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Abstract. A class of analytic (possibly) time-dependent Hamiltonian systems
with d degrees of freedom and the "corresponding" class of area-preserving,
twist diffeomorphisms of the plane are considered. Implementing a recent
scheme due to Moser, Salamon and Zehnder, we provide a method that allows
us to construct ""explicitly" KAM surfaces and, hence, to give lower bounds on
their breakdown thresholds. We, then, apply this method to the Hamiltonian
H = y2/2 + ε(cosxJrcos(x — t)) and to the map (y, x)->(y + ε sinx, x + y + εsinx)
obtaining, with the aid of computer-assisted estimations, explicit approxi-
mations (within an error of ~10~5) of the golden-mean KAM surfaces for
complex values of ε with |ε| less or equal than, respectively, 0.015 and 0.65. (The
experimental numerical values at which such surfaces are expected to
disappear are about, respectively, 0.027 and 0.97.) A possible connection
between break-down thresholds and singularities in the complex ε-plane is
pointed out.
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1. Introduction

a) Problem and Results

As it is well known from Kolmogorov-Arnold-Moser (KAM) theory [21, 1, 27]

most of the invariant surfaces of an integrable system do not disappear under the

effect of a small perturbation but give rise to invariant tori on which the motion is

quasi-periodic with (highly) incommensurate frequencies ("KAM surfaces"). For

models with few degrees of freedom, numerical investigations (see, e.g., [18, 17])

and some rigorous results [26, 24] have shown that, if the strength of the

perturbation is large enough, K A M surfaces break down.

The existence of these surfaces is particularly relevant for stability theory. In

fact, for systems with no more than two degrees of freedom, K A M tori separate the

phase-space into disjoint invariant sets making thus possible confinement of

motions. Also in higher dimension, where confinement is no longer possible [2],

the existence and location of invariant sets might be relevant for practical purposes

in view of the slow rate of diffusion allowed by Nekhoroshev's theorem [31, 5, 4,

37].

At a more phenomenological level, the breakdown of K A M tori seems also to

be closely related to the "onset of chaos" [18,14,20,12]. In particular, it is believed

that, as the perturbative parameter is increased, there is, in a suitable sense, a

"last" K A M surface to disappear [17, 23, 12].

In this paper we shall address the problem of providing a rigorous and

constructive method able to yield, in concrete cases, "good" lower bounds on the

breakdown threshold.

The model that we will mainly consider is a class of (possibly) time dependent

Hamiltonian systems with d degrees of freedom with real-analytic Hamiltonian

given, in standard canonical coordinates, by

v2 , d y2

H(y,x,t;ε)= ~ + / ( x , ί ; ε ) , y2 = y y = £ - - , (H)
2 i = i 2

where / has period 2π in each variable x 1 ;..., xd, t and depends analytically on the

parameter ε.

Several physical systems are represented by such Hamiltonians. An example

borrowed from statistical mechanics, describing a system of d rotators with short

range interaction, is given by (H) with
d - 1

/ I V f~ p i T j y ' r* I p \ Γ* /~\ c j v Λ̂  \
J \~Λ*^ I ^ Of J \^\ 9 CJ f O 7^ tUj^Λ.'j, j Ajf .

i= 1

(For a KAM and Nekhoroshev analysis of these systems see [36, 37].) A low-

dimensional example, which will be of particular interest to us, is given by

rr y2 r , π ,i ^ , ^
l-ί — 4-p ΓΠQy-i-PΠ^lY 1\\ in — 1> I H 1 I
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This Hamiltonian, which is the central object of the renormalization theory of [14]
(see also [12, 23]), governs the motion of a particle of charge ε, subject to the
potential of two longitudinal (electrostatic) waves. The study of (HI) is also
relevant in celestial mechanics: After minor modifications and under suitable
assumptions, (HI) is a good description of a rigid body on an elliptic orbit with
spin-axis parallel to the largest principal moment of inertia and perpendicular to
the orbit plane [38].

Often, in applications with few degrees of freedom, it is preferred to work with
area-preserving mappings, obtained as Poincare sections, rather than directly with
Hamiltonian systems, and it might be useful to have available a method that can be
applied to maps too. Therefore, we will also consider the following class of area-
preserving twist maps [which might be considered a formal analogous of (H)]:

/ being a real-analytic function periodic in x. For / = ε cosx, φ is the well known
Chirikov-Greene standard map.

We will use the models (H) and (M) to illustrate a new KAM technique that
allows us to construct analytic KAM surfaces and to have a careful control of the
quantities involved.

We will then apply this technique to the Hamiltonian (HI) and to the standard
map, proving the existence of the "golden-mean KAM surface" for (complex)
values of ε with

|fi|^0.015 (HI), |ε|^0.65 (standard map).

Furthermore, "explicit" approximations to such surfaces will be provided with an
error of order 10~5.

To compare these results, we first report the numerical (non-rigorous)
expectations. The breakdown threshold for the standard map is believed to be
— 0.971 [9,17]. Less settled is a numerical determination of a reliable value for the
threshold in the Hamiltonian case; however Escande, using a (non-rigorous)
method based on renormalization theory, indicates a value of ~0.0276 ([13], see
also [14]) and Greene's residue criterion [17], applied to a Poincare section for
(HI) (the so-called "leap-frog integrator with large step size") yields a value of
-0.02758 [15].

