impose supplementary
conditions. Indeed, it is necessary to define more precisely what we mean by first
and second class variables in the quantum picture. It therefore appears that the
problem of degeneracy must be solved afresh for the quantum setting. Nevertheless,
we would do well to remain close to the structures of the Dirac procedure,
considering its proven utility in heuristic physics. Hence we recall the Dirac
algorithm in its simplest form. The theoretical motivation behind it can be found
in any one of a number of well known texts [1].

(1) First obtain the set of primary constraints {Ωt} as relations between canonical
variables.

(2) Add a combination of these to the Hamiltonian: HP:= H 4- α^.
(3) Put the time evolutions of {ί2j under HP weakly to zero to obtain the set of

secondary constraints. Fix the relevant multipliers α f to minimize this set.
Continue this process with the augmented constraint set until it terminates.
Only the second class constraints have their multipliers fixed.

(4) Separate the full constraint set {/"J into first-class {χj and second-class {£J
sets according to whether their Poisson brackets with all the other constraints
weakly vanish or not. Define the observables as the first class phase space
functional.

(5) Construct the Dirac bracket { , }D using the second class constraints {^J.
(6) Let (V}D define a new Lie algebra on the phase space functionals, hence

eliminate the second class constraints.
(7) Quantize heuristically with the rule (V}D-»Ϊ[V] and by selecting the physical

states by the condition χ i \ ψ y = Q.

The reason why the second class constraints are not allowed into the quantum
theory is because they would give rise to inconsistencies if one attempts to impose
them in the quantum theory by ξ i \ φ y = 0. A good example of this is a canonical
pair q, p; if q \ ψ > = p \ ψ > = 0, then clearly < ψ \ \_q, p} \ ψ > = 0 contradicts \_q, p\ = ί.
In fact, Shanmugadhasan [9] showed that any classical degenerate system can be
canonically transformed into a form in which its second class constraints are all
expressed as canonical pairs, hence in the following a canonical pair will be a good
example of second class constraints against which we can test our theory. Now in
a quantum theory there may be many alternative methods apart from state
conditions for eliminating constraints, and we examine some below. To retain
contact with the heuristic theory, we will define a set of constraints as first class
in the quantum theory if its elements can be simultaneously annihilated by a state
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condition, and consider it as second class otherwise. The straightforward adaptation
of the classical definition does not work. We have already worked out the algebraic
theory associated with state conditions [6], and will employ that theory here.

The plan of this article is as follows. In Sect. 2 we recall for reference the salient
points of the T-procedure for state conditions, together with an application to
linear boson fields and external constraints. Section 3 sets up the kinematics
problem of second class constraints and looks at a few typical second class
situations. In Sect. 4 we separate out the first class constraints from the full set,
and in Sect. 5 we impose the constraints to obtain the final physical algebra, having
first considered a construction suggested by analogy with the Dirac procedure.
Through all this, we show that the chosen constructions are preserved by physical
transformations. Section 6 consists of applications of the general theory, containing
the elimination of a canonical pair and imposition of quadratic constraints, and
in Sect. 7 we discuss the problem of dynamics adjustment.

2. The J-Procedure: Structures Enforced by State Conditions

Given a hermitian heuristic condition A \ φ > = 0 which implies < ψ \ exp iλA \ φ > = 1,
we prefer to work with the latter in order to avoid problems with unbounded
operators. In the rigorous theory we therefore assume a distinguished set of unitaries
U which is connected to exp iλA under some correspondence rule.

In this section we collect the basic algebraic structures associated with systems
with state conditions, as developed in [6-8], which is where the interested reader
can find the proofs of the statements below. As in [10], assume:

2.1. All physical information of a specified system is contained in the pair ,̂ S,
where the unital C*-algebra 3F is the field algebra, and (5 is its set of states.
The degeneracy assumption is:

2.2. There is a specified unitary set fy in ̂  called state conditions. All physical
information is contained in 3F and the set of Dirac states defined by:

Then ωeSD iff (ω\AUy = < ω | Λ > - <ω| tΛ4>Vt/e^, VAe^, (hence we can
extend the state conditions ^U to the group generated by it) or in terms of
L(U):=U-^: ωE6D iff {L(^)}cKerω iff J^{L(^)}u{L(^)}J^ c Kerω. If for
each Ue% we define the automorphism av:= Ad 17, then it is clear from the above
that the Dirac states are all ^-invariant, 6P c ®*, i.e. < ω | α^) > = < ω | A > V U etfί,

Theorem 2.3. Let d(L) be the C* -algebra generated by {L(<%)}. Then ωe&D iff
j/(L) c Kerω iff [j/^J^uJ^ ̂ f(L)] c Kerω, where [•] denotes the closed linear
space generated by its argument.

Theorem 2.4. £^0 iff 11 ̂ (L) iff 1^(L)^u J^(L)], and in this case &D

contains pure states.
So our nontriviality assumption is:
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2.5. Henceforth assume
We also denote j/(L) by C*(^ - 11 ). For any set Ωc: 3F , define:

hence if Ω is a C*-algebra, then Jt &(β} is the largest C*-algebra in ̂  for which
Ω is a two sided ideal.

Theorem 2.6. Let Jf\= [^^/(L)], 2\= Jf c\Jf*, then 2 is the largest C* -algebra
annihilated by all the Dίrac states, i.e. 3) is the unique maximal C*-algebra in

Theorem 2.7. 0:= {
Then H<£^, and ̂  is a proper two-sided ideal for 0. In [1], Dirac defines his

observables as "first-class variables" in an analogous way to the way that Θ is here
defined, i.e. as the "weak commutant" of the constraints. The observables in
quantum theories are traditionally taken to be j/(L)'.

