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Abstract. A one-dimensional cellular automaton with periodic boundary
conditions may be viewed as a lattice of sites on a cylinder evolving according
to a local interaction rule. A technique is described for finding analytically the
set of attractors for such an automaton. Given any one-dimensional automaton
rule, a matrix A is defined such that the number of fixed points on an arbitrary
cylinder size is given by the trace of An, where the power n depends linearly
on the cylinder size. More generally, the number of strings of arbitrary length
that appear in limit cycles of any fixed period is found as the solution of a
linear recurrence relation derived from the characteristic equation of an
associated matrix. The technique thus makes it possible, for any rule, to compute
the number of limit cycles of any period on any cylinder size. To illustrate the
technique, closed-form expressions are provided for the complete attractor
structure of all two-neighbor rules. The analysis of attractors also identifies
shifts as a basic mechanism underlying periodic behavior. Every limit cycle can
be equivalently defined as a set of strings on which the action of the rule is a
shift of size s//ι; i.e., each string cyclically shifts by s sites in h iterations of the
rule. The study of shifts provides detailed information on the structure and
number of limit cycles for one-dimensional automata.

1. Introduction

This paper is concerned with the analysis of one-dimensional cellular automata
with periodic boundary conditions. Such an automaton may be viewed as a lattice
of sites on a cylinder of specified size n evolving according to a local interaction
rule of the form

together with the condition

x =

for all i and ί. The values of the sites are restricted to a finite set of integers
Zk = {0, l, . . .,k- 1}. The problem is to study the set of attractors for these
automata. Representative questions of interest in this context include the existence
of fixed points, the maximum limit cycle period for each cylinder size, and the
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number of distinct attractors for each automata rule. Questions of this type have
been studied by Martin, Odlyzko, and Wolfram [1] and by Guan and He [2,3]
for rules that are additive and/or linear in the rightmost or leftmost element.
Computational results have also been obtained by Wolfram and Peck (see Table
14 in [4]) for all nearest-neighbor rules on cylinders size ^ 16.

An analytical technique is described here for finding the set of attractors for
general cylindrical cellular automata. Given any one-dimensional automata rule,
a matrix A is defined such that the number of fixed points on an arbitrary cylinder
size is given by the trace of An, where the power n depends linearly on the cylinder
size. More generally, the number of strings of arbitrary length that appear in limit
cycles of any fixed period is obtained as the solution of a linear recurrence relation
derived from the characteristic equation of an associated matrix. For any p, the
technique identifies all cylinder sizes on which a limit cycle period p exists, and
thus is dual to the usual approach of fixing n and finding all limit cycles on cylinders
size n. The end result of the technique, for any rule, is the number of distinct
attractors of any period on any cylinder size.

The second major theme of this paper is the identification of shifts as a basic
mechanism underlying periodic behavior. Clearly, any automata rule that acts as
a shift (in the sense of cyclically permuting the site values in a string) automatically
produces limit cycles. Even for general automata rules, however, shifts play a
central role in generating limit cycles. In fact, it proves to be surprisingly useful
to view any limit cycle for an automation as a set of strings on which the rule acts
as a shift of size s/h\ i.e., each string cyclically shifts by s sites in h iterations of the
rule. It is shown here, for example, that for any rule (linear or non-linear) of
neighborhood size 2, a string of length n appears in a limit cycle of the rule iff the
values of the string satisfy a relation defined using a shift value depending on n.
The analysis of shifts thus provides detailed information on the structure and
number of limit cycles for these automata.

This paper is organized as follows. Section 2 describes the general technique
of finding fixed points, and more generally, limit cycles for any automata rule. As
an application of the technique, Sect. 3 presents a result pertaining to the uniqueness
of fixed points, and the use of cellular automata in pattern recognition, on a
cylinder. Section 4 discusses the role of shift mechanisms in the generation of limit
cycle behavior. Section 5 builds on the results of the other sections to prove a
general theorem on the fundamental role of shifts in generating limit cycle behavior
for all two-neighbor rules. Finally, to illustrate the use of the technique introduced
here, the Appendix provides closed-form expressions for the complete attractor
structure of all two-neighbor rules.

2. Fixed Points and Limit Cycles for Cylindrical Cellular Automata

A general technique is presented here for the analysis of fixed-point, and more
generally, limit cycle, behavior of cylindrical cellular automata. The essence of the
technique is firstly, to identify the "invariant" tuples (x_ r , . . . ,xr) such that the rule
assigns

/(x_ r , . . . ,x r) = x0; (2.1)
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secondly, to define an "invariance" matrix A with elements equal to 1 for entries
representing those tuples satisfying (2.1), and elements equal to 0 otherwise (Eq.
(2.2) provides the precise definition of the matrix); and finally, to consider the
diagonal elements of A as representing the number of fixed points of the rule on
a cylinder size n, where n depends linearly on the power. For a fixed period p, the
technique determines all cylinder sizes on which a limit cycle of period p can exist,
and the number of limit cycles of period p on each such cylinder size. In this regard,
the technique can be seen as dual to that described in [8, 9] (which fixes cylinder
size), although the approaches are otherwise quite different.

Definition. An automaton on a cylinder is (ultimately) periodic with period p if
there exists a T ̂  0 such that x\ = x\+p,0^i< n, for all ί ̂  T. If p is the smallest
positive integer for which the relation is true, then p is the least period of the
automaton.