As for known rigorous results, we recall that there are no homotopically non-
trivial invariant curves for the standard map for values of ε^0.985 [24]. A lower
bound on the existence of the golden-mean KAM surface, given by Herman [19],
yields a ratio with the numerical expectation of 1/33 for the standard map, while a
ratio of 1/40 is obtained in [8] in the Hamiltonian case.

Finally, we mention that numerical extrapolations of our methods give results
in good agreement with the above numerical expectations.

(b) KAM Method

Let us first consider the Hamiltonian case. We recall that a KAM surface with
given frequency (or "rotation") vector (ω l3 ...,ωd) = ωeRd for (H) is a
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dimensional torus described parametrically by

)^Td+1. T Ξ R / 2 π Z .
(T)

where u is a (vector-valued) function, depending on the parameters ε and ω, with
the property that the flow induced by H in the (θ, ̂ -coordinates linearizes in

This definition, together with Hamilton's equation, is equivalent to require that u
satisfies

df
D2

U+ /

or, more compactly

D2u + /x(0 + w,i;c) = O, (E)

where D is the constant vector field on Td+1 given by

Remark ί. Equation (E) plays an important role in Percival's analysis [32] and
(with d = 1) in a particular case of Moser's generalization [29] of Aubry-Mather's
theory [3, 25]. For a numerical treatment of (E) (with some special /) see [6].

Remark 2. Notice that if u(θ, t ε) is a solution of (E) so is (θ9 t) ->c + u(c + θ, t ε) for
any constant vector c. In the following we will only consider solutions u with
vanishing average on T d + 1 .

Following [30] and [35], one can solve, under suitable hypotheses, Eq.(E)
using a Newton iteration procedure. Namely, one starts with an approximate
solution of (E), i.e., with a function υ for which the error term

e = D2υ + fx(θ + υ,t;ε) (AE)

is small, and constructs, solving a linearization of (AE) a new approximation, v', for
which the relative error term satisfies |e ' |~ O(\e\)2. In order to carry out such a
procedure, we require that

d e t ^ # φ θ , Jt = I + vβ, (C)

[which, in view of (T), seems quite natural] and that ω satisfies the standard strong-
irrationality assumptions: We assume that exists a number τ^d such that

y= sup (\ω • n + m\ \n\τ)~1 < ao , (DC)

meZ

where

v l / 2

n\ =
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The set of such "Diophantine" vectors will be denoted by 3)d and, from now on, we
will attach to any ωe@>d some τ (possibly the smallest) for which (DC) holds
together with the relative constant γ.

Thus, starting from some approximate solution ι/0) and applying iteratively the
Newton step, one obtains a sequence of new approximants vu\ provided (C) holds
for any j . One needs, then, to have a quantitative control of the functions involved
in the procedure.

For this purpose, we will construct an algorithm (which will refer to as "KAM
algorithm") that given upper bounds on norms relative to the approximants vU)

and e{j) provides upper bounds on the corresponding norms of the next
approximants vϋ+1} and eϋ+ υ . Here, the norms refer to a suitably chosen scale of
Banach spaces to be described later (compare Sect. 5 below). We then say that such
KAM algorithm converges if

M ω < o o , V/^0, lim £ ( / ) = 0, (K)

where MU} and EU) are upper bounds on the norms of {M{}))~x and eij). If (K) holds
one obtains a solution of (E) as (uniform) limit of the t i ϋ >s; if, for some j ^ O , M{j)

becomes infinite, we say that the algorithm diverges.
It is quite remarkable that, with a finite amount of computations, one can

usually decide with reasonable precision whether, for a given initial approximation
v^°\ the KAM algorithm converges or not.

To give an example, consider the system with Hamiltonian (HI) and let ω be

the golden-mean (]/5-l)/2, for which τ = l and y = (j/5 + 3)/2. The KAM-torus

equation takes the form

d d
D2u = ε[sin(# + w) + sin(β + u - f ) ] , D = ω—- + —. (El)

oθ ot
An obvious (but rather bad) initial choice is v{0) = 0, for which

In this situation the KAM algorithm presented below converges for
|ε|^0.000028 but diverges a t ; = 7 for |ε| = 0.000029.

To explain this fact we observe that one way to prove the convergence of the
KAM algorithm, which we will actually follow, is to find a simple explicit
condition ( Ξ " K A M condition") that if satisfied, for somej 0, by M ( / o ) (t\.£Uo)\),
MUo) and EUo) yields (K). Now, roughly speaking, if the algorithm converges then
the KAM condition will eventually be satisfied and the fast rate of convergence of
the scheme makes usually possible to check the condition after only few steps
(typically 10-20).

We discuss now briefly the mapping case. Analogously to the Hamiltonian
case, a KAM curve with frequency (or rotation) number ω is a circle represented
parametrically by
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so that in the ^-coordinates, φn corresponds to

The KAM-curve equation for (M) is the readily seen to be

D2u + fx(θ + u;ε) = 0, (EM)

where D denotes here the linear finite-difference operator

u)(θ) = u (θ + °Λ -u (θ(Du)(θ) = u (θ + °Λ -u (θ- | V (DM)

At this point, the above discussion for the Hamiltonian systems holds word-by-
word in the present situation with the only exception of theDiophantine condition
(DC), which becomes now ω/2πe^1, necessary to control the inverse of D.

(c) The Initial Guess

The efficiency of a Newton algorithm is of course related to the initial guess.
The choice of υ{0\ which in conjunction with the above KAM algorithm, will

yield the mentioned results for (HI) and the standard map, is related to the
analyticity properties of the KAM surfaces in the parameter ε.