Define & to be the largest set such that j/(L)^ c= [ ĵ̂ (L)]. Then 1 ej/(L)' c

Theorem 2.8. 0 - ^^(L)^ and (9 =
Hence stf(Ώj c $, and so we could choose (9 even as the set of observable

quantities. Θ can be considered as the largest C*-algebra on which we can
consistently impose the constraints. Define the maximal C*-algebra of physical
observables as

The factoring procedure is the actual step of imposing the constraints. Now it is
possible that ̂  may not be simple, and this would not be acceptable for a physical
algebra. So, using the physical arguments, one would in practice choose a
C*-subalgebra (9C c 0 containing j/(L)' such that

is simple, and then ^c is the right physical algebra. The distinction between Θ and
Θc was not made in [6]. We call the procedure for obtaining the objects above
the T-procedure. (9 consists of the "weakly gauge invariant elements."

Theorem 2.9. Ae(9 iff oiv(A) - Ae&VUeW, i.e. (αφ - ι)A c 0.

Theorem 2.10. ωe&D iff πω(@)Ωω = 0, where πω and Ωω are respectively the

GNS-representation of ω and its cyclic vector.

This corresponds to the heuristic χ\φy = 0 method for imposing constraints.
Define Γ:= {αeAut ^\Q) = α[^]}, then since Φ = Jl &(β\ α also preserves Φ and
so defines canonically an automorphism a' on .̂ Define the group homo-
morphism T: Γ H» Aut^ by T(α) = αr, then we expect Ker T to consist of gauge
transformations:

Theorem 2.11. Ker T= (αeAutjη <ω|α[>4]F> - {ω\AF^A, Fε(9 and Vωe 6^} c Γ.

Theorem 2.12. αelnnJ^n Γ =>
The physically admissible automorphisms of ̂  denoted by Γ c are those which
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are definable on ^c, i.e. α(0c) = &C9 and α(^n0c) c $r\(9c. Clearly, if αe Γ , it is
sufficient that it satisfies oc((9c) £Ξ Θc for it to be physically admissible.

For later reference we sketch the structures found for a linear boson field with
linear hermitian constraints, such as the Dirac form of electromagnetism, cf. [6].
The field algebra is taken as Manuceau's C*-algebra of the CCR cf. [10,11]:

2F = A(Jί,B\ where Jί is the complexified test function space with the non-
degenerate symplectic form B( , •) on it. To fix notation for the later sections, we

define Δ(Jί,B).

Definition 2.13. i) Given a linear topological space Jί with symplectic form B on
it, let A(Jΐ,B] be the normed *~algebra such that its elements are the complex
valued functions on Jί with finite support. It has the obvious linear structure, the
following multiplication law:

(/ι/2)(*):= Σ ΛίzJΛtz-

involution /*(z):-/(-z) and the norm H / I K ~ £ |/(z)|.
Z£j{

ii) Denote the completion of A(Jί,B) in the latter norm by Δ1(Jί,B). Then

A(Jί^ B) is the enveloping C*-algebra oϊ Δ1(Jί, B), i.e. the closure in the enveloping
C*-norm: | |/ | | :=sup ||π(/)||, where P is the set of nondegenerate representations

πeP

ofΔ^J/.B).
The C*-norm defined here appears to be different from the one defined by

Manuceau, but by Slawny's uniqueness theorem [16], they are actually equal. The
functions δF of support {F} and value 1 form a generating set of unitaries for 2F .
The heuristic correspondence rule is δF+->W(F\ where W(F) is the heuristic Weyl
operator constructed from the smeared version of a set of canonical pairs pt (x), <fc(x).
The constraint group °U is then specified as the group generated by δc:= {δF\Fe^},
where ̂  is a real linear subspace of Jί corresponding to the heuristic constraints.
With

p:- {HeJί\B(H, C) =

we found that <5p = <5^n0, and indeed C*(δp) = C*(δ^nΘ) = ^(L)r. There are
additional elements to these in (9, of the form ΎJ(x,iδFι with Ftφp V i , but it is very

i

difficult to get our hands on these, and so we make the choice: (9C = C*(<5p) = j/(L)'.
Now £/(L) c $c, i.e. # c= p, (because otherwise H ej/(L)), and so j/(L) is commutative,
and *tt = δ«. Then ®n#c = t^(L)C*((5p), and the physical algebra is 3$c =

When ^ is the degenerate part of p with respect to B, then

$c = Δ(p/l(&, B), where B is the canonical image of B on p/^ (which is nondegenerate),
and so in this case ^c is simple. The symplectic transformations on Jί which
conserve ^ will define automorphisms on 01 c. The states on Mc which will define
physically relevant representations, (i.e. for a representation π the map λ)->π(δλF)
for fixed F is strongly continuous) are those for which the function λh*ω(δλF) is
continuous for fixed Fep/^.

In [7] we exhibited the connection between the structures above, and the usual
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structures of indefinite inner product representations, but we omit a discussion of
that here, since it will not be utilized.

Finally, we give the structures of the situation when the constraints can only
be defined as automorphisms on the field algebra, and the physical states are
selected by invariance under these automorphisms [8]. This is the case when
for instance quadratic constraints are imposed on a linear field algebra. The
assumption is:

2.14. Given the situation of 2.1, there is a distinguished group action α:Gπ> Aut ̂
on 3F , and all physical information is contained in 3F and its set of invariant states:

If G is locally compact, we can construct 3F ' e = M(G*;W} and if G is an inductive
limit of locally compact groups, G = limG;, we can form ^e = limC*((/Gιu^r),
where UGι are the elements in M(G*^} which implement αGι, i.e. ag = Ad Ug

;. So in either case, we obtain a C*-algebra ̂  e => 3F which contains unitaries
that implement α Gh+AutJ^. Then this situation is reduced to the

previous one by the following theorem:

Theorem 2.15. &G(^} is precisely the restriction to 3F of the Dirac states on J%

with respect to UG, i.e. <ZG(3F) = &D(^e)\^, where

Hence we can apply the T-procedure to UG in J^e, and intersect the resulting
algebraic structures with J^. That is, d(L) = C*(UG - D), @e = J3/(L) J%n^ej/(L),
@e = Mre(@e). Nontriviality is 6G(^)^0 iff ^φ^(L) iff ίφ^er^^, the largest
C*-algebra in n{Kerω|ωe6G(J^)} is ̂ en^, and the maximal physical algebra
which is gauge invariant and constraint free, is 3$ = (@e n ^}l(βe n 3F\ Physical
automorphisms on ̂  are those definable on 0t. Clearly the gauge invariant algebra
2FG is contained in

3. Setting up the Problem

The setting for the kinematics problem of the second class constraints problem is
as follows:

3.0. Assume there is given a unital C*-algebra 3F as a field algebra, and its set of
states S. Within ̂  the constraints are specified as a set of unitaries $U c J^L,, and
a set of physical automorphisms $ c AutJ^ is given such that α(^)d^ Vαe^.
The physical structures should be such that fyl acts trivially on these.

