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Abstract. A variant of the usual supersymmetric nonlinear sigma model is
described, governing maps from a Riemann surface Σ to an arbitrary almost
complex manifold M. It possesses a fermionic BRST-like symmetry, conserved
for arbitrary Σ, and obeying Q2 = 0. In a suitable version, the quantum ground
states are the 1 + 1 dimensional Floer groups. The correlation functions of the
BRST-invariant operators are invariants (depending only on the homotopy
type of the almost complex structure of M) similar to those that have entered
in recent work of Gromov on symplectic geometry. The model can be coupled
to dynamical gravitational or gauge fields while preserving the fermionic
symmetry; some observations by Atiyah suggest that the latter coupling may
be related to the Jones polynomial of knot theory. From the point of view of
string theory, the main novelty of this type of sigma model is that the graviton
vertex operator is a BRST commutator. Thus, models of this type may
correspond to a realization at the level of string theory of an unbroken phase
of quantum gravity.

1. Introduction

In recent years, Yang-Mills instantons have played an important role in the study
of four manifolds and three manifolds in the work of Donaldson [1] and Floer
[2], respectively. More recently, Atiyah advocated an interpretation of Floer theory
in terms of a non-relativistic version of supersymmetric quantum Yang-Mills
theory [3] and offered some evidence that this might have a relativistic generaliz-
ation that would account for many features of Donaldson and Floer theory. A
relativistic quantum field theory that seems to have the requisite properties was
indeed formulated in [4]. It possesses a global fermionic symmetry which is similar
in many ways to BRST symmetry, though it can be obtained by twisting ordinary
N = 2 supersymmetric Yang-Mills theory.

There is also a 1 + 1 dimensional version of Floer theory [2], which has given
striking results about symplectic diffeomorphisms of symplectic manifolds. From

* On leave from Department of Physics, Princeton University. Supported in part by NSF Grants
No. 80-19754, 86-16129, 86-20266



412 E. Witten

the considerations in [3], it is evident that 1 + 1 dimensional Floer theory is related
to some version of supersymmetric nonlinear sigma models. In the present paper,
we will attempt to clarify this and find the precise version of relativistic sigma
models that enters.

There are three motivations for the present work. First of all, the problem just
stated of understanding the relativistic generalization of 1 + 1 dimensional Floer
theory is clearly interesting in itself. In fact, we will find an interesting variant of
the usual supersymmetric nonlinear sigma model with a BRST-like fermionic
symmetry. The correlation functions of the BRST invariant operators that appear
are invariants, similar to those in work of Gromov [5] on symplectic geometry.

Second, Atiyah has also conjectured [3] that the Jones knot polynomial [6]
should have a natural description in terms of Floer and Donaldson theory. It is
tempting to think that, if so, 1 + 1 dimensional as well as 3 + 1 dimensional Floer
theory should play a role. A knot is after all an embedding φ:S->Y, where S is a
circle and Y a three manifold. (One sometimes specializes to the case that 7 is a
three-sphere, but we do not wish to do this.) What could be more natural than
to consider on S a nonlinear sigma model with BRST-like symmetry, coupled to
gauge fields on Y in a BRST-invariant fashion? In essence, one is thus considering
the knot as a "superconducting cosmic knot," with current-carrying modes that
are coupled to gauge fields in three-space.1 The BRST-invariant correlation
functions are in principle then knot invariants, perhaps related to the Jones
polynomial, though we will have to leave this question for the future.

The final motivation for the present work is connected with the possible physical
implications of Donaldson and Floer theory. The fermionic symmetry in [4] is
formally very similar to BRST symmetry. For instance, the fermionic charge is a
Lorentz scalar Q obeying Q2 = 0. It is very possible that this fermionic symmetry
is in fact a BRST symmetry that arises in gauge fixing of some underlying system
with higher gauge invariance. For reasons sketched in [4], if such an underlying
theory exists it must be a generally covariant theory in an exotic phase in which
general covariance is unbroken; as a result, signals cannot propagate, and the only
observables are global topological invariants, the Donaldson polynomials. It does
not seem likely that there is any ordinary quantum field theory in which the
fermionic symmetry of [4] (or its gravitational analogue [10]) arises by BRST
gauge fixing. A plausible higher symmetry that could do the job upon gauge fixing
is not known in field theory.

But it is very intriguing to ask whether string theory, which certainly does
possess higher gauge invariances of a mysterious kind, is the right framework in
which such fermionic symmetries arise naturally as BRST symmetries after gauge
fixing. It is almost always logical to try to understand a symmetry by considering
a situation in which the symmetry is unbroken. In the case of string theory, there
is a particularly compelling reason for this. As long as general covariance is broken
by a choice of metric tensor, the metric plays a key role in the propagation of

1 There is a striking analogy of such a system with superconducting cosmic strings [7] and also with

the incorporation of current carrying modes on fundamental strings [8]. There is an interesting analogy,

made explicit in [9], between the two types of current-carrying string
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signals of all kinds, including strings. In string theory, such a distinguished role
for the metric tensor in unnatural, the metric being just one of infinitely many
string modes. To properly understand the higher symmetries of string theory, one
would like to put the graviton on the same basis as all the other modes, and
perhaps this is most natural in a phase in which general covariance is unbroken.

What would the unbroken phase look like in string theory? One possibility
which has been proposed [11] (a review can be found in [12]) involves string field
theory. Another interesting suggestion involves trying to infer properties of the
unbroken phase from the behavior of scattering amplitudes at high energies and
fixed angles [13]. On the other hand, it is tempting to ask whether the unbroken
phase of string theory, like the broken phase, might have a representation in terms
of world sheet path integrals.2 In the spirit of [4,10], it is pretty clear how one
should try to find the unbroken phase in world sheet path integrals. One should
look for nonlinear sigma models with BRST-like fermionic symmetry and with
the property that the graviton vertex operator is a BRST commutator. This is
what we will do in this paper, in the process of understanding 1 + 1 dimensional
Floer theory. Thus it is tempting to propose that the models considered in this
paper correspond to the unbroken phase of string theory. This must, however, be
regarded as a rather tentative conjecture for a whole host of reasons, among them
the fact that we will be considering manifolds with almost complex structure,
something that is not part of our usual thinking about space-time.3

The organization of this paper is a follows. In Sect. 2, we describe the relativistic
sigma models which seem to be related to 1 -f- 1 dimensional Floer theory. In
Sect. 3, we determine the BRST invariant vertex operators and sketch the relation
to Gromov's work. In Sect. 4, we couple the model to dynamical two dimensional
gravity (after introducing the two dimensional analogue of "topological gravity").
In Sect. 5, we couple to dynamical gauge fields, and define some knot invariants
which may or may not prove to be interest.

2. Construction of the Lagrangian

The two dimensional nonlinear sigma model is a theory of maps from a Riemann
surface Σ to a Riemannian manifold M. The usual supersymmetric nonlinear
sigma model possess fermionic symmetries whose anticommutators generate
infinitesimal bosonic symmetries of Σ. Such infinitesimal bosonic symmetries

2 Like the world sheet path integral description of the broken phase, this description of the unbroken

phase, if it can be formulated, may well need a more fundamental formulation. World sheet path

integrals should probably be seen as a structure which arises upon trying to expand in perturbation

theory some underlying (and presently unknown) geometrical structure
3 Notice, though, that the cotangent bundle of space-time (or any manifold M) has a canonical

symplectic structure, which, with a choice of metric on space-time, automatically gives also an almost

complex structure. Perhaps this is the proper context for relating the models considered in this paper

to string theory. Twistor theory suggests some other ways to associate an almost complex manifold

to any given real manifold M. For instance, one can consider the bundle over M whose fiber at a

point xeM is the space oΐ all almost complex structures on the tangent space to M at x. The total

space M of this bundle has (with a choice of metric on M) a natural almost complex structure
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correspond to global holomorphic vector fields, and so exist only if Σ has genus
zero or one. In this section, we will formulate a variant of the usual supersymmetric
nonlinear sigma model which possesses a global fermionic symmetry on a Riemann
surface Σ of any genus. This is possible because the fermionic charge Q obeys
Q2 = 0 (rather than Q2 generating an infinitesimal bosonic symmetry, as in the
usual case).

In the usual supersymmetric nonlinear sigma model, the fermionic symmetries
have spin 4- \ or spin — \, and act on right or left moving modes. The non-zero
spin carried by the fermionic charges makes it possible in the usual situation to
decompose any given fermionic charge into left or right handed eigencharges of
definite spin. In the situation that we will consider, there will be just one fermionic
charge g, with spin zero so that it has no decomposition into components of
positive and negative spin. Q will couple to both left and right moving modes,
in such way that (just as in [4]) every field has a β-partner. As a result, the
Q cohomology groups (solutions of Qχ = 0, modulo the equivalence relation
X — X + Qλ) are purely global invariants of M, the Floer groups; there are no local
degrees of freedom in the BRST sense. As was indicated in the introduction, this
means that the sigma models we will consider correspond roughly to an unbroken
phase of string theory.

In the work of Floer and Gromov, it is important that M should have an
almost complex structure. We will accept this as a cue and attempt to formulate
a sigma model that depends on such an almost complex structure. (To make closer
contact with the results of Floer and Gromov, we need an additional structure on
M — a symplectic structure. From our viewpoint, this enters not in the basic
construction of the Lagrangian but in extracting some of its geometrical conse-
quences, as we will see in Sect. 3.)

Let us recall the definition of an almost complex structure. Let T denote the
tangent bundle of M. The linear transformations of T correspond to a vector
bundle End T.4 An almost complex structure is a section J of End T such that
J2 = — 1. Upon picking a local trivialization of T, a vector field V can be described
by its components V\ i = 1.. .n (here n = dimM). The almost complex structure
then corresponds to a tensor field J^ obeying

On M, we consider a Riemannian metric gtj of type (1,1). The statement that g is
of type (1,1) means that

gij = Js

iJ
t

igst, (2.2)

or equivalently that

Jii=-Ju, (2-3)

where Ja = gisJ
si.

As a Riemannian manifold, M possesses its Levi-Civita connection—the
unique torsion free connection such that Dkgtj = 0. We will not assume that DkJ

ιj

4 That is, the fiber of End T at a point PeM is the space of linear transformations of the fiber of T at P
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vanishes. The case DkJ
lj = 0 is precisely the case in which J is an integrable complex

structure and g is a Kahler metric. In that case, the nonlinear sigma model that
we will construct simplifies considerably and reduces to a twisted version of the
usual N — 2 supersymmetric sigma model.

A map φ:Σ-+M can (locally) be described by functions uf(σ) (σ denotes a point
in Σ, and the uι correspond to coordinates on M). In the nonlinear sigma model,
these correspond to fields uι of conformal spin zero. The other fields in our
construction will be the following. We introduce an anticommuting field χι(σ), a
section of φ*(T), the pullback of the tangent bundle of T to M. It will have
conformal spin zero. And we require an anticommuting field pβ{σ\ of conformal
spin one. (β = 1,2 is a tangent index to Σ, and i=l...n runs over a basis of φ*(T),)
p is a one form on Σ with values in φ*{T). ρβ

ι obeys a "self-duality" constraint

pα ί = ε'βfjpV. (2.4)

Here εΛ

β is the complex structure of Σ, obeying εa

βε
β

γ = — δa

γ. Indices tangent to
Σ are raised and lowered by use of a metric haβ on Σ, so ρai = haβpβ\ εaβ = hayε

y

β,
etc. haβ is compatible with the complex structure εa

β in the sense that h is of type
(1,1), so that εaβ = — εβa. Finally, we introduce a commuting field Ha\ a section
of the same bundle as pa\ and obeying the same constraint

H™ = εa

βJ
i

jH
βK (2.5)

It will turn out that Hai is not a propagating field; that is, the interesting Lagrangians
will be such that the Euler-Lagrange equations enable one to solve for H
algebraically in terms of the other fields. It would be possible to write invariant
Lagrangians without introducing H, but the importance oϊH is that its introduction
makes it possible to "close the algebra" (that is, to ensure Q2 = 0) without using
the equations of motion.