Clearly, any k- valued automaton on a cylinder of size n is ultimately periodic
with least period p ̂  kn. In the remainder of this paper, a string S — {xj} will be
said to appear in a limit cycle of period p if the string is mapped onto itself after
p iterations; i.e., the string does not represent a transient in the evolution of the rule.

Definition. Let S = {x\, i = 0, . . , ,n — \ } represent a string of length n that appears
in a limit cycle period p. Then both S and the limit cycle it generates are primitive
if S is not spatially periodic of any period q < n; i.e., there is no q < n such that

Notation. For a fixed one-dimensional rule R, let
(a) K(p} denote the number of limit cycles period p of the rule on a cylinder size n;
(b) L(^ denote the number of primitive limit cycles of least period p on a cylinder

size n;
(c) T(p} denote the total number of (not necessarily primitive) strings of length n

that appear in a limit cycle of (not necessarily least) period p.

Remark. Let S = x0...xn_1 be a string of site values appearing in a limit cycle. If
the permuted string S = xi...xn-1xQ...xi-1 appears in a limit cycle that is distinct
from the first (i.e., the two strings never appear in each other's limit cycle), the
limit cycles are counted separately.

Lemma 1. With K(p\ L(p\ and T(p] defined as above,

m\n q\p

and

m\n q\p

where "alb" indicates that a divides b exactly.

Proof. The results follow directly from the definitions.
In what follows, it will be assumed that the automata rules being considered

are defined on Z2. The assumption is made for the purpose of simplifying counting
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arguments; the technique itself is in no way restricted to the case of binary site
values.

Now for any rule / of radius r, define the 22r x 22r "invariance" matrix A with
elements atj such that, with i _ r i _ r + 1...i r-ι and j _ r + 1j_,. + 2 . . .jr representing the
right-justified binary forms of i and j,

= 0, otherwise. (2.2)

The invariance matrix defined above serves the same purpose as the connectivity
matrix associated with a graph. Recall that in a connectivity matrix, an element
atj is set equal to 1 iff an edge exists between node i and node j. Elements in the
matrix raised to a power n then provide a count of paths of length n in the graph
that begin at i and end at j. For cellular automata, the nodes represent tuples of
site values, and the paths can be taken to be spatial (rather than temporal, as
might at first be assumed) sequences of these tuples. The matrix contains a "1" to
indicate that a given value may be appended to a spatial sequence with invariance
being preserved, and a "0" otherwise.

The first theorem states that the number of fixed points for any rule on a
cylinder size n is given by the trace of the corresponding power of the invariance
matrix. Corollaries 1.1 and 1.2 then relate this quantity to powers of eigenvalues
of the matrix, and thereby to a linear recurrence relation derived from the matrix's
characteristic equation. Corollary 1.3 re-expresses the results for the case of limit
cycles of arbitrary period. The procedure for computing the number of distinct
attractors of any period on any cylinder size is then summarized in the Remark
following this set of results.

Theorem 1. For any one-dimensional rule R of neighborhood size 2r + 1, let A be
the invariance matrix defined as in (2.2). Then for n g: 2r + 1, XjJ

1) (or, equivalently,
T^\ the number of fixed points of the rule on a cylinder size n, is given by tr [,4"~2r].

Proof. An element a(V in the invariance matrix A = A1 is non-zero iff the tuple of
length 2 r + l represented by (z_ r , . . . j r ) satisfies condition (2.1). The effect of
multiplying the invariance matrix A by itself is to set an element 0$ in A2 equal
to the number of paths of length 2r + 2 beginning with the tuple 7 = ( i _ r , . . . ,ir) and
ending with the tuple lc = ( fc_, . , . . . ,kr) such that each (2r + l)-tuple in the string of
site values satisfies condition (2.1). The generalization to An~2r is clear. Since the
rule is defined on a cylinder, the fixed points of the automaton must begin and
end with the same tuple; hence, it is the sum of the diagonal elements (i.e., the
trace) that provides the value of K(

n

1} = T(^\

Corollary 1.1. Let {λ^i— 1,...,N} denote the set of eigenvalues of the invariance
N

matrix A. Then for n ̂  2r + 1, K(

n

1} = T(

n

1} = £ λΓ2r

ί= 1

Corollary 1.2, For a rule R, let
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represent the characteristic equation of the invariance matrix A. Then for n^.N + 1,
satisfies the linear recurrence relation

Since any limit cycle of least period p > 1 can be regarded as a fixed point of
the pth order composition of the rule, the following result is obtained.

Corollary 1.3. Let Ap denote the invariance matrix for the pth order composition of
a rule R with eigenvalues (A[p), i = 1, . . . ,M }, and let

represent the characteristic equation of the invariance matrix Ap. Then for n ̂  M + 1,

and T(v] satisfies the linear recurrence relation

<f2 = 0.