The omission of the nontriviality assumption 2.5, means that we cannot assume
that ^ can be set to H by state conditions. Moreover, the assumption that $
preserves °U means that we start at step 4 of the Dirac procedure, taking the
dynamics problem, i.e. the adjustment of the dynamics in order to preserve °U, as
solved. This problem is discussed in Sect. 7. As before, % corresponds to the
heuristic constraints {Γt} according to ^<-^{expiλΓi}.

In this work, it is our aim to solve the following problem. Obtain from J^ a
C*-algebra ̂  which is unital, constraint free, gauge invariant and containing the
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traditional observables W (modulo the first class constraints). £ should also be
definable on ̂ , and when 11 φC*^ — H), $ should coincide with the physical algebra
ffi obtained through application of the T-procedure to tyl.

We now need to define what is meant by first and second class constraints in
the quantum setting. Dirac defined a constraint χt as first class if the Poisson
bracket {χh Γj}PB is a linear combination of constraints, where Γi ranges over the
full set of constraints. The coefficients of this combination are phase space
functionals. We found that all direct adaptations of this definition to the
present framework failed.

Now recall that in step 7 of the Dirac algorithm, one requires that the quantized
first class constraints annihilate the physical vectors, i.e. they should all satisfy
simultaneously a state condition. This is what we will take as our definition of first
class constraints. By the nontriviality condition 2.4, we see that a constraint set
/JUcL^Fυ will satisfy a state condition iff 11 φ^/(L) = C*(Ψ - U).

Definition 3.1. We say a set of unitaries ̂  cz ̂  v is first class if D φC*^ — 1), and
if H eC*(^/ — U), i.e. C*(^) = C*(^ — H), we say °li contains second class constraints.

Hence the situation set up in 3.0 admits second class constraints. Let Lt:= Ut — H ,
Ute<%. Then L±L2 + L1 + L2 = U1 U2 - 11 eC*(^ - U ) c 2. Hence, given a first
class set % the group generated by it <?/) will also select the same set of physical
states 6D, and the same physical algebra ,̂ and ω(tf/)= 1 = oj«^»Voje8/> i.e.
the Dirac states "respect" the group structure of <^/>. Now the states are also
linear functionals, hence we expect that if a set °U contains second class constraints,
then the group structure of <^> will clash with its linear structure in 3F with
respect to the Dirac states. This is what the next lemma says.

Lemma 3.2. Given a set % c ̂ v, we have that 1 eC*(^ - 1) iff 3 L/e<^> such that
U = J]λlUh where t/ ze<^>, and? λ^l.

i

Proof. Clearly if ^Λ ίί/;e<^>3ί7/, ^Γ/^ 1, there are no states ω satisfying
ω(%) = ω«^/» = 1 because ω(J]/zί/z) = ̂ /t / 1 is a contradiction. Hence &D = 0,
and so by 2.4, H eC*(^ — 1). Conversely, assume that for all [/e< W > of the form
U = ΣλlUh ί/ ίG<^>, that^/^ = 1. Now C*(^)is the closed linear space generated
by <^>, so a state on C*(^) is uniquely specified by its values on <^>. Hence
choose a linear independent set {Ua} c <^>, then any linear functional on C*(^)
can be specified by arbitrarily choosing its values on {Ua}. Specify ω(ί/α) = 1 Vα.
Then by the assumption we get that ^ Γ λ α = l for all linear combinations
^Aα(7αE<^), and hence ω(^) — 1. We need to check that the specification
ω(ί/α)=l defines a state, i.e. that ω(C*(*)+)^0. For any β*βeC*(^)+ with
£ = X/α£/αeC*(^), we get:

α,/ϊ

For the closure, limits are easily done. Hence ω is a state on C*(^), and can be
extended by the Hahn-Banach theorem to a state on ^, and so ω GoD^0, i.e.
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We now test Definition 3.1 against two simple examples where we know
heuristically that <% contains second class constraints.

First consider the heuristic second class situation where we want to put
both ξ and ξ + AH equal to zero. In the present framework, this means
fy = {U,eiθU}, where $eR\2πZ. We immediately see from Lemma 3.2 that
11 eC* (̂  -1), but we show this directly. With L(U) := U ~ H , we get L(U)~ L(eίθ U) =
(1 - eiθ}UεC*(W - 1), hence ΪVeC*(^/ - 1), and so C*(^ - D) has unitaries, i.e. is
unital, and so tfl is second class.

Next assume the situation of a canonical pair, i.e. ̂  = {δF,δG}, where as in
Sect. 2 for the linear boson field, these satisfy

#CF,G)/0. Then δ-GδFδG = δFexpίB(F,G)e(<%yBδF, and so by Lemma 3.2,
C*(^ — 1) is unital, i.e. °U is second class.

From these examples, we see that it would not be advisable to take <^> as
our constraint set instead of ̂  when °U has second class constraints. This is because
in these examples, the group structure of <^> will give every element a multiple
of itself, and so the elements which may have been first class with respect to each
of the other elements in °U (a notion defined below), will become second class in < fy, >.

4. Separating out the First Class Constraints

In step 4 of the Dirac procedure, the constraints are separated into first and second
class sets, which is what we intend to do here in the quantum framework.
For convenience, let fy be indexed by a set / (which may be °ll itself), i.e.
^ = {Uj}jel a &υ and for jR c /, we denote UR:= { U j \ j e R } .

