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Abstract. Using large deviations in combination with the Berezin-Lieb inequali-
ties, we analyse the phase-transition in the BCS model with non-constant
energies and interactions.

1. Introduction

N.N. Bogoliubov and his school have made several attempts at solving the full BCS
model with hamiltonian

^ , < ' ) « k . , 1 α - l i , - 1 (l l)
k , s = ± l v k k'

(see [1] and the references therein). The first of these was by a perturbation
expansion which can be made rigorous only at zero temperature. Later they
developed a mini-max principle which allowed them to treat a class of interactions.
In this paper we provide a new method for treating BCS-type models in the quasi-
spin formulation

^ , (1.2)

which can be applied to more general interactions. The result in this paper have
already been announced without proof in [2] and an extension of the method to
treat this type of model in the original formulation of (1.1) will be given in [3]. The
techniques developed here have also been used for the full spin-boson model [4].

Recently Cegίa, Lewis, and Raggio [7] have been able to obtain the free energy
density for quantum spin systems with homogeneously decomposable hamil-
tonians. Their methods, amongst other things, allow them to streamline the
treatment of the thermodynamics of the BCS model [5, 6] in the strong coupling
limit in which ε(k) and £/(k,k') are replaced by their average value and of other
models whose hamiltonians are functions of the total spin operators. They obtained
a large deviation principle [8,9] for the measures arising from the multiplicities of
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the irreducible representations in the decomposition of the total spin. In some cases
the partition function on each irreducible representation can be calculated
explicitly. When this is not so the Berezin-Lieb inequalities [10-12] are used to
obtain upper and lower bounds for the free energy which coincide in the
thermodynamic limit.

The hamiltonian (1.2) which we treat in this paper is not simply a function of the
total spin operators. Our method consists of partitioning the system into smaller
subsystems and approximating by hamiltonians which are constructed from
functions of the total spin operators for these subsystems. The approximating
hamiltonians can then be treated by an extension of the techniques in [7]. The
approximation is shown to become exact as the number of subsystems is increased
and it is proved also that this limit can be interchanged with the thermodynamic
limit. This procedure gives a variational formula for the free energy density. This is
done in Sect. 2. The variational problem is treated in Sect. 3. The associated Euler-
Lagrange equation turns out to be the gap-equation [13]. It is shown that the
solution of this equation bifurcates at a certain critical temperature. In Sect. 4 we
modify the work Sects. 2 and 3, to calculate the order parameter which is shown to
have a non-zero value below a certain critical temperature. In principle other
intensive quantities can be calculated in the same way.

Before leaving the introduction we say something about the work of Anderson
and Thouless [14,15] on the full BCS model. In their treatment the hamiltonian is
written in terms of the quasi-particle operators through an arbitrary Bogoliubov
transformation. In the resulting expression that part which is not a function of the
quasi-particle number operator is neglected; this reduces the problem to a classical
one in which the free energy can be obtained by minimizing over a function of the
quasi-particle densities. Finally the result is minimized over the free rotational
parameter in the Bogoliubov transformation. The variational problem arising,
which is solved only in the strong-coupling limit, is very similar to the one we solve in
Sect. 3, if we identify the quasi-particle densities with the spin densities and the
rotational parameter with the spin orientation.

The BCS model has many simplifying features when studied in the thermo-
dynamic limit from the start (see for example [16,17]). However this approach is not
in the same spirit as in this paper since the methods used are algebraic, although in
some cases not explicitly so.

2. The Thermodynamic Limit

We consider a slightly more general model than that described in the introduction.
Let [Ae: / = 1,2,...} be a sequence of regions of Euclidean space IR^ and denote the
volume of Ae by Ve we associate with the region Ae the sequence of momenta
{k^(/) :7=1,2,...}, where each k^(/) is in IRΛ We make the assumption that the
sequence of measures {μ }̂ giving the distribution of momentum states

for Borel subsets B of Rv, converges weakly to a measure μ which is absolutely
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continuous with respect to Lebesgue measure. We shall be considering only those
momenta in a cut-off region Ω which is a closed bounded region in R v and we
assume that μ(Ω)< oo.