Proof. Each primitive string in a limit cycle least period g is a fixed point of the
qth order rule, and hence, for any p with q\p, a fixed point of the pth order rule as
well. Moreover, if the string is of length m, then its concatenations are fixed points
on all cylinders of size n where m\n. Thus, in the trace of the matrix An

p~
2rp, each

primitive limit cycle is represented by a term equal to its period; i.e.,

Remark. The preceding results provide an algorithm for finding the number of
distinct attractors of any period on any cylinder size. To determine L(

n

p} for all n
and some fixed p, for example, the procedure is as follows:

(i) Use Eq. (2.3) to find 7™ for all n. Then for any prime d, L(

d

l) = T(

d

l\
(ii) From Lemma 1, L(

n

1} = T(

n

1} — £ Z4υ, where m *n indicates that m\n and
m\*n

m^n. Thus, L(

n

 l) can be found for any n.
(iii) Repeat calculations (i) and (ii) for each period size q with q\*p to obtain L(

n

q}

for all n. Begin with the smallest value of q and at each step, take the next largest.
(iv) Find T(p\ From Lemma ί, L^ = T(

n

p) - £ £ <?L^.
m|*n g|*p

The use of Corollary 1.3 to determine T^ becomes increasingly cumbersome
unless induction is possible using results for limit cycles of small period; this is
done in the Appendix for two-neighbor automata rules. For the present purpose
of illustrating the extension from fixed-points to limit cycles of period p > 1, consider
the rule defined by (000,010,011, 101, 110, 111 }~>0, {001, 100} ->1 (labelled Rule
18 in [1,4]), a nonlinear rule. The characteristic equation for p = 1 (omitting the
term consisting of factors of λ) is given by

;„ - 1 = o,
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implying that ]Γ A" = 1 for all n, and hence

V > = 1 , n>0,

U l f = l , n = l ,

= 0, otherwise.

For p = 2, the characteristic equation (again omitting factors of λ) is given by

( A - 1 ) ( A 6 - A 2 - 2 A - 1 ) = 0,

implying, from Lemma 1 and Corollary 1.3,

and

T<2> - 1 = T^4 + 2Γ<22 5 + Γ<2-!6-4, π > 6

or

with initial conditions

7f > - T(

2

2) - T(

3

2) = 1, Γ<4

2) - 5, T(

5

2) - 1 1, and T(

6

2) - 7,

found by calculating the traces of the appropriate matrices An

2. Recurrence relations
of this type can be derived for any value of the period p.

In what follows, references to fixed points should be understood to generalize
to limit-cycle behavior.

Note that in the case of Rule 18 above, the number of limit cycles for p = 2
increases as a function of cylinder size. By contrast, there are rules for which the
number of limit cycles of fixed period is essentially bounded independent of cylinder
size. In particular, this feature is true of rules for which the characteristic equation
associated with the invariance matrix is of the form

-l)* = 0 (2.5)

for some set of positive integers mh at. Then Theorem 1 implies (in the case, for
example, p = 1) that

Ί*»=Σ«ιmι> M = {i:m ; |n},
ϊeM

Lj,1* = α fm ί 5 n = m t ,

= 0, otherwise.

In other words, (i) α^m^ primitive fixed points exist on cylinders size mt; (ii) for any
cylinder size n a multiple of mh there are α fm f fixed points that are concatenations
of copies of the primitive fixed point; and (iii) no other fixed points exist. Thus,
generalizing from the case p = 1, the number of limit cycles for any period p is
bounded above (modulo concatenations as in (ii) above) independent of cylinder
size.
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The boundedness of the cylinder size on which a limit cycle can appear is a
direct consequence of the fact that the characteristic equation for all matrices Ap

associated with some rule can be written in the form (2.5). This is always true if
the rule is one-to-one in a sense defined in [5]; i.e., if the rule / satisfies either of
the following two conditions:

or
(ii) f(xθ9. . . ,x2r, 0) ϊf(x0, . . . ,x2r, 1),

for every tuple (x0, . . . ,x2r), where r is the radius of the rule. If neither of the above
two conditions is satisfied (i.e., the rule is two-to-one in the sense of [5]), as is
the case for Rule 18, the number of limit cycles of period p can increase as a
function of cylinder size n.

As an example, consider the nonlinear nearest-neighbor rule defined by

{000,011, 101, 111} -»0, (001,010, 100, 110} -> 1 (2.6)

(labelled Rule 30 in [4]). Then the characteristic equations for A^A3, and A4,
for example, are given by

and

respectively, implying that

!"> = !, I#> = 2, L<3 = 4, L<7

4> = 7, (2.7)

and for p- 1,2,3,4,

L(

n

p} = 0, otherwise.

Thus, for instance, the only primitive limit cycles of least period 3 appear on
cylinders size 12. On a cylinder size 24, say, the results (2.7) together with Lemma
1 give K(H = 7. The seven attractors exhibiting period 3 behavior include: one fixed
point that is a concatenation of 24 copies of the fixed point on the cylinder size 1
(i.e., all O's); two fixed points that are concatenations of 12 copies of the fixed points
on the cylinder size 2 (i.e., 10 and 01); and four limit cycles least period 3 that are
concatenations of 2 copies of the limit cycle on the cylinder size 12 (i.e., the string
111110010000, and the three strings obtained by cyclically permuting the string
by one, two, or three sites).

The cylinder sizes for Rule 30 on which primitive limit cycles of period ^ 10
exist, together with the number of limit cycles on each such cylinder, are given in
Table 1.