Definition 4.1. Call a set R c / compatible if UR is first class, i.e. H£C*(l/Λ-1l).
Denote the set of compatible sets by &,&c:2I. Then we say a set P e= / is
compatible with a set R c / if PuRe-^ (and hence Pe^a^R).

Note that & with set inclusion becomes a partially ordered set, but it is not a
lattice. We consider this definition as the quantum analog of Dime's notion of
constraints being compatible if they have weakly vanishing Poisson bracket. We
can then form the following partition of /,/ = /^U/.U/Q, where:

Definition 4.2. / f:= {kel\{k}φ&, i.e. 1eC*(ί/ f c-H)}, and we call these intrinsically
second class. Call /,.:= {/ce/|3Ke^ such that {k}uRφ^^{k}} relatively second
class; and then define the first class part of / as /0:= {/ce/|{/ί}u#e.^VRe^).
Note that fce/0 implies that {/c}e^.

The intrinsically second class elements li are those which cannot be consistently
set to H, e.g. eiθ^ with eίθ φ 1. We do not expect such elements to arise in reasonable
theories. The relatively second class elements Ir are those which are not compatible
with some compatible set. A good example of the latter is a canonical pair
δF, <5G, B(F9 G) Φ 0 as in the previous section. Finally, the first class part /0 consists
of all those elements which are compatible with all compatible sets. This
nomenclature is in analogy with the Dirac algorithm, where the first class
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constraints are all those compatible (in Dirac's sense) with all the others. However,
for IQ to be acceptable in the quantum framework, we need to show that it is itself
compatible, /Oe^.

Lemma 4.3. Let ̂  be a C* -algebra generated by a set {>4jiej ci j/ (contained in a
larger unital C* -algebra) such that 1] φC*(AF) for all finite subsets F c J. Then

Proof. Note that j/ is an inductive limit of the C*-algebras C*(AF\F c= J, in the
natural way. Then by Blackadar 3.3.1 [12], there is for any invertible XGJ/ a
sufficiently large but finite set FeJ such that xeC*(AF)^x~1. Hence given the
hypothesis of the lemma, ί φ j / .

Proposition 4.4. 1 φC*(UIo — 1), i.e. /0 is a compatible index set, /Oe^.

Proof. By 4.3 we only need to show ίφC*(UF — 1) for all finite subsets FaI0.
Build each F up inductively. Each fce/0 is self-compatible, {/C}G^. Let K c /On^,
and keIQ\R. Then fcuCe^VCe^ implies that /CU^E^. Hence we can build up
F in a finite number of steps starting from a single element, and know at each step
that it is a compatible set.

Recall that we also have a set of physical automorphisms $ under which fy = Uf

is stable. Then for UIo to be acceptable as the first class constraints, it too needs
to be stable under $ .

Theorem 4.5. Given as above {Ut}iel c ̂ ^H and an αeAut ̂  such that α(l/7) = UI9

thenx(UIo)=UIo.

Proof. Since α(H) = U, we see ]φC*(UR-]) iff 1£C*(α(t/Λ)-1]) V#E^, and
similarly for α"1. Hence we can define a bijection α':^H»^ by α(C/R) =: l/α/(K) since
α(L7j)= l/j. Now fce/0 iff kvRe0> \/Re0>. Since α' is a bijection, a'(/c)u#e^

iff a'(fc)ua /(R) = a /(fcuJR)6^ ) V#e^> iff /cu^e^ V^G^. Hence a'(fc)e/0 iff
/o, and so α(ί//0) - [7/0.

To verify the physical reasonableness of Definitions 4.2, one would also need
to check it against some examples, i.e. whether the separation of the constraints
into first and second class agrees with the heuristic results. This will be done in
Sect. 6.

5. Imposing the Constraints

On having separated the first and second class constraints, we now get to step 5
of the Dirac algorithm, the construction of the Dirac bracket (DB). Since the linear
field can be quantized consistently, we examine how the DB will affect it, in order
to see how to adapt this concept to the quantum setting.

Observe first that the DB puts the second class constraints into the centre of
the Lie algebra, and if we interpret the DB as a commutator in a C*-algebra, then
likewise it puts these constraints in the centre of the algebra but does not eliminate
them. So in the quantum framework, we expect two parts to step 5 of the Dirac
algorithm, the construction of a "quantum DB" and the elimination of the residual
second class constraints in the centre. Moreover, on the observables (first-class
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elements), the DB should be weakly equal to the usual bracket.
Given a heuristic linear boson field with first and second class constraints

denoted respectively {χj and {ξj, a canonical pair will not be canonical with
respect to the DB any more:

{qi(x),Pi(x')}m = δ,jδ(x - *)-$dx"d

=:δijδ(x - x') - Tij(x,

where Ckl(x,x') is the inverse of the matrix ({ξ^x^ξfa')}) and x denotes space
coordinates only. Then smear over the right number of copies of 5^(IR3) and
quantize by {•, }DB~^[V] to obtain:

[_q(F\ p(G)-] = i(F, G) - iT(F, G) - iK(F< G)

with obvious notation. Because the system is linear, T(F9 G) will be a scalar. Hence
in the usual manner [10] complexify the test function space to obtain the space
Jί which comes equipped with the symplectic form

BD(Fί + iF2,G1 + iG2):= K(F1 , G2) - K(F2, G, ) - B(F, G) - BT(F, G)

corresponding to the commutation relation of the DB. Here F = Fi+iF2,
G = Gl 4- zG2e^, and B is the usual symplectic form, Bτ the extra part. So we

can define the field algebra ^D:= Δ(Jί,BD} similar to 2.13, but this will not be a
simple C*-algebra because BD is degenerate on M. The degeneracy is due to the
fact that BD vanishes on all those Fe.Jί which correspond to {ξj. If we call the
subspace generated by these Jl11 , then this should be the degenerate part of BD9

in which case JifM11 will be a nondegenerate symplectic space with respect to
the form BD obtained from BD. The step of factoring out Jίπ is the step of
eliminating the second class constraints from the centre of & D, because

At this point there are still first class constraints ^ c -MjJί11 left in the
theory, corresponding to (χj, and these are removed in the usual T-procedure
way. Then the final physical algebra is C*(δpD)/C*(^-U)C*(δpB) with pD =
[FtJί/Jί11 BD(F^) = ϋ}. Now whatever method we follow for removing
quantum constraints, we should be able to argue that our resulting physical algebra
agrees with or is contained in the physical algebra obtained from heuristic
reasoning. So in the examples of Sect. 6 we will compare the physical algebra
obtained above with the physical algebra obtained there.