The hamiltonian for our model acts on ffl€ = ® ζ/){, where N^= Vβμ£{Ω) and 2i
i = l

is a copy of C 2. It is given by

i/,= - Σ *(K(i))σϊ-lr Σ Σ σtU(k,(ί\k,U))σi , (2.1)
i = ί V £ ί = l j = l

where ε e C(Ω), Ue C(Ω x Ω) and σ* = 7 ® . . . ® σ # (g)... ®/, the σ?s being the usual
Pauli matrices. Here the β(k^(/)) include the chemical potential.

Let fs(β) be the free energy density

fλβ)= -jy In trace e-i>H< . (2.2)

We shall prove that /^()8) converges as ^->oo, and we shall obtain a variational
formula for the limit f{β). The variational problem is solved in the next section. Our
method is to approximate H€ by a hamiltonian for which the method of [7] can be
used. Choose L > 0 such that [— L,L]V^Ω and for each M e N partition [—L,L]V

into Mv disjoint cubes of side2L/M. Denote these cubes by B^ , m = 1,..., M v, and
let B%' = Bn nΩ. We define the approximating hamiltonian by

^ M = - Σ ί Σ -i-~ Σ θ ( Σ *ή( Σ
m = 1 KiOeBίϊ * m,m' = l \k,0

where

Γ if

lM(^>m) 5 M
and

- J U(k,k')μ{dk)μ(dk') if

Let //*(/?) be the corresponding free energy density, then we have:

Theorem 1. As M-> oo, //ί(jS) converges to fe(β) uniformly in ί.

Proof. By Bogoliubov's inequality [18] we have

Therefore

\fe<β)-f<M(βM Σ M O sup

%) sup \U"m,-U(k,k'
keB™

k'eB"
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Since ε and U are uniformly continuous given ε > 0 we can find Mo such that for

sup \e%-ε(k)\<ε/C
keB"

for m = 1,..., M v ,

sup IU^ > -

ΐoτ m,m' = ί,... Mv, where C is a number greater than μe{Ω) + (μ^(Ω))2 for all Λ
Then for M> Mo,

\Mβ)-ftM(β)\<- Σ /vCO + Σ
^ (

We next obtain a variational expression for the limiting approximate free energy
density.

Theorem 2. fM(β)=- lim //*(β

/w(/g) = _ s u p {yM( r > 0, </,):re[0,ί]M\θ6[0,π]M\φe[0,2π]MV} (2.4)

M v

+ X μ(BX)μ(B")U%m.rmrm.sinθmsmθm.cos{φm-φm.)
m,m' = 1

- ^ Σ ^(^)/(rm)+ίln2μ(Ω) (2.5)
P m = l P

x)ln(l-x)} . (2.6)

To prove this theorem we shall use the method of large deviations and a result
from [7]. For the sake of completeness we shall first describe Varadhan's
formulation of the large deviation method and then state the required results
from [7].

Let [Kn: n — 1,2,...} be a sequence of probability measures on the Borel subset
of a complete separable metric space E and {Vn: n = 1,2,...} a divergent sequence of
positive numbers. We say that {lKn} satisfies the large deviation principle with
constants {Vn} and rate function I:E->[0, oo] if the following conditions hold:

(i) / is lower semicontinuous on E.
(ii) For each m < oo, {x : I(x)^m} is compact,
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(ill)

(iv)

For

For

each

each

closed subset C of E,

1
limsup — mIFCn((

Λ-00 K

open subset G of E,

liminf — lnIKπ(G

:)S - in f
xeC

')^-inf

fix)

I(x) .
c Vn

We shall need the following version of Varadhan's theorem (cf. Theorem 3.4
of [8]).

Varadhan's Theorem. Suppose that the sequence of probability measures {Kw} on E
satisfies the large deviation principle with constants {Vn} and rate function I. Let {/„}
be a sequence of continuous functions fn: is—>IR which are uniformly bounded above,
and suppose that fn converges to / : E-+WL uniformly on bounded sets then

lim ~ In ^xp(Vnfn(x))Kn(dx) = svip {f(x)-I(x)} .
π->oo Vn E E

Let π be the irreducible unitary representation of SU(2) acting on <C2. Let 01 n be
the tensor product of (C2 with itself n times and define the unitary representation πn

of SU(2) on 2kn by

πn(g) = π(g)®π(g)®...®π(g) , geSU(2) .

n times

For n> 1, πn is reducible and decomposes into the direct sum

c(n,J)