As already pointed out in [28], KAM surfaces [of systems like (H) with
fix, t 0) = 0] are analytic in ε near the origin (for a new proof avoiding the use of a
Newton method, see [11]). In fact, a trivial byproduct of the above Newton scheme
will be that if one starts with an approximant ι\ which is analytic in ε in some
domain BcC and if (C) is satisfied uniformly in B, then also υ' is analytic in B.

Thus, it seems quite natural to try to compute explicitly a few terms of the
^-expansion of a KAM-torus.

Consider (H) and let, for simplicity, d=ί and /(x, t ε) = εg(x51). Then inserting
the series

u{θ,t\ε)= Σ
ι= l

into (E) and comparing powers of ε, one gets

' (u{i))k'

keKi i=l KΊI

where Kz is the set of all non-negative integer vectors fc = (fcl5..., fcj e Nz such that

Σ '*,-=/•
i = 1

Notice that these are linear equations and that the right-hand side of (EP)j is a
combination of u{1\ ...,uil). Thus, one can solve (EP)Z iteratively. [The same
formulae hold for the mapping case (M) if one drops the £.]
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For example, in the (HI) case, one obtains immediately

1 . . 1
ω2 sin(θ-ί) L

\ - ^ sin2θ + ί\ + 7—^2 ) 7^—^-2 sin(2θ-0
2 |_4αr \<χr (ω—l)/(2ω —1)

1 1 \ . sin 2(0-ί)
o1 ( ω - l ) V 4(ω-l) 4

Our initial approximate solution will be

v{0)= X u ( ϊ )e z (IG)
1=1

with lo = 24 for (HI) and /O = 38 for the standard map.

(d) The Role of Computers

Even though the solution of (EP) is completely elementary, the concrete
calculation of u{l) is not a trivial task: Even in the simple (Hl)-case, computing (IG)
with l0 = 24 means to evaluate 2756 non-zero Fourier coefficients.

Here enters the aid of computers, which may be used to give rigorous lower and
upper bounds on the result of (possibly) lengthy operations between real numbers.
A possible way of using rigorously a computer is to perform the so-called interval-
arithmetic in the fashion of [22] or [10]. This is the strategy that we followed in
order to evaluate the Fourier coefficients of v(0\ using a VAX 8600. Actually, we
used mechanical computations also for the evaluation of the norms relative to the
initial approximation and for the application of the KAM algorithm; however the
latter computations are sensibly simpler and faster than the former.

The above choice of the "order" /0 has been made so as to obtain a compromise
between a (relatively) little amount of computations and "reasonable" quantitative
results; compare, also, Remark 13 of Appendix D.

In proving our results, we will be careful in clearly separating the theoretical
parts from the computational ones and we will provide and comment the main
computer program that we used.

(e) Concluding Remark

The existence and construction of smooth but not analytic KAM surfaces for a
given system is a relevant and difficult problem. Even in the case of the standard
map it is not known whether a given KAM curve undergoes, as ε is increased, a
gradual loss of smoothness or if the transition from analyticity to discontinuity is
an "instantaneous" phenomenon. Such problems remain beyond the reach of the
techniques presented here. However, let ρm denote the "maximum radius of
^-analyticity" for a given KAM-torus, i.e.,

ρm= inf {radius of convergence of £
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It is quite clear that implementing further the above ideas and techniques one
could in principle prove existence of KAM surfaces for \ε\<ρm. Our results and
their numerical extrapolations (compare Sect. 9) seem to indicate that, at least for
some special models, ρm might actually coincide with the breakdown threshold.
This would not only support the second hypothesis considered above, but would
also show a deep connection between ε-singularities and dynamics.

2. Newton Method

In this section we describe the Newton iteration procedure and solve the
associated linearized equation [ = Eq.(2.1) below]. To stress the algebraic
character of this section we do not specify yet the functional spaces in which we will
work. /

Let v and e satisfy equation (AE) with .Jt = I + υθ invertible I as above
dvλ \

(vθ)ij= -^~ I and denote with a superscript T matrix transposition. Then one has

the following

Lemma 1 (Moser-Salamon-Zehnder). Let z be a solution of

D(jMτJiDz) = - J/Te. (2. ί)

Then, setting ,, ,

the following equation holds:

with

d2f
where, denoting by fxx the matrix with entries (fxx)ij= — λ — ,

qx = fx(θ + v + w,t;e)- fx(θ + v, t ε)- fxx(θ + υj; ε)w,

Furthermore the matrix-valued function si satisfies

, dθdt

(2.3)

Remark 3. For Eq. (2.1) to make sense, JiΎe must have vanishing mean value (over
Ύd+1) and that this is indeed the case follows from (AE). In fact, denoting by δι} the
Kronecker symbol,

T _ d dυl 2
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Proof of Lemma ί. Using the definitions of w, v', and e\ (2.2) can be rewritten as

where fx and fxx are evaluated at (θ + v,t;ε). Then, equation (AE) implies

D2(Jίz) + fxxJίz =-e + eθz + q2. (2.4)

Take the gradient with respect to θ of (AE) to get

D2Jf + fxxJf = eθ9 (2.5)

so that (2.4) becomes

D\Mz) - {D2J/ί)z = -e + q2.

Now, use the definition of q2 to get

MτΏ\Jίz) - J(τ{D2Jί)z = - J4Ύe + (MΎΏM - (DJ(τ)Jί)Dz,

which will be easily recognized as Eq. (2.1).