Return now to the general setting of the preceding sections. Whilst it is possible
to construct a quantum analog of the DB by alteration of the multiplication laws
of the field algebra, we will not attempt that here because we lack suitable examples
of nonlinear C*-theories for guidance. Instead we propose the method below.

Since /0 is compatible, UIo can be interpreted as the largest constraint set which
can be put consistently to H by state condition, and so

is the largest C*-algebra which can be consistently set to zero by state condition.
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Henceforth we will interpret "weakly zero" in a quantum context as meaning that
an element is annihilated by the Dirac states, the latter being selected by the first
class set UIo. Now &0:= Jί^(^0)/^0 is not suitable as a physical algebra because
we have not yet imposed the second class constraints U^ . Recall that in step 4
Dirac defined observables as elements having weakly vanishing Poisson brackets
with all constraints. We define:

Definition 5.1. The quantum observable algebra is:

That is, Θ consists of the "weakly gauge invariant elements," cf. 2.9. Though
UAU'1 — A = [Ό,A]U~l, we find the form of 5.1. more convenient than the
commutator, considering the weakly vanishing P£-relations to relate to the
infinitesimal generators. Note that the traditional observables U'j are in (9, and
this partly justifies the choice of (9. The selection of (9 is the step of imposing the
second class constraints. The first class constraints can only be imposed on (9 if

0c00:= ^(^o)

Theorem 5.2. CO a(90. If I0 = /, i.e. all constraints are first class, then (9 = (90.

Proof. Since UIo <=UI9 we get (9 c (90 from the definition and from 2.9. If / = /0,
then 5.1 reduces precisely to 2.9 to give (9 = (90.

Hence we can consistently define the maximal physical algebra as:

. (5.3)

That it is nontrivial, is clear from the fact that @3^φ@0, i.e. (9r\^Q is a proper
ideal of (9. This is the actual step of imposing the first class constraints. For
consistency, Θ should be preserved under the physical automorphisms $.

Theorem 5.4. Given an αeAut J^ with x(UI)=UI, we find that α(0) ̂  0, and hence
α defines canonically an automorphism

Proof. If (Ad Uj)-A -A^^Q, then α((Ad U^A - A) c α(^0). The left-hand side
is (Ad Uj)Got(A) ~ a(A) by α(ί/j) = Ul9 and the right-hand side is α(^0) = ̂ 0, which
follows from 4.5. So (Ad U^^A) - a(A) c ̂ 0 implies x(A)εO if AeΘ.

So all automorphisms in Ad Vl n <ί are definable as automorphisms on ^?,
and by the two definitions 5.1 and 5.3 are trivial on ,̂ i.e. 2ft is gauge invariant.
It may not be constraint free yet, but if there are UeUΓJ such that Uε(99 then
these will end up in the centre of ̂ . At this point we dignify the preceding procedure
with a physicality assumption:

Assumption 5.5. Given the constrained system U l c J^L as above, all physical
information is contained in 01 and its set of states.

In practice, 0t must be simple if it is to be acceptable as a physical algebra. Hence
if it is not, we choose as before a sub C*-algebra C/c a (9 such that U'j c ΦC9 invariant
with relation to the physical automorphisms <ί, and such that $C\=ΘC/(ΦCC\<%Q)
is simple. This will be the chosen physical algebra. At this point all the constraints
are imposed, for those which were in the centre of $ will now be omitted or equal
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to multiples of the identity, since the centre of a simple algebra is trivial. Moreover,
the traditional observables U'j are in the observable algebra, the physical
transformations leave V / and Θc invariant, and the gauge transformations Ad Uj
which can be defined on 3% are trivial on 3t. This seems formally satisfactory,
especially since the method reduces to the Γ-procedure if Ό I is first class. It remains
to be tested against examples.

As for the state spaces, we see via Dixmier 2.1 1.6 and 2.1 1.8 [13] that the states
of ̂ c are in bijection with the states on Θc containing &cr\&Ό in their kernels, and
this bijection respects pure states. Moreover, if π and ς respectively denote the
GNS-representation and its cyclic vector of a Dirac state restricted to <Γ, then for
all UeUjnΘ we have π([/4, l/])ς = 0 for all AεΘ.

To conclude this section we summarize our proposed algorithm.

1. Start with a constraint set Ό l stable under the physical automorphisms <§. If
we want all gauge automorphisms Ad £// to be definable on J>, enlarge L/7 to
Ad 17, ° 17, .

2. Separate ί77 according to 4.2 into (// = ί/7ιu £7/ ru C7/0.
3. Define @0:= t&C*(UIo - H)] n [C*(l//0 - \)SF~\ and

Θ:= {Ae&\M Uj°A -Ac: ̂ 0}.

4. Choose an Θc by the requirements above, and define $c = Ccj(([ CΓ\&Q} as the
final physical algebra.

6. Examples

A: A Linear Boson Field with Linear Hermitian Constraints

Heuristically, we know that at least the centre of a given set of constraints should
be first class. We prove it in the present context. Let {,.//, B} be a symplectic space

as before, $* = A(Jί, B) and define the constraint set as # = <5r, where # c . // is
the set specifying the constraints, and here will play the role of the index set / of
the preceding theory. As for the physical transformations y.:K\-+ AutJ^, let these
be specified by symplectic transformations T:K\-+Sp.//* i.e. y,k(0F} = δTkF. Now
since δ_G'δF-δG — δFexpίB(G,F), we find that Ad ?/ will generate multiples of those
elements of tfl not in its centre, but it leaves the centre invariant. On the other
hand, αx will leave ty and \duMotf/ invariant if Tκ^ = ̂ . Since δ # forms an
independent basis for Δ(Jf,B), no amount of adjusting of a δF by multiples will
get it into Ql if it is not already there. Hence the only option here for getting a
constraint set invariant under the physical transformations, is s imply to generate
its orbit (cf. Sect. 7). So assume henceforth that TKV = {(> and Ad # ft = '//, i.e. we
have enlarged tyl to the latter set. This is step 1 of the algorithm.