As demonstrated in the Appendix, the technique introduced in this section can
be used to obtain, for any two-neighbor automata rule and given parameters p
and n, the number of limit cycles of period p on cylinder size n. Further, these
quantities can be generalized, using induction and in some cases the techniques



576 E. Jen

Table 1. Primitive limit cycles of least period p ̂  10 and associated shifts for
Rules 60 and 30. The notation "m x /z" under the "cylinders" column indicates
the existence of m distinct cycles on cylinders size n

CA 60 CA 30
Period

p Cylinders Shifts Cylinders Shifts

1

2

3

4

5

6

7

8

9

10

1

1

3

2

9

28
24

X

X

X

X

x

X

X

1

3

15

6

7

63

30

-1

- 1

-3
_ι
i-2,-4

1
7

-t

1

4

7
1

14

15

1

5

18

x

x
x

X

X

X

x

X

X

1,1 x

12

7

5,3 x

84

15

2

15,5x25

_

4
i

2,

11

3,10

14

4, 10 x 80

15,15

90,31

x 135

x 155

il
7
1

i
—

10

15
31
2 •> ~

36
2

for linear cellular automata described in [6], to provide closed-form expressions
for the number of limit cycles as a function of p and n.

3. Uniqueness of Fixed Points on a Cylinder

As an application of the approach described in Sect. 2, this section presents a
result pertaining to the uniqueness of fixed points, and the use of cellular automata
in pattern recognition on a cylinder. The result is a variant of those contained in
[7], and will be proved using the present technique.

The question is to find rules R such that a prescribed string P = pQ...pn_l is
the unique (modulo concatenations) fixed point of R on all possible cylinders. In
[7], it was shown that, given any string P and any r, a simple procedure can be
used to construct the automata rules of radius r for which P is a fixed point. In
general, for any such rule, there will be strings different from P that will also be
fixed points. The minimal value r* such that P is the unique fixed point of
appropriately defined rules of radius ^ r* will be shown to be dependent on the
length of the "longest self-match" in P.

Remark. Uniqueness of P = p0.. .pn_ 1 as a fixed point is taken here to mean that
the only fixed points are strings whose lengths are multiples of n, and which consist
of concatenations of "complete" copies of P. Thus, if the string 1011110 is the
unique fixed point of a rule, then the string 10111 on a cylinder size 5 is not; i.e.,
overlaps are not allowed. The corollary following Theorem 2 can be used to identify
the minimal radius rule if overlaps are in fact to be allowed.

For convenience, it will be assumed throughout this section that the rules being
considered are of odd neighborhood size.

Definition. Let P = {p0 P«-ι} be an arbitrary string. Define Jr to be the set of
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tuples (x-,.,... 9xr) obtained by setting, for each / — 0 , . . . , /? — 1,

Then the rule R of radius r induced by P assigns

X _ r . . . X 0 . . . X r - > X 0

for each tuple in Jr, and

where x'0 ^ xθ9 for all tuples (x-r, . . . ,xr)φ Jr

Clearly, the string {p0 P«-ι} is the unique fixed point of the induced rule of
neighborhood size n.

The next result provides a less obvious upper bound on the neighborhood size
needed to guarantee uniqueness of the fixed point. Essentially, it will be shown
that ambiguities are resolved, and uniqueness attained, by using a neighborhood
size greater than the length of the longest tuple that appears twice in the fixed-point.

Definition. A string P = {p0. . .pn_ J possesses a self-match of length m > 0 if there
appear in the string two identical tuples (ph. ..,p ί + m _ 1 ) and (Pp...,pj+m-ι) with
i +j and with the indices taken modulo n.

Now define for any string P

r^ = m-—, modd, (3.1)

m + 2
= — - — , m even,

where m is the length of the longest self-match in P.

Theorem 2. A primitive string P — {po Pw-ι} is the unique fixed point on all possible
cylinders for a rule induced by P iff the rule is of radius r ̂  r*, where r* is defined
in (3.1).

Proof. Let R be a rule induced by P with radius r g; r*, and let A be the invariance
matrix associated with R. Two elements atj and aik cannot both be equal to 15

since that would imply that the tuple T = (z_ r , . . . ,/r) appears twice in P. Similarly,
no column in A contains more than one non-zero element. Moreover, since P is
of length «, there is a total of exactly n Γs in A. Consequently, the characteristic
equation for A (omitting the term consisting of factors of λ) is given by λn ~ 1 = 0,
and hence K(

n

1} = L(

n

1] — 1, and L^ = 0 for all m^n, implying that P is the unique
fixed point (modulo concatenations of copies of P) on all possible cylinders.

Now show that any induced rule of radius < r* has a fixed point different from
P. Let m be the length of the longest self-match in P. Assume that P has the form

where ~q =(qQqLl, . .qm-ι) represents the longest tuple that appears twice in P. (The
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argument is the same if ~q overlaps with itself.) Then the string

P' = <lθ<ίl <lm-lPm Pm + a

is a fixed point for any rule induced by P of radius < r*.
The next corollary provides a generalization of the above theorem to the

question of defining a rule for which two or more specified strings are to be the
unique fixed points. Given a set of multiple strings, the induced rule is defined as
for the case of one string, where now the set Jr contains all 2r + 1 tuples appearing
in any member of the set.

Corollary 2. Let {Pj} be a set of arbitrarily chosen primitive strings of possibly
unequal lengths HJ. For each Pj, let rj be the radius defined in (3.1) for that string.

Set N — 1cm nj9 and for each Pj construct the string Pj of length N consisting of
j

(unmixed) concatenations of copies of P j . Now let P be the longest tuple that is

common to all strings Pj, and let f be the radius defined in (3.1) for m — len(P). Then
for the rule induced by P} with radius r g: max (r*, f) and with arbitrary initial
conditions, the only fixed points are the strings Pj.