π Λ = Θ ® π J ' f c ,
J 6 v 4 n fc = l

where ^ Π = {0,1,..., n/2} if « is even and An = {1 /2, 3/2,..., «/2} if n is odd. πJ> k is a
copy of the irreducible representation π J which acts o n C 2 J 4 1 , and has multiplicity
c(n, J). In [7] it is proved that the multiplicities c(n, J) have the following property:

Lemma 1. Define a probability measure Ψn on the interval [0,1] by

i Σ
ί 2/

w α Borel subset of [0,1 ]. Then the sequence of measures [Ψn: n = 1,2,...}
satisfies the large deviation principle with constants {n} and rate function /, where

M v

Proof of Theorem 2. Let Â m = Veμ£{B™) and let Λ̂  be the operator on ® ^ .
defined by

M v 1 M v M v

Σ C ^ - F Σ Σ
m = l *£ m = ί m' = l
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lfpn and/r7 are the representations of the Lie algebra of SU(2) corresponding to πn

and π J respectively, then

f
Thus

trace e ~βH? = £ c(N}, / J . . . c{Nf \ JMv) trace exp

®.. ®PJ«v)h,} . (2.7)

Let f$*(β, •): [0,1]M V->IR be defined by

fM(β,r)= - — In trace exp -β{(pJί ®...®pJ"v)ht} (2.8)

if rj = 2Jj/N},j=l,...,Mv. By using the Berezin-Lieb inequalities [12] in the
Appendix we obtain upper and lower bounds for //*(/?, r)\

m = l

<Π fl+^Ί f MrV^e-'W * (2.9)

1
where JΩMv = — - ^ r Π sinθmdθmdφm, and / ^ ( r , •),/f (r, •) are real valued

functions on (£ 2 ) M V defined by

Λ M v

Lu(θΦ)fi!ΛΛΦ) iτ Σ

Σ

~\ sin θm sin θm. cos

and

foiΛr,θ9φ)=-, Σ

1 M

- 7 Σ μΛBZ)μΛB")rmrm-UZm.smθms\nθm.cos{φm-φm.)
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We therefore have

- — I n 2 ^ j e-βVefy(r>Θ>φ)dKt(r, Θ, φ)ύJ7(β)
βVί ( [0 .1]X5 2 ) M V

r,θ,φ) , (2.10)

where dKό(r, θ, φ) = dΊP^(r)dΩMV(θ, φ) and Ψό is the product measure

PAT x ... x ΨNf .

By the above lemma the sequence of measures {P^m .ίf = 1,2,...} satisfies the
large deviation principle with constants {N™} and rate function /. It is clear that
this sequence also satisfies the large deviation principle with constants {βVe) and
rate function β"1μ(B^)I. Since with respect to the constants {βV^} the measure
dΩMV considered as a constant sequence satisfies the large deviation principle with
zero rate function, the product measure IK̂  satisfies the large deviation principle
with rate function/^f: ([0,1] x 5'2)MV-^[0, oo], which is the sum of the rate functions
of the measures {P7V«:m = l ...M v} (see for example Appendix 1 in [7]); that is

1 MV

)/(rm) . (2.11)

Both the functions f^M and Pf converge uniformly on compact subsets of
([0 , l ]x£ 2 ) M V to f0

M, where

M(foM(r,θ,φ)=--
m = 1

Mv Mv
4

- Σ Σ μ(BZ)μ(BX)rmrm.qn,m.smθmsiΆθm.cos(φm-φm.)
4 m = l m ' = l

(2.12)

Therefore by applying Varadhan's theorem to both sides of the inequality (2.10) we
obtain

fM(β)=- sup {-fo

M(r,θ,ψ)-ff(r,θ,φ)}-~\n2μ(Ω) . Π
([0,1] χs 2 )*" '

(2.13)

We now obtain a variational formula for f(β) by combining Theorems 1 and 2.

Theorem 3. LetJί = {(r, θ, φ): r, θ, φeL^^Ω, μ), 0 ^
define Sf : ̂ # ^ R 6>»

• cos (φ(k)-φ(k'))μ(dk)μ(dk')

~ j I{r{k))μ(dk) + l- \nlμ{Ω) , (2.14)
P β P
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then
f(β)= - sup{^(r ,Φ,φ):( r ,^φ)G^} . (2.15)

Proof. Let 5^max= sup Sf{r, 0, φ) and let MM be the set functions in M of the form
M

Mv Mv Mv

r = Σ rm^B^ > θ= Σ θm1B^ , Φ= Σ 0m 1 2tf '
m — 1 m — \ m = 1

Then clearly

/^(jg) = -sup {.̂ (r, θ, φ): (r, θ, φ) e -

Therefore -fM(β)^^max, and so

On the other hand given ε > 0 we can find (r0, ΘQ, φ0) e M such that

&(r09θQ,φ0)><?„»„-ε/2 .