We know from [8] that there is a *-homomorphism

for each pair of subspaces H,L of , //, where L^ // ( ), and the latter denotes the
degenerate part of H. Hence $ is nontr iv ia l if H/H0 is nontrivial in which case
H φ C*((5L - 1). Hence a set Y" c <<; is compatible if
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(i) p(y*):= {Fe,//|£(F, '/ ' ' ) = ()] has nontr iv ia l elements not in 1 ,
(ii) 3F,Ge=p(Γ) such that β(F,G)^0, and

(iii) Y"<=p(YOo,

because then ^ = C*(ίp(n)/C*(όr- H)C*(^ p ( M ) is nontrivial, and hence by the
T-procedure H^C*(^ / — 1). Note that ( i i i) implies that <5 r is commutative, a fact
we already noted earlier in that the elements not in the centre of Ίl acquired
multiples under Ad^//, and hence had to be second class. Normally, it seems
reasonable to assume that (i) and (ii) will be satisfied for i'r = (6 in realistic theories,

because it means that there is something left in the theory after constraining it.
Henceforth we assume (i) and (ii) to hold for (€. It also means that (i) and (ii) will
be automatically satisfied for all subsets ir c fΰ, because p(tf) £ p(Y").

Lemma 6.1. With %> as above, a subset i^ c # is compatible iff Y^ c p(Y" )0.

Proof. By (iii) above we have already that Y ~ c p ( Y " ) 0 implies /" is compatible.
We show the converse. Assume Y " c ^ p ( Y ~ ) 0 , i.e. 3F, G e Y " such that B(F,G)^0.

Then [<5F - H , <5G - I] = ̂ f + G2 sin β(F, G)EC*(<5, - D), hence since β(F, G) + 0, the
unitary δF + GeC*(δi -1), and so Y" is not compatible.

Corollary 6.2. Two self compatible subsets Y'", Y/-" c ̂ ' are mutually compatible iff
β(Y", y/o - o.

Recall that the first class constraint set /0 c ̂  consists of all the elements which
are compatible with all self compatible sets.

Corollary 6.3. /0 = #'0, the degenerate part of(6 under B is the same as its first class
part.

Proof. Each Fe^ is self compatible, because from B(F, F) = 0, Lemma 6.1 holds.
Hence 70 ̂  {Fe#|β(F,G) = 0 VGe^} =:#0. Reverse inclusion follows from the
linearity of B.

This establishes the heuristic result, because δ^ is the centre of -//, and concludes
step 2 of our algorithm. So

Sf0 = \.Δ(J/,B)C*(δ,o - 1)]n[C*(<5v.n -

= [M^0-H)]n[(ό.Λι-1)^J,
and

So (5Ge(^ if ̂ F^Gί5-F - δG = δG exp IB(G, F)-δG = (exp /5(G, F) - 1 )δGε20 . Hence

since ^0 is a C*-algebra, either B(G,F) = 0 VFer^, or (5Ge^0ί

 but tne latter
alternative cannot be, because it implies that 11 e£^0, in contradiction with ̂ 0 being
first class. Thus δGEΘ iff B(G,^} = 0. Thus as before, we define the physical subspace

p(#) - {Fe.//|£(F,^) - 0} with respect to %\ and choose ^Γ

Γ - C*((5pm) c 6r, then
'̂ = ί?c, and since Tk is symplectic and Tκ<# = <$'. then also Tκp((^)

and so α x(ί r

c j = ί̂ . Note that ̂  = ̂ npΓ<f). By theorem 3.2 of [8J. ^O

ί ί J , and hence

Here we also took the additional step of assuming p(tf)0 = ̂ 0

 or ^ it is not^ to
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also factor out the remaining elements in p(#)0 to ensure that 2/lc is simple. This
concludes the application of the proposed algorithm to the present example. We
now return to the problem of its justification, by comparing the physical algebra
just obtained with the one obtained early in Sect. 5 on employing the Dirac bracket
notion. The earlier physical algebra &D:= C*(δVo)/C*(δ<KQ - U)C*((5P D) was obtained
from two successive factorizations, but it would have been the same to do it in one
step. Define first pD(#0)

:= {FeJ/\BD(F/^Q) = 0}^ Jίπ = #r, and then

where likewise we took the liberty of factoring out the additional elements of
PD(^O)O n°t m ^o? in order to make &D simple. So now we need to compare $D

with £#c, which means that it is the relation between the symplectic spaces
{p(^)/p(^)0,5} and {PD(^O)/PD(^O)O^D} which should be looked at. At this point
it is necessary to make an assumption on the behaviour of Bτ. Recall that Bτ

comes from the term ^dxdxΎj{ , ξ k ( x ) } C k l ( x , x ' ) { ξ l ( x ' ) , }, where the ς are second
k,l

class constraints. Hence we expect the following behaviour from Bτ : Bτ (^ 0 , F) = 0
VFe^, because in this context the first class constraints commute with all the
other constraints, and Bτ ($(<#), F) = 0 VFe,/^ for a similar reason for the physical
space. Since ^0 c p(^), the first relation is contained in the second. Moreover, BD

is set up to eliminate second class constraints: BD(^\^0,F) = QVFeJί. Henceforth
we assume the behaviour above of Bτ. Then B(F, G} = BD(F, G) VFep(^), GeJt.
Hence p(^) c= pD(^0) and PD(^O)O ΠP(^) — P(^)O> an^ on P(^) ^ne forms B and BD

are equal. So we see that $c is a factor algebra of a subalgebra of .^D5 and hence
the algorithm we have proposed appears to be stricter than that suggested by the
Dirac algorithm.