As an example, suppose a rule is to be defined for which the string Pl = 101011
is the unique fixed point on all cylinders. Then the longest self-match in P! is the
sub-string 101 of length m^ = 3, and thus from (3.1), rl —2. Pl is therefore the
unique fixed point of any rule induced by P t of radius ^2. The smallest such rule
is that defined by

{01011,11010}->0, {01110,10101,10111,11101} ->!, (3.2)

with all other tuples (x_ 2 ? . . . ,x 2 )~^- x o
Now suppose that a rule is to be chosen such that the fixed points consist of

P1; P2, and their concatenations. Find the longest tuple that appears in both P1

and a string of length 6 composed of concatenations of P2; i.e., 101010. The longest
such tuple is 10101 of length m — 5, and thus f — 3. Thus, the given strings are the
unique fixed points of the 7-neighbor rule defined by

(1010101,1010111,1110101}->0,

{0101010,0101110,0111010,1011101,1101011}->1.

The above corollary can be extended in a straightforward fashion to establish
the minimum radius of the rule whose fixed points include, in addition, strings
representing mixed concatenations of the given strings Pj.

4. Shifts, Cylinder Size, and Limit Cycles

The analysis of the attractor structure for cylindrical cellular automata uncovers
an unexpected feature of their generation of limit cycles: namely, it indicates that
shift transformations are the underlying mechanism in this behavior. Clearly, any
automaton that acts as a shift (in the sense of cyclically permuting site values on
the cylinder) automatically produces limit cycles. Surprisingly, it can be shown
that the reverse is also true for what appears to be a wide class of one-dimensional
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rules. In particular, for any two-neighbor rule, a limit cycle can be defined exactly
as a set of strings such that the action of the rule on those strings is a shift. Analysis
of shifts for a rule then provides detailed information on the structure of its
attractors.

To clarify terminology, it should be noted that the shift transformations studied
here differ from others in the cellular automata literature. Shifts have appeared in
work on the ergodic and information- theoretic aspects of cellular automata,
including studies by Hedlund [8] describing cellular automata as continuous
maps that commute with a shift map, by Lind [9] on shift-invariant measures
and statistical features of shift maps acting on cellular automata sequences, and
by Boyle [10] on the relationship between the entropy of a shift and degrees of
endomorphisms. In general, these studies consider the composition of one map
(a shift) with a second map (an automata rule). This paper describes, instead, the
equivalence between automata rules and shifts when restricted to certain subsets
of sequences.

Definition. For a given rule R defined on a cylinder size n, let S =
(xξ, i = 0, . . . ,n — 1; t = 0, . . . ,p — 1} represent a limit cycle of period p. Then the rule
acts on S as a shift of size σ = s/h, with s, h both integers and h > 0, if

for all i and ί; i.e., each string in the limit cycle undergoes a cylical permutation
by s sites to the right after h iterations. The shift value σ = s/h is fundamental if h
is the smallest positive integer for which the relation holds for any s.

The following results describe the interplay of limit cycle period, shift size, and
cylinder size for automata rules. The theorem deals with two questions: (i) the
numerical relationship among period, shift, and cylinder size; and (ii) the identifica-
tion of a recurrence relation satisfied by any string of values exhibiting shift
behavior. To illustrate some of the results of the theorem, Table 1 provides shift
and cylinder sizes for limit cycles of period p ^ 10 for Rule 30, defined by (2.6), and
for Rule 60, defined by

{000, 001,1 10, 111} -»0, {010,011,100,101}-+!.

Theorem 3. Let R be a one- dimensional rule defined on a cylinder size n, and suppose

there exists for R a primitive limit cycle of least period p for which the rule acts as

a shift of value σ = s/h. Then

(i) if σ is fundamental, p, n, and s/h satisfy

nh

Otherwise, if the fundamental shift value is given by σ1 =s 1 //ι l 5 then

nh
P\-

gcd(n, |s |) '

and s l 5 h1 satisfy

h^h, -~s1 = smodn.
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(ii) The values of every string {x| } in the limit cycle satisfy

*i-s = fh(Xi -rh> ' ' >*i> - ,Xί + rh)> (4-1)

where fh represents the hth order composition of the rule. If (4.1) provides an
explicit expression for some Xj in terms of site values with smaller indices, then
it is a recurrence relation for the values of any string for which the rule acts as
a shift s/h. If the expression is implicit, a recurrence relation is obtained by
rewriting (4.1),for each value of'n = 1,2,...,as

xt_s±n =fh(Xi-rh,... , X i , . . . ,xi+rh). (4.2)

Then a limit cycle with this shift exists on a cylinder size n iff the above recurrence
relation (either inform (4.1) or (4.2)) is satisfied by a sequence of (spatial) period
n; i.e.,

xi + n = xt , for all i.

As a simple example illustrating the results of Theorem 3, consider the rule
defined by

{01,10,11}->0, {00}->1 (4.3)

or equivalently,

where x denotes "not x." (Considered as a nearest-neighbor rule, (4.3) is labelled
Rule 3 in the scheme of [4].) Before Theorem 3 can be invoked, it is necessary
to establish the role of shifts in generating limit cycle behavior for this rule.

Proposition. Each primitive limit cycle of least period pfor the rule (4.3) is generated
by a shift σ whose fundamental values are given by

(4.4)

= , p even.

Proof. It will first be shown that the set of strings exhibiting such a shift, and the
set of strings belonging to some primitive limit cycle of the rule, are equivalent.