In addition to conformal invariance, and the fermionic symmetry β, the model
that we will construct will have at the classical level a bosonic symmetry U which
corresponds in Floer theory to the grading of the Floer complex and so obeys
[I/, β ] = Q. The fields u, λ9 p, and H have U = 0, 1, — 1 and 0, respectively. Their
conformal dimensions are 0,0,1 and 1. This is summarized in the table.

Before attempting to construct a Lagrangian, let us state a few more
conventions. The standard (torsion-free, metric compatible) affine connection of
M will be denoted Γ)k. The covariant derivative of a vector is thus Oky

l =
SkV^Γ^V1. The Riemann tensor is Rjk\ = djΓι

kι- dkr
l

n + Γ)sΓ
s

kl- Γ^Γ)^

Table I. The conformal dimensions, global

charges, and statistics of the various fields

t
paι

Hβi

D

0

0
1

1

u

0

1
_ ^

0

Statistics

+
-
-
+
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This definition is such that [D^D^V1 = RjklV
ι. A connection on φ*{T) is obtained

by pulling back the connection of T from M to Σ, giving the covariant derivative

of χ\

(2.6)

and similarly for any other section of φ*(T).

We first postulate the fermionic transformation laws

Sχ1 = 0, δu* = iεχ1 (2.7)

for u and χ. Evidently, these are such that for any two fermionic parameters η and ε,

δηδeΦ = 0 (2.8)

for Φ equal to u or χ. Equation (2.8) corresponds to Q2 = 0, and we wish to achieve
this relation for all fields. For δp we postulate

) - iεΓ)kχ
Jpa

k (2-9)

This choice is not as arbitrary as it may at first appear. The term proportional to
DkJ

lj is needed for consistency with (2.4) and (2.7). The non-covariant looking
term proportional to the affine connection is in fact needed for covariance under
reparametrization of the u\ So only the first term, zH\ requires explanation. In
fact, this may be regarded as the definition of Hιa; any terms that might be added
to the right-hand side of (2.9) could be absorbed in redefinition of H.

Now we must ask what δH should be. This is uniquely determined by asking
that δηδFp should vanish. One finds that one must postulate the unpromising-
looking formula,

δH*t = -^χ\Rkι\ + RkliΎJi'iJt

t')p*' + l^ε*β(DkJ
i

j)χkHV

- ^ / # k Λ ) ( % ^ / Λ > α ί - isr)k7jH«K (2.10)

After a more or less lengthy calculation, one finds that

δηδEH = 0, (2.11)

as desired. This completes the construction of the fermionic multiplet. We will
sometimes write formulas such as (2.9) or (2.10) in a different way, defining an
operation {Q, } on fields by δΦ= — ίε{Q, Φ}, for all Φ.

Because the algebra has been closed without the use of equations of motion,
it is quite easy to find invariant actions. One simply takes

&=-i{Q,V), (2.12)

for any V. Because Q2 = 0, the Lagrangian j£? is automatically invariant. We would
like j£f to be conformally invariant and of U = 0, so V should be conformally
invariant and of U = — 1. A minimal choice is

Z = Jd2ff(p?3eu
i-ip?H^). (2.13)
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(We are here suppressing the world sheet metric, setting haβ = δaβ. This can be
done locally with the use of conformal invariance, and since the formulas are local
this should cause no ambiguity.) By evaluating (2.12), we find the Lagrangian

(2.14)

The derivative of H does not appear in (2.14), so H is an "auxiliary field," important
in closing the algebra but not propagating. Bearing in mind (2.5), one finds the
Euler-Lagrange equations to be

H^δ^ + ε^JψuS. (2.15)

Eliminating H with the use of this equation, one finds a Lagrangian for the
propagating fields only, namely

k i (2.16)

For future reference, let us here note the formula for the supercurrent that
generates the fermionic symmetry. There is a standard recipe for finding this. One
considers a fermionic transformation with a general σα-dependent parameter ε.
Writing the variation of the Lagrangian as δJ£ = ί$d2σdσε Jlx, one finds the
conserved current

J* = GijH^ + ΪJιsp:DkJijX

kγJ. (2.17)

2.1 The Kahler Case. The above formulas simplify and become more transparent
if M is a Kahler manifold K, so that Dk J^ = 0. Let us denote vector fields of type
(1,0) or (0,1) on the Kahler manifold K as υι and w7, respectively. The nonzero
components of the Kahler metric g are then Q^ — Qjv Similarly, a one form ωα

on the Riemann surface Σ has components of type (1,0) and (0,1), which we may
denote as ω+ and ω_. Equation (2.4) means that the non-zero components of
p + l and pJ are p +

 ! and pJ, respectively. Equation (2.16) reduces to

(2.18)

This possesses an N = 2 fermionic symmetry

δχι = δγj - 0, δu1 = ίεχ\ δuι = iεχ\

W = 2εd+u! - iεfsdsgκ-sχ
sp+

κ,

δpJ= 2εd^uτ- iεg%gsK/pJ. (2.19)

Here ε and ε are independent anticommuting constants, which correspond to two
fermionic charges QL and QR which obey 0 = Q2

L = Q2

R = {QL,QR}. For ε = ε,
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(2.19) reduces to the single fermionic symmetry of the more general model (2.10).
QL and QR generate independent BRST-like symmetries for left and right moving
modes. Similarly, the global symmetry U of (2.16) splits into ULx UR, with
the charges of χ /

? χ r

? p +

 /, and pJ being (l,0),(0,l),(-1,0), and (0,-1),
respectively.

Unlike (2.16), (2.18) can be understood in a simple way as a twisted version of
a standard N = 2 supersymmetric nonlinear sigma model. In two dimensions the
Lorentz group has a single generator which we will call T. The standard N = 2
model (for maps into a Kahler manifold) has left and right moving (V — A and
V H- A) chiral symmetries which we may call UL and UR. There are four supercharges
(two left moving and two right moving); they transform under TxULxURas
( - 1/2,1,0)Θ(- 1/2, - 1,0)®(1/2,0,1)0(1/2,0, - 1). Clearly, if we define a new
Lorentz generator T' = T + ̂ UL — ^UR, then there are two T singlet super-
charges QL and QR, transforming under ULx UR as (1,0) ©(0,1). They obey
Ql= QR = {QLIQR} = 0 With T regarded as the Lorentz generators, the
fermions have spin 0 and ± 1 instead of \ and — \. The resulting model can be
defined on an arbitrary Riemann surface preserving the conservation of QL and
QR. This gives precisely (2.18).

It is also possible, if M is a Kahler manifold, to consistently set pJ = χJ = 0,
leaving a Lagrangian

& = 2Sd2σlgIjd + uId_uτ-^pJD + χIgIj~\ (2.20)

with a single right moving fermionic symmetry

δχI = 0 = δuτ, δu'-iεχ1,

δpJ=2εd-ur (2.21)

This is a twisted version of a conventional (0,2) model. Though the Kahler case
is thus relatively transparent the general Lagrangian (2.16) for almost complex
manifolds apparently cannot be obtained by twisting of any more standard
construction.

2.2 Incorporation of World-Sheet Super symmetry. In this section, we will generalize
the above constructions to give models with 1 + 1-dimensional world-sheet
supersymmetry as well as BRST invariance. The main motivation has to do with
the conjecture that the sigma models we have described, in which the graviton
vertex operator turns out to be a BRST commutator, are related to an unbroken
phase of string theory. If so, the above models are related to an unbroken phase
of bosonic strings; sigma models related to an unbroken phase of Type II or
heterotic superstrings should have N = \ or N = 1/2 world-sheet supersymmetry,
respectively, as well as BRST symmetry, and we would like to construct these
sigma models.

First we recall the basic definitions of N = 1 superspace in 1 + 1 dimensions.
In addition to the bosonic coordinates σα, α = 1,2, there are fermionic coordinates
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ΘA, A = 1,2 which transform as spinors of the Lorentz group.5 The super-
symmetry generators are

QA = 4^A + i(p"θ)A j - a - i2-22)

The superspace covariant derivative is

The relation between them is {QA,DB} =0. A superfield is simply a function
Φ(σα, ΘA\ with the supersymmetry transformation law δΦ = εAQAΦ. Any expression
\d2σd2ΘP(Φ,DAφ,DADBφ,..) is supersymmetric, with P being an arbitrary
functional of Φ and its covariant derivatives. A typical (in some sense minimal)
choice is

S£ = \d2σd2θεABDAΦDBΦ. (2.24)

While supersymmetry may be realized in this way on any superfield or collection
of superfields, we wish to find a particular collection of superfields on which one
can realize the BRST-like fermionic symmetry in addition to supersymmetry.

The form in which we closed the algebra makes it easy to do this, essentially
by re-interpreting the above fields as superfields and making some slight adjust-
ments. Corresponding to the fields uι and γj of the previous construction, we
introduce superfields ύι and f (commuting and anti-commuting, respectively; and
of conformal spin zero), with the BRST transformation laws

bf = 0, bύ* = iεχ\ (2.25)

As for paι and Ha\ we replace them with "spinor" superfields pAι and HAι of
conformal spin 1/2, and obeying the kinematical constraints

β* = εA

BJ
i

jβ
Bj, HAi = εΛ

BJ
ί

jH
Bj. (2.26)

The BRST transformation laws are the obvious generalizations of our previous

ones,

δβAί = εHAi + l~εA

Bχ
kDkJ

i

jp
Bj - ίεΓ)kχ

jpA\

δHAi = -~χkχι(Rkι\ + RmrW'W + f εA

- icΓ)kJtjHΛ\ (2.27)

5 This is a two dimensional real irreducible representation of SO(2). It possesses both symmetric and
antisymmetric bilinear invariants δAB and εAB. The former is used to "raise and lower" spinor indices.
The complexification of this representation splits as a sum of one dimensional representations of
"positive and negative chirality." The product of two spinor representations of 50(2) contains a vector;
this is expressed in the existence of the "gamma matrices" pAH
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This algebra closes by exactly the same computation which shows such closure
in the case that the world sheet is purely bosonic. We then can find a supersymmetric
and BRST invariant Lagrangian in the form

& = {QBRVΓ,V}, (2.28)

where V is an arbitrary functional of the fields. A simple generalization of the
choice that we adopted in the absence of world-sheet supersymmetry is

V =\d2σά2d(βiΌ Aύ
[ -^βfW^ (2.29)

The Lagrangian in (2.28) can be regarded as a supersymmetric generalization of
(2.16), and if (2.16) has something to do with an unbroken phase of bosonic strings,
then (2.28) may well have something to do with an unbroken phase of Type II super-
strings. In a similar fashion, by introducing superfields that obey suitable chirality
conditions, one can construct a generalization of (2.16) with TV = 1/2 world-sheet
supersymmetry, possibly related to an unbroken phase of heterotic strings. The
key point in introducing chiral superfields with BRST symmetry is that the BRST
transformation laws (2.9), (2.10) still make sense and still close if one introduces
chirality conditions βai = ± ίε*ββ

β\ Hai = + iε"βH
βi. Similar chirality conditions

are possible in (2.26) and (2.27).