It remains to prove (2.3). Integrating by parts one obtains, for any /, j ,

Finally, Eq. (2.5) and its transposed will yield easily the second equation in
(2.3). •

We proceed now to solve (2.1), referring to the next sections for the precise
assumptions and estimates. For a (vector or matrix-valued) function onT d + 1, with
vanishing mean value </z), we denote

(D ~' h) (0, t)= Y - ^
(π,m)ez^+1 i(oj-

(n,m)Φ0

where the hat denotes Fourier coefficients and the dot the standard inner product.
Then, the unique solution of (2.1) for which

<»= ί w ί ^ τ Ξ < ^ > = 0 (2.6)

is given by

z = D-1{(JfτJ()-1[c0-D-1(Jfτe)]}+cι, (2.7)

where the constant c 0 is chosen so as to be able to invert D the second time and c1

so as to have (2.6):

c0 = <iMΎJt) ~lYx dJ/ίΎJί) ~λΏ~ \MΊeγ),
(2.8)

Remark 4 (The Mapping Case). To adapt this section to the mapping case (M),
(EM), (DM) one needs simply to make the following modifications. Set d= 1 and
consider ί-independent functions of θ e T (this corresponds to substitute Ύd +1 with
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T in the above formulae); substitute the expression J4Ύ Jί [appearing in (2.1), (2.7),
and (2.8)] with

finally for h with mean-value (on T) zero define D~ιh, in the obvious way, by
setting

(D-ιh){θ)= T ^
nez ._ . nω
«ΦO z2sin I —

Notice that the hypothesis that ωβπe^3x [see (DC)] implies

sin I --- (2.9)

After these modifications the whole section holds word-by-word for the present
case, but notice that now, as well as in the Hamiltonian case with d= 1, stf and
hence q2 vanish identically.

3. Norms and Function Spaces

In order to provide the Newton procedure with estimates necessary to control the
objects involved, we need to fix suitable function spaces with relative norms.

The choice of norms (for d ̂  2) is a rather subtle point if one is interested in
obtaining "optimal constants" and "optimal dependence" on the dimension d.

We will consider complex functions with values in a vector space Y, where 1r

can be either Cd, or the space of linear maps from Cd into itself, denoted by
or the space of linear maps from Cd into if (Cd), denoted by ^{C\ ^(Cd))

The norms that we will use in the vector spaces "V are the following.
If c = (cu ...,cd) belongs to Cd (or to any subspace of Cd) we set

/ d y/2 d

\ c \ = ( Σ \Ci\2) , I c | i = Σ \Ci\\

\ί=l / ί=l

if Me^(Cd) and Te<έ{C\<f{Cd)) we set, respectively,

\M\= s u p \Mc\, \T\= s u p \Tc\.
ceCd ceCd

| c | = l | c | = l

Now, by rMp(ξ,Q]Ψ") we denote the space of real-analytic functions

which are periodic (with period 2π) in each variable θu ..., θd, t. We regard, then,
^piξ.ρ Y) as a Banach space with respect to either the supremum norm

=( Σ sup|Λf|
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if h is Cd-valued, or with respect to the supremum norm
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= sup
ceCd

|c| = l

if h takes values in <f(Cd) or y(Cd,
In treating the mapping case, without giving explicit notice, we will refer to the

subspace of &p(ξ, ρ; C) off-independent functions, which we will still denote by the
same symbol .^p(ξ,ρ;C).

Finally, we recall here, for convenience, the following standard notation. If h is
a (smooth) Cd-valued function defined on some domain of Cd, hx (or dji) denotes
the matrix-valued function with entries

and hxx (or dxxh) the ^ ( C J , ̂ (Cd))-valued function defined by setting, for any

4. Control of the Solution of the Linearized Equation

In order to estimate the solution z of the linearized equation (2.1) we need two
technical lemmata, which will be proven in Appendix A. The first is a standard
inequality for holomorphic functions and the second is a result a la Rύssmann
[33,34].

Before stating the lemmata, we define, for any δ > 0 and / = 0,1, the following
"small-divisor series" for, respectively, the Hamiltonian and the mapping case:

\ι \2

φ)= (mapping case). (4.2)

Remark 5. At this point the formalism for maps is completely unified with that for
the Hamiltonian system (with d=l) and we will not need to make any further
distinctions between the two models provided one keeps in mind the adjustments
listed in the preceding remark.

Lemma 2. Let he^p(ξ,ρ;Cd). Then for anyθ<δ^ξ,

Lemma 3, Let he$p(ξ,ρ\Cd) have mean value (on T d + 1 ) zero. Then, for any
^ , and for / = 0,l,

The same inequality, with 1 = 0, holds if he@L
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Now, let z be the solution of (2.1) given by (2.7), (2.8) and assume that v,
e£&p(ξ,ρ;Cd) and that Jΐ = (I + υθ) is invertible on Δξtβ. Denote by M, M, and E
upper bounds on, respectively, \J?\ξtρ, \^~i\ξ,ρ and \e\ξtρ and by st(δ) an upper
bound on σt(δ). Then, one has, for any 0 < δ < ξ,

(4.3)

(4.4)

where

We remark in passing that usually (i.e., if δ is not too close to ζ) σo(δ)^>σo(ξ).