Since Q ^ # 2 k is dense in Z,°°(Ω,μ) ®L°°(Ω,μ) 0L°°(Ω5μ)5 we can find
fc = l

(ro,θo,φo)e Q - # 2 k such that
k = l

Sf(ro,ffo,φo)-Sf(ro,θo,φo)>ε/2 .

lf(fo,θo,φo)eJί2\ then - / 2 P ( β ) > ^ m a x - ε . But for £>/c7, Jί2kzi<£2k\ and so
f2k\β)>f2\β). Therefore for all / c ^ ,

Thus

and since ε is arbitrary - l imsup/ 2 k (/?)^ m a x . Therefore - lim f2k(β) = ̂ mΣiX. By
k-> oo /c-> oo

Theorem 1 we conclude that f(β)= lim /,(/?) exists and ~f(β) = ̂ mSiX D

3. The Variational Problem

From now on for simplicity we drop the harmless constant In 2μ(Ω) in/(/?). In

this section we assume that U(k,k')>0 for all k,k'eΩ. If £/ is positive then the
supremum in Eq. (2.15) can be restricted to φ's for which φ(k) = constant and is
independent of the constant. Also the supremum need only be taken over those θ's
for which ε(k)cosθ(k)^Q. We can therefore rewrite the first term as

\ j \ε(k)\r(k)cosθ(k)μ(dk)
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and restrict the range of 0 to [0, π/2]. Let

and define 9 : J^-»IR by

&(r,Θ)=- j \ε(k)\r (k) cos θ(k)μ(dk)-- J I(r(k))μ(dk)
λ Ω P Ω

Λ-\ \ U(k,k')r(k)r(k')smθ(k)sinθ(k')μ(dk)μ(dk') . (3.1)

Then we have seen that for U positive

f(β) = -sup {9(ι\ θ): (r, θ) e Λ) . (3.2)

It is more convenient at this stage to use these variables r and s where
s(k) = r{k)ύnθ(k), than r and θ. We therefore put Jr = {(r,s):r,seL00(Ω,μ),

)S^} and define J:Λ"-+WLby

f(r,s) = l \ μ{dk)\e,{k)\{r2{k)- s2{k)γl2 -X- j I{r(k))μ(dk)
Z Ω P Ω

-f- J μ(dk)μ(dk')U(k,k')s(k)s{k') . (3.3)

Then f(β) = -sup {/(r, J) : (r, j)G ^ } .
For ίzΞ>0 and 0 ^ > ^ x ^ l let

g{x,y\a) = l

2a{x2 -y1)1'2 -X-I{x) . (3.4)

Then xκ^gf(x,j;α) is concave and its supremum is attained at r", where

the unique solution of = — (x2 —y2) ~1/2 , a > 0

Let if = {ίeZ,oo(Ω,μ):0^ί(A:)^l}, and define r-.^C-^ΊR b
then

From now on we shall write simply rs for >'l\{.'^- Define the linear operator Dβ on
L2(Ω,μ)by

= ϊ μ(dk')gp(k)gβ(k')U(k,k')ψ(k') ,
Ω

where

/2)1/2 if

(3.6)
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Uβ is a compact operator. Let λ{β) = || Uβ ||. For λ(β) g 1 we can show directly that
the supremum of i^is) is attained and give the maximizing s.

Theorem 4. Ifλ(β)^\, then

(3.7)

Proof. Let ^ = suppε and let s be an arbitrary element of $£. For OgΞίrgl let
i^(ts). For 0<*ί<l , F(ί) is differentiable and

ί"(0= - -
— 1 /O

μ(dk)μ{dk')U{k,k')s{k)s(kr)-\ J

- ί μmμ(dk')U(k,k')s(k)s(k')\ .
ΩxΩ J

To obtain this inequality we have used

for keA and

for ^ G ^ C . Let s(k) = s(k)/gβ(k). Then

Therefore F(t)<,F(0) for 0^r
O^ίgl or f (5)^τΓ(0). Now

, and so

~ l

For λ(β)>\ we have to proceed in a different way. We first prove that the
supremum is attained [this proof is valid for all λ(β)] and then show that the
maximizer is in the interior of the region, and that it satisfies the corresponding
Euler-Lagrange equation which in turn is shown to have a unique solution.