Suppose a string has shift of (not necessarily fundamental) value σ = ̂ . Then
from Theorem 3(ii), it follows that the relation

xi+l=J (XiιXi+l>Xi + 2)

~J LXiXί + 1? Xi+lXi+2J

must hold. The above can be rewritten as a relation for xi + 2 given arbitrary values
of x{ and x ί + 1; i.e.,

xί + 2 = 0, i f x £ . = l a n d x ί + 1 = 0 ,

= {0ul}, otherwise,
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where the "u" indicates that either value may be used. It is easy to show that (4.5)
is satisfied by any string of values in which the block 101 does not appear. Any
such string of length n therefore exhibits a shift size \, and belongs to a limit cycle
of period p\2n. Conversely, and string containing 101 has no predecessor under
the rule, and hence cannot belong to a limit cycle. Thus, every string in a limit
cycle must have shift \.

A shift size \ cannot be fundamental, however, for a limit cycle of odd period
length. Thus for p odd, it must be true that the fundamental shift is given by

σ = s/h, where h=l. Then it follows that 2σ = 1 mod n, or σ = (n+ l)/2, where n
is the length of the cylinder, and n must be odd. In this case,

Λ> n+i

gcd

Finally, if the period p is even, then it follows from the above argument that
σ = \ is fundamental, and thus the proposition has been proved.

Examples of conclusions that may be drawn on the basis of Theorem 3 and
the above proposition include:

(a) The cylinder sizes n on which there exists a primitive limit cycle such that the
action of the rule R is a shift of integer value σ are given by the periods of the
sequences generated, using arbitrary initial conditions, by the recurrence
relation

Xi-σ = f ( X i - ί 9 X i ) 9 (4.6)

where / is defined by (4.3). For example, with σ — — 3 and initial condition

the sequence generated by (4.6) is

00101000011, (the indicating that the sequence repeats itself),

of period 7. Moreover, given any other initial condition, the periodic sequence
generated by (4.6) is (ultimately) the same. Hence the string 1000011 defined
on a cylinder size n = 1 is the unique primitive limit cycle for which the rule
acts as a shift σ = — 3. From Theorem 3(i), its period is given by

nh

gcd(«,|s|)

(b) Consider the rule #* defined by {000,001, 100} ->0, (010,011, 101, 110, 111} -> 1
(Rule 236 in the labelling scheme of [4]). Then

R* = μ(R2),

where μ denotes the left-shift operator. Hence, given any string on which R
acts as a shift of size σ,#* acts as a shift size
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From (4.4) it follows that

σ(R*) = 0

for all limit cycles, and thus the only attractors for this rule are fixed points.
Furthermore, on any cylinder size n, the number of primitive fixed points,
denoted here by δ(*\ is given by

δ(v = L%\ n odd,

= L(ff29 n even,

where Ljf } denotes the number of limit cycles for R.

5. Shifts as the Basic Mechanism for Periodic Behavior

The preceding section, together with the Appendix, lays the groundwork for a
theorem on the fundamental role of shifts in generating limit cycle behavior for
all two-neighbor automata rules. The theorem uses the fundamental shift value
associated with the limit cycle generated by the initial condition consisting of a
single non-zero site on a cylinder size n to define a relation that must be satisfied
by any string of length n that appears in a limit cycle for a given rule R.

In what follows, a two-neighbor rule is assumed to be either of the form

γ t+l _ f ( γ t γt\
xi —J\xi-lixi)>

or of the form

Theorem 4. Let R be any two-neighbor automata rule defined by a function /, and

let σn — s/h be the fundamental shift associated with the limit cycle on a cylinder size

n generated by the evolution under R of the initial condition consisting of a single

non-zero site value. Then a string S — {xj} appears in a limit cycle for R on a cylinder
size n iff iίs values satisfy the relation

in the case of a "left-handed" rule, or

Xi-a = fh(xi9...,xi + h)9 (5.1 b)

in the case of a "right-handed" rule. If Eqs. (5.1a,b) represent recurrence relations,

then all possible strings appearing in limit cycles for R are generated by using all

possible initial conditions for the appropriate relation. Otherwise, the strings are

generated by rewriting the relations as

or as

and again using all possible initial conditions. The period p of the limit cycle in which
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S appears satisfies

. nh
P\~

gcd(n,|s |)

Proof. The set of two-neighbor rules, along with the characterizations of their
attractor structures, are listed in the Appendix. Given the results of Sect. 4, it is
then straightforward to establish the following:

(a) Rules 0,12,207,68,221,192,252,130,238,204: σn = n, and every attractor is a
fixed point with shift σ = n;

(b) Rules 3,63, 17, 119: σn = ^ , and every attractor is a limit cycle with shift value
given by (4.4);

(c) Rules 15, 85: σn = f , and attractors consist of limit cycles of odd least period p
with shift σ = p + 1, and limit cycles of even least period with shift σ = f

(d) Rules 48,243,34,187,240,42: σ n = l , and attractors consist of fixed points
(strings of all O's), with shift σ = 0, and limit cycles with shift σ = 1;

(e) Rules 60, 195, 102, 153: The linearity of these rules implies that every limit cycle
string on a cylinder size n must satisfy the fundamental shift relation given by
(5.1).

It therefore follows that every string that appears in a limit cycle for a rule R on
a cylinder size n satisfies the appropriate relation (5.1).