Next we wish to apply the theory of linear boson fields above to a real example
which occurred in the literature; the anomalous chiral Schwinger model, worked
out in two dimensions by Rajaraman [14]. At the point before construction of the
DB one has (in his notation) three canonical pairs with equal time PB-relations:

μo(x),π0(y)} - {Al(x\E(y}} = {φ(x\n(y}} = δ(x - y)

with constraints:

βiM ̂ πoM^O

ί22(x):= E'(x) + φ(x) + φ'(x)) + e2 A^x) + e2(a - l)AQ(x)

and the Hamiltonian which preserves the constraint set is:

H = $dx{±π2 +W2+ i£2 - EΆQ - e(π + φ')(A0 - A,

The situation is linear, and hence the preceding theory is applicable. Since the time
evolutions preserve the constraints, we will not further consider these, since it is
only a matter of writing down the explicit time evolution, and by construction we
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know that this will be symplectic (cf. [15] for an example of this). Smear the
relations in the free space variable over ^(IR), and so to quantize we complexify
^((R) and take three copies of it for the symplectic space Ji. The correspondence
will be (with notation Fl = (RFl -f i^Ft for real and imaginary parts).

F = (Fj.Fz.FaMMSRF!) + ̂ (SFJ, £(5RF2) + A^F^π^F,) + φ(3F3)),

where F,e^(R) + ί^(U), I = 1, 2, 3. The symplectic form corresponding to the CCR
is:

On utilizing the correspondence above, we get for Ω1 , Ω2 respectively the constraint
spaces:

iQ,Q,0)9fe&'(R)} and

- I)/, - /' + ie2f,ef - ief'\f

= {FεJί\F = (ie2(a - 1), - ΰ + /e2, e - ied)fJe<S(U)}.

Then ^ = (Ad(5^)°^, ^^^u^. So from the noncommutativity of the first
components, everything in b(β get multiples of themselves, and so is second class.
It can be seen at a glance from ^ and #2

 tnat there is nothing first class, i.e.

= {0}. So in this case ̂  = 4(p(<^/p(#)0,J3) and $c - C*( }̂), ̂ 0 = (Oj.
Now p(#) - {FeΛT|5(F,<ίί) - 0}. So for Fep(^),

, C) = \dx{(y{FJe2(a - l)ft - pFJ^ + (^F2)β2/z + (3F2)Λ; - (9lF3)eh'

Hence 3F, = 0, and ̂ 2(α - 1)9^ + ^29iF2 - d3F2 + e5^F3 - β3F3 - 0. Use this
to eliminate 5RF l 5 hence:

Also, p(^)0 = {0}, because the first components in p(^) have no imaginary parts,
hence do not contribute to B(F, G), F, Gep(^), whilst other components can still

be arbitrary in ^(IR) -f i&(U). Hence $c = Δ(p(^\B), i.e. the simple commutator
of the constraints.

B. Linear Boson Fields with Quadratic Constraints

Consider the heuristic situation where a canonical pair p, q is embedded in a larger
system, and the constraints given are p, q and pq. Then p, q are second class, but
since [/>, pq] = ip&0 and [_q,pq]= — ϊg^O, the constraint pq is first class. We
intend to model this situation in the rigorous framework, to see whether the abstract
algorithm agrees with this classification of constraints. The tools for dealing with
quadratic constraints were developed in [8], and was touched on in the conclusion
of Sect. 2.

Let & = ZMM?) where Jί = &(R) + i^(R\ B(F, G) = f (5RF-3F - 3F-5RG). As
before, F eJ? corresponds to p(9ΪF) + #(3F). Let J c [R be a closed bounded interval,
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and define %> t:= {F e Jί \supp F £j}, and this will correspond to a boson system
on J. To define the pq constraint cf. [8], we need to define the automorphism on
3F, AdexpiλJ(p<7/), ΛεR, /e^(R). Hermitian reordering is not necessary, because
pq, qp and ^(pq + qp) all have identical commutators with q and p. Now

δF^ W(F) = exp i(p(5RF)

We find ίiλ(pq)(f),p(F1) + q(F2)~} = λ(p(fF,) - q(fF2)), and hence

liλ(pq)(f), [. . . , liλ(pq)(f),p(F1) + q(F 2)

So

(Ad exp iA(p?)(/))(p(F!) + q(F2)) = (ex

On employment of (Ad U)An = ((Ad U)A)n and a power series expansion:

(Δdexpiλ(pq)(f))expi(p(F1) + q(F2)) = expi^β^FJ + ̂ ~A/^2))

Hence in the rigorous arena, this automorphism corresponds to a transformation
on M given by:

By inspection we see that Tλf is symplectic, hence defines an automorphism group
on 2F by aλf(δF) = δτ^ F. As before in [8], we take the inductive limit of the
C*-algebras in the multiplier algebras of the crossed products, to get & ' e and the
usual outer constraint structure, i.e. elements Uλfe(^e)u such that αλ/ = Ad L/λ/,
and the Uλf are identified with the exp iλ(pq)(f). Hence #2 := {/£«$^(R) | supp / c J}
will be the index set of the (7λ/ constraints, the full index set being l = (6^\j(€2-
Now Ad Uφ ° IL just generates the usual multiples on U « - <L , Ad U^ °U^ =