Theorem 5. There is at least one function s^ in J2? such that /(/?)= —^{s*)-

Proof. We can find a sequence {sn} in ££ such that lim i^(sn) = —f(β). i f is a subset

of the closed ball of unit radius in L°°(Ω, μ). ""°°

Since t^F(t) is continuous F(ΐ)^F(0) for
) = tanh(j8|ε(fe)|/2) for /CG^ and ro(fc) = 0 for

β A

ε(k)\ ) . D
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Now since closed balls are compact in the w*-topology induced by Lι (Ω, μ),
there is a subsequence {snk} which converges in that topology. If rn = rSn, by the
same argument there is a subsequence {rΠk} which converges in the w*-topology
on LG0(Ω, μ). Therefore there are sequences {rn} and [sn] in ££ (we have denoted
the subsequences by {rj and {sn} to avoid subscripts) which converge in the
w*-topology and satisfy rn = rSn. Let rs!ί = w*-lim rn, and s^ = w*-lim sn. Since

n> oo n—> oo

k)S-l, and rn(A:)^tanh(j8|ε(A:)|/2)5 we have also O^
and r^(k)^tanh(β\ε(k)\/2). We shall prove that given c> 0 for n sufficiently large

(3.8)

Let B={k\r^{k)-s^{k)>ϋ). Since

j {rn{k)-sn{k))μ(dk)-+\ (r*(k)-

the subsequences can be chosen such that rΛ(fc) —sn(k)^>0 almost everywhere on Bc,
and thus by Lebesgue's dominated convergence theorem

For (3>0 let Bδ = {k:δ> r^(k) -s^(k)>0}, and let Bδ = B-Bδ. Given ε > 0 choose
δ > 0 such that

J
then

ί {r2

n{k)-s2

n{kψ2\ε{k)\μ{dk)<φ

Now the function (x,y)\-+(xy)1/2 is concave so that

Therefore:

Since

[TWΓYlkV \εWB6(k)eI}(Ω,μ)

and

\ε(k)\\iδ(k)eLHΩ,μ) ,
rJk)-sJk)J
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{r2

n(k)~s2

n{k)yi2\ε{k)\μ{dk)<

for n sufficiently large. Thus

j (r2

n(k)-s2

n{kψ2\ε{k)\μ{dk)<\ (rl(k)~
Ω Ω

for n large enough.
By a similar argument using the convexity of rκ->/(r), we have for sufficiently

large n,

- i J I(rn(k))μ{dk)<-\ J I(r^k))μ(dk) + ε .
P Ω P Ω

Since s^ j μ(dk)μ(dk')U(k,k')s(k)s(k')
ΩxΩ

is w*-continuous we have the inequality (3.8). Therefore f(β)= —f(r*,s*) But
then we must have r^ = r and so f(β)= —1^{s^). D

In the next lemma we show that s^ cannot be a boundary point of j£? unless

Lemma 2. If for s^
{ ^ ( k ) = 0}=0 or

= - ^ ( ^ ) , then μ{keΩ :$*{k) = ί} =0, and either

Proof. Let C ^ ^
ε > 05 define sL G if by

Then

^ ! } , and suppose that μ(C)=t=0. Then for arbitrary

1 —

^ C

since
tion,

and therefore

P P

), 1 — c; |ε(^) |)^^(l — ε, 1 — ε; |ε(&)|). But since / is a convex func-

ΠsE)-Ψ\s^- μ(C)εVdnh~1(ί-ε

which means that ^ (Λ'J — Ψ (s^.) > 0 for ε sufficiently small, and so s^ is not a
maximizer for YΛ Therefore μ(C) = 0.
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Now let D = {keΩ:Sχ(k)>0}, and suppose that μ(Z)) + 0 and μ(Dc)φ0. For
te[0,ί], let st = s^ + tlDce^ and put h{t) = Ψ"(st). Then

A'(0)=^ f μ(dk)μ(dkf)U(k,k')sii:(k)>0 ,

which means that s^ is not a maximizer for f. Therefore either μ(D) = Q or
)c) = 0. D

We now concentrate on the case λ(β)>\ and first exclude the possibility that

Lemma 3. If λ{β)>\ and f(β)= -^(sj, then

μ{keΩ\s:i;(k) = 0}=0 .