Next show that the converse is true; i.e., that every sequence satisfying the
appropriate relation (5.1) appears in a limit cycle for the rule .R on a cylinder of
size n. It is necessary first to prove that the (spatial) period of every such sequence
divides n. For cases (a) and (d), this result is easily established. For case (b), the
appropriate recurrence relation is given by

of order n -f 1. It is easy to show that any initial condition {yiJ = Q,...,n— 1} in
which "101" does not occur generates a solution Σ of period n with χ = j;.+ 1,
i = 0, . . . , n — 1. Even if "101" does occur in the initial condition, it cannot survive
in Σ since /2(0, 1,0) = /2(0, 1, 1) = 1, and hence a new string Σ of length n in which
"101" does not occur is generated. The period is therefore n.

Now consider case (c). The appropriate recurrence relation is given by

of order n. Any initial condition {yt , i = 0, . . . , n — 1} generates a solution Σ — {xj
of period n consisting of concatenations of itself.

Lastly, consider case (e). Suppose n is odd. It can be shown (see [6] for details)
that the recurrence relation F(xt) associated with the fundamental shift is of the form

For the initial condition χ0 = ... = χ Λ _ 3 = 0, x n _ 2 = 1, it follows that xn_1 = l, and
thus the infinite sequence Σ generated by the recurrence relation is of period n.
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If n = 2mq, where j is odd, then it is easy to show that

of order N = 2m(q— 1)4-1. For the initial condition χ0 = ••• = χ N _ 3 = 0, x N _ 2 = 1,
the recurrence relation implies that xf = 1, i = n — 1, n — 1 — 2m, and xf = 0 for all
other 0 ̂  i ̂  n — 1. As before, the infinite sequence generated by the relation is of
period n.

Next show that every other sequence satisfying the relation has spatial period
n. Let 3c; denote the vector (x ί 5 . . . ,x ί + f c _ 1 ), where k is the order of the recurrence
relation. Use the initial conditions defined above (consisting of all zeros with the
exception of x f c _ 2 = 1) to generate a sequence satisfying the relation. Then the
vectors {x0,...)~xk-1} form a basis for the /c-dimensίonal space of all possible
initial conditions for a fcth order recurrence relation. Each vector in the basis
represents an initial condition that generates an infinite sequence of period n. Since
every other initial condition can be expressed in terms of the basis vectors, linearity
of the rule implies that the period of any other solution of F(xt) — 0 must divide n.

Thus, it has been shown that the period of every solution of (5.1) (for all possible
two-neighbor rules) divides n.

Finally, it is clear that any sequence satisfying the appropriate relation (5.1)
undergoes a shift under the action of the automata rule R, and hence the sequence
appears in a limit cycle for R.

6. Discussion

The main concepts introduced in this paper for the study of attractors for cylindrical
cellular automata include:

(i) the definition of a matrix whose powers correspond to the cylinder sizes on
which the rule is defined;

(ii) the derivation of linear recurrence relations for the number T(

n

p) of strings
appearing in a limit cycle of fixed period p on a cylinder size n in terms of
T(f} with j < n;

(iii) the identification of shift mechanisms as key to understanding limit cycle
behavior.

The introduction of the invariance matrix provides a technique for counting
the number of fixed points, or more generally, limit cycles, for an automata rule.
For a given period p, the technique determines all cylinder sizes on which a limit
cycle of period p can exist, and the number of limit cycles of period p on each such
cylinder size. The invariance matrix used here is the same as the connectivity matrix
associated with a directed graph. In a connectivity matrix, the elements atj provide
a count of "admissible" paths beginning at node i and ending at node j. For cellular
automata, the nodes represent tuples of site values, and the paths can be taken to
be spatial (rather than temporal, as might at first be assumed) sequences of these
tuples. In this context, then, "admissible" means "invariant under the rule," and
thus the matrix contains a "1" wherever a given value may be appended to a spatial
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sequence with invariance being preserved, and a "0" elsewhere. Clearly, admissibility
may be defined in other ways, and the technique is thus helpful in other contexts
as well, (In [11], for example, the technique is used to study preimages under
cellular automata rules for spatial sequences.)

In the study of attractors for cellular automata on cylinders, the essential aspect
of the invariance matrix A is that the trace of powers of A provides the number
of fixed points on corresponding cylinder sizes. Equivalently, this number may be
found by computing powers of the eigenvalues associated with A. These powers
of eigenvalues correspond to terms in the characteristic equation of A. Thus, for
arbitrary cellular automata rules, the number of strings belonging to limit cycles
of fixed period on a cylinder size n is given as a solution to a linear recurrence
relation involving the number on smaller cylinders.

The study of cylindrical cellular automata indicates that shift mechanisms are
key to understanding periodicity in these systems. A rule acts upon a string as a
shift of size σ = s/h if, under the evolution of the automaton, the string shifts 5 sites
in h iterations. It has been shown that all limit cycles for all two-neighbor rules
are generated by shifts in the sense that the values of any string in the limit cycle
must satisfy a relation defined using a shift value depending on n. Limit cycle
periods, cylinder sizes, and shifts are connected in well-defined ways, and an analysis
of shifts provides detailed information otherwise not available on limit cycle
behavior.

The fundamental role of shifts in more general cellular automata limit cycle
behavior is conjectured, but not proved. Shift structures for linear rules of arbitrary
neighborhood size are discussed in [6]. Examples — such as that of Rule 30, a
nonlinear nearest-neighbor rule that has been proposed as an efficient pseudo-
random number generator [12]—indicate that nonlinear rules of arbitrary neigh-
borhood size exhibit highly complicated shift structures.