^1 ^1 J ° ^ ^1 ^1? ^2 ^1
v-<g2(U<e^ = Uy^, and hence will preserve this set. Ad U^2°U^2 is preserved by the
group property, and Ad U<# °U^ = {Uλfδτ Fδ_F\fε(^2,F^l}, which is not in
^ . Clearly due to the multiples, ̂  is not a compatible set, although it does contain
self-compatible subsets, viz. ̂ {1):={Fe(Kl 91F = 0}, <#(?:= {FG^J3F - 0}, and
these are indeed representative, in that any index set which is compatible with
both these sets, will be compatible with all self-compatible subsets of (^1. So first,
we want to show that ^2 ^s compatible with both Ή^ and ̂ (ι\ which entails of
course that ^2 is self-compatible. According to Theorem 2.15, for proving that
a self-compatible set i^ a (^1 is compatible with ^2> ^ suffices to show that there
exists an α-invariant state on 3F which also vanishes on {δr — H}. This is very easy
when i^ is a linear space invariant under T^2, since the required state ω is then
simply defined by ω(δi/)= 1, and ω(δF) = 0 when Fφi^. Hence it suffices to show
here that the linear spaces <g(^ and ̂ 2) are TVz -invariant, and this is almost trivial
to see, because Tλf does not mix the real and imaginary parts of Ji^ and so
TcgΦp = ̂ \ Tyffi) = %(2\ i.e. ̂ 2 is compatible with both %{1} and <β(}\ hence
with (£l . Finally, we want to show that Ad U<# ° U% has no first class part, and
that all its self-compatible subsets are compatible with #2. Towards this,
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note first that since Ad U<# consists of automorphisms, they therefore preserve the
identity and hence map compatible sets to compatible sets. So the compatibility
structures of ̂  are carried over identically. Moreover, C*(l/^ u Ad U<# ° ί/^ω — U ) =
C*(ί/<g, ul/^ω — D), hence we have already proven that ^2 *s compatible with all
self-compatible subsets of Ad U^ ° U^ , the latter of which consists of commutative
subsets. Finally, note that the centre of δ<# is 1 This concludes the proof that ̂ 2

is the first class part of ,̂ a result fully in agreement with the heuristic one.
So now ®Q = ί#r

eC*(U<g2--ί)']n[_C*(U<g2-^)&:

e]n&r, and by the formal
theory we get Ae&0 iϊίω(A*A) = 0 = ω(AA*) VωeSα(«^") where the latter denotes
the α-invariant states on 3F . Θ = {AG^\Ad Uj°A - A c ̂ 0}, and clearly by the
previous example δFε&=>FEi*(<$1) = (Fe^|suppF c R\J}. Then for #2

 we have
δFe(9 iff δτ F - δF£@0 V/e^2 iff ω(21 - δF δ _τ F - <5T;/F<5_F) = 0 VωeSα(«^) iff

2 - ω(δF_Tλ/F)exp^B(F9 TλfF) - ω(δΓχ/F_F)exp^B(Γλ/F,F) - 0.

Now if Fep(^]),/e(ίί2, then their supports are disjunct so we see by inspection
that B(F9 TλfF) = 0, and that TλfF-F = Q, hence ω(δTλfF_f)= 1. So this relation
is automatically satisfied, and hence δFe& iff Fep^J. So we could choose

ΰc = C*(<5p(¥ι)), and since B is nondegenerate on p(«Ί), ̂ c = $c - ^(p(^ι), 5). This
concludes the present section.

7. Adjusting the Dynamics

Recall that steps 2 and 3 of the Dirac procedure consists of the adjustment of the
Hamiltonian by combinations of constraints in order to minimize the orbit of the
constraint set under time evolutions. This minimal orbit is then taken as the full
constraint set to be imposed. In the kinematics problem set up above, we assumed
that the equivalent of this procedure has already been carried out in the C*-theory.
We now consider this equivalent procedure.

There is no Hamiltonian in the C*-picture; it only exists for certain represent-
ations. Nevertheless, we do have a one-parameter group of time automorphisms
to describe the dynamics, and so the problem of steps 2 and 3 of the Dirac procedure
will translate in this picture to the problem of how to adjust this automorphism
group by objects constructed from the constraints in such a way as to minimize
the orbit of the constraint set. If one simply enlarged the constraint set to its full
orbit under the unaltered dynamics group, the wrong physics is obtained as can
be seen from simple examples. It was possible to construct several reasonable
procedures in the C*-picture which behaved in an analogous way to the classical
Dirac procedure, but we cannot claim that any of these solved the problem, for
the following reasons.

As the multipliers αf of the constraints in HP = H + aiΩi are phase space
functionals, and those of the second class constraints get fixed, it is often the case
that Hp is a higher than quadratic polynomial in p and q. Hence the dynamics
often do not conserve the linear part of the theory. In fact this is found to be very
useful in physics for introducing interaction into a linear theory. Now in a C*-setting
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we know that both the CCR and CAR C*-algebras can only model linear field
theories, although there are constructions for obtaining nonlinear objects from
these. This means that whatever method we use for adjustment of the quantum
dynamics by constraints, it should refuse to work in the C*-algebras of linear
theories until these have been enlarged to contain sufficient nonlinear objects. So
the right method for dynamics adjustment should be algebra dependent. As it is
still one of the main outstanding problems of mathematical physics to construct
a C*-algebra which describes a nonlinear field theory (higher than quadratic), it
is not possible to specify precisely how such a method should be algebra dependent
in a C*-context, and so the dynamics adjustment problem remains ill defined. That
is, we may evolve a method of dynamics adjustment in the general category of
C*-algebras which has some of the Dirac procedure's characteristics, but as there
are no suitable examples in the C*-framework to apply it to, there is no way to
decide if such a method is acceptable from the point of view of physics or not. We
must wait for the C*-theory of nonlinear field theories to evolve before we can
sensibly approach the dynamics adjustment problem.

8. Conclusions

In this paper, we have proposed an algorithm for dealing with systems with second
class constraints in a quantum framework. When tested on examples, it behaved
in a proper fashion. At this point its usefulness only extends as far as the C*-algebraic
framework is applicable to quantum theory, but it does suggest in its structure
analogous methods in other formulations of quantum physics. An aspect of the
algorithm which still needs further development is the first step, adjusting the
physical automorphism group and constraint set in to a stable system, but that
has not been pursued due to the lack of a suitable example of a nonlinear C*-fϊeld
theory. Further questions arise from the algorithm, e.g. what conditions should a
physical automorphism satisfy on J^ in order to be inner on ̂ c, when are indefinite
inner product representations required etc. We leave such questions for future
investigations.
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