Proof. By the Perron-Frobenius theorem [19], we can find ξsL2(Ω, μ), such that
, Uβξ = λ(β)ξ and ||ς ||2 = 1. Define ς ^ e Z / ^ μ )

if ξ(k)>n .

Then by Lebesgue's dominated convergence theorem (ξno,(Uβ —I) ξno)-+λ(β) — 1 as
n-+cc. Choose n0 such that (ξno,(ϋβ-l)ξno)>0, and let s(k) = ξnQ(k)gβ(k). For
^e[05 IKHά1) l e t st = tse&, and put h(t) = -r(st). Then Λ(0 is differentiable and

as n->oo. Therefore h'(t)>0 for t>Q sufficiently small and 0 is not a maximizer

for 1T. •

For s&?£ with s(k)<\, for all keΩ, define Φ(s,k) by

:')s(k') if

(3.9)

_ v . , - j μ(dk')U(k,k')s(k) if ε(A:) = 0 .

Then the Euler-Lagrange equation for the variational problem we are studying is
Φ(s,k) = 0 for almost every k in Ω.

Theorem 6. If λ(β)> ί and s^ is a maximizer for i^, then s^ satisfies the Euler-
Lagrange equation Φ(s^,k) = 0for almost every keΩ.

Proof From Lemmas 2 and 3

μ{keΩ : s^(k) = 1} = μ{keΩ : s^(k) = 0} =0 .

Let δ>0 and let ς e L ^ ί ^ μ ) with suppξa{keΩ:s^(k)< 1 -δ}. For ί e R let

st(k) = s#(k) (1 + tξ(k)). Then for \t\ sufficiently small st e <£. Let h(t) = ̂ (s,). Since
for \t\ small enough we have st(k) < 1 for these values of /, h is differentiable and
h'(0) = 0. Now
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and therefore if we put

k) if s+{k)<\ -δ ,

if s^(k)> 1 —δ ,

we get

j μ(dk)s^(k)[Φ(s^,k)]2 = O .
s*(k)<ί -δ

Therefore s^(k)[Φ(s:¥,k)]2 = 0 for almost every k such that s^(k)<l ~δ. Since
0 < s^ (k) < 1 for almost keΩ and δ is arbitrary, Φ(s^,k) = 0 almost everywhere. D

We now change to a new variable K SO that we recover the gap equation [13] from
the Euler-Lagrange equation. The variable K is connected to the order parameter as
we shall see later. Let

[s(k)\ε(k)\(r2(k)~s2(ky^2 , ε(*)*0 ,

-tanh" 1 ^*:) , ε(k) = 0 .

We can now write the equation Φ(s, k) = 0 as

This is the usual gap equation. Using this form of the Euler-Lagrange equation we
can now show that for λ(β)> 1, Ψ* has a unique maximizer.

Theorem 7. For λ(β)> 1 the maximizer of Y* is unique.

Proof. Let

yt->h(a,y) is strictly concave and strictly increasing for ye(0, 00). Equation (3.11)
can be written as

κ(k) = $ μ(dk')U(k,k')h(\ε{k')\,κ(k')) .
Ω

Suppose that K and κf are two distinct solutions. Let

A1 = {keΩ:κ(k)>κ'(k)}
and

Without loss of generality we can assume that μ(A1)φ0. Let μo = inf κ'(k)/κ(k)< 1.
Since K and κf are continuous, bounded and strictly positive μ0 is attained. Since
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y\->h(a,y) is strictly concave and h{a, 0) = 0,

j μ(dk')U(k,k')h(\ε(k%κ'(k'))> J μ(dk')U(k,k') *—- h(\ε(k%κ(k'))
A\ A\ K,\K)

Also since y-+h(a,y) is increasing,

j μ(dkf)U(k,k')h(\ε(k')\,κ(k'))^ $ μ(dk')U(k,k')h(\ε(k%κ(kf)) .
A2 A2

Therefore

κ'(k)> μ0

Thus κ'(k)/κ(k) > μ0 for all & E Ω which contradicts the fact that μ0 is attained. D

We sum up the result of this section in the following theorem. Note that λ\-+λ(β)
is strictly increasing and as /?->0, λ(β)-+O. Therefore there is a number βt which can
be +00 such that if β<βt9 then λ(β)<l and if β>βt, λ(β)>\.