Proof of (4.3) and (4.4). We start by estimating the constants c0 and cι given in
(2.8). The relations \M\=\M\ \Jl~x\^\M\~l and the positivity of the matrix
JίΎM for (θ,t)eΎd + 1 imply the estimates

M~ 2 ^ \JίΎJM\ ^ M2, (θ, ί, ε) eΔξtQ,

M~2^\(JiτJi)~'

\({JiτΛ

where Zl ̂  Q is defined in the preceding section and, as above, < > denotes average on
the torus T d + 1 (or on T for the mapping case). Now, applying Lemma 3 with δ = ξ,
one obtains

\co\SM3M2so(2ξ)E,

and, applying the same lemma twice with δ = ξ/2, one obtains

\cxI ̂  MM2s0(ξ) (\co\ + \D- \Jίτe)\ξ/2,e)

^ MM2s0(ξ) [_{M3M2s0(2ξ)E + Mso(

In the same fashion, applying Lemma 3 twice with δ replaced by (5/2, one gets easily
(4.3) and (4.4). Q

Remark 6. If / and υ are odd functions of (x, t) [as it will be the case in our
applications to (HI) and to the standard map], c1 vanishes being the average of an
odd function. Thus, in such case, (4.3) holds with b = bί.

5. KAM Algorithm

Maintaining the above notations and the assumptions

we collect the main estimates relative to the Newton iteration procedure in the
following
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Lemma 4 (Inductive Lemma). Let w, e' be as in Lemma 1 and set ξ
one has

131

;-δ>0.Then

with (b being as in (4.5)J

= Ea, a = b(MMso(δ))2,

and, denoting by F3 an upper bound on \fxxx

(5.1)

where
= l for d^

so(2δ)'

Remark 7. If ξ' + V+W exceeds the widths of the (0, ί)-analyticity domain of /
then F3 = + oo and the lemma is trivially empty.

The proof of the lemma in d = 1 is a straightforward application of the results of
the preceding section, namely, Lemma 2, (4.3) and (4.4). But the same arguments
(with the same constants!) work also for d ̂  2 thanks to the definition of Sect. 3. To
give an example, let us estimate the "tensor-valued" function vΘΘ appearing in v'θ:

(
~ sup

c,c'eCd \i

/

S sup 1 ]
k l - k ' l - i \

< δ~1 sup

d

Σ
^ 2

2

i J
"57Γ Σ
(Jc/. /

(
>

c'j Σ

- Cf'j

dv

0uι

dv

2 \

ξ-δ.ρj

2

2 \

J

1/2
1
1

\

QJ
1/2

1/2

where the first estimate comes from Schwarz inequality and the second from
Lemma 2 (with d = l). Finally, to estimate the q2 term (appearing in the definition
of e' for d^2) apply Lemma 3 to [see (2.3) and (2.7)]

and ι[c0-D-\Jίτe)~\. •

The KAM algorithm, referred to in the introduction, is obtained by iterative
applications of Lemma 4, after having fixed a suitable Banach-space scale.

More precisely, assume to have some initial approximate solution of (AE),
v = vi0\ belonging to &p(ξ0,ρ;Cd) for some ξo>0. For any strictly monotone
decreasing sequence of { y ^ l 5 ξι<ξ0, ξj>0, one can apply iteratively the
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Newton procedure and the above inductive lemma to obtain a family of solutions
of (AE), v(j) and e(j\ belonging to Mp(ζj, ρ; Cd), provided Jί{j} is invertible on Aξ ρ.
To be completely explicit, one uses Lemma 4 substituting iteratively, for; ^ 0, (ξ, ξ',
δ, M, M, W, Wu E, E) with (^ , ξj+ u δp Mu\ Mij\ Wu\ W[j\ E{j\ E{j+1}), having
defined j ]

ί = 0

j

~ J

M \-M Σ

oo,

That Mu+1) is a bound on

M)

<l

Σ we
ί = 0

1-1

\ξj+UQ

- 1

if

if

comes from

1 y

Σ W;)l

Now, the scale-sequence that we choose is simply given by

ί ^ ^ . i e , ^ n (5.2)

Remark 8. It would be rather lengthy to try to justify, on a general level, why (5.2) is
a "good" choice and we content ourselves by just mentioning that such a choice is
related to the "quadratic convergence" of the Newton procedure (compare [7,
Appendix C]).

Remark 9. Notice that the estimates in the Inductive Lemma involve upper
bounds st(δ) on the small-divisor series σt(δ) given in (4.1). Even though it is rather
easy to give rough evaluations of σ^d), it is very important, for the efficiency of the
algorithm, to have accurate estimates on σ^δ). We will show below how one can
obtain satisfactory results, employing computer-assisted estimations (compare
Lemma 9 and the following comments).

We conclude this section by pointing out that, in applications, the above
algorithm can be applied only a finite number of times. Thus, to establish the
existence of solutions u one needs to combine the algorithm with a KAM theorem,
which we proceed now to describe.

6. KAM Condition

Here, we prove a condition, which, if satisfied by MUo\ Mijo\ and Eijo) for some
Jo = 0? yields the convergence of the KAM algorithm and hence the existence of
KAM surfaces.
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Remark 10. In order to get a general, simple and explicit condition (in the style of,
e.g., [16]) we will need to make various estimates certainly not optimal (see, e.g.,
next Lemma 5). Thus, the use of a KAM condition, in connection with the problem
of obtaining good stability bounds, makes sense only in a suitable combination
with the KAM algorithm of Sect. 5.

Even though we will apply the KAM condition to vijo) and eijo\ we can state it
independently of the preceding section. In order to do this, we need to introduce
three constants X 1 ? K2, and k0 related to the upper bounds s^δ) on the small-
divisor series σ/(<5):

Lemma 5. Let σ^δ) be as in (4.1) with O<<5^1/2. Then

σι(δ)<Kιγδ-kι

9 (6.1)

where, denoting Eider's gamma function by Γ,

The same inequality holds for σt(δ) as in (4.2) (mapping case) setting d = 0 in the
definition of kt and d=i in the definition of Kt.