23 Local Fermionίc Symmetry. Another interesting generalization of the forgoing
involves the possibility of turning the global BRST symmetry that we have
considered into a local symmetry with a σ-dependent infinitesimal parameter ε.
(In carrying out this step, we will dispense with world-sheet supersymmetry and
return to purely bosonic world-sheets.) At first sight, introducing local BRST
symmetry might seem like a rather bizarre step. The motivation for this step is
that if the BRST-like symmetries considered here (and in [4,10]) have anything
to do with nature, they must be spontaneously broken so that local physics can
emerge. Spontaneous breaking of BRST symmetry is at first sight a somewhat
paradoxical notion. For the usual criterion of symmetry breaking is that a symmetry
is broken if the vacuum is not invariant under the symmetry. In the case of BRST
symmetry, the vacuum not being invariant under the symmetry would merely seem
to mean that the vacuum is unphysical, in the BRST sense—not a very appealing
conclusion. It seems likely that spontaneous BRST symmetry breaking would
make more sense in the case of local BRST invariance. One would like to consider
local BRST symmetry in space-time (3 + 1 dimensions) as well as the string world
sheet (1 + 1 dimensions), but as a first step we will here consider the 1 + 1
dimensional case.

In constructing a Lagrangian with local BRST symmetry, the first point is that
σ derivatives nowhere appear in the transformation laws (2.7), (2.9), and (2.10).
Consequently, those formulas still make sense and still give a closed algebra if ε
has an arbitrary σ dependence. Any functional [Q, V} will have local BRST
symmetry if V is constructed only from the fields w,χ5p, and H, and not their
derivatives. But if we wish to construct invariant functionals that involve not only
the fields but also their derivatives, we need to introduce covariant derivatives.
This may be done by introducing an anticommuting gauge field Λα, of ghost
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number — 1, with the BRST transformation law

δΛa=-daε. (230)

Then we define the covariant derivative of uι by

Dau
ι = dy + iΛΛχ\ (2.31)

This transforms homogeneously under σ dependent BRST transformations (that
is, under (2.30) together with (2.7)). The covariant derivative of χ needs no
modification, since δχ = 0 in (2.7). Covariant derivatives of p and H receive
modifications similar to that in (2.31) (so Dσp is replaced by Dxp — ίΛΛ{Q,ρ}, etc.).

Now there is no problem in obtaining a generalization of our previous
Lagrangians with local BRST symmetry. One simply replaces c^ux in (2.13) with
Dau\ After evaluating {g, V) and eliminating H, one arrives at a version of (2.16)
with local fermionic symmetry in which, again, dau

ι has been replaced by the
covariant derivative.

To complete the picture, we should introduce a locally BRST invariant kinetic
energy for the gauge field Aa. One way to do this is certainly to introduce another
anticommuting gauge field /ΐα, of t/ = + 1, invariant under the BRST symmetry
(but with its own gauge invariance), and with the Lagrangian

^gaugc = - ϊ\d2σ{δ,Λβ ~ dβΛJid'ΛP - d^λη. (2.32)

This is not suitable for our general program, however, since the energy-momentum
tensor is not a BRST commutator, so that (2.32) cannot be interpreted in terms
of an unbroken phase of quantum gravity. Construction of a more suitable version
and investigation of its properties is something that we will leave for the future.

2.4 Families of Almost Complex Manifolds. Our considerations up to this point
have still a further generalization, which is likely to be important in geometrical
applications, though it will not really be exploited in this paper. This generalization
again depends on the fact that σ derivatives of the fields do not appear in the
fermionic transformation laws (2.7), (2.9), and (2.10). As a result, the algebra will
still close if with no other change in any of the formulas, we permit gi}{uk; σσ) and
Jlj(uk; σα) to depend on the coordinates σα of Σ as well as the coordinates uk of
M. Our Lagrangian (2.16) is still invariant in this more general situation.

To make this sound a little less bizarre, and describe its geometric setting, let
us introduce the product space I = M x I I is an almost complex manifold,
since M is almost complex and Σ is a Riemann surface. X can be viewed as a
fiber bundle over Σ,

M-^X

1 (2.33)
Σ.

The space of maps Σ^M can be viewed as the space of sections of the bundle
(2.33). Of course, X = M x Σ is a trivial bundle. Nevertheless, let us pick on X a
metric and almost complex structure which are not simply products of structures
coming from M and Σ. (We require the almost complex structure on X to be
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compatible with the fibration in (2.33) in the sense that the tangent bundle to the
fibers, viewed as a subbundle of the total tangent bundle of X, is invariant under
the action of the endomorphism that defines the complex structure of X.) Such a
choice of metric and almost complex structure on X will restrict on each fiber to
a metric and complex structure 0^(1/; σα) and J)(uk\ σα) on M with, in general, a
non-trivial dependence on the coordinates σα of Σ.

At this point, one might feel that it is rather unnatural to consider only product
bundles while permitting a non-product metric and a non-product almost complex
structure. Clearly, the situation just described is begging to be generalized to a
setting in which we replace the maps Σ->M by sections of an arbitrary M bundle
over Σ. To obtain the correct general setting for topological sigma models, we
should consider an arbitrary family of almost complex manifolds, fibered over a
Riemann surface Σ. By a family of almost complex manifolds, we mean a manifold
X fibered over Σ, with an almost complex structure on X that reduces for each
fiber to an almost complex structure on the fiber. We then regard the uk(aa) as a
description not of a map Σ-+M but of a section of the bundle X. X is then
endowed with a metric of type (1,1)—that is, a metric obeying (2.4). With slight
modification, (2.16) is still well-defined in this situation, and still possesses its
fermionic symmetry.

Modification is required because, with the u\σa) being not functions but sections
of a bundle, the derivatives dau

k must be replaced by suitable covariant derivatives.
What will be the "gauge group" in the definition of these covariant derivatives?
In general there is no reason for this group to be any smaller than the full-fledged
group DiffM of all diffeomorphisms of M. Let diffM be the Lie algebra of this
group, and let Va, aeT, be a basis of this Lie algebra. Of course, the indexing set
T is infinite, as diffM is an infinite dimensional Lie algebra. Concretely, each Va

corresponds to a vector field Va

ι on M. We now wish to introduce a connection
on X with DiffM for structure group. Concretely, this means introducing on Σ a
gauge field Aa

a(σβ) which, locally, can be regarded as a diffM valued one form,
with the usual gauge transformation law

δAa

a= - V + / f l A c (2.34)

with fa

bc the structure constants of diffM (so [Kb5 Vc~\ =fa

bcVa) and εa being an
arbitrary diffM valued zero form. Now we can define the covariant derivative of
the u\

Dau
k = dau

k + Σa6TAa

aVa\ (2.35)

and a corrected covariant derivative of the χ\

Djk = daχ
k + d^nχ1 + ΣaeTA

a

adjVW. (2.36)

If the derivatives of uk and χk are everywhere replaced by (2.35) and (2.36), then
(2.16) makes sense in the more general context just described, and is still invariant
under the fermionic symmetry (2.9). Thus, we have obtained a "supersymmetric"
theory describing the sections of an arbitrary family X-*Σ of almost complex
manifolds. The "instantons" in this situation are the global holomorphic sections
of the family.
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In case X and M are Kahler, the discussion simplifies. Perhaps it is appropriate
to discuss this case explicitly. The nonlinear sigma model is usually (without the
generalization we have just discussed) a theory of maps Σ—>M. As such, it depends
on the intrinsic geometry of M, not on the choice of a particular set of coordinates
uk. The intrinsic nature of the nonlinear sigma model shows up in the fact that
the usual Lagrangian

$ k d a u ι (2.37)

preserves its form under reparametrizations at the uk—under, say, uk-+uι(uk),
accompanied by the usual redefinition of gkl. Of course, if one is considering sigma
models with an additional structure, say a Kahler structure permitting an n = 2
supersymmetry, one should consider only reparametrizations that preserve this
additional structure. In any case, (2.37) would not preserve its form under a σα

dependent reparametrization uk-+ύι(uk;σa). Of course, we could generalize (2.37),
by including a diffM connection as above, to a model describing sections of a not
necessarily trivial bundle X-^Σ. Usually such a generalization would not be
compatible with fermionic symmetries. The surprise about (2.16) is that the
fermionic symmetry holds in the more general situation.

This is particularly transparent in the Kahler situation (2.18). Let us write z
and z for σ+ and σ~. Note that in (2.18) we see dzu

! and dμ\ but no d-u1 or
dzu\ Therefore, (2.18) preserves its form under holomorphic reparametrizations
of the u1 that depend holomorphically on z, say

u 7 - > w V ; 4 (2.38)

it being essential that

dύι du1

Tτ = ΊF = 0' ( Z 3 9 )
du oz

The fact that (2.18) preserves its form under (2.38) means that (2.38) has a
generalization to a situation in which one is studying the sections of a family

M —+X

ϊ (2.40)
Σ

of Kahler manifolds fibered over Σ, rather than maps Σ->M. This also holds in
the more general case of sections of a family of almost complex manifolds,
corresponding to the more general Lagrangian (2.16).

In this section, we have considered a model that involves world sheet gravity
(an arbitrary metric on Σ) and world sheet gauge fields (the diffM connection).
But these play a passive role, being arbitrarily prescribed rather than being
independent degrees of freedom. In later sections, we will generalize to the case
of a sigma model coupled to dynamical gravity and dynamical gauge fields, still
possessing the fermionic symmetry.

2.5 Canonical Formulation and Floer Groups. Finally, we will, very briefly, discuss
the canonical quantization of (2.16). Such canonical quantization will give rise to
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a quantum Hubert space Jf, with an operator Q obeying Q2 = 0. It is to be expected
that in a suitable setting, the (/-graded cohomology groups of Q will turn out to
be the Floer groups. Recall, after all, that the original motivation for the
construction of (2.16) was to find a relativistic generalization of the de Rham model
of 1 -f 1 dimensional Floer theory, as described in [3].

A full discussion of the quantization of (2.16) would raise many issues. Here,
we will simply make a few remarks. First of all, in (2.16) there appears a certain term

A5£ = ̂ \d2σJijε
aβdau

idβu
j. (2.41)

It is clear from the CPT theorem that this term, because it is odd under reversal
of orientation of Σ but appears with a real coefficient, will cause certain difficulties
in quantization. The CPT theorem says that the (Euclidean) Lagrangian of a
unitary, relativistic quantum field theory must be invariant under complex
conjugation combined with reversal of orientation. Physically, in fact, (2.41)
corresponds to a world-sheet θ term with an imaginary value of 0, and this certainly
violates unitarity.

In Atiyah's treatment of Floer theory [3], there does not seem to be any sign
of an imaginary theta term, so we are led to ask if (2.41) can be omitted from
(2.16) without spoiling the fermionic symmetry. There is one situation is which
this is possible. If the two form J ^\J^aul Λ duj is closed, dJ = 0, then (2.41) is
a topological invariant and can be dropped without spoiling the fermionic
symmetry. The case dJ = 0 (by definition) the case in which M is symplectic and
not just almost complex. This is precisely the situation most investigated by Floer,
whose 1 + 1 dimensional results are mainly concerned with diffeomorphisms of
symplectic manifolds. It is conceivable that Floer theory has a generalization to
the almost complex case. Whether or not such a generalization exists, it seems
likely that the theorems that Floer has actually obtained correspond most closely
to quantization of (2.16) with M symplectic and (2.41) omitted.

One may note that even if (2.41) is omitted, (2.16) still leads to a Lorentz
invariant inner product on the quantum Hubert space Jf which is not unitary.
The non-unitarity appears because of the indefiniteness of the fermion kinetic
energy. In [4], a similar problem arose, and it was noted that in the Hamiltonian
formalism there is a time reversal symmetry that enables one to define a positive
definite but not Lorentz invariant inner product. Equation (2.16) does not have
such a symmetry. It is possible that by adding non-minimal BRST invariant terms
(of the form {β, V'} for suitable V'} one can find a version that admits a time
reversal symmetry, but this question will not be addressed here.

Now, the situation that Floer actually considers is that of a symplectic manifold
M together with a diffeomorphism φ.M^M which preserves the symplectic
structure. From our point of view, the most natural way to study this situation is
to regard φ as the gluing data in constructing a certain M bundle over S1, that
is, a manifold Y fibered over S1, the fibers being copies of M. Then, instead of
maps S1 -»M, we consider sections of the bundle Y. More exactly, in the Hamiltonian
approach one considers an M-bundle Y over S1. In the path integral approach,
one must restore the time direction, and thus consider the product Y x R; R is
the "time-line," and X = Y x R is regarded as an M bundle over S1 x R. In view
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of our discussion in the last subsection, (2.16) gives a BRST invariant theory
governing the sections of the bundle Y over S1 x JR.6 It is the quantization of
(2.16), in this sense, that should be expected to give the groups that Floer associates
with a symplectic diffeomorphism φ:M->M.

In fact, in the Hamiltonian picture, the quantum ground states correspond to
minima of the energy. The purely bosonic part of the energy is

{2Λ2)

(Here τ is "time," and S1 is being parametrized with an angular variable σ running
from 0 to 2π.) If present, (2.41) would contribute an extra term to the energy, but
this has been omitted. (At this point it is crucial that M is symplectic and (2.41)
is being deleted. The additional term in the energy makes a contribution which
is not positive and would modify the determination of the Floer groups.) To
minimize (2.42) in the classical approximation, one takes u[ to be constant. If,
however, one is considering not maps Sι -• M but sections of a bundle constructed
with the diffeomorphism φ as the transition function, then the boundary conditions
on uι are not wf(2π) = w'(0), but

ui(2π) = φ*(ui){0). (2.43)

In other words, the uι are periodic up to the diffeomorphism φ. Equation (2.43)
means that uι can be constant only if the constant value corresponds to a fixed
point of φ, and this is why the quantum ground states in the situation under
discussion can given information about those fixed points. Presumably, in this
way one can recover Floer's results about symplectic diffeomorphisms.

It seems appropriate to conclude by stating explicitly the following generaliz-
ation of these considerations. This involves a situation that is known to have intimate
analogies with number theory. Consider a Kahler manifold X with a surjective
holomorphic map π:X->£, Σ being a compact Riemann surface. It will always
be true that over the complement of finitely many points "of bad reduction," π is
a fibration. Suppose that π is everywhere a fibration. Then (2.16) gives a BRST
invariant quantum field theory describing the C00 sections of the bundle X-*Σ.
The global holomorphic sections will play a special role, as we will see in the next
section. In fact, we will introduce Donaldson-like invariants that can be computed
in terms of the global holomorphic sections of this bundle. More generally, there
will be finitely many points P1-Pk at which the fibration π is ill behaved. (And
we may wish to permit the total space X to have singularities lying above those
points.) Around each of the Pj9 draw a little circle Sj. The fibration π:X -+Σ can
be restricted to Sj to give a one parameter family of Kahler manifolds fibered over
Sj. By quantizing a sigma model governing the sections of this bundle one obtains

6 When one considers not maps Σ-+M, but sections of an M bundle over Σ, the ability to drop (2.41)

depends on finding a closed two form ω on the total space of the bundle whose restriction to the fibers

induces the symplectic structures of the fibers. In the case at hand, this will exist if the diffeomorphism

φ of M is symplectic
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certain Floer groups, just as in our discussion in the last subsection (where we
associated Floer groups with any one parameter family of symplectic manifolds
fibered over a circle). We should think of these as the local Floer groups associated
with the singularity at Pj. Because of the singularities at the Pj, to make sense of
the quantum field theory associated with π\X-*Σ will require suitable boundary
conditions on the Sp corresponding to the choice of a state in the local Floer
groups. Thus, the Donaldson-like invariants which we will associate in the next
section with global holomorphic sections of the bundle X will—in this situation—
take values in the local Floer groups associated with what number theorists would
call the primes of bad reduction.

3. Observables

In this section, we will discuss the observables which can be defined in the model
described in Sect. 2. We will restrict ourselves to the case in which one is studying
maps Σ-+M for some M (rather than sections of a bundle). We will restrict
ourselves to observables in the BRST sense. This means that we consider only
operators Θ which are such that {g, &} = 0. The corresponding correlation
functions

are zero if any of the Θt are BRST commutators, that is, if any of them can be
written as Θt = {Q,λ} for some λ. (The argument that (3.1) is zero if one of the Θ{

is a BRST commutator can be found in the string theory literature [14,15] and
has been reviewed in [4].) Thus, discussing the observables in the BRST sense
requires us to consider BRST cohomology classes of operators-operators &
obeying {β, Θ} = 0 modulo operators of the form & — {Q, λ}.

Exactly as in [4], the only observables that can be defined in this sense are
global topological observables. The reason for this is that the BRST-like symmetry
is linearly realized; every field has a superpartner; the fermίonic symmetry acts in
a non-degenerate fashion even in a linearized approximation.

Since the Lagrangian 5£ (2.16) possesses a fermionic symmetry for any choice
of metric haβ on Σ and for any choice of metric gtj and complex structure Jιj on
M, the variation of 5£ with respect to the metric or complex structure of Σ or M
is BRST invariant. The characteristic features of "topological sigma models" spring
from the fact that these particularly important BRST invariant operators are
actually BRST commutators, that is, they can be written as {β, X} for some X.
For instance, the two dimensional energy-momentum tensor is defined in terms
of the change in j£? under an infinitesimal change in the two dimensional metric haβ:

One finds that Txβ is a BRST commutator; in fact, Γα/J = — i{Q, Axβ} with

K» = h(9iAdfiui + dijp'βSy - h^g^d,*). (3.3)
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Actually, it is obvious without any computation at all that Taβ must be a BRST
commutator. For as if itself is a BRST commutator (having been introduced that
way in (2.12)), its variation under a change in the metric on Σ is certainly a BRST
commutator. For essentially the same reason, the change in S£ under a change in
the metric and complex structure of M is a BRST commutator. In fact, under a
change in gtj and J^ , the change in if is

δ& = {Q^d2σ(p^dau
jiδgίj + \(δJ\Jjt - δJtjJtM (3.4)

The change in the Lagrangian under a change in the metric of M is known in
string theory as the graviton vertex operator. The fact that the graviton vertex
operator in the situation at hand is a BRST commutator is precisely the reason
for the conjecture that these "topological sigma models" may give a realization
in string theory of a phase with unbroken general covariance. It means that the
metric fluctuation is not observable in the BRST sense, and therefore that even
the value of the metric is not observable. (This has nothing to do with quantum
fluctuations; it is true in the phase at hand even in the classical limit.) This is exactly
what one would expect if one is studying an underlying generally covariant theory,
in a phase in which general covariance is a symmetry of the vacuum although
violated by the BRST gauge fixing.

3.1 Global Observables. The BRST invariant operators that are not BRST
commutators are—as in [4]—of a global topological nature. Recall that in [4],
the key was the existence of a BRST invariant field φ of conformal spin zero.
Looking back to the fermionic transformation law (2.7), we see that the closest
analogue of that in the present discussion is the existence of a field χ of conformal
spin zero with δχι = 0. However, since χι is not a function but a section of the
bundle φ*(T), it does not make sense to consider operators that "depend only on
χι and not on the boson fields u\" Such a concept would not be invariant under
reparametrizations of the u\ The natural notion is to consider a differential form,
say an n-form A = Aiv..indulί - duln, on M. For every such n-ΐorm A, we consider
the operator

- (3.5)

By use of (2.9), we find

δΘ^ = iεdi0Aίlί2^inr^ tn, (3.6)

which (recalling the definition δθ = - iε{Q, G}) is equivalent to the statement that

(3.7)

where dA = dioAiι...indulodulί --'duln is the exterior derivative of A. From (3.7), it is
clear that BRST invariant operators θ^] correspond exactly to closed forms A.
Moreover, it is clear that ΘA can be written as a BRST commutator, ΘA = — {Q, (9B),
if and only if A = dB is trivial in de Rham cohomology. Thus, the BRST cohomology
classes of operators obtainable in this way correspond exactly to the de Rham
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cohomology classes of M.7 Clearly, the degree of ΘA under the U grading is the
same as the degree of A as a differential form.

Now, recall the basic framework of correlation functions in quantum field
theory. We pick a homotopy class of maps X->M, and introduce the Feynman
path integral

\2>Xe~* (3.8)

with <3)X an abbreviation for an integral over all u, p, χ (in the chosen homotopy
class), and 5£ the Lagrangian of Eq. (2.16). For any functional W of w,p,χ, we
define the unnormalized expectation value

<W) = $@Xe-*W. (3.9)

Its most important property is that

({Q,V}) = 0 (3.10)

for any U.
We can now formulate some interesting examples. Jί A1,A2,...Ak are closed

forms on M of degrees π l 5 . . . 5 n k , pick distinct points P 1 , . . . , P f c e X , and consider

y (3.11)

This is a topological invariant in the sense that it is unchanged under continuous
changes in the metric of Σ and the metric and complex structure of M (but possibly
depends on the homotopy type of the almost complex structure of M). The
invariance of (3.11) can be deduced from standard arguments that were repeatedly
used in [4]. Under an infinitesimal change in the metric and complex structure of
M, (3.11) changes by

^ ^ (3.12)

with δ<£ the change in S£ due to the change in metric and complex structure of
Σ or M. But we have observed that if = {<2, V] for some V. So

- 0 . (3.13)

This has some interesting consequences. Being independent of the metric on
Σ, Z must be independent of the choice of distinct points Pt. But it is very
illuminating to check this explicitly. Viewing Θ^\P) as an operator valued Θ-ϊoxm
on Σ, we compute its exterior derivative

duio . . D/u .

oσ Dσ

7 This is essentially the structure that was conjectured in [16] as the 1 + 1 dimensional analogue of

Donaldson polynomials. If one chooses A to be the Poincare dual of a hypersurface Y in M, then

(9A(P) is zero except for maps Σ ->M that map P into Y. This corresponds to the structure sketched

in [16]
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If dA = 0, then (3.14) can be rewritten

(3.15)
where

is an operator valued one form on Σ. Equation (3.15) shows that if P and P' are
any two points on Σ then the difference 6^0)(P) - Θ{%\P') is a BRST commutator.
Indeed, picking any path y from P' to P,

Equation (3.17) implies that (3.11) is independent of the Ph as long as the differential
forms A: are all closed. For

O)Ή (3 1 8 )

At this point, however, we can use (3.15) to define new BRST invariant
observables. For let γ be a one dimensional homology cycle on Σ. Let

(3 i9)
V

Then

Π \ ^ = 0. (3.20)
y y

Therefore, WA(y) is a new BRST invariant operator that can be considered in
correlation functions. Let us now see that W(y) depends only on the homology
class for γ. For if y — dβ for some two chain β, then

V β

But a little calculation shows that

d ^ ( 1 ) = m3 i 0 A i l i 2 . . . i n dM i0ΛdM i l / i 2 . .χi»

+ in{n - \)Ahi2 induiι A Dγϊ2χh ~χin

= i{Q,0A

(2)}> n (3-22)
where

ΘA

{2)= -^Y^Aili2_induh ΛdMιV3 Z/n (3.23)

Hence if y = dβ, then

WAY) = ί<Vυ = ί ^ α ) = i\<2 ,$0ΛW } (3-24)
y β I β J

is trivial in the BRST sense.
At the same time (3.22) leads to a new BRST invariant integral, namely

WAΣ) = S<9Λ

(2\ (3.25)
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For
). (3.26)

Let us state these results in a more unified way. For any closed differential
form A on M, we have defined the three operators ΘA

{0\ @A

{1) > a n <3 @A{2\ obeying

d(9A

{1) = i{Q, ΘA

{2)}, dΘA

i2) = 0. (3.27)

For A an π-form and k = 0,1,2, it is clear that ΘA

{k) has U = n — k. The equations
(3.27) imply that if y is a homology /c-cycle on Σ, then

WA(y) = \®Ak) (3.28)
y

is BRST invariant, and—up to a BRST commutator—depends only on the
homology class of y.

The interesting observables may then be described as follows. Pick closed forms
A l 9 A 2 , . . . ,AkoϊdQgΐQQsd1,.. .dkonM, a n d h o m o l o g y c y c l e s y 1 ? . . . 9 y k o f d i m e n s i o n s
tl9...,tk. Let WAχ(yi) = \&A}

tι\ Then the BRST-invariant observables are

(3.29)

These observables, moreover, are topological invariants (invariant under conti-
nuous deformations of the metric and complex structure of Σ and M), by an
argument that was sketched above.

3.2 Evaluation of the Invariants. It remains to give a prescription for evaluating
the invariants that we have just described, and to show that they are non-trivial
and have interesting geometrical consequences.

First of all, since the quantities of interest are independent of the metric of M,
we can consider a one parameter family of metrics of the form gfj = t-gij9 with
gtj some given metric. This has the effect of substituting ££ -> tS£. For large t the
Feynman path integral

(Θy = \2Xe~tSe Θ, (3.30)

is dominated by the minima of 5£. Looking back to (2.16), we see that the bosonic
terms in the Lagrangian are positive semi-definite, and vanish if and only if

dΛtί + εaβ Jψu* = 0. (3.31)

This is the equation for a holomorphic map φ Σ^M; we will call such maps
instantons.

Of course, in defining the path integral (3.30), we have had to pick a topological
class of maps of Σ to M. Whether instantons exist will depend on the chosen
topological class. If for some topological class there actually is an instanton, one
naturally wishes to know if it is isolated of forms part of a family. Given a solution
of (3.31), the requirement that a slightly displaced map, with uι replaced by uι + du\
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should obey (3.31) to lowest order in δu1 is

0 = DM + εaβJ
ιjDβδuj + εaβDkJ

i

jd
βu'duk. (3.32)

We write this as 0 = Dδu, 5 being the linear operator that appears in (3.32). The
zero modes of D correspond to infinitesimal deformations of an instanton.

Given an infinitesimal deformation of an instanton, there may be an obstruction
to integrating it to give a finite deformation of the instanton. It is well known (but
will not be demonstrated here), that the obstruction lies in the cokernel of D (or
equivalently, the kernel of the adjoint operator D*). Let Jί denote the moduli
space of instantons of a given topological type. Formally, one expects that the
dimension of M should equal the number of infinitesimal deformations of the
instanton minus the number of obstructions to integrating such infinitesimal
deformations; this is precisely the index of D. (For a topological class of maps of
Σ to M which is such that the index is negative, instantons will typically not exist.)
Mathematically, the kernel and cokernel of D correspond to H°(Σ,φ*(T)) and
H1(Σ, φ*(T)\ with φ*(T) denoting the pullback of the tangent bundle T of M via
the map φ:Σ->M. The index of M is the same as the dimension of H° minus
the dimension of H1.

Looking back to the Lagrangian (2.16) (and remembering the kinematic
condition obeyed by p), we see that in expanding around an instanton solution,
the zero modes of χ and p correspond exactly to the kernel and cokernel of D.
In quantum field theory, the number of χ zero modes minus the number of p zero
modes (or in other words, the index of D, which we will denote as ή) is a very
important quantity. Recall that at the classical level (2.16) has a conserved quantum
number U with the values + 1 and — 1 for χ and p, respectively. As in the solution
[17] of the [/(I) problem in QCD, the number of χ zero modes minus the number
of p zero modes is the violation of U by the instanton. In other words, the
integration measure in (3.30) is not invariant under U but is homogeneous of
degree — n; and, if Θ is decomposed in components with a definite U quantum
number, a non-zero contribution comes only from the component of degree + n.
Our basic invariant

/ \
(3.33)

associated with closed forms A{ on M of degree d{ and homology cycles y{ on Σ
of degree tt is homogeneous under U of degree

ti). (3.34)

It will vanish unless one chooses a homotopy class of maps of Σ to M such that
n = ΔU.

We will here restrict ourselves to the case in which H1 = 0, that is, to the case
in which there are no p zero modes and the χ zero modes are precisely the tangents
to the moduli space Jt of instantons. This situation (which is realized in many
interesting examples, some of which will be noted later) is very similar to the
situation considered in [4]. In carrying out the Feynman path integral (3.30), one
can ignore the non-zero modes; for in leading order of perturbation theory, which
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is adequate for topological purposes, the non-zero modes give rise to boson and
fermion determinants which cancel because of the fermionic symmetry. Everything
thus reduces to an integral over the instanton moduli space.

Perhaps it is useful to distinguish between the underlying bosonic moduli space
Jί of holomorphic maps Σ^M (of a given topological type), and the "moduli
superspace," Jί, which includes the fermionic zero modes as coordinates as well.
This extended moduli space may locally be described with bosonic coordinates
aλ, λ= l...n and fermionic coordinates χλ which transform like daλ. To be very
explicit about this, for future use, the aλ parametrize a family of maps of Σ to
M, which we may describe by saying that a point PeΣ is mapped

P->uk(P;aλ). (3.35)

Here we have indicated explicitly the dependence on the aλ. Equation (3.35) says
that the uk(P) (and more generally any functionals of the uk(P)) can be regarded,
through their dependence on the aλ, as functions on instanton moduli space. This
can be extended to include the odd coordinates on moduli space. Pick a basis of
solutions of (3.32), say δu\λ), λ— \...n, corresponding to a basis of the tangent
space of Jί. Any solution χι(P) of (3.32) has an expansion

χi(P)= Σ χλδui(P\at)(λ) (3.36)
λ= 1

with constant (anticommuting) coefficients χλ. We regard the χλ as the odd
coordinates, of moduli space, and (3.36) is the formula expressing the χι(P), after
restriction to moduli space, as functions of the even and odd coordinates aλ and
χλ of moduli space.

The next important point is that there is a canonical measure on instanton
moduli space,

since daA and dχΛ transform oppositely under any reparametrization of M.

A function on M which is homogeneous of degree k under U is of the general form

φ= Wλιλ2tmΛkχ
λιχλ2 ~χλk, (3.38)

and corresponds to a differential form Φ = Wλiλ2...λhdaλldaλl •• daλk of order k on
M. Integration of functions over .M is the same as integration of differential forms
over Jί\

Jφ=jφ. (3.39)

Of course, (3.39) vanishes except for k = n.
Now, we want to give a recipe for evaluating the topological invariants (3.29):

(3.40)

We recall that the At are closed differential forms on M of degrees dt, the yf are
homology cycles on M of degrees ίί? and

WAi(yi)=^^. (3.41)
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The recipe for evaluating (3.40) to lowest order in perturbation theory is as follows.8

Expanding around the minima of the classical action, the operation < > reduces
to an integral over Jt. Each WAi(yi) becomes a function Φ(Ai,yi) on Jt of degree
di — tt (corresponding to a differential form Φ of the same degree on Jt). Then
(3.40) reduces to

Zi{Auyι\..χAk,yk))=\Φ{Aι,yι) .φ(Ak,yk). (3.42)
,7/

At that remains, therefore, is to explain cocretely how to interpret the WAιrh

as differential forms on Jt or functions on Jt. The general procedure in quantum
field theory is that one should "integrate out the non-zero modes" and express
the operators

wAι(yt) = l ^ (3.43)

in terms of the zero modes only. In [4] this involved a slightly non-trivial step of
integrating out certain degrees of freedom, but in the case at hand (as long as
H1 = 0), life is simpler. The Θ^ are defined as functionals of arbitrary u, χ, and
p. It makes sense to simply restrict them to instanton moduli space and interpret
them as functions on it. For instance, if γ is a zero cycle, simply a point PeΣ, then
we have defined for any differential form A on M the operator

P) -γSP\ (3.44)

Here uk(P; aλ) denotes the image of the point PeΣ under the map Σ-± M described
by the wk, and as in (3.35) their dependence on the parameters of instanton moduli
space is being indicated explicitly. Likewise, the χι(P) may as in (3.36) be regarded
as functions on instanton moduli space. So, as in (3.35) and (3.36), &A

{0\P\ or any
other functional of the uj and χk, may be restricted to give a functional on the
even and odd coordinates of instanton moduli space Jt. In the case H1 =0 to
which we have restricted ourselves, this is all that is required to determine the
functions Φ(Aί,yJ) that appear in (3.42).

It is possible to give a more straightforward and classical account of this, more
in the spirit of Donaldson's description of his four dimensional invariants. An
instanton corresponds to a map α:X—»M. If we are given a family of instantons,
parametrized by a parameter space T, we get a map %:Σ x T->M. If we take T
to be the moduli space of instantons of a given topological class, we get the
"universal instanton" of that class, which is a map

ί Ixl-^M. (3.45)

Suppose we are given a closed differential form A on M of degree d. Then its

pullback t o l x Jί,

A = όi*(A), (3.46)

is a closed d-form onΣ x M. If we are given a homology cycle y on M, of dimension

8 A somewhat more detailed explanation was given for similar steps in [4]
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t, then by restricting A to γ x Jί, and then integrating over y, we get a closed

d — t form

Φ(A,y) = β (3.47)
y

on ^#. The invariants defined in (3.40) are then simply

Z{(Al9yi)9...(Ak,yά)= lΦ(Al9yi) Λ Φ(A2,y2) Λ - A Φ(Ak9yk). (3.48)
Jt

Alternatively, these invariants may be written as an integral over Jί,

Z((Ai,y1),...(Ak,γk))=lΦ(Aι,y1yΦ(A2,y2)---Φ(Ak,γkl (3.49)
Jί

with Φ{A,y) being the function on Jt that corresponds to the differential form

Φ{A,y) on Jί.
The key formulas such as (3.47) and (3.48) in the last paragraph are so elementary

that one may well ask what is the virtue in the quantum field theory viewpoint.
One answer, of course, is that one would like to prove that (3.48) is a topological
invariant, that is, unchanged in continuous variations of the metric and complex
structure of Σ and M. The BRST invariant quantum field theory gives a recipe
for proving this, using the fact that the change in (2.16) under an infinitesimal
change in the metric and almost complex structure of Σ and M is a BRST
commutator. The recipe was detailed in Sect. 5 of [4] and will not be repeated to
here.

S3 An Application. Here I will briefly indicate that the discussion in the last
section is not vacuous by showing that the invariants in (3.40) actually have
interesting geometrical consequences. In fact, we will see that results along the
lines of Gromov's work [5] are natural in this framework.

To obtain some non-trivial results, we must show in particular that the
invariants defined in (3.40) are not identically zero. Donaldson, for example, showed
that his polynomial invariants for four manifolds were non-zero by showing that
they were positive definite for algebraic surfaces, under certain conditions. This
depended on the positivity of the intersections of algebraic cycles on an algebraic
variety. It is natural to similarly try to show that our invariants

(3.50)
ί = l /

are not identically zero by using appropriate positivity properties associated with
Kahler geometry.

So we now specialize to the case in which M = X is a Kahler manifold, the
Kahler form being a (1,1) form ω. The Kahler form has the following fundamental
positivity property. Let V by any (1,0) vector field on X, and let V be its complex
conjugate, which is type (0,1). Then

iω(V9V)^O9 (3.51)

and moreover (3.51) vanishes only where V=0.
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Pick a Riemann surface Σ9 and a homotopy class of maps of Σ to K which is
such that the moduli space of holomorphic maps Σ-+K of this topological type
is non-empty. This moduli space is, of course, naturally a Kahler manifold. Assume,
moreover, that in the moduli problem, expanding around such a holomorphic
map, one finds H1 = 0. We will prove that (3.50) is strictly positive in the following
special case. Let the homology cycles yt be points Pί,...Pk. And let the differential
forms At all equal the Kahler form ω. Then the invariant whose positivity we wish
to establish is

Z ( P 1 , P 2 - P k ) = < C ) ( Λ ) - C ) ( i ' f c ) > , (3-52)

where k is the complex dimension of the instanton moduli space. Because we
assume that H1 = 0, the evaluation of (3.52) reduces to the simplified formula (3.48).
This may be described very explicitly as follows. Let ά:Σ x Jί -> K be the "universal
instanton." For any PeΣ, ά restricted to P x Jί gives a holomorphic map
oίp'.Jί'-+K. Let ωP be the differential form on Jί defined by

ω P = α?(ω). (3.53)

The ωP are (1,1) forms on Jί. Equation (3.52) then can be written

Z(P 1 , . . .P Λ )= J ω P l Λ . . . Λ ω P k . (3.54)
jί

We wish to show that this is positive. In fact, positivity of (3.54) is a consequence
of (3.51) plus the Riemann-Roch theorem. Let S be a point in Jί, and let X be a
tangent vector of type (1,0) to Jί at S. Concretely, S corresponds to a holomorphic
map φ:Σ-+K, and X corresponds to an element λ of H°(Σ,φ*(T))9 with T the
holomorphic tangent bundle of K. Restricted to PEΣ, λ gives a (1,0) tangent vector
V at φ(P\ and we have

iωP(X,X) = iω(V9V). (3.55)

Therefore, (3.51) implies that iωP(X,X) ^ 0 for all X. Moreover, we can interpret
the kernel of ωP (that is, the space of X for which (3.55) vanishes). It consists of
infinitesimal displacements of the instanton φ:Σ->K that leave fixed the image of
the point PeΣ. If Θ(— P) is the line bundle on Σ with divisor — P (the function
1 has a pole at P when regarded as a section of Θ{— P)\ then the kernel of ωP is
H°{Σ,φ*(T)®Θ(-P)).

In (3.54), we are considering the wedge product on a Kahler manifold of
complex dimension k of k (1,1) forms, each of which is positive semi-definite.
Therefore, the measure which is being integrated in (3.54) is positive semi-definite.
To show that (3.54) is positive, it is enough to show that the measure in (3.54) is
not identically zero. The measure in (3.54) vanishes at a point SeJί if and only
if the intersection of the kernels of the ωP ι is non-zero. The intersections of the
kernels of the ωPι is non-zero if and only if there is an element of H°(Σ,φ*(T))
which vanishes at each of the P f. Since (3.54) is independent of the choices of the
points P f, we are entitled to make convenient choices of these points. Any generic
choice of the P{ will suffice to show that the measure is not identically zero. For
any generic set of n points in Σ has the property that of the n linearly independent
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sections of 0*(T), there is no linear combination that vanishes at each of these n
points. Consequently, (3.54) is positive.

Before giving some geometrical consequence, let us mention some simple
examples in which the above hypotheses are satisfied. One example (extensively
discussed by Gromov) is the case in which Σ is of genus zero, and K is CPn with
its standard complex structure. We consider degree one maps Σ->K; the
holomorphic curves of this topological type are a family of complex dimension
In + 1. For a second example, let K' be a cubic surface in CP3. A generic hyperplane
section of K' is then a curve of genus one, which we will call Σ'. This gives a
Riemann surface Σ' with a holomorphic embedding φ:Σ'->/<'. It is easy to see
that this is one point on a three complex dimensional moduli space of holomorphic
maps of Σ' to K'. (This hyperplane sections of K' are a three parameter subfamily.
A two parameter subfamily of these have the same complex structure as Σ'. Since
we are studying not subvarieties of Kr but maps Σ' -> K\ we must add one parameter
to take account of holomorphic isomorphisms of Σ' with itself as these can be
composed with any given embedding in K'.) In each of these two examples, it
is easy to see that Hι(Σ,φ*(T)) = 0, so our arguments apply, and (3.54) is
positive.

What of a non-trivial nature can we learn this way? Consider deforming the
complex structure of K or K' to a not necessarily integrable almost complex
structure of the same homotopy type. Since (3.54) is nonzero, and is invariant
under the deformation of complex structure, it must remain non-zero for the
deformed problem. On the other hand, (3.54) can be evaluated by integration over
the moduli space of holomorphic curves. So we conclude for any chosen almost
complex structure on K or K' (of the same homotopy type), there must be a 2n + 1
complex dimensional family of holomorphic maps X-»K, and a three complex
dimensional family of holomorphic maps Σ' -+K\ giving the same value of (3.54)
as in the undeformed problem. Statements such as this, along with more refined
versions, some of which can be obtained by reasoning along the lines just indicated,
were established by Gromov.

4. Topological Gravity in Two Dimensions

So far in this paper, the two dimensional metric has played a purely passive role.
The model we have considered has possessed its fermionic symmetry on an arbitrary
Riemann surface Σ with any metric. However, the metric has not been a dynamical
field; it has simply been prescribed and fixed as part of the definition of the problem.
In particular, the metric is invariant under the fermionic symmetry of the model
of Eq. (2.16). Were the metric not invariant, we would indeed not regard that
transformation as a symmetry, since a different metric would in the context of our
discussion until this point correspond to a different model.

In this section, we will change the rules and consider the coupling of the
topological sigma model that we have already formulated to two dimensional
gravity. Of course, we wish to carry out this coupling in a way that preserves the
global fermionic symmetry Q, of square zero, that is responsible for most of the
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Table II. The conformal dimensions, global charges, and statistics of

the various fields

D U Statistics

g

Ψab

cα

μ

— 1

0
- 1

k
k

0
1

2

- 2

- 1

interesting features of our earlier discussion. The first step—even before coupling
two dimensional gravity to the sigma model—is to formulate a purely gravitational
model possessing an appropriate fermionic symmetry. This will then be a two
dimensional analogue of the four dimensional model of "topological gravity"
formulated in [18].9

We will describe two dimensional gravity in terms of a basis βα, a — \,2 of
orthonormal one forms. In components ea = ea

adσa, σa being local coordinates on
Σ. The two dimensional metric tensor is haβ = ea

aeβa. "Lorentz" indices a, b, c are
raised and lowered with the Kronecker metric δab; "world" indices α, β9 y are raised
and lowered with the metric haβ. The inverse of haβ is denoted haβ. eaa = haβeβ

a is
the inverse of eβ

a; that is, eaaeβa = δ"β9 e*aeab = δ\. A tangent vector V= Va(d/dσa)
is conveniently described by its components Va = ea

aV
a in the basis ea

a. The
covariant derivative of a vector field so described is

where εab = — εba, εabεcb = δa

c, and ωα is the Levi-Cevita connection, determined
by requiring that

D efi

a = 0. (4 2)

In addition to the vierbein £α

α, we introduce certain other matter fields indicated
in the table. For the fields eaa, ψab, and Ca9 we postulate the same transformation
law as in [18]:

δeaa = iεea

bψab,

ε

δCa = iεφabC. (4.3)

9 In fact, some interesting two dimensional models can be obtained by dimensional reduction of that
four dimensional model. These would apparently correspond to R2 gravity rather than the Einstein
gravity that we will aim for here. However, the relation with the four dimensional construction makes
the construction here rather easy
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Here Da is an abbreviation for ea

aDa. Equation (4.3) implies the transformation laws

δe°° = - iεe\φab, δωa = - iεeabe^εacDΊφ
bc (4.4)

for the inverse vierbein and the connection.
Trying to close the algebra, one finds

(δηδε - δεδη)eaa = Da{-2ίηεCa) + ηε>εabAea

b + iηε-S eaa, (4.5)

with

Λ = (-εabφaxφb*-iεabDaCbl S = DfC. (4.6)

The three terms on the right-hand side of (4.6) are to be interpreted respectively
as the change in ea

a under an infinitesimal diffeomorphism generated by the vector
field — 2iηεCa, a local Lorentz transformation with parameter ηεΛ, and a Weyl
rescaling with parameter — iηεS. (Recall that eaa has conformal dimension — 1).
The algebra closes on the other fields with the same parameters:

(δηδE - δεδη)Ca = - 2iηεσDaCa + ηελεabC
b + ίηεSCa,

(δηδε - δεδη)φab = - 2iηεC*Daψab + ηελ(εa

xφxb + εb*φax\
 l ' }

A term Dφ S-φab is absent from the right-hand side of the second equation in (4.7),
since the conformal dimension Dφ of φ is zero.

For coupling of sigma models to dynamical gravity, the above formulas are
all that we will need; that is, as we will see in the next subsection, BRST invariant
sigma models can be coupled to the e, φ, C multiplet while preserving the fermionic
symmetries. We would like, however, to conclude this subsection with some
comments on the attempt to write an action for the purely gravitational
multiplet—though our discussion of this point will be neither complete nor entirely
satisfactory.

Though e,φ, and C form a closed multiplet with the above transformation
laws, it is not possible to find a reasonable Lagrangian for these fields only. Instead,
we add the vector fields Ra (commuting; U = — 2) and ξa (anticommuting; U = — 1),
with

δRa = iεξa, δξa = εCaDaRa~i^ΛεahR
b + jSRa. (4.8)

As in [18], there is no completely satisfactory choice for the conformal weight of
Ra and ξa9 so for the moment we simply denote this as an unknown fc. With these
transformation laws one gets

(δηδε - δεδη)ξa = - 2iηεC*DΛξa + ηε>Λεabξ
b - iηεkSξa, (4.9)

and the same equation with ξa-+Ra. (It is tedious to verify (4.9), but the form of
(4.8) makes the corresponding equation for Ra obvious.) It is important to point
out that although in (4.8) and (4.9) we are considering fields R and ξ that transform
in the vector representation of the Lorentz group, these formulas generalize
immediately (with an obvious modification of the ΛR term in (4.8)) to other
representation. Thus, these formulas in fact describe the coupling to topological
gravity of a multiplet with arbitrary Lorentz quantum numbers and conformal



Topological Sigma Models 439

dimension. R and ξ have been chosen in a (not quite successful) attempt to write
a simple invariant Lagrangian.

Since the transformation laws close without use of the equations of motion,
using only conformal invariance, diffeomorphism invariance, and invariance under
change of frame, there is a simple recipe for trying to find an invariant Lagrangian.
Let Z be any conformally invariant and generally covariant functional. Then
JSf = {β, Z} obeys {Q, ¥} = 0, since {Q2, Z} = 0. Unfortunately, with the minimal
gravitational multiplet that we are considering, there is no completely satisfactory
choice of Z. One would like to try

Z o = -\d2σ{άeίe)-e«aDaR
h φah. (4.10)

Here we meet a difficulty that arose in [18] (and was originally pointed out to me
by S. Axelrod). Equation (4.10) is invariant under global conformal transformations
if and only if R has conformal weight k = 1, but in that case the integrand in (4.10)
does not transform with any definite weight under local conformal transformations.
The integrand in (4.10) has definite conformal weight under local conformal
transformations only if k=— 1, but in that case the conformal weight of the
integrand is — 2 (if we include the det e factor), rather than 0, so (4.10) is not locally
conformally invariant. To save the day, one needs an additional Lorentz scalar
field Φ of conformal weight 2. In the presence of such a field, one can write

Z = -\d2σ (det e) Φ e*aDaR
b φab. (4.11)

This leads to the Lagrangian

Se = J d2σ(det e)Φ[_iξhDaφah + \RhDa(DaCh + DbCa - δabDfC
f)

- iR\2φ"cDcφab - φbcDaφ"< - ψM*) +•••]• (4.12)

Here '...' refers to terms proportional to DαΦ and {Q, Φ}. To complete the story,
one must explain the construction of Φ in terms of suitable elementary degrees of
freedom. Not having a particularly good proposal to make, I will not enter into
this here.

4Λ Sigma Models Coupled to Topological Gravity. Now we would like to couple
the sigma model of Sect. 2 to topological gravity. The inconclusive state of the
discussion at the end of the last section will not matter, because we will in fact be
coupling the sigma model of Sect. 2 to the minimal e, φ, C multiplet.

First of all, the fermionic transformation laws of Eq. (2.9) need to be modified.
In the absence of gravity, we required (δηδε — δεδη) Ψ = 0 for every Ψ. In the presence
of gravity, the desired transformation laws (taking account of the Lorentz quantum
numbers and conformal spin) are

(δηδε - δjjpj = - liηεC'DtpJ + ηεΛ εabp
bi - iηεSpl

(δηδE - δzδη)Hι

a = - 2iηεσDaH
ι

a + ηεΛ εabH
bί - iηεSHι

a. (4.13)
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Clearly, our previous transformation laws will not do. The modified version

δγ} = &CΛdΛu\ δu^iεγj (4.14)

may easily be seen to give the desired closure of the algebra on u and χ. Our
previous transformation law for p was

<W = Hl

a + ̂ UDJ'jtfp1" - iεΓ'jdPa", (4.15)

and there is no useful way to modify it, since any modification could be absorbed
in redefining H. At this point, we may proceed as in Sect. 2. The H transformation
law is uniquely determined by requiring that the algebra closes on p. This gives
an even less promising-looking modification of (2.10):

δH'a = - ~χkχι(Rklit + RklΎJi'if')p'a + ψ' hχ
kDkJ

i

JH
b'-^χkDkJ

i

s)(ϊ!DιJt

s)pa'

- l~εjσdxu
k)Dk J'jpV + HCD.pi +l-Λ εabp

hi + \ Sp'β) - iεΓ)kγJpk. (4.16)

Attractive or not, (4.16) can be seen to lead to closure of the algebra.
An invariant Lagrangian can now be found just as in Sect. 2. In other words,

S£ = {Q, V}, where now

V = μ2σάste(p' Dau
i~ip'ίHί

a}. (4.17)

Upon evaluating {Q, V), and eliminating H, one arrives at the generalization of
(2.16):

Si = J d2σ άc

(4.18)

Equation (4.18) is automatically invariant under the fermionic symmetry, by virtue
of the construction.

Now let us briefly discuss the properties of these models at the quantum level.
The discussion will necessarily be provisional, because the proposal (4.12) for the
gravitational action was incomplete (because of the lack of specification of Φ).
Nevertheless, I believe that the following remarks, in which we will naively ignore
this problem and pretend that Φ = 1, are illuminating and may lead to insight
about how the gravitational multiplet should be treated.

First of all, even in the conformal gauge (and even if we pretend Φ = 1), the
action (4.12) of the purely gravitational multiplet does not become quadratic,
because of the RψDφ "Yukawa" couplings. Nevertheless, the purely gravitational
model is soluble quantum mechanically, because there are only finitely many
Feynman diagrams contributing to any given correlation function. The reason for
this is that if we define a quantum number UB that is 1 for C, — 1 for R, and zero
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for all other fields, then the Yukawa couplings violate UB by — 1 unit, and the rest
of the Lagrangian is UB conserving. Therefore, any given correlation function with
a given UB quantum number receives contributions only from diagrams with a
definite number of RφDφ vertices.

Second, since in these models β 2 — 0 only up to a conformal transformation,
these models are consistent only if they are conformally invariant at the quantum
level. Let us discuss this issue. We will consider only the case in which M is flat
(with the standard almost complex structure), so that it is only necessary to compute
the central charge c in the Virasoro algebra; we wish to know if this vanishes.

First of all, the anticommuting fields ξ9φ are just like the usual conformal
ghosts b, c of the bosonic string. Indeed, their kinetic operator is an operator P
mapping vectors to symmetric traceless tensors, with

(Pξ)ab = Daξb + Dbξa-δabDfξf. (4.19)

This is the usual kinetic operator of the b, c system. The ς, φ Gaussian integral
gives an effective action detP and contributes — 26 to the Virasoro anomaly,10

this being the usual contribution of the conformal ghosts.
As for the bosons R,C, their kinetic operator is P+ P, so the effective action

is det" x (P + P) = det" 2 P, and the contribution to the anomaly is thus + 2.26 = + 52.
Finally, in conformal gauge fixing of this system, we will have to introduce the

conformal ghosts b, c, which will contribute —26 to the anomaly. The total is thus
— 26 4- 52 — 26 = 0. Therefore, the purely gravitational model is quantum conformal-
ly invariant.

Now we consider the "matter" multiplet u, χ, p. Since the Lagrangian requires
an almost complex structure, the basic multiplet includes two real bose fields u1,
u2 (or a complex bose field), contributing + 2 to the central charge. The right
moving components of the basic multiplet are two real fermions, χ of spin 0 and
p of spin I . 1 1 It is well known that a pair of fermions ofspin^+y contribute 1 — 12/2

to the conformal anomaly. In the case at hand, j — \, and the contribution is —2.
This cancels the contribution -1-2 from the u\ Thus, coupling to the free matter
multiplet preserves the quantum conformal invariance.

Thus, if it is correct to interpret the models discussed in this paper in terms of
an unbroken phase of string theory, we conclude that the restriction to D = 26 or
D = 10 holds only in the broken phase, while D is undetermined in the unbroken
phase. Of course, the above reasoning is somewhat naive, because of the difficulty
that has been noted in the formulation of (4.12). The challenge is really
to reformulate the action of the gravitational multiplet to justify the above
considerations.

Finally, let us briefly discuss the BRST invariant vertex operators than can be
defined after coupling to two dimensional gravity. In Sect. 3, we defined, for every

3 0 In units in which a real boson contributes + 1
1 1 The counting is as follows. In the basic multiplet, the two bosons u\ ι— 1,2 are paired with χι,i= 1,2

and pa\ i = 1,2. Since pa

ι = J^ε^p^, p has two real components of spin ± 1, one of which is right moving

and one left moving. Of the two components of χ\ one is right moving and one is left moving
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closed differential form A on M, three BRST invariant operators ΘA

{0\ ΘA

{1\ and
(9A

{2\ We must re-examine these because of the modified fermionic transformation
law in (4.15). It can be seen that the ΘA°\ for instance, are no longer BRST
invariant, and the relation {Q,ΘA

{1)} = —idΘA

{0) is likewise ruined. However, one
still has

dΘA

{1) = i{Q,ΘA

i2)} (4.20)

despite the correction to (4.15). Therefore, for any closed form A on M,

WA(Σ) = \GA™ {All)
Σ

is BRST invariant. So for any choice of closed forms A1,...,Ak9 the correlation

functions

^Π^^)) ( 4 2 2 )
are topological invariants.

It may seen that this construction is less powerful than that in Sect. 3, for we
seem to be defining fewer invariants. However, one may expect that in many
interesting situations, the invariants of Sect. 3 will be trivial, but (4.22) non-trivial.
For in Sect. 3, we considered an arbitrarily prescribed curve Σ of genus g, and
obtained invariants of holomorphic maps φ:Σ-+M. These invariants did not
depend on the complex structure of Σ, so they are zero if by perturbing that
structure the holomorphic maps of Σ to M disappear. Thus, invariants of Sect. 3
are zero unless there is a holomorphic map of the universal curve of genus g into
M — a severe restriction if g>0.12 But in (4.22), since we have coupled to two
dimensional gravity, we are integrating over the moduli space of curves, and thus
we are detecting all holomorphic curves of genus g in M. Thus, (4.22) should be
non-trivial in many interesting situations. But we leave the investigation of this
for the future.

5. Coupling to Gauge Fields

In Sect. 2, we formulated a "BRST"-invariant generalization of the nonlinear sigma
model, for maps X->M, Σ being a Riemann surface and M an almost complex
manifold. Then we generalized the space of maps Σ->M to the space of sections
of an M-bundle X over Σ

M—+X

1 (5.1)
Σ.

This generalization involved introducing gauge fields of the group diffM of
diffeomorphisms of M. Those gauge fields—like the metric of Σ—played a purely
passive role in constructing the fermionic symmetry of Eq. (2.16). Indeed, the metric

An example for g = 1 obeying this restriction was given at the end of Sect. 3
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and gauge field were regarded as part of the definition of the problem, and were
invariant under the fermionic symmetry.

In Sect. 5, we generalized the construction of Sect. 2 to include coupling to
dynamical two dimensional gravity, while preserving the fermionic symmetry. In
the present section, we will do the analogue of this for gauge fields; we will couple
the model of Sect. 2 to dynamical gauge fields in a BRST-invariant fashion.

In doing so, we will consider what is conceivably not the most general case.
We will take the gauge group G to be a compact group of automorphisms of M,
leaving fixed a metric gtj and an almost complex structure J ι

; .
The G action on M is generated by certain vector fields Vι

a, a=\,...,n{n being
the dimension of G). The assertion that the V\, for a= l,...,n leave fixed the
metric gυ is equivalent to the assertion that they obey the Killing vector equation,

DtVji-DjV^O. (5.2)

A useful consequence of this equation is

AA^ = ̂ Λ (5-3)

The assertion that the almost complex structure is G-invariant means that the Lie
derivatives <£Va{J) are zero, or concretely that

0 = Vk

aDkJ'j - Jkpk V\ + J\Dj V\. (5.4)

Finally, the statement that the Va generate a G action implies that

ίVa, Vζ\ =UVC, (5.5)

with/fli>

c being the structure constants of G. The symbol [Va, Vb~\, denotes, of course,
the commutator of the operators Vj(d/δu'),

\yayvhy=v;d-yj-viΰiV>. (5.6)

The first step in constructing a gauge invariant generalization of the sigma
model of Eq. (2.16) is to pick a gauge multiplet. Here we may borrow from the
results of [4]. In addition to the gauge field, which is a Lie algebra valued one
form AΛ

a, we introduce an anticommuting one form φΛ

a, and a commuting zero
form φa. The conformal dimension and ghost number of (A, φ, φ) are

Table III. The basic gauge multiplet consists of A, φ, and φ; λ, η, and

χ are needed to write a Lagrangian for those fields

Aa

a

Φ°
λa

ηa

Xaβ1

D

1
1
0
2
1
1

u

0
1

2

- 2
_ γ

1

Statistics

+
—
+
+
-
—
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(1,1,0), and (0,1,2). As in [4], the transformation laws are

δAa = iεφa, δφa = - εDaφ, δφ = 0. (5.7)

One sees

(δηδB-δeδη)Aa= -Da(-2iηεφ),

{δηδε - δεδη)φσ = [ - 2iηεφ, φj,

(δηδε-δhδη)φ = O. (5.8)

The right-hand side of (5.8) is an infinitesimal gauge transformation with gauge
parameter A—— lίηεφ.

To strictly follow the procedure of Sect. 5, we should now write an invariant
kinetic energy for (A, φ, φ). This requires introducing additional fields, indicated
in Table III. {A, φ, and φ are analogous to the minimal multiplet e, φ, C of Sect.
5; the additional fields needed to write a Lagrangian are the analogues of R, ξ.)
We will temporarily postpone this step, and instead consider the coupling to the
nonlinear sigma model, that is to the fields u\ χ\ and pj of Sect. 2.

The fermionic transformation laws of Eq. (2.9) for the u, χ, p multiplet must
be modified, because (2.9) leads to δηδε — δεδη = 0, while in fact, according to (5.8),
δηδε — δεδη should be a gauge transformation. So we try

δui = iεχ\ δχi = εφaVa\ (5.9)

A similar modification of the transformation laws are made in Sect. 3, for similar
reasons. Equation (5.9) leads as desired to

{δηδε-δtδn)ui=-2iη£φ"Va

i,

(<5A - < W = - 2iηεφβ(d,Vj) χ?. (5.10)

Next, we need to determine the transformation laws of p and H. As in Sect. 3,
there is no useful way to modify the transformation law of p, which remains

δpj = εHj + l^ΛβφkJ\)tρβl ~ iεΓ)kχ
jpa

k. (5.11)

Any modification of (5.11) could be absorbed in a redefinition of//. It remains to
determine the transformation law of//. Just as in Sects. 2 and 3, the transformation
law of// is uniquely determined by insisting that one should get the desired equation

(δηδε - δεδη)pj = - 2iηεφ*idjVM. (5.12)

In this way, we arrive at the formula

δK - -^χkχ ι(Rkl\ + RW i r J
i ; ί J'ΌPL + i^ε^-χ'D^jH^ - ~ ( χ V J ^ I V / K

- fy'V&Djfaβp" + iεφ'iDjV^pί - i8Γ)kχ
JHl (5.13)

By calculations similar to those required in Sects. 2 and 3, it can be seen that (5.13)
does lead to the right formula (just like (5.12), but with H replacing p) for closing
the algebra on H. Having in this way closed the algebra on all fields, it is now
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straightforward to find an invariant Lagrangian generalizing (2.16). It is simply
if = {g, V}9 where again

V = μ2σ(PiDau
i~ϊP:H

ί

a). (5.14)

Upon evaluating {Q, F} and eliminating f/, one finds this time the invariant
generalization of (2.16),

+ ψ,aVa

i)

(5.15)

At this point, we would like to couple the "matter" action of Eq. (5.15) to an
appropriate action of the gauge multiplet. The obvious idea is to formulate an
appropriate version of two dimensional topological Yang-Mills theory (with
BRST-like symmetry). After adding appropriate additional fields to the (A, ψ, φ)
system, one could indeed find two dimensional gauge actions with BRST-like
symmetry.13 This is, however, not what we will do here. We will go in another
direction, which may seem less obvious at first sight.

One of the intriguing ideas in [3] involved the Jones polynomial [6] of knot
theory. In fact, the Jones polynomial is mysterious because, though one would
wish to understand it in three dimensional terms (since it describes a knot in
three-space), no intrinsic three dimensional description of this invariant is known.

Atiyah proposed in [3] that a natural (intrinsically three dimensional) under-
standing of the Jones polynomial should be found by relating it to Floer and
Donaldson theory. This proposal was accompanied by a whole list of analogies
between Floer theory and the Jones polynomial. If this philosophy is valid, one
would ideally like to implement it in the context of a relativistic quantum field
theory. The following remarks, aiming toward a way of doing this, can be seen as
an attempt to sharpen Atiyah's conjecture.

A knot is an embedding of a circle S in a three manifold YίΛ. Let us think
physically— Y is physical three dimensional space and S might be a superstring
or cosmic string in Y. When time dependence is included, the knot S should be
replaced by its world sheet, which is a Riemann surface Σ. And Y is replaced by
space-time, which is a four manifold M. Thus, to work relativistically, we should
study not a knot on a three manifold, but a Riemann surface Σ imbedded in a
smooth four manifold Z. From this point of view, "knot theory" refers to the case
that Σ is S x R1 and Z is Y x R1, with R1 representing "time" and S a knot in
the three manifold 7. We wish to formulate a relativistic quantum field theory
suitable for studying an embedding φ: Σ - ^ Z 1 5 .

1 3 One way to do this (though it presumably does not give the minimal two dimensional model) is

dimensional reduction of the model of [4] from four to two dimensions
1 4 Up to the present, the Jones polynomial has been defined only for Y = S3. If the present discussion

is on the right track, the Jones polynomial generalizes to other Y
1 5 We regard the embedding as given and fixed; we will not include dynamical degrees of freedom

representing the map φ:Σ -»Z



446 E. Witten

To do this, we will simply couple a nonlinear sigma model on Σ to a gauge
theory on Z. So we pick a compact gauge group G, and write down a four
dimensional gauge theory on Z with BRST-like symmetry. This requires [4], along
with the minimal gauge multiplet (A,φ,φ), some additional fields η, λ, χaβ as
summarized in Table III. From [4], the Lagrangian is

if G = I Tr UFΛβF*» + iφDJTλ - iηD.r + iD«Φβ-χ'p

The fermionic transformation laws from [4] are

δAa = ίεφa, δφa = — εDaφ, δφ = 0, δη = ^ε[0 ? A],

Note that the first three of these equations coincide with (5.7). Therefore, if we
simply forget about η, λ, χ and restrict the zero form φ and the one forms A and
φ to a Riemann surface Σ embedded in Z, we get a collection of fields that transform
just like the two dimensional gauge multiplet.

Now, let M be an almost complex manifold with G symmetry. Introduce fields
u\ χ\ ρa

ι describing a nonlinear sigma model of maps X->M. This system can be
made gauge invariant as well as BRST-invariant by coupling to A, φ, λ as in (5.15).
The combined Lagrangian

CO CP l CO (ζ 1 Q\
M ' G yJ.LO)

is then invariant under the transformation described in (5.11) and (5.17). It is
suitable for studying topological invariants associated with a four manifold Z and
an embedded Riemann surface Σ. By specializing to the case Z=YxRx,
Σ = S xR1, (5.18) can be specialized to knot theory.

One can hope to find interesting topological invariants of the pair (Z, Σ) in
the form

(5.19)

with the Θi being non-trivial BRST invariant operators, that is, operators that are
not of the form {Q,Λ } for any A. We will describe briefly what operators of this
form exist, but we will not try here to evaluate their expectation values.

First of all, we have operators that are constructed only from the four
dimensional system (A, φ, φ, η, λ, χ). To construct them, one begins with Wo =

2, and then solves the equations

0 = i{Q9W1}9 dW1=ί{Q,W2}, dW2 = i{Q,W3},

0. (5.20)

The resulting Wk were described in [4]. Equation (5.20) implies that for any k
dimensional homology cycle y in Z,

l(y) = \Wk (5.21)
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is BRST invariant and (up to a BRST commutator) depends only on the homology
class of γ. The I(y) are quite non-trivial. In the absence of Σ, correlation functions
of the I(y) are precisely the Donaldson invariants. In the presence of the Σ, these
correlation functions may well receive new contributions.

We can also look for non-trivial BRST invariant operators constructed from
the fields u\ χ\ ρa

ι that are defined only on Σ. Recall that in Sect. 2, we defined an
operator ΘA

{0) for every closed n form A on M:

ΘΛ

i0) = Aiil2 Jwk) χV2•••*'". (5-22)

In Sect. 2, 0A

{0) was BRST invariant iϊ dA = 0, and a BRST commutator iϊA = dB.
But with the modified transformation laws, it is no longer true that ΘA

0) is BRST
invariant, even if dA = 0. One finds

δ&A

{O) = ε-nφaVjiAhi2...inχ
iγ^. χi». (5.23)

Can the situation by repaired by adding corrections to the definition of ΘA

(O)1 Let
us first make a few useful preliminary observations. Let us introduce an operator
ia of "contraction with Kfl" defined by saying that if B is an w-form, then ίa(B) is
the (n - 1) form (ia(B))i2iy..in = nVa

hBilir..in. Obviously, (5.23) can be written

<50/» = cφaΘίa{A). (5.24)

Now, let 5£a be the Lie derivative with respect to the vector field Va. The
formula for the action of <£a on differential forms is

^a(B) = (dia + iad)B. (5.25)

Therefore, if B is closed, and in addition is Fα-invariant (so J£a(B) = 0), then

d(ia(B)) = 0. (5.26)

Now in (5.22), we may as well suppose that 3?a{A) = 0, since by averaging over
the compact group G, we can take A to be G-invariant without changing its
cohomology class. As we are also taking dA = 0, we have according to (5.26),

d{ia(A)) = 0. (5.27)

Now, there may or may not exist an n — 2 form Aa such that

UA) = dAa. (5.28)

If Aa exists, we can try to "improve" the definition of ΘA

(0) to

U A — / i j ί i 2 . . . i n χ χ " χ φ s i a i ι i 2 . . . i n _ 2 χ χ - χ . y j . A y )

Now one computes that the BRST variation of ΘA

{0) is

Aaiii2...^2χ^- χ^\ (5.30)

In a very precise sense, (5.30) represents progress. In (5.23) the error was of
(n — l)st — order in χ, but in (5.30) it is of order (n — 3). Continuing in this way,
adding additional terms of lower order in χ, one after a finite number of steps
either will succeed in finding a BRST invariant extension of ΘA or will find an
obstruction to this.
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The whole process can be described succinctly as follows. Let ί2*(M) be the
de Rham complex of M, graded by dimension in the usual way. Let S*(φa) be a
polynomial algebra on the φa, graded by considering them to be of degree two.
Let ΩG*(M) = Ω*{M)®S*(φa) (with the grading induced from that of the factors),
and let W* be the G-invariant subcomplex of f2G*(M). An element of W* is an
element of ΩG*(M) that is annihilated by

La = ^a+fβb

cφb-^, (5.31)

where fab
C:= ~fba a r e the structure constants of G. Note that φaLa = φa^a.

Therefore, W* is annihilated by φa^a,

φa^a-W* = 0. (5.32)

Now, let

D = d + φaίa. (5.33)

D is an operator on ΩG*(M) of degree one. One computes

D2 = φa^a. (5.34)

So, using (5.32), D2 = 0 on W*.

Let B be an element of W* of degree n. Any such B has an expansion

B = B{n) + φaBa

in ~ 2 ) + φaφbBjn " 4 ) + , (5.35)

where, for k = n, n — 2, n — 4,.. . ,B(k) is a k form on M. Let

< ^ ( 0 ) = 0 g & + Φaβ(#*-v + φaφb&(

B°y^ + •••, (5.36)
where (as before) for any differential form Λ, β^ (0) = ^!-2... ikzV2---;A The BRST
transformation law can now be stated very simply. One finds

δΘB<°> = U:ΘDB(°\ (5.37)

Therefore, it is clear what is going on. The operator ΘB

(0] is BRST invariant if
DB = 0, and is a BRST commutator if B = D/l for some /I <~ J47*. The non-trivial
BRST-invariant operators that can be constructed this way thus correspond exactly
to the D-cohomology. According to [19,20], this is the G-equivalent cohomology
of M.

Just as in our previous discussion, one can push further, and define operators
&B

{1\ ΘB

(2) obeying

dΘB^ = i{QβB^h d^ ( l > = i{β,^ ί 2 ) } . (5.38)

The formulas are similar to the foregoing but a bit more elaborate. Equation (5.38)
implies that for any k cycle y on Σ, and any D-cohomology class B,

J(y9B) = $$Bi
k> (5.39)

is BRST-invariant. Correlation functions

) (5.40)
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(with the I(y) as defined in (5.21)) are intriguing invariants of the pair (Z, Σ)y and
may or may not prove to shed light on the Jones polynomial.
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