Theorem 8.

l Yβ Ί 1 / 2 i
J ( d f c ) l h \^(2(k) 2(k)) j

Ω

l Yβ Ί
f(β)= - - J μ(dfc)lncosh \^(82(k) + κ2

β(k))
P Ω \_Z J (3.13)

where if β ^ β ί ? ίΛe« K;̂  = 0 while ifβ > βt, then κβ is the unique strictly positive solution
of the gap-equation

κβ(k) = \ μ(dk')U{Kk')h{\ε(k%κβ(k')) . (3.14)
Ω

lΐβt = oo, then clearly there is no phase transition. lίβt < oo, we see that there is a
phase transition in the sense that there is a singularity in f(β) at βt.

4. The Order Parameter

To examine the breaking of rotational symmetry we perturb the hamiltonian H^ in

(2.1) by α £ σf, let

(4.1)

We want to evaluate the expectation of (1/JQ ^] σf with respect to the canonical
state corresponding to H^{a). ί = 1
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Theorem 9. Let

trace ]Γ σ*e-βHeiμ)

then sx(oc, β)= lim ^J(α, j8) exists and

κ:(fc) (4.3)

where K is as in Theorem 8.

Proof. Clearly sx(a, β) is an odd function of a. Therefore it is sufficient to compute
sx(<x,β) for α>0. To do this we use a standard procedure and define

/,(α, β) = In trace e ~βHΛ*) . (4.4)

Using the techniques of Sect. 2 we can prove /(α, /?) = lim /^.(α, ^) exists and is given

by

/(α, )8) = -sup {^(r, 0, 0) ~α j r(k) sinθ(k) smφ(k)μ(dk): (r, θ, φ) e Jί}

= -sup {^(r, θ) + α J r(k) sinθ(k)μ(dk): (r, 0)e^}
Ω

{ \ e ^ } . (4.5)

By using arguments similar to those in Sect. 3 we can prove that for all values of λ(β)
the supremum is attained at a unique element of if, sx which is the unique non-zero
solution of the corresponding Euler-Lagrange equation

Φ(s,k)+ a = 0 (4.6)

for almost every k in Ω. We have sx(oc, β) = -~-ft(&, β). Since α π / ^ α , β) is a convex

function if αh-»/(α,/?) is differentiate, then it follows that

Now for α, α'^0,

ί ^Πsa.) + 0L J s,,(k)μ(dk)

Ω Ω
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Therefore

/(α,j8)-/(α',j8)^ -(α-oO j sa(k)μ{dk) .
Ω

Thus by interchanging α and α' we get for α, α 'e [0, oo),

-(α-α') f sΛ(k)μ(dk)^f(0L,β)-f(0Lf,β)^ -(α-α') j sa.{k)μ{dk) .
Ω Ω

Therefore αh-»/(α,/?) is differentiable at α o > 0 if and only if ακ->J sa(k)μ(dk) is

continuous at α0, and — (α0, j8) = — J saQ(k)μ(dk). In the next lemma we shall prove

that α π j sΛ(k)μ(dk) with so = ̂  is continuous on [0, oo). It then follows that
Ω

5λ(α,j8)=-J sa(k)μ(dk)
Ω

and
Iim^(α,j8)= - J so(k)μ(dk) ,

which proves the theorem. •

Lemma 4.

lkai|oo is continuous for ae[0, oo) .

Proof. We shall prove continuity only in a set [0, ε). Continuity for αgrε, it will be
seen from the proof, is easier and follows similarly.

Consider first the case λ(β)<ί. Choose (5e(O,l)5

 a n d on £(0,<5) in L°°(Ω,μ)
define

= Φ(5,fc) . (4.7)

F is continuously differentiable on B(0, 3) and

~2-\ U(k,k')h{k')μ(dk') . (4.8)
yyβV^j) Ω

Therefore ^'(0) as a map from L2(Ω, μ) to L2(Ω, μ) is strictly positive and there-
fore invertible. Now F ;(0) maps L°°(Ω,μ) into L°°(Ω,μ). But if h e L00 (Ω, μ) and
F'(0)h = h, then since J" U{\k')h(k')μ(dk') and (gβ(k))2 <β/2, h must also be in

Ω

L^(Ω,μ). Therefore F'(0) is invertible on L°°(Ω, μ). Since JF(0) = 0, by the inverse
function theorem there are neighbourhoods U and V of 0 in L00 (Ω, μ) such that i 7 is
one-to-one on U and F(U)= F, and if G is the inverse of F on F, then G is
continuously differentiable. But s(χ = G( — αl), and therefore continuous in [0, ε) for
some ε.