The analysis of shifts in generating limit cycle behavior suggests an equivalence
between the strings of values appearing in limit cycle for cylindrical cellular
automata, and recurring sequences in finite fields. The latter is a rich and
well-developed topic of interest both theoretically and practically. In [6], the
implications of this equivalence are explored.

Appendix: Attractors for Two-Neighbor Automata Rules

This appendix provides characterizations for the set of attractors for two-neighbor
automata rules. The results for L$\ the number of primitive limit cycles of least
period p on a cylinder size n, provide analytical expressions for the corresponding
computational results contained in Table 14 of [4].

Notation. Let
(a) "*" be a "wild card" symbol for which either "0" or "1" may be substituted;
(b) G(n) be the total number of primitive strings of length n;
(c) C(A) be the characteristic equation of the matrix A with the roots λ = 0 not

pearing;
(d) β[/(Ί)] be the highest power of / appearing in an arbitrary function f(λ)\
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(e) T(p} = β[C(4p)] if C(AP) is of the form Y\(λmι - l)α<;
i

(f) q\*pbe any positive integer q such that q\p and q /p.

Remark 1. G(n) satisfies the relation G(n) = 2n - £ G(m), with G(l) = 2.
m|*n

Remark 2. T(p} = Yjmίaί represents the total number of primitive strings that belong
i

to a limit cycle of (not necessarily least) period p.
The set of two-neighbor rules, defined as being either of the form

or

is grouped below according to equivalences under symmetry transformations, in
each case, the rule numbers are given according to the scheme of [4], with the
rules being considered, to avoid ambiguity in labelling, of neighborhood size 3.
The definitions of the rules correspond, in each equivalence class, to the first rule
number listed.

I. Rules (0,255) {*00,*01,*10,*11} -»0:
(a) Characteristic equation:

= μ-l), for all p.

(b) Number of primitive limit cycles:

iΛ1} = i,
L(P} = 0, otherwise.

II. Rules (3, 17, 63, 119) {01*,10*,11*}-*0,{00*}->1:
(a) Characteristic equation:

Using the notation

= -, if p even,

U!*P

where α[p] + β 1cm C(Aq) = T(p\ and
l _ 4 i * P J

with T(1)-0, T ( 2 )-2, T ( 3 ) =l.
(b) Number of primitive limit cycles:

Lirt = α, if π = [p]

= 0, otherwise,

where α, [p] are defined in (a).
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III. Rules (12,68,207,221) {00*, 10*, 11*} -*0, {01 *}->!:
(a) Characteristic equation:

C(Ap) = λ2-λ-l9 for all p.

(b) Number of primitive limit cycles:

with Li1' - 1, and Lψ = 3,

IV. Rules (15, 85) (10*, 11*} ->0, {00*,01*}->1:
(a) Characteristic equation:

For p odd,

C(Ap) = \lcmC(Aq)\(λ2p-l)Λ

( q\*P J

where 2upp = G(p).
For p = 2/c, /c odd,

p) - lcm C(Aq)(λp ~
UI*P

where

where ak is defined above.
For p = 2/c, /c even,

with

jSp = G(p).

(b) Number of primitive limit cycles:
For p odd,

W = 2κp, n = 2p,

— 0, otherwise.

For p = 2k, k odd,

^ = y> ^fc'

= jδ l 9 n = p,

= 0, otherwise.

For p = 2/c, /c even,
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= 0, otherwise,

where ap,β1,β2,β are defined in (a).
V. Rules (34, 48, 187,243) {*00,*10,*11} ->0, {*01}->1:

(a) Characteristic equation:

= lcmC(Aq)(λp-l)*9

where αp + Q 1cm C(Aq) - T(p\ and

__ rp(p- 1) j_ rp(p-2) n > 7

with T(1) - 1, T(2) - 3.
(b) Number of primitive limit cycles:

L<,p) - α, for n = p,

= 0, otherwise,

where α is defined in (a).
VI. Rule (51) {01*, 11*}->0,{00*,10*}->1:

(a) Characteristic equation:

C(AP) - λ\ p odd,

= λ — 2, p even.

(b) Number of primitive limit cycles:

= 0, otherwise.

VII. Rules (60,102,153,195) (00*, 11*} -»0, {01*,10*}->1:
(a) Characteristic equation:

With every recurrence relation ^cijXj, associate a polynomial
Then

where each m f is the spatial least period of an infinite sequence satisfying
the recurrence relation corresponding to

lcm[(x+ 1)9~1]?

q\*p

and αt is the number of distinct such sequences. (See [6] for further
details.)

(b) Number of primitive limit cycles:
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9

= 0, otherwise,

where α^m^ are defined in (a).
VIII. Rules (136, 192, 238, 252) {*00,*01,*10}->0, {*11}->1:

(a) Characteristic equation:

) = (λ-l)2, for all p,

(b) Number of primitive limit cycles:

L™ = 0, otherwise.

IX. Rule (204) (00*, 10*} ->0, {01*, 11*} -> 1:
(a) Characteristic equation:

C(Ap) = (λ-2)9 for all p.

(b) Number of primitive limit cycles:

= 0, otherwise.

X. Rules (170, 240) (*00,*10}-»0, {*01,*11}
(a) Characteristic equation:

I

where αp = G(p).
(b) Number of primitive limit cycles:

l&> = α, for n = p,

— 05 otherwise,

where a is defined in (a).
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