
Communications in
Commun. Math. Phys. 118, 215-240 (1988) Mathematical

Physics
© Springer-Verlag 1988

An Instanton-Invariant for 3-Manifolds
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Abstract. To an oriented closed 3-dimensional manifold M with H±(M, TL) = 0,
we assign a Z8-graded homology group I*(M) whose Euler characteristic is
twice Casson's invariant. The definition uses a construction on the space of
instantons on M x R.

Contents

1. Instanton Homology 215
la) Introduction 215
Ib) Connections on M 218
Ic) The General Construction 222

2. Local Properties of Jf(R x M) 227
2a) Connections on R x M 227
2b) Fredholm Theory 228
2c) Transversality 231
2d) Transitivity 232

3. Compactness 235
3a) Local Convergence 235
3b) Global Convergence 236

1. Instanton Homology

la) Introduction

Let M be a closed connected oriented 3-manifold. As is well known (see e.g. [He]),
every 3-dimensional topological manifold carries a unique differentiable structure,
so that we can consider M in either of these two categories. For the sake of brevity,
we will refer to M simply as a 3-manifold.

A strong algebraic invariant of M is its fundamental group πt(M). Unfortu-
nately, as a satisfactory description of the set 3-manifolds, the fundamental group
falls short in two crucial ways: First, the classification of manifolds with
isomorphic fundamental groups depends on the well known and as yet unsettled
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question raised by Poincare whether π1(M) = (l) implies that M = S3>. The second
problem concerns the range of π1? and here, not even a good question seems to be
known yet. Despite the fact that there are several constructions and presentations
that are characteristic for fundamental groups of 3-manifolds, no intrinsic
characterization has been given.

In defining alternative invariants for 3-manifolds, one has come to study
representations of π^M) in certain nonabelian groups G. In fact, it is one of the
characteristic features of πt(M) as a group that the set

m = @(M) = Homfr^M), G)/ad(G) (la.l)

of equivalence classes of representations tends to be discrete (in a sense which will
become more clear below). While $(M) itself clearly depends only on the
homotopy type of M, the corresponding flat bundles together with the differenti-
able structure of M may lead to topological invariants, like the Reidemeister
torsion (see e.g. [RS]). Recently, Casson [C] defined a new integer valued
topological invariant of M in the case where HΪ(M,Z) = Q; i.e. for homology
3-spheres M. It can be described as follows: Consider G = SU2> Given a Heegard
splitting M = M + usM _ (see e. g. [He]), one can consider ^(M) as the intersection
of <%(M + ) and ^(M_) in &(S). The resulting intersection number (ignoring the
trivial representation) can be shown to be independent of the particular Heegard
splitting. The intersection a e & is transverse if and only if the twisted cohomology
Ha(M,su2) vanishes. Hence if this is the case for all ae$ (we then say that @ί is
regular), Casson's construction defines a sign for each a e Sfc. The reason for the
restriction to homology 3-spheres is that if αe^ is reducible, i.e. if the adjoint
operation pf SU2 on a in (la.l) is not free up to the center, then a factors through a
homomorphism ά:π1(M)-+Sl. Hence reducible representations correspond to
elements of the group Hλ(M,Sl\ which is trivial for homology 3-spheres. For the
same reason, we will also assume from now on that M is a homology 3-sρhere.
Then the set of irreducible representations of πx(M) is

We want to define a new invariant for homology 3-spheres, which takes the
form of an Abelian group /#(M) carrying a natural grading by Z8. Casson's
invariant will turn out to be one half of its Euler characteristic. Under the
simplifying assumption that 01 is regular, it can be described as follows: Following
Taubes [T4], we consider the space Jί of finite action instant ons on the infinite
cylinder R x M with a product metric 1 x σ. These are gauge equivalence classes of
connections on R x M x SU2 which have selfdual curvature tensor FΛ and finite
Yang Mills action <rf(A) = \\ FA \\ \. The first conditions means that FA = *σFA, where
*σ is the Hodge duality isomorphism with respect to 1 x σ. The condition of finite
action forces each instanton to approach gauge equivalence classes a and b of flat
connections at the ends, so that Jt decomposes into spaces M(a, b) of instantons
"connecting" α, b e βfc. It turns out that if &t is regular, then Jί(a, b) is a smooth
manifold whenever the L2-adjoint of the linearized instanton equation has no
solutions in L2. Let us assume that this is the case for all of Jί. For 0,b=f= 1, the
dimension oϊJ%(a, b) can then be computed modulo 8 as the difference of a suitably
defined "relative Morse index"
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between a and b. Because of the translation invariance of 1R x M, the lowest
possible dimension of a nontrivial component of Jί is 1. We can define an
orientation on Jί (see Sect. 2d), so that each 1 -dimensional component carries a
sign defined by comparing its orientation with the orientation of R. In this
"nondegenerate case", our invariant is defined as follows:

Theorem 1. Let Mbea homology 3-sphere such that H^(M, su2) = 0 for all a e
Moreover, let σbea metric on M so that all finite action instantons are regular. Then
for all a,beέ%* with μ(a) — μ(b) = 1 , Jί(a,b) has finitely many one-dimensional
components. If <δα, 5>eZζ is the sum over the signs of these components, and Rp,
peZ8, is the free Abelian group over the set &p={aE&*\μ(a) = p}, then the
operators

£):/?„->*,_,; <5α= I (da,byb

satisfy dd = Q. The homology

does not depend on the choice of the metric σ on M.

It is conceivable that the regularity assumption on Jί(a,b) is satisfied for
"generic" metrics σ on M, as is the case for instantons on 4-manifolds by [FU].
However, because of the translational symmetry, this is by no means immediate.
We do not pursue this question here, because the possible degeneracies in the set $
force us to consider perturbations of the curvature equation itself, see Sects. 1 b and
2c.

Theorem 1 follows from Theorem 2 in Sect. Ic. The idea behind this
construction is the observation that instantons on R x M can be considered as
trajectories of the "gradient flow" of the Chern-Simons function

a ά)= j tr(^a Λ
M

on j/(M). (In the integrand, the exterior derivatives are taken with respect to the
matrix multiplication in su2 and tr is the trace on complex 2 x 2-matrices.) This
"variational principle," though deeply rooted in the "physical origin" of instan-
tons, has received little attention in connection with topological applications, since
it does not extend to general 4-manifolds. It should not be confused with the
variational theory of the Yang Mills action H-F^J^, see [T4], where instantons (i.e.
trajectories of our gradient flow) are minima of the action. This double variational
structure even occurs in finite dimensional gradient flows; one can easily define a
functional on (infinite) paths in the manifold whose minima are precisely the
trajectories, and which yields the Yang Mills action when applied to our case. For
this and for an explanation of the construction of Theorems 1 and 2 in finite
dimensional terms, the reader is referred to the first sections of Witten's paper [W].
The "quantum mechanical" derivation of the Morse inequalities in [Wl] would
lead in this case to the problem of quantum field theory, which was recently
considered by Witten in [W2], In fact, Witten also discusses in quantum field
theoretical terms the relation between I*(M) and Donaldson's invariants [D4] on
4-manifolds, which was originally pointed out to the author by Atiyah and
Donaldson, and which we will briefly describe next.



218 A. Floer

In studying compact 4-manifolds X with boundary dX = M, one often
considers the space of instantons on the noncompact manifold X : = XuMM
x [0, oo ), see e.g. [FS, T2, Me]. If M is a homology 3-sphere, one can define an

invariant of (X, M) counting instantons (with respect to an appropriate con-
formal structure) labeled by the flat connections they approach at the end. The
proof that the resulting element \_X~\ of R^ satisfies d[X]=Q and that its class in
I*(M) is independent of the conformal structure on X is similar to the proof of
Theorem 1. The general construction would result in a polynomial invariant on
H2(X,Z) taking values in /*(M).

The same point of view can be applied to cobordisms W between homology
3-spheres M and N. Here, a count of instantons would define an homomorphism
between R#(M) and R#(N) which can be shown to commute with d. Its degree
depends on the rational homology of W; in particular it is zero for a rational
homology cobordism. Moreover, it is natural with respect to compositions of
cobordisms, so that I#(M) might be considered as a functor on the category of
homology 3-spheres and their cobordisms. (It is not a functor with respect to maps
between 3-manifolds. Of course, diffeomorphisms of M define an automorphism of
I*(M\ which may be of independent interest.) The details are given in Sect. Ic.

As a final remark, we would like to point out a possible relation between the
construction of Theorem 1 and Casson's construction. Note that for any Heegard
splitting M = M+u sM_ as above, the representation space &(S) of the surface
carries a symplectic structure ω e Q2(3&(S)\ see Goldman [G]. Moreover, ^?(M+)
are Lagrangian submanifolds in 3t(S), i.e. ω vanishes on ^?(M±). Now the
Lagrangian intersection theory of [Fl] defines a similar (but more restrictive)
situation of trans versally intersecting Lagrangian submanifolds L± of a symplectic
manifold P a chain operator d on the free Z2-module over the intersection set
L + nL_.(The restriction to Z2-coefficients is not expected to be necessary here.)
The matrix elements of d are in this case given by counting the numbers of
holomorphic discs (with respect to some almost complex structure on P) whose
boundary lies half in L+ and half in L_ and which therefore necessarily have
"corners" at two intersection points. In fact, there exists a relation between
instantons and holomorphic maps, see [At] and [D2], so that a relation between
the two constructions is conceivable (an idea which I owe to M. Atiyah). However,
at present none of these ideas have been carried out.

ίb) Connections on M

Note that for topological reasons, every principal Sί/2-bundle over a 3-dimen-
sional manifold is topologically trivial, i.e. admits the product form P = M x SU2.
Given such a trivialization, one can identify the space of connections of Sobolev
type Πk with the space s/g = Πk(Ω\M)(S)su2) of 1 -forms on M with values in su2 in
such a way that the zero element of f2*d corresponds to the product trivial
connection on P. The gauge group of bundle isomorphisms of P can be identified
with y%(M) = Hk+ί(M, SU2) acting on s#ξ(M) by the nonlinear transformation law

We will always assume that k + 1 > 3/p so that ^(M) consists of continuous maps.
In fact, we will mostly work with j^(M) = «<(M) and ^(M) = ̂ (M). The
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quotients 3β%(M) = rfj (M)/&%(M) and Jf(M) = St\(M) can be considered as infinite
dimensional manifolds except near those connections a for which the group

is larger than the center TL2 = { ±id} of .̂ Such connections are called reducible.
For example, the trivial connection is reducible by all constant maps g: M-*SU2.
However, the irreducible connections form an open and dense set 3$*(M) in
The tangent spaces of ^*(M) can be identified with

If no confusion can arise, we will identify a with its gauge equivalence class in our
notation. In (lb.2), d* is the L2-adjoint (with respect to some metric σ on M) of the
exterior derivative d: Ω°(M)->ί21(M) extended to Ώ*d by means of the connection a.

The curvature of a connection is defined as the sw2-valued 2-form

( F ) -^i-^+Γfl al
(tt)ij~dx> d x ί + l i ' j l

It is gauge invariant in the sense that

It follows that the set of flat connections, i.e. the set of all a for which Fa = 0, is
invariant under .̂ Moreover, it is well known that we have an identification

In fact, for a flat connection, the holonomy along a loop depends only on the
homotopy class of the loop and defines an element oΐ&. Conversely, consider the
universal covering M of M. Then if we extend the operation of π1(M) on M to
M x C2 by means of a representation πi(M)-*SU2, the quotient (M x (C^/π^M) is
a bundle over M which inherits a flat connection from the trivial connection on
M x C2. Note that we can convert the assignment at-*Fa into a vector field on the
infinite dimensional manifold ^*(M): Given a metric σ on M, one defines the
Hodge duality isomorphism *σ:Ω

p(M)-*Ω3~p(M). Extending it trivially to the
su2-factoΐ, we define

]ζ(a)=*FaεΩl(M)®su2.

Since £ is gauge invariant and since it follows from the Bianchi identity daFa = 0
that

we have£(a)eT[a}38ζ- ^M). Over ^ - ̂ \(M\ it is a section of the bundle & with
fiber

It was observed by Taubes [T3] that Casson's invariant can be interpreted as the
"Euler characteristic" of jζ in the following way. The linearization
Dfΰ(d)= *σda: T[α]J*->Lα can be combined with a gauge condition in (lb.2) to an
elliptic operator on the bundle Ωad = (Ω°@Ω1)®su2 defined by

®α(φ, α) = (d*α, dαφ + * dβ«) . (1 b.5)
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In particular, the kernels of £)a and D£(ά) are isomorphic for any irreducible
connection α, so that [α] e $* is a nondegenerate zero of/ if and only if the kernel
of 3ΰa is trivial. If this is the case for all a e ̂ *, then one can assign a relative sign to
any pair a,be&* as the mod-2-reduction of the spectral flow (see Sect. 2c) of any
continuous family c(τ) in j/(M) connecting α and b. Up to an ambiguity in the
overall sign (which can be fixed using the trivial connection), this is the analog of
the "degree" of a nondegenerate zero of a vector field. For each nondegenerate
αe^*, it yields a sign which turns out to be the same as the one obtained by
Casson's construction. Of course, Taubes' construction can also be extended to
general manifolds by a perturbation.

To understand and generalize the homology groups IJ(M) of Theorem 1, we
have to take into account an additional structure of the vector field /. Under the
L2-inner product on T&(M) defined by the metric σ on M, it induces a family of
linear forms αfl on Ta^/ = L\(Ωί(M)} by

where Λ denotes the exterior derivative extended by the standard positive definite
inner product on su2. Note that (lb.6) does not depend on the metric σ. Moreover,
since the linearization of /σ is selfadjoint, it is closed and can be integrated to a
function ^: j/(M)->R. This function can be obtained by integrating the Chern-
Simons form cs2eΩ^(M} over M, see Sect. Ib or [CS]. With respect to gauge
transformations g:M— »SU"2, it satisfies

a(g(a)) = a(ά) + 2π deg(g) ,

where deg(g) is the degree of g as a map between 3-dimensional closed manifolds.
Hence a is well defined on

3t(M) = ̂ (M)/{g e » I deg(g) = 0} , (1 b.7)

which is the universal covering of ̂ (M). We will say that/ is the "σ-gradient field"
for a function on J?(M). The crucial observation now is that trajectories of the
vector field /, i.e. of the σ-gradient flow of ,̂ can be identified with instantons on
R x M. In fact, the instanton equation for a connection A e ̂ d(̂  x ^0 *s given by
FA= * FA, where * : Ώ2(R x M)-»ί22(R x M) is the Hodge duality isomorphism
with respect to the product metric on R x M. By applying a gauge transformation
g : R x M-^SU2 if necessary, we can always assume that the component of A in the
R-direction vanishes. In this case, the self-duality equation becomes

for A(τ) = if A e j/(M). We can therefore consider the moduli space Jfσ(a> b) of
Theorem 1 as the space of trajectories of the vector field/ connecting the two zeros
a and b of/. The hypothesis of Theorem 1 now means that this flow is of "Morse-
Smale-type", i.e. that all zeros of/ are nondegenerate and that their stable and
unstable manifolds intersect transversally in smooth finite dimensional manifolds.
It was proved in [S2] that infinite dimensions, this is a "generic property" for
gradient flows. Moreover, it is known that in finite dimensions, the homology
groups defined as in Theorem 1 generally do not depend on the choice of the
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gradient field. For example, in a compact manifold B, they coincide with H^(B, 2£),
see [Wi] and also [SI]. Hence in order to define the index homology of Theorem 1
for arbitrary homology 3-spheres, we define an appropriate set of perturbations
of a (compare [D3] for a similar construction): Consider a map

y\S(m)xD2: = \/ S x#2^M,
i= 1

which restricts to smooth embeddings yθ:S(ra)-»M for each θεD2 and
yt :Sι x D 2— >M for each i. Here, we consider on S(m) the smooth structure of the
union of smooth embedded circles in R3 which intersects precisely at the origin
and have the same tangent there. It defines a family of holonomy maps

Now choose a smooth compactly supported volume form d2θ on the interior of D2.
Let C™(Lm,TR) be defined as the set of smooth ad (Sl/2)-in variant real functions on
SU'l Then for each /ϊeC°°(Lm,IR), we can define the function

fty:#(M)->R; fty(α)= J h(yθ(a))d2θ . (lb.9)
£>2

Let us denote by Γm the set of maps y as described above and by Π the entire set of
perturbations

Π= U ΓmxC*(Lm,R).
raeN

Lemma lb.1. For any π = (y, h) e 77, /ιy is 0 smooth function on $(M). Moreover, for
every smooth metric σ on M, there exists a smooth section gradσhy of T$(M) such
that for every ξ e Ύ

Proof. Parametrize S1 by the unit interval / = [0, 1], with 0 and 1 corresponding to
the base point in S1. Then y gives rise to maps 7/:[0, 1] xD2-»M, which are
independent of/' on the discs {0} x D2. Fix a trivialization Φ0 of P over the image of
this disc. Then for each ae&(M), it can be extended in a unique way to
trivializations Φ^aYyf ad(P)->[0, 1] xD 2 xsu2 defined by parallel transport
along y f( , 0) for θeD2. Here, we make use of the fact that aeC°(Ω1®su2). Under
this condition, we have a smooth family

Φ f : j/(M)-> Hom(yf ad(P), [0, 1] x D2 x su2) (lb.10)

of continuous bundle isomorphisms. Since the holonomy γθ(a) is defined as the
conjugacy class of the m-tuple,

this proves that γθ and hence hγ is smooth. Its derivative is

Dhγ(a)= J Dihv(a).
i= 1

where in terms of the parametrization yt and the trivialization Φb

Dίhγ(a)(ψ,θ)=Fih(yθ(a))d2θ.
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Here, Vth is the partial derivative of the lifting of h to SU% in the direction of the zth

factor, identified with an element of su2 by virtue of the canonical bilinear form on
su2. The σ-gradient oϊhγ is now the sum of sections of T3$ which in terms of yt and
Φt are given by

d2θ. (Ib.ll)

One checks directly that d* gradfey(α) = 0 and that

gradfty(cι)eL4

1(Ω1(M)®5M2)5

so that it in fact defines a vector field on ^(M). Smoothness follows from (Ib.ll)
and from smoothness of Φ{ in (lb.10). Π

Ic) The General Construction

Given π e Π, we define aπ=a, + hr We denote by ̂ π its critical set, i.e. the zero set
of the section

/σπ(a) = *σFa + π(a) =/ff(a) + grad/φ) (lc.l )

of X. It is nondegenerate if and only if the kernel of the "Hessian"

Dσπ(α) (φ, α) = (#α, d
(lc.2)

consists only of elements of the form (φ, 0) with dαφ = Q, i. e. corresponds to the Lie
algebra of the group Gα of gauge symmetries of α. We now define

dA
Ih

where
= 0 and l(A)<ao}/&(M),

„ , dA

(lc.3)

We omit the subscripts σ and π whenever possible. We may think of Jl as the
"Morse complex" of bounded trajectories of the gradient flow, but also as the
perturbed "moduli space" of instantons. In fact, if we extended l(A) and

dA
Fσπ(A)= -- +/απ(A)

C/T

gauge equivariantly to j/(R x M), then we have

σπ(A) = Q and

We will use either of the two terms for elements of Jl, depending on which
aspect is more important at a particular time. Note that if for AtM with π = 0, l(A)
is proportional to the Yang-Mills action. For a general [̂ 4] e ̂ σπ(M), it is equal to
the difference of the perturbed Chern-Simons function along the path in
defined by A. In fact,

dA(τ]

dτ
(lc.4)
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Hence ^π decreases along trajectories in Jtσu and the trajectories of finite length /
are precisely those along which ^π is bounded.

The linearization of the flow equation at A e Jίσπ is equivalent to the elliptic
operator

DAa= - +Daπ(A(τ))a

on Ωl(TR. x M) = p*(Ω°(M)φΩ1(M)). We call A regular if the adjoint

D^=-~-
has no bounded solutions. We call Jίσn regular if all A E Jίσπ are regular. In this
case, it follows from the implicit function theorem that JίσΊl is a smooth manifold.
The following proposition summarizes the principal properties of Jiσιt, which we
prove in Sect. 2 and 3.

Proposition lc.l. For a dense set of parameters (σ,π)eZ x 77, & is nondegenerate
and M decomposes into smooth oriented manifolds Jί(a, b) of regular trajectories
connecting α, fte£$. To each ae& we can associate a Morse index μ(a)eZ8 so that

dim M(a, b) = μ(a) - μ(b) - dim Gb (mod 8) . (1 c.6)

Moreover, let M(μ, b) denote the (oriented) quotient by the translational symmetry.
Then if b0, ...,bn are irreducible, we have orientation preserving local
diffeomorphisms

φ ^oΛ^IR+x^/^^x...^
with the following properties:

(Tl) For each compact K C M(b^bλ] x ...x <jί(bn_^bn), there exists ρ(K] e& +

such that K x [ρ(fc), oo)"~ l C 0.
(T2) For l^i^n there exists a lifting φt of # to Jί(b0,bn) such that

Φi(A,ρ)-+Ai locally with ρh ρί + 1->oo.
(T3) // din|(^(α, fc))|^4, then the complement of all maps # for all possible

configurations a = b0, bl9 ...,bn = b is compact.

The existence of the map # is well known in finite dimensions as "transitivity"
of Morse-Smale flows: Trajectories ending at and originating from a nondegener-
ate fixed point x can be "connected" to yield a family of unbroken flow trajectories
converging "in the image" to the components. In a compact finite dimensional
manifold, this construction would cover all ends of the trajectory spaces. The
dimensional restriction in (T3) is due to the singular critical point Oe J*(M): It
follows from (lc.6) that if<jf(α,0) and^(0, b) are both discrete, then μ(a) — μ(b)
= 5 mod 8. In fact, one can show that the appropriate gluing map in this case would
be

Jt(a, 0) x S03 x 3$+ x Jf(Q, b}-*Jί(a, b) , (lc.8)

i.e. we would have an additional 3-dimensional gluing parameter. This is a
problem which one also encounters in finite dimensional equivariant Morse
theory. However, even if we took the map (lc.7) into account, we would still have a
restriction in (T3): For dim Jί(a, b) ̂ 8, we may have sequences of instantons
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diverging by splitting off a "point-instanton" anywhere on 1R x M. In fact, Taubes'
gluing procedure (see [Tl]) allows us to "glue" instantons into M(a, b) at arbitrary
points on R x M and with arbitrary scaling and "gauge orientation," obtaining a
local diffeomorphism

M(a, b) x S03 x R+ x R x M-+Jί(a, b) . (lc.8)

Hence this phenomenon is closely related to the mod-8 ambiguity of ά\mJί(a, b\
and has no analogon in finite dimensional Morse theory. In this paper, we will be
concerned only with 1- and 2-dimensional trajectory spaces, so that neither (lc.7)
nor (lc.8) will enter the discussion. In fact, let us first consider the 1 -dimensional
part of M, i.e. the zero dimensional part ofjί, whose elements we call "isolated
trajectories."

Theorem 2. For (σ, π) as in Proposition ic.i the number of isolated instantons is
finite. Moreover, let o(A) = ± \ denote the orientation of an isolated instanton A and
let <3α, by denote the sum of o(A) over all isolated trajectories in ̂ (x, y). For p e2£8,
let Rp denote the free Abelian group over the set 3$p = {aEffl* \ μ(a) = p}. Then the
homomorphism

d:Rp^Rp^ dx= Σ <dχ,y>y
ysR

satisfies dd = 0. The group

Ip(M;σ,π)=kerΰp/imdp+l (lc.9)

does not depend on the choice of σ and π. In fact, for any two parameter sets (σh π^,
ί = Q, 1, there exists a canonical isomorphism

Proof of Theorem 2. Part ϊ. It follows from Proposition lc.1 that the zero
dimensional part of Jϊis compact and hence finite. To prove the second assertion,
note that the matrix elements

correspond to the sum of the product signs o2(A, B) = o(A)o(B) over the zero
dimensional part of

Now note that by (T3) of Proposition lc.1, the ends of the 1-dimensional part of
Λ(a, c) are in oriented 1—1 correspondence with the zero dimensional part of
(Λ\a, c\ o2}. This proves that dd = 0. D

The proof of the invariance of /^ is related to the functorial properties of /^
mentioned in the Introduction. We will consider a cobordism W : M-+N between
closed oriented 3-manifolds as an oriented smooth 4-manifold W with open
submanifolds M x R _ a n d i V x R + such that W0\= W-M xR + -IV xR_ is a
compact smooth manifold with boundary NuM. Here, R± CR are oriented in the
usual way. On W, we consider the set Σw of conformal structures σ extending the
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product conformal structures on the ends. Recall that a conformal structure
defines (and is defined by) a 3-dimensional subbundle Ω# C Ω2(W] and a canonical
completement Ω~. We also define a class Πw of perturbations of the selfduality
equation (FA)+=Q which extend the translationally invariant Hamiltonian
perturbations on the ends and which are the following form: Let B be an open
3 -dimensional manifold and consider maps

yw:ΓmxB-+WQ

restricting to embeddings on Si x B in complete analogy with the definition of the
maps y in Sect. \ b. On B, consider a compactly supported 2-form ω. Then for any
smooth vector field fe on Lm (i.e. for any smooth and invariant vector field on SU™\
we can define the adjoint- valued 2-form kγeΩ^d(W) by superposition of forms (fey)f

defined by

on y(S] x B), Here, fcf is the ίth component of k as a vector field on SU™. This defines
a set Πw of ^(W)-equivariant maps

Note that π(A)eΩ2

d is neither selfdual nor antiselfdual in general, since
d

— -J π(A) = 0 whenever y is injective. We now define a section of J£(3$(W), a, a') as
cφ
the quotient by <&(W) of the function

Fσπ : rf( W)^I!(ΩΪά(W, σ)) , F^(A) = (FA + π(A)) .

By [D3], a homology orientation of a closed oriented manifold W is an orientation
of the real line

Here, H2_ is the negative part with respect to the intersection form and det denotes
the highest nontrivial exterior power. This definition still makes sense for a
manifold whose boundary consists of homology 3-spheres.

Proposition lc.2. For a dense set of parameters (σ, π) e Σw x Πw extending a given
set of regular parameters on M and N, the zero set of Fσπ on &(W,a, a') is regular for
all a, a' e R(M) x R(N) with

Here, βt— dim(Hl(W,Ήty) and β^ is the dimension of the negative definite part
H2.(W,TR) of H2(W,1&) with respect to the cup product and the orientation of W.
Moreover, given a homology orientation of W and orientations of J/(N] and Jί(N\
there exists a natural orientation on Jί(W) with orientation preserving local
diffeomorphisms

Jt(a, a'} x R 4 x Jt(a! , b')



226 A. Floer

As an immediate consequence of Proposition lc.2, the zero dimensional part of

rJί(W) is compact again, and hence finite for "regular" (σ, π). Hence it defines a
homomorphism

y = y(W, σ, π) : R^M )->£*(#) . (lc.10)

Theorem 3. For each (W, σ, π) as described above, y is a chain map. The induced map

depends only on the smooth cobordism W: M— >N. It is the identity for the product
cobordism. For a composite cobordism W= UV, we have W^ = U^V^.

Proof. We first prove Theorem 3 for the groups /^(M, σ, π) of (lc.9), without
assuming invariance. That y is a chain homomorphism is proved in a similarway
the chain property of d itself. For αe^(M, πM) and bΈ&(N,πN), the matrix
element <(5y — y<3)α, ί/> is oriented cardinality of the set

This proves that dy — yd = Q, i.e. we associate to a regular (W,σ, π) a chain map
Rχ(M,πM)-+(Rχ(N,πN). Now consider two regular cobordisms (u,συ,πυ}'.M-^N
and (V,σv, πv):N-*L so that (σv, πv) and (σv,πv) coincide on N. Then for each
compact set in K C Jί(a, b;U)x ,Jί(b, c V) there exists ρκ e R + and for all ρ > ρκ a
local diffeomorphism

constructed by the same method as the maps in Propositions lc.1 and lc.2. It
follows that y is functorial with respect to composition of cobordisms in the sense
that for ρ large enough, (U φ ρ K σρ, πρ) is regular if ([/, σLr, 7%) and (V, σv, πv) are,
and that

y(U * ρ K σρ, πρ) - y(I/5 σ^, π^) o y(l/ σF, πv) .

Now let (σ, π) = (σ; , y ; , /ιΛ)σ ̂  ; ^ j be a smooth family of parameters on W which are
constant in λ outside W0, and which are generic for λ = 0, 1 in the sense of (1). Then
applying an arbitrarily small perturbation σπ if necessary, the sets

J7(a, a'} : - {(M, λ) u e M0^(a* β/)}c 3$(W;a, a'} x [0, 1]

are regular zero sets of F^(A, λ) = F~^λ(A) and are therefore smooth manifolds of
dimension

dim M(a, b) = μ(d) - μ(b) + 1 (mod 8) .

It follows now from the obvious parametrized version of Proposition lc.2 that
the zero dimensional part of M defines a Z-module homomorphism

with deg(γ)=deg ("/;) + ! such that

y0-7ι = SMy~-ydN. (ic.ll)

This proves that (y0)* = (yi)ii::l*(M,aM,nM)-^I^(N,aN,nfi). Π
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Proof of Theorem 2. Part 2. Consider W=M xR with τφ4)(τ)= grad/zy(/ί(τ);τ).
Then (Wζπ) is a product for τ outside [0,1], and hence defines a chain
homomorphism y(W, π): R*(M, π0)-+R^(M, πx). Reversing the τ-direction in W, we
obtain a chain homomorphism y = y(W9π+):R^(M, π1)->K;fc(M, π0). Now the
compositions J/FFKand WW can be deformed (with fixed ends) to the products
(M, π0) x 1R and (M, πj x 1R, respectively. Since the product induces the identity on
RΦ this proves that γ^ and y^ are mutually inverse in homology. Π

2. Local Properties of (̂R x J()

2a) Connections on 1R x M

For (5>0, let eδ :IR x M->R be a smooth positive function with eδ(τ, x) = eδ^ for
|τ| ̂  1 . Let £ be a bundle over 1R x M with a translationally invariant metric 1 1 and
metric preserving connection V. Following [K] and [LM], we define the norms

on sections ξ of E. Here, || \\ktp is the usual Sobolev norm. To define suitable
Banach manifolds ̂ (α, b) of paths connecting a and b in ̂ (M), choose any smooth
representation of a, b E to/(M) and a connection A on R x M whose first component
vanishes and coincides with a for τ ̂  — 1 and with ft for τ ̂  1 . Then the set

X,(a, ft) = ̂  4- L4! . .(̂ (R x M)) (2a.l)

obviously does not depend on the choice of A By virtue of (lb.1), it is acted upon by

<3b= (geL4

2Joc(R x M, St/2) | there exists R >0

and ξ E L4

2;ό(Ω£d(R x Σ)) so that g= expζ for \τ\^R} . (2a.2)

Proposition 2a,lβ For δ^O, ̂  is a Banach Lie group with Lie algebra

7ί acts smoothly on s/δ(a,b). The quotient space &δ(a,b) = <ε#δ(a,b)/&δ is a smooth
Banach manifold with tangent spaces

, b) = { α e L\ , δ(ΩlJ^ x M) etd*Ae^ 4 = 0}

charts

, b) -> ̂ (a, ft) a h-» [>4 + a] .

o/ For (5 > 0, this is essentially Lemma 7.3 of [T2] . The extension to δ = 0 in the
case where a and ft are irreducible is possible because the central ingredient in the
proof is the fact that

(eδd^ l}dA : L%(Ωa°d(R x Σ))^Lp

0,,(f2?d(R x Σ))

is an isomorphism. If we set (5 = 0, then it follows from Theorem 1 .3 of [LM] that
d*AάA is Fredholm if and only if A is irreducible. In this case, an integration by parts
proves that it is also positive, i.e. an isomorphism. Q
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Consider now the linear operation g(ξ) = gξg~l for a section ξeLg

/:(5,(Ead),
where E is some metric bundle over IR x M and q ̂  1 , / ̂  0, and δ' are real numbers.
The operation is continuous if and only if /rg min(l,4/g) and δ'^δ. For such /, q,
and δ\ it follows with the methods of Proposition 2a.l that the quotient

: : , (2a.3)

with respect to the diagonal operation is a smooth Banach space bundle with
trivializations

τ[Aβ x LV(£adH^M£) (^ 0)^[(α> «] .
Here [(α, /?)] denotes the orbit in (2a.3). A (smooth) section 0 of ^.δ,(E) is given by
any (smooth) G^-invariant function from ̂  to Ellδ (E). As its "derivative," we then
define the ordinary derivative Ds(A) restricted to kerd^. We will be mainly
concerned with ^fδ = ̂ Qtδ(Ω~\ where Ω~ is the bundle of anti-self-dual 2-forms
on R x M.

Proposition 2a.2. For (σ, π) e Σ x 77, ί/ze function

Fσπ : j*δ-^&&, Fσπ(A) = ±(FA- *σFA) + π(Λ) , (2a.4)

with π(A)(τ) = ίτπ(A(τ)) is smooth and ^δ-equivariant. The first order expansion

Fσπ(A + a) = Fσπ(A) + DFσπμ)α + JV(α) (2a.5)

l l ζ l U . ^ l l ξ - C I I , . , , , (2a.6)

Hξl!, . , , . .^ (2a.7)

/ Equivariance follows from (lb.3) for F— * F and from equi variance of the
restriction A(τ) = if A. To show that Fσπ(A) e ίί0_a(ΩJ), note that^π is a C2 section of
If and that, for R large enough,

eτil>\\A(τ)\\p

lp
-R ' R

f C \ eτδp\\A(τ}-b ||?>1(< Q O .
— GO

Now consider the linear part of the expansion (2a.5). Note that π is C Abounded.
Moreover, the operator dA— * dA is bounded with respect to the norms || || ί -p and
[| ||p. The estimates on the nonlinear part follow from the definition of the curvature
and a C2-bound on π. Π

2b) Fredholm Theory

Note that for any αe J*(M), the operator Da = Dσπ(a) of (lc.2) is selfadjoint and
elliptic up to a part which is compact on the domain. It follows that the real part

σR(α; σ, π) - {Rez | z e σ(Da}} (2b.l)
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of the spectrum of Da is a discrete subset of R. Roughly speaking, purely imaginary
eigenvalues of Da correspond to "rotational modes" of the flow, which complicate
the structure of the trajectory spaces Jί(a, b). This is reflected in the Fredholm
property of the linearization of Fσπ, i.e. of DFσπ(A) restricted to the kernel oϊdδ

A. As
in the case of the linearization of /σπ, it is convenient to combine the operator and
the gauge to one essentially elliptic operator. Define therefore

^ = L*1;ί(Ωίd(JR x Γ)), L, = Lp

0;<5ίί2a-dΘΩ?d(R x Σ)). (2b.2)

Proposition 2b.l. // δ > 0 is smaller than the first positive element of σR(α) and the
absolute value of the first negative element of σR(fc)5 then for any zero of Fσπ on
&(a,b), the operator

DA:Wδ->Ls; DAa = (ds

Aa,DFσπ(A)a) (2b.3)

is Fredholm. If a and b are irreducible and nondegenerale zeros of fam then
DA: WQ-+LQ is Fredholm.

Proof. Representing A in the temporal gauge and identifying both ί2J(lR x M) and
Ωl(]R x M)φΩ°(R x M) with Ω^φΩ^ in the canonical way, we have for τ < -1,

DAx(τ)= ( d*(t)αι + I j- ±δ I α0 * ̂ (τ)α, + |-- α0 ) +Dπ(A(τ))a

d

dτ
+ DA(τί)oc±δ.a0. (2b.4)

Now Proposition 2b.l essentially Theorem 1.3 of [LM]. To recall the main
steps of the proof, note first that by standard elliptic Fredholm theory on compact
manifolds, one can reduce the assertion to the case of arbitrarily small paths in
^(a, a) for a e 3%. Here we use the fact that the perturbation Dπ factors through a
continuous operator from L4

2/3 to L4 and is therefore "locally" a compact
perturbation of the elliptic linearization of the instanton equation. Moreover, since
the set of Fredholm operators is open in the operator topology, we only have to
consider the case where A is a "constant" connection a. By hypothesis, there exists
for each λ e & a resolvent

bounded independently of A. Define for ξ

ξ(λ,x)= 7° eiλτξ(τ,x)dτ.
— 00

Then
I +00

C(τ):=y- ί e~λτRλξ(λ)dλ
2.71 — oo

(d \
satisfies DGζ = - — h Da } ζ = ξ. As in [MP]. Theorem 4.1 (see also [K] for the case

\dτ J
p = 2), we now conclude that

!|p;^CH^ί!U (2b.5)
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To determine the index of DA, we consider A as connecting two elements α, b of
the zero set J> of /in the covering space J?(M) of (lb.7). Then we have

Proposition 2b.2. To each nondegenerate άe$we can associate an integer μ(ά] such
that μ(g(a)} = μ(a) + 8 deg(g), and so that for A e 0S(a, b\

Index DA = μ(ά) — μ(b) — dim Gb .

Proof. Assume first that a and b are irreducible and (5 = 0. As in the proof of
Proposition 2b.l, write

Dτ = DA(τ}. Then the Fredholm index of DA is given by the "spectral flow" (see
[AS2]) of Dτ through the imaginary axes. A construction of this integer quantity is
given as follows: Choose τ 0 <.. .<τ^ and /^...1N in IR so that λiφσ^τ) for
ti - 1 ̂  τ ̂  ti and so that the same is true for ΛO : = 0 for τ rg τ0 and for λ N + ] _ \ = Q for
τ ̂  τN. Define the integer nb l^i^N, as the dimension of the eigenspace of DTι

corresponding to the eigenvalues in the strip A / + ! ̂ Rezrg/l; in (C. Otherwise, we
define nt to be the negative of the dimension of the eigenspace of Dτ in
A f ^ R e z ^ A f + 1. We claim that

N

Index DA= £ nt. (2b.6)
i = 0

This also proves that the right-hand side is independent of the construction and
that it is continuous in A. To prove (2b.6), consider for each ρeIR the operator

where JJQ(τ} = β(τ — ρ)τ + (1 — β(τ — ρ))ρ. Then D(ρ) is an asymptotically "constant"
operator so that we can apply Theorem 1.3 of [LM] as in the proof of
Proposition 2b.l. In particular, D(τf) is a Fredholm operator with respect to the
exponential weight eβ(τ]λιτ as well as to eβ(τ)λl + ίτ by the choice of λt. The difference of
the first and the second Fredholm index is ni by Theorem 1 .4 of [LM] . On the other
hand, D(ρ) for τi_ί ^ρ^ij is a continuous family of Fredholm operators for the
weight eβ(τ)*l\ so that the Fredholm index does not change through this
deformation. Finally, it follows from the proof of Proposition 2b.l that for large
negative ρ, D(ρ) is an isomorphism. This proves (2b.6).

It follows immediately from the definition that (2b.6) is additive with respect to
composition of paths in J?(M). Since each ^(α, b) is simply connected, it follows
from continuity of the Fredholm index that (2b.6) depends only on the end points.
Hence fixing an arbitrary value of μ(ά) for some irreducible nondegenerate αeJ>,
we can define μ(b) = μ(a] + Index EA for any A E 2$(a, b).

The formula for reducible nondegenerate zeros is obtained in the same way,
with λQ= —ε and λN = ε. Due to this modification, the index is not additive any
more with respect to compositions of paths A, Be $(a, b) x 3S(b, c) to
A φ B e 3S(a, c) but satisfies

Index DA^B = Index DA + Index DB + dim Gb . (2b.7)
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This accounts for the correction term in Proposition 2b.2 for a suitable extension
of μ. Clearly, the "relative Morse index" μ is well defined only up to an additive
constant. Fixing a representative a of the trivial connection in J? (which is always
nondegenerate for a rational homology sphere), we can fix this additive constant
by requiring that μ(0) = 0. Q

2c) Transversalίty

The aim of this section is to prove the density of regular parameters σπ e Σ x Π of
Proposition lc.1. The method is essentially the one of [FU]. The crucial point is to
produce "enough" perturbations:

Lemma 2c.l. (1) For every compact subset KC^*(M), there exists meN and
y : Γm x D2-»M, as described in Sect. tb, inducing injective maps γθ : K-^Lm.

(2) For any αe J**(M), the set Π(a) = {n(a) πe/7) is dense in Ύβ(M\

Proof. The proof of (1) is obvious since two connections are equal in ^*(M) if and
only if their holonomies coincide on all graphs in M. The second statement follows
from the first, since every finite dimensional subspace of Ta^(M) is the tangent
space of a suitably defined finite dimensional and hence locally compact
submanifold of ^(M). Π

In the following, we would rather work with Banach spaces of perturbations
than with the Frechet spaces C°°(Lm,R). We therefore follow [F2] and define for
every sequence ε = (£i)ίeN of positive real numbers a Banach space

Cδ(Lw,R)={ΛeC»(Lm,R) | | Λ | s < o o }

of smooth functions on Lm with norm

\\h\\ ε= £ ε f max |Dl7ι(x)| .
i = l ;ceLm

Then by Lemma 5.1 of [F2], c can be chosen small enough so that C%Lm,R) is
dense in Zf(Lm,R) for all l^/?<oo. In particular, we can approximate step
functions in all I?-norms. Fixing such an ε, we can associate to each graph y a
Banach space Πr Now recall that a subset is said to be of first category if it is the
countable intersection of open and dense sets. It is then always dense by Baire's
theorem. We are now ready to state

Proposition 2c.L For every π e 77, there exists y e Γ such that the set of all π e π + Πy

for which &k is nondegenerate is of first category near π.

Proof. Note first that by elliptic regularity, the set

#π = {(α,ξ)CJ2ΊfleR π , |£| | 2 = 1, and ςekerD^α) for any σeΣ}

is compact. By Lemma 2c.l, we can therefore choose y such that y0 is injective on
^π and Πy(a) for a e Rπ approximates ker Dσπ(a) arbitrarily well. For each (α, ξ) E ̂ π

we can then define h e Cε(Lm, R) by
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where β is some cutoff function, / e Ty(a)Lm, and ς is the best approximation of ξ in
Ty(a)Lm. Now consider the section

/: Πy x ®(Σ) -> & , /(π, a) =/σπ(a] + π ,

where we identify in notation <f with its pullback under the projection onto .̂ (M).
Denote by J? the zero set of/ From the above, we conclude that J? is a smooth
Banach submanifold of 77 y x ^(M) near (0) x J?π. Now the proposition follows
from the Sard Smale Theorem ([Sm], see also [Q]) applied to the projection
^ x 77. Π

Let us now call JίσΊl regular if for all [/I] e^σπn-^, so that DA is Fredholm
with respect to 6, DA is surjective. Of course, this implies by the implicit function
theorem that all such sets are smooth manifolds, whose dimensions are given by
Proposition 2b.2.

Proposition 2c.2β For any (σ, π) e Σ x 77, f /ιe set o/ α// π e π + 77 /or w/uc/i ^σπ is
regular of first category near π.

/ First note that it follows from Arondzajn's theorem [An] that
is injective, and that the same is true for the "linearization"

= {(A, ξ) e JS?(R xM)\Ae J((M) and ξ e cok D^}

Moreover, for subsets Λr C Jί(M) such that /vΓ is compact, it follows from elliptic
regularity that Γ(JΓ) is compact. Now choose m, 7 so that Dy is injective on Γ(^σπ).
For every (A,ξ)εJί we construct /z^ ̂ ξ e Cε(Lm, R) such that

This defines /z on the image of the trajectory A under y; it can be extended in an
arbitrary way to the rest of Lm. Using these functions, it is easy to see that the
section

has surjective linearizations at (0) x JΛ Now Proposition 2c.s follows like
Proposition 2c.l from the Sard Smale Theorem. Π

2d) Transitivity

It is the aim of this section to construct the gluing map φ of Proposition 1 c. 1 . The
general method used here was introduced by Taubes, see e.g. [Tl]. In the present
form, though in a different context, it was previously used in [Fl]. Consider
α, b, c e 3#σπ and choose ρ large enough so that in the temporal gauge, we have
A(τ) =[b + ξ(τ)] for τ Ξ> ρ - 1 and B(τ) = [_b + ζ(τ)] for τ ̂  ρ + 1 (see Proposition 3b.l
below). Define

Ά(τ + ρ) for τ ^ l

C(τ-ρ)] for - I g τ ^ l (2d.l)

β(τ-ρ) for
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More generally, define the set Jl^π(a, b] of fc-trajectories as the set of fc-tuples
(^i)ι^i^k with ^ie^σπ(ci-i5cλ where c0 = a and ck = b. Then we can extend the
above construction to a map

# Jίk(x, y) xΊR^^Kx [ρ(fc), oo)fe~ ]

It follows from Proposition 3b.l below that for any compact kc.Jίk(x,y) there
exists a constant CκeR+ with

e-«lc« (2d.2)

The main result of this section is

Proposition 2d. Let K be as above and assume that all A{ for AeK are regular. Then
there exist positive constants ρκ, Cκ and a C2 map

The proof of Proposition 2d uses an iterative procedure known as Picard's
method. It can be summarized as follows.

Lemma 2d.L Letf: E-*FbeaCl map between Banach spaces E and F. Assume that
in the first order expansion

D/(0) has a finite dimensional kernel and a right inverse G so that for ξ, ζ E E

\\GN(ξ)-GN(ζ)\\E£C(\\ξ\\E+ ||Cy \\ξ-ζ\\E

o

for some constant C. Set ε = (5C)~ l. Then if ||G/(0)||£^ -, there exists a

C1- function

with f ( ξ + φ(ξ)) = Q for all ζEKε. Moreover, we have estimates

The proof of Lemma 2d.l is an elementary application of the contraction
principle. We apply it to the family of functions

(2d.3)
Φχ(ξ) = (Fa^Ax + ξ), d*Aβ = Faπ(Aχ) + DAχξ + Nx(ζ) ,

where L= L0 and W= W0, see (26.2). The crucial step is to invert the linear part.

Lemma 2d.2. There exist constants C and ρ so that if χ e K x \ _ ρ , oo), then there
exists a continuous right inverse Gγ : L-> W of Lχ with
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Proof. For the sake of clarity, we consider only the case fc = 2. The proof is
completely analogous to the proof of Lemma 4.3 of [Fl]. We therefore only sketch
the main idea. First, we identify the domain on which we want to invert Lχ to be an
L2-orthogonal complement of the set of all sections of £ d̂(R x Σ) of the form

«*«<•>-», ::: S-.
for any ξ e T{A}Jί(a, b) and ζ e T[B]J/(b, c). Then since the Fredholm index of Dχ

restricted to W^ is zero, it suffices to show that for all ξ e W^,

with C depending only on K. This is done directly: Assume there exists a sequence
χa = (AΛ9 BΛ9 ρ«)eKx [α, GO) and ξΛ ̂  W? satisfying

Here we abbreviate a double index χα by α. As in the proof of Lemma 4.3 of [Fl],
one now proves first that ξα—>0 uniformly on [ — 3,3] x M. Then one can show that
IIξ α | l ι , p -»0 separately on 1R+ x Σ andR+ x Σ using the invertibility of DA andDβ.
This yields a contradiction to the first assumption and hence proves
Lemma 2d.2. Π

Now the proof of Proposition 2d is completed by (2a.6). To define the
orientations of Proposition 1 c. 1, fix α0 e &π and consider for each a E ~%π the space
&(a0,a). By [Dl], there exists a lifting of the structure map

D:3$(a0,y)-+B0, A^DA (2d.5)

to BSO. It defines an orientation on J*(α0, α) in the sense that for each A E J*(α0, α)
and for each finite dimensional subspace E C Π'(u) which is not annihilated by any
element of cokD^, the manifold

JίE(a) = {ξeTA@\ Fσπ(A + ξ)eE} (2d.6)

can be naturally oriented given an orientation on E. In fact, we only have to choose
a lifting on one component of 3$(x0,x); it is then defined on the other components
through the constriction (lc.8) extended to <ME (see also [D3] in the context of
determinant bundles). We will consider such a choice of lifting as an "orientation of
x." (In finite dimensional Morse theory, it corresponds to an orientation of the
negative subspace of the Hessian at x.) We now extend the (unreduced) gluing map
# to incorporate the spaces JtE. Assuming that the elements of E have compact
support, it defines a bundle E over # (ME(x&x) x R+ x.J?k(x, y)). Now the proof
of Proposition 2d can be easily adapted to yield local diffeomorphisms

* :^£(x0,x)xR+ xJίk(x,y) ^JΐE(x0,y). (2d.7)

Now there exists a unique orientation on .Ji(x, y) making this map oriented. The
orientations M(W} are constructed by combining the above constriction with the
one in [D3] in the obvious way.



An ίnstanton-ίnvariant for 3-Manifolds 235

3. Compactness

3a) Local Convergence

In order to formulate compactness properties, recall the set Jt% σπ of cusp
trajectories of Definition

Definition 3a.i. A cusp trajectory (A,I}eJί^σπ is a trajectory A^Jίσn together
with a finite collection / of instantons on Euclidean R4. We say that Ak converges
(locally) to (A,ί)^Jί^σn if there exist representations of Ak and sequences xik in
R x M and εfc->0 so that

(1) Ak->A in the Z^-norm on K— (J Uεh(xik) for every compact X c R x M.

(2) Iik : - (expxk ° εk)*Ak converges to It in L^Q1^)) for every
Here, exp^ for x e IR x M denotes the Gauss normal chart. Now define for any

/cR
x M)

and write 3§\ρ — M\ _ ρ> ρ]. With respect to the "weak convergence" of Definition 3a. 1,
we have the following compactness result:

Proposition 3a. Let Aρeέ%\ρ, ρeN, be a sequence so that !2(Aρ) is bounded.
Moreover, assume that σρπρ-+σπinΣ xΠ and that lim \\FσβπQ(Aρ)\\p = Q. Then there

exists a subsequence AQ converging to some (A, I) e Jl^σu. We have

N \

Σ I I FBJl 2 + '2(^) = ό ̂ m SUP ^2(^)
i= 1 2

In particular if l2(AQ)^3π, then I is empty and AQ converges locally in ί̂  to A.

Proof. The essential ingredient of the proof is Uhlenbeck's elliptic regularity
results for the selfduality equation, see [Ul]. It remains valid for the operator Fσπ

due to the "compactness" of the perturbation π.

Lemma 3a.l. Let AQ be a sequence of connections on\_ — R,K\x M, so that \\ FAk \\ p is
bounded and \\Fσπ(Ak)\\p-+Q for some p>2. Then AQ contains a subsequence
converging on MR _ ί to a connection A with Fσπ(A) = 0.

Proof. By [Ul] the bound on \\FAk\\p implies that there exist representatives Ak so
that MjJi^ is bounded on M Λ _ 1 / 2 . Hence it contains a subsequence Ak

converging weakly in Lp

1(Ω1(M^_1/2)) to some limit A. That F~π(A) = Q follows
from the weak compactness of the nonlinear term of F~π, see (2a.N2). Similarly,
applying (2a.N2) and ellipticity of DA to ξk = β(Ak — A) for a suitable cutoff function
β proves that | |£k | | l f p->0. Π

Now define for any compact KcR x M the sequence of numbers

εk(K)=mϊ{ε>V\ there exists θeKso that ||^J|p,ι/ε(β) = ε 2 / p~ 1}. (3a.l)

Here, Uε(θ) is the ε-ball around θ. If εα(X) is bounded from below, then the
hypothesis of Lemma 3a.l is satisfied for each ρe]R + . Hence let us assume that
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εk(K)->0 for a subsequence and choose θke x M so that with Uk= UEk(θk),

vk

)4Let expα;]R4-»Rx M be a Gauss normal chart centered at $α preceded by
multiplication with εα. Then the connection βa : = exp*/lα is defined on the ball of
radius ε~ lr, if r is the injectivity radius on R x M. It satisfies

(i) HP-FBJU-Ό,
(2) limsup||FBJig/,

(3) !lFB j4,u l (o, = i,
(4) ||F BJU, IM») ̂  1 for all 0 e £/„ _ M

The projection in (1) is taken with respect to the standard Euclidean conformal
structure on R4. To prove (1), note that the pullback conformal structure under
expα converges to the Euclidean one uniformly on BR, and that the perturbation π
is L4-bounded. (2) follows for the same reason from the conformal invariance of the
"Yang-Mills action" \\F A\\2

2. (3) and (4) follow by direct calculation. By [Ul], it
follows from (1) and (4) that Bk contains a subsequence converging in
I2ι(Ωγ(lJ R_ ^0)) to a selfdual connection /. Now (3) implies that / is nontrivial, so
that ||Fβ | |2^8π (see e.g. [ADHM]). We now repeat the above argument
R x M — Όk with Uk = Byε-(θk). That is, we consider the sequence εk ̂  εk defined as
in (3a.l) with Uk removed from K. If εk x 0, then the corresponding reparametrized
sequence Bk converges as before to a positively charged instanton ΐ . We claim that
the action l(Ak) = a(ά) — a(b) of the trajectory must be at least the sum of the actions
of / and /'. To see this, note that lk tends to infinity in the reparametrized chart
around 0fe, since dist(θk, θ'k) ^ εk

/2. If also dist(0k, 0k)/εk-» oo, then the converse is also
true, so that there exist disjoint neighborhoods Vk of θk and v'k of θ'k on which the
action of Ak approaches that of / and /', respectively. On the other hand, if
dist(0k, θ'k)/ε'k is bounded, then ε'k/εk-+ao, and we can choose Vk and Vk so that the
actions of Ak restricted to Vk and Vk — Vk approach the action of / and /',
respectively. By induction, we conclude that there exists a finite set {Θ1? . . ., ΘN} with
N^$n~l(a(a) — a(b)) so that a subsequence of Ak converges locally on R x M
— {θ]? ...,ΘN} to an element of M(a,b\ This completes the proof of
Proposition 3a. Π

3b) Global Convergences

Proposition 3a allows us to prove

Proposition 3b.l. For each [A]eJίσπ there exist a,bε3#π so that [_A(τ)~\ converges
in 3&(M) to a for τ->oo and to b for τ-+ — oo. Moreover, if .3#π is nondegenerate,
then for some δ>0, the canonical map induces a bijection

a,beR

Here, Ga x Gb acts on Jtfδ(a, b) by means of gauge transformations which are constant
outside a compact set. Restricted to each Jtb(a, b\ (bi}) is a homeomorphism with
respect to the local topology in Jί ana the relative topology of Jib(a, b) in 3$δ(a, b).

Proposition 3b.l implies that whenever the local limit of Proposition 3a
happens to lie in J?(a, b\ the convergence is global. Of course, this assumption is
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very strong. To define the set of all possible "global" limits, we have to combine the
notion of a fc-trajectory of Sect. 2 with the notion of a cusp trajectory. We therefore
define the set Mcβk

σπ(a,b) of /c-cusp-trajectories joining a and b as the set of
(Ahl)^i^k with (AiJ^GJί^^c^^Ci) with c0 = a, c2k = b, and c2ί + 1=c2ί for
O ^ f ^ k . We say that Aρ converges to (AhIi)1^i^keJ^(^k

σ (a,b) if there exist
sequences τiρ so that τik * AQ = AQ( — τiQ) converges weakly to (Ah 7f). Then we have

Proposition 3b.2. Let σρπρ converge to σπ in Σ x Π and let aρ, bρ E &Uo converge to
a, b in 3S(M). Then for any sequence \_A^ e .Jίσo7τo(aρ, bρ) with constant index
I(Aρ) = I, there exists a subsequence converging to some (Bt, /;) e Jέ^k

σn(a, b) for some
fc^O. Moreover, we have

// a and b are nondegenerate, then

/ = Σ '(**) + 8 Σ>('j)
I j

If I is trivial, then there exists N >0 so that for ρ>N, Aρ is contained in the ε-tube

3fe(B)= U U W(τ);^(M)).
i τeR

Finally, if each B{ is a regular zero of Fσπ, and all representations involved are
irreducible, then there exists 8 > 0 so that each A E Ji(a, b) which is fully contained in

is the image of the gluing map φ of Proposition 2d.

Proof of Proposition 3b.l. To prove the first assertion, we assume the contrary.
Then there exists ε>0 and a sequence τk^oo so that the sequence [yl(τfc)] in &(Σ)
does not accumulate at βfc. Now consider the sequence

Ak(τ,x} = A(τ-τk/2))

on [ — τfc/2, τ^/2] x M. It satisfies the hypothesis of Proposition 3a with
lim l(Ak} = 0. Hence Ak converges locally to constant element of Jί, which

fc^OC

contradicts the assumption. By the same method, one can prove that for any ε > 0
there exists r > 0 so that on [r, oo) x M, we have [_A\ = [a + ζ] with || ξ \\ ̂  < ε and
\\ζ\ίρ,ρ+i]\\ι,P

<ε f°r all Q>r- To prove an exponential decay estimate, we work in
the "temporal" gauge, i.e. we choose a representative v4eΩ^ d(IRxM) which

vanishes on the vector --. Now define βσ(τ) = β(τ-θ + l)β(-τ + σ) and

consider the function f(σ)= \\βσ(A-a)\\2

2. We prove an estimate of the form

, (2b.2)

for some μ>0. It then follows e.g. from the maximum principle that
i l ^ ~ f l l l 2 ; δ < °° on tne half cylinder on which A(τ) converges to a. To prove (2b.2),
we calculate

f"(τ] = j β\τ) { i | A'(τ) \\ 2

2 + <^"(τ), A(τ) -a}}dτ

= lβ2(τ}\\^A(τ}}\\2

2dτ

+ J β2(τKA(τ) - 4 DfrA(τWA(φdτ . (2b.3)
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Note that — d*(A(τ) -a) = d*f(A(τ)) = 0, so that A(τ) - a e Ta3$(M) for all τ e R. To
ατ

estimate the second term, note that with Dτ = Df(A(τ)\

where JV is the nonlinear term in the first order expansion of/around α. Since Dτ

has no purely imaginary eigenvalues, the first term is positive. The nonlinear term
can be estimated as follows.

)-a)^\\AW-a\\lf2\\D?(A(i)-a)\\2

2

with lim ε(τ) = 0.
τ~> oo

Since α is a nondegenerate zero of/ we have \\/(A(τ))\ 2^y\\(A(τ} — a\\\f2 for
some γ > 0. Hence for τ large enough, the nonlinear term is small compared with
the first term of (2b.3). This implies the second order inequality (2b.2).

Using the invertibility of Dα<H [see (2b.5)j, we can strengthen this result to
conclude that lim eδτ\\βτ(A-a)\\l p = 0 for some <5>0. Now define βrR(τ)

= β(τ — R)β(~τ — r] and ArR = ά + βrR(A — ά) = ά + ξrR. Consider the expansion
(2a.5) around a:

Fσπ(ArR) = DFσπ(ά)ξrR + N(βrR(A - a)) .

Then since d%(A — ά) = Q, we have by (2a.7) and (2b.5),

with lim ε(r) = 0 by the above. For r large enough, this yields an estimate on
r -> oo

l l £ r κ l l ι , p ; d which does not depend on R. Hence Ae<o/δ(x,y).
The same method can be used to compare the topology on ^δ(a, b) with the

local topology on Ji(a, b). To prove injectivity, let us assume that A,Be£#δ are
selfdual and that B = g(A) for some geL4

2;loc(R x M,SC/2). We have to show that
g e ̂  d x Ga x Gb. Note that on the positive half cylinder, we have A — ά.B — aE^.^
where a is the constant connection. Then

gα - ag + dg = {g(A) - g(A - ά)g ~ 1 }g

is in I?0.δ(Ωl). If we consider the left-hand side as an (overdetermined) translation-
ally invariant elliptic operator applied to a function g IR x M->End((C2), the
theory of [LM] and [MP] (see Sect. 2b) implies that g - g0 e L^ . a(R x M, End ((C2))
for some g0 e Ga. Repeating the procedure proves that ge^δxGax Gb and
therefore completes the proof of Proposition 3b.l. Π

Proof of Proposition 3b.2. The first assertion follows from an iterative argument,
applying Proposition 3a and 3b.l to suitably rescaled sequences. The index
formula follows from Proposition 2b.2. The estimate on /2 follows from (lc.4). The
assertion about the s-tube is proved indirectly: Assume there exists ε>0 and a
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subsequence AQ so that Aρ(τρ)φUε(B) for some τρeR. Then by Proposition 3a,
there exists a subsequence Aρ converging to some A^e JίjΊl which is not identical
with any of the #z. This contradicts the assumption.

To prove the last assertion, we define numbers st e IR so that ^(A(st)) = ̂ (b^ for
ί^i<k. It then follows from Proposition 3a that if AeJί(a,b) is contained in
Uε(B) and ε is small enough, A is £\ -close to # (#i> 2~(σ; + σz + ι)) Now the last
assertion of Proposition 3b.2 follows from the uniqueness property of Lemma
2d.l. Π
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