For λ(β)> 1, tfΞessinf^ >0 and b= ||^J|oo < ^ Choose 5 = max(α, 1 —Z?) and
on B(s^,δ) define Z7 as above,

)- j U(k,k')h(k')μ(dk') , (4.9)
Ω
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where
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m(k) =

when ε(k) — O ,

\ε(k)\rl(k) β \ε(k)\2rl(k)sl(k)

1 β \ε(k)\sl(k)

(l-r2

s(k)) 2 (r2

s(k)-sl(k))3/2 when

Using the inequality

we can check that

i n f H
x>ε>0 [1 —X

1 tanh h 1 x
>0 ,

for some δ > 0. Therefore

$ h(k)(F'(sJh)(k)μ(dk)> •^(fc')-/*(*)*(*')

+ δ\
Ωx

vl/2

\l/2\2

The rest of the proof then follows as above. D

Remark. What we have calculated above is the thermodynamic limit of the
derivative of the free energy density in the direction of the extensive perturbation

Σ o* ^ is clear that the work of this section can be adapted to calculate the

corresponding quantity with ]Γ σf replaced by

vf~ • 1 • 1j=ί i = l

where the fj are continuous functions and σ* J = /(χ)... ®σ*j

any Pauli matrix.
... ®/, σ*j being

Appendix: Berezin-Lieb Inequalities

In this appendix we describe the application of the Berezin-Lieb inequalities to
Sect. 2. Let ΔJ be the irreducible representation of SU(2) on D J = C 2 J + 1. Let
{P(J, Ω): ΩeS2} denote the family of Bloch coherent projections in J£(DJ). The
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P(J, Ω) satisfy

trace P(J,Ω) = ί , 2J+1 f ~ P{J,Ω) = ̂  (Al)
Si 4π

Let B be a self-adjoint linear operator on DJ. We call functions Bu and BL in
Lco(S2,dΩ) the upper and lower symbols respectively of B if

£ = 2 / + l J ~ BU(Ω)P(J,Ω) , BL(Ω) = tmceBP(J,Ω) (A2)
S2 4π

i?L is determined uniquely by (A2), whereas 5" always exists but is not necessarily
unique. Given B, BL and a Bu can be read off from the table in [12].

Given positive integers {ni: ί = 1,... N}, let / f be in An. for z = 1,2,... N. Let <Λ2 be
JV N

the product measure Π dΩi9 dΩt = dΩ, i f be (x) ^ ( i ) J 0 and L be L°°((S2)N,dΩ).
ί=ί i = l

Define the map / : S£-*L by

ΩN) , (A3)
and the map F\L-*5£ by ^

N 2/- + 1

(A4)

By (Al) / and F are both positive and unital; also x\-^ex is convex. We use a
generalisation of Theorem B of [20], namely

Proposition Al. Let M and N be von Neumann algebras and g : 1R-^R be a convex
function. Assume that τ is a normal semifinite trace on M and a : 7V->M is a positive
unital mapping. Then for a self-adjoint in Ny

τ(g((x(a)))-ζτ((x(g(a))) , (A5)

whenever both sides are defined.

N

By applying Proposition Al with α = / and τ = Π (2/ί + l ) ( 4 π ) - 1 j dΩ, we

find using (Al) that ί = 1 S2N

N 2J 4. l
• I ~ I Clύ£ C _ i Li dvyC c . \ /"\U /

Zt IT *̂  —

and similarly with α = ,Fand τ = trace that

2 4 ^ ί dΩeb{Ω) . (A7)

In the case that B is a tensor product B1®B2®...®BN with each β. self-adjoint,
then from (A2) we see that f(B) = B^B^...BJ

N and F(B$B$...B$) = B. The
hamiltonian (pJι ®... ®pJ*)hj is a finite linear combination of such terms, so by
linearity of the maps/and L, (2.10) follows from (A6) and (A7) using Lieb's table
[12]. In the case that N=l these are just the usual Berezin-Lieb inequalities.
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