A proof of this simple lemma is given in Appendix B.
Now, let v, ee&p(ξ^ρ\Cd) satisfy (AE) for some ξ*>0. Assume that

Jί ~1 = (/ + vθ)"1 e 8$p{ζ%, Q Cd) and denote, as usual, by M, M, E upper bounds on
\J^\ξ^>ρ, \Ji~ι\ξ^Q, \e\ζ^ ρ and by F3 an upper bound on \fxxx\ξ^Vtρ. For simplicity
assume also that ζ^\ M, M are greater or equal than one.

Lemma 6 (KAM Condition). Let

If
Jf (M, MM, ξ^ \ F3) \e\ξ^ρ = JfE g 1, (6.2)

then equation (E) (respectively (E1)J has a unique solution ue^p(ξJ2,ρ;Cd) with
<M> = <I;>. Furthermore, I + uθ is invertible on Δξj2,ρ

 an^ o n e has

r~, (6.3)

\ue-Vβ\ξ.l2.Q< Jfif (6.4)

Remark 11. In order to prove the convergence of the KAM algorithm of the
preceding section, one has to check if, for j 0 = 0,1,..., condition (6.2) is verified with

ξ*> \<M\U*Q> \^~%*^ \ek*,e ^placed by, respectively, ξo/2jo, M(jo\ MUo\ EUo\ In
case of convergence (6.3) and (6.4) hold with v replaced by vUo) and the final
analyticity width in the periodic variables will be ξJ2 = ξo/2jo + 1.
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Proof of Lemma 6. First of all observe that the invertibility of (/ + uΘ) is a trivial
consequence of (6.4) and (6.2). Now, let v(j) = vij~1) + wij~1\ eU) be the functions
obtained by iteratively applying Lemma 1 of Sect. 2 (v(0) = v, e{0) = e). Let

^* — 2 2 J ' + I ' J~^* ^*

and let Vu\ V^\ Wu\ W[j\ Mu\ Mu\ and EU) be the bounds on the corresponding
norms yielded by the KAM algorithm described in the preceding section, with
sk(δ) = sk(δj) replaced by the right-hand side of (6.1). For simplicity, we replace W{j)

by

which can be done recalling the original derivation of Wι and using the bound

We claim that condition (6.2) implies, for a suitable Xo < X and for any j ,

Eij)<(Jf0E)2\ (6.5) j

, (6.6) j

(6.7) j

Before proving the claim, observe that (6.5), (6.6) yield easily the first part of the
lemma. In fact, since ξ{£[ξj2, (6.5) and (6.6) imply the uniform convergence in
&p(ξJ2,ρ;Cd) of ι/j) to a unique solution u with, by construction, <(w) = <ι;)
(compare Lemma 1).

We proceed now by induction on j . For 7 = 0 the claim is obvious. Assume the
claim true for 0,1, ...J and notice that (6.7),- is equivalent to

2 M 7 χ W ? 0 ^ l , (6.8),
ί = 0

which, since M and M are greater or equal than one, implies, for 0 ̂  i ^j,

M ω ^ f M . (6.9) j

Now, by the estimates in Lemma 4, by (6.6)i5 (6.7)ί5 and (6.9)f with i^j, observing

that fco^3/2, Ko>9, K^]/i2K0 and γ>2, one obtains easily the following

bounds for i^j
{ i 1 ) 2 ι , (6.10)

(6.11)

(6.12)

with

β = 100 K*γ428koM2(MM)8F3ξ~4k°, η = 24k°,

^0^14- K2

oγ
224koM(MM)4ξ~ 2 k o , η0 = 22k°,

β1=Ί3 K1Koy
224koM(MM)4ξ^{2ko + 1\ ηι~22ko+1.
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To give an example we derive (6.10) [the derivation of (6.11) and (6.12) are
completely analogous]. By (5.1), observing that b'/b^2ko and using the inductive
assumptions together with (6.9)ί? one has for i^j,

2 |_ A ξ^ A ξ:

where A [which is a bound on a of (5.1)] is given by

( 3 M M ) 2 + 2 M V 4 / l + ( 3 M Λ ? ) 2 ί -

Since γ > 2, k0 ^ 3/2, X o > 9, and ^ ^ 1,

*ξ~2k°22ko

from which (6.10) follows.
Now, notice that JΓ can be written as

βη\/β^], (6.13)
with some r> 11/10.

To prove (6.5)j+ι, let ,%~0 = βη(<Jf) and use (6.10) with i = l , . . . J , to get

Σ 2- Σ 0-1)2"

In order to prove (6.6)j+1, observe that conditions (6.2) and (6.13) imply the
following bounds

Now, (6.6)j+ί is equivalent to

ih =ζ*\2 2'+

and, by (6.11), (6.12), (6.14), and (6.2) one has

64
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Analogously, in order to prove (6.8);+ ί use condition (6.2), (6.13) and the fact

that %V/2± J
271

to get the bounds

™"-1 < 1 ( Γ 9 ,
JΓ 3238'

Thus, recalling that r> 11/10, one obtains

2M Y W-

(6.16)

Finally, (6.15) and (6.16) imply immediately (6.3) and (6.4). •

7. Application to the Hamiltonίan (HI)

In this section we apply the above KAM algorithm to the KAM-surfaces equation
associated to the Hamiltonian (HI), namely

d d
u) + sin(0 + w - ί ) ] , D = ω—Λ + ~, (7.1)

oθ ot

and prove the following

Theoreml. Letω = (]/~5-\)βandlet ξ = {2λl 10)"1 (-4.8 10~5),ρ = 0.015. Then
Eq.(7Λ) admits a unique solution u in ^p(ξ,ρ;C) with vanishing mean-value

,dθdt_ _ Q
= iU 'l'ε'(2ήf ~

For such solution one has

M ! . « < 0 , 8 2 ,

0.22 <|uθ(π,0; 0.015)| < | « β | ί i β < 0.2419.

Furthermore, if v is the polynomial approximant,

υ{θ,t;ε)= f u{l\θ,t)ε\ <u{l)} = 0, (7.3)
ι= i

where the u{l)'s are the unique trigonometric polynomials (of degree I) satisfying (EP)
with g = cosx + cos(x — t), then, for Zo = 24, one has

We split the proof of the theorem in four further lemmata, two of which can be
proven with the aid of a computer. The first is a general estimate on the error
function relative to approximants of type (7.3).



Construction of Analytic KAM Surfaces 137

Lemma 7. Let /(x, t;ε) = £g(x, t\ let v be as in (7.3) and let e be the associated error
function (cf. (AE)j. Let ξ,ρ>0 and denote by P the polynomial in ρ given by

lo

1= 1

which is an upper bound on \v\^ρ. Then

plo

l0!

sup \^xg\ξ) Σ^ηγ-Q1 X. Π (7.4)

where (as in (b) 0/ Sect 1) tfx= U e N 1 :

I
Proof. By definition of t/(Z) one has

Σ
= 0 /!

io- 1 ff q loWo-1)

y - ^ y εh y /! π
\k\ι=l

h (uU)fι

which implies

\e\ξ<Q sup \dι

xg\ξ

lo- 1 h(lo- 1)

y y oh

t | ,,(Olfci

Z- 11 1 1

Now, the term in curly brackets in the above expression can be written as

lo-l p ι lo-l lo-l h [uiiψi

(Σ F - j Σ ftΣ ρ

Λ

 t Σ h U
 L

k f
lo-l p^ lo-l lo-l I \u{i)\kι

= Σ τ r - Σ Σ ^ ^ Σ Π ' — —

lo-l Pι lo-l I \u^\kι

= iΣ I, - ;Σ ρ ' ^ . Π 1 ^ - •

Lemma 8 (Computer-Assisted). Let ξo = l/10; let v and ρ be as in Theorem 1
(Zo = 24) and let e be the associated error function. Then

| ίϋ jρ<8.023 K Γ 1 0 = £.

This lemma has been proven by the computer program "INITIAL" reported in
Appendix D. The ideas on which the program is based are the following. The
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system (EP) is readily solved in Fourier representation. In fact

Γ ί ί
u(l)=- —=- sin#+ -y sin(θ-ί)

I ω (1 -co)

and the Fourier coefficients of u ( / + 1 ) , for Z^>1, are given by

{k)
where the φ{k) for k e Jft are the trigonometric polynomials given by

By induction on /, it is easy to see that

where the cflm) are real coefficients odd in (n5m)5 i.e.,

A1) — —A1)
u (-n, -m) u(«.m)

Now, the first and main part of the program "INITIAL" gives, using interval-
arithmetic, an accurate evaluation of the numbers cflm), / = 1 , ...,/0 = 24. More
precisely, it is proved in Appendix D that

where, for each c^>m), xL, and x^ are rational numbers (with a finite fractional part
in binary representation), verifying

F 4 1 0 7 ^75)
The second part of "INITIAL", which, from a computational point of view, is
trivial with respect to the first one, evaluates the supremum norms according to the

k< H + N K s t / ( ί ) > (7-6)

$.m)\eM + MK=U<i>, (7.7)

v\ξ.βύ Σ QlUW, \vβ\ξ.β£ Σ QιUψ, (7.8)
ί =• 1 i = 1

together with formula (7.4) with \u{l)\ξ replaced by U{1\ sup {\dι

xg\ξ) and

\δι

x

0 + 1g\ξ + P replaced by CA(̂ ) = cosh^ + cosh2ξ and Ch(ξ + P).
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Remark 12. We point out that the program "INITIAL" yields actually much more
than the bounds indicated in Lemma 8. In fact, it gives "explicitly" the Taylor and
Fourier representation of the initial approximation υ. [The quotation marks refer
to the fact that the real numbers involved in such representation are given in terms
of intervals (xL,xv) verifying (7.5).]

In order to apply the KAM algorithm we still have to provide accurate bounds
sk(δ) on the small divisor series σk(δ). To do this, we will use the following
elementary lemma, which is proven in Appendix C.

Lemma 9. Let ωe(0,1) be a quadratic irrational number (i.e., ωe^1 with τ = l).
Let 0<(5:g 1/2 and let σk(δ) be as in (4.1). Then for any integer N^.1 one has

[_(,)N \ωn — mj
where

AN = {(n,m)eZ2\(0,0) such that -(JV-l)gwg(JV-l), ωn-f <m<ωn

and, setting α = <5(l + ω),

α

) = 3eδ/2e~aiN~ί) ~ (24 + (24iV + 36)α

+ (12N2 + 24N + \4)a2 + (4N3 + 6N2 + 4N + l)ot3 + N4a4),

4 8 / 9
/ ( 1 V

In order to apply this lemma in an effective way one should use it in
conjunction with a straightforward computer-assisted evaluation of the finite sum
over ΛN appearing in the definition of sk

N)(δ). To give an example, one can prove
bounds of the following type:

where the left-hand-side values are obtained by replacing the series in σk by the
finite sums over AN.

Finally, we have

Lemma 10 (Computer-Assisted). Let v9 e, V, Vx and E be as in Lemma 8 and set
M = l + F t, M ^ ί l - F i ) " 1 . Let vij) and eij) (v{0) = v, e(0) = e) be the sequences of
functions yielded by iteratively applying Lemma 1 of Sect. 2. Let Vij\ V^\ and EU)

( V{0)= V, F / 0 ) Ξ Vu Ei0)~E) be the sequences of numbers obtained by applying the
KAM algorithm of Sect. 5 with
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and with sk replaced by (see Lemma 9) s^J)\δj) with

Ntf = 250 2j, 7V(/} = 350 2j (j < 10) N{j) = 50 000 (j^ 10).

(Recall thai in Lemma 4 one can take b' = b.) Then the K A M algorithm converges.
More precisely, if J f is as in Lemma 6, setting ζ% = ζ10, one has

Jf£ ( 1 0 ) <2.884 10~6, (7.9)

- 1 2 , (7.10)

L V , ρ 0 - 6 , (7.11)

where jf is computed at (M ( 1 0 ) , M ( 1 0 ) M ( 1 0 ) , ξ~\ F3) with F 3 = max{l,
l ϋ )

Theorem 1 is a corollary of this lemma with ξ = ξJ2.
The proof of Lemma 10 is based on a straightforward translation in computer-

language of the explicit formulae indicated above.
The upper bounds in (7.2) are obtained by observing that

and using Lemma 8. The lower bound in (7.2) is based on a computer-assisted
evaluation of vθ(π,0; 0.015) and on the inequality

K(π, 0; 0.015)| > \υθ(π, 0; 0.015)| - \uθ - vθ\ξJ2tQ.

8. Application to the Standard Map

Here we consider, in a way completely analogous to the preceding section, the
KAM-curve equation for the standard-map, i.e.,

, Du = u (θ+ ~) -u (θ- °~\. (8.1)

Theorem 2. Let ω = ( j/5-l)π and let ξ = (29 10)"1 (-1.96-10~4), ρ = 0.65. Then
Eq.(8Λ) has a unique solution ue^p(ξ,ρ;C) with vanishing mean-value on T. For
such a function one has

0.35 < \uθ(π; 0.65)| < \uθ\ξtQ< 0.3684.

Furthermore, if v is the analog of (7.3) in Theorem ί with /O = 38,

1= 1

then

ίo

uθ-υθ\ξtβ< 1.588

The proof of this theorem is obtained by following the strategy of the preceding
section with few obvious changes. More precisely, Lemma 7 and its proof hold
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identically for β, υ satisfying the analog of (AE), i.e.,

141

(8.2)

As for the bounds s[N\o) on the small-divisor series (4.2), one sees easily from the
proof of Lemma 9 (see Appendix C) that one can take

JV / nk

Σ. — nω\
sin ( Ύ

r
1/2

where the S^V) are as in Lemma 9.
Now the modifications indicated in Appendix D of the program "INITIAL"

together with the KAM algorithm yields

Lemma 11 (Computer-Assisted). Let v, ξ, and ρ be as in Theorem 2 (l0 = 38) and let e
be given by (8.2). Then

M ί i β<0.2527, |«β | ί i β<0.3668, |e|4.β<4.392 10~ 9.

Moreover, setting ξ^ = ξs and Ch(ξ)^coshξ, Lemma 10 holds word-by-word if one
substitutes (7.9), (7.10), (7.11) with

JfΈ ( 8 )<2.247 lCΓ 2 9 ,

\UΘ~~
l 1 1Π

9a Two Numerical Hints

There are several numerical experiments that one can carry out in relation with the
methods presented in this paper.

. 5

3. 5

3

π / 2 3/4 TT 2π

Fig. 1
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To mention an example related to the (Hl)-model, a numerical evaluation of

sup sup |e(0,f;ε)| = M(ρ)5

(θ,t)eΎ2 \ε\=ρ

where e is the error function associated to the polynomial approximation (7.3) with
ί0 = 38, indicates that M(ρ) < 10~5 (< ρ) for ρ <0.026, while for ρ ̂ 0.031 M(ρ) ~ ρ,
suggesting that a drastic phenomenon takes place for complex values of ε around
the believed break-down threshold (~ 0.027).

Another type of experiment, related to the standard map, is synthesized by
Figs. 1-4.

3 . 5

Fig. 2

ττ/2 3/4 TT 2π

Λ 5

3 . 5

Fig. 3

rτ/2 3/4 π
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4 . 5

3 . 5

rτ/2 3/4 π

Fig. 4

Figures 1 and 3 reproduce the graphs of

143

2 n

for, respectively, ε = 0.97 and ε=l , where u is the polynomial approximation of
Theorem 2. In Figs. 2 and 4 we took some initial (xo,yo) lying on the graphs of,
respectively, Figs. 1 and 3, and plot the evolution of such initial data according to
the standard-map flow (20 000 iterations). Figures 1 and 2 seem to be identical.

Appendix A

Proof of Lemma 2. Consider first a holomorphic function h0:
Then, Cauchy's integral formula implies, for any j ,

dho(θ,t;ε)

dθj

1
ϊπi

ho(θu...,ζί9...9θd,t98)

Now, iϊheMp(ξ,ρ;C% (Al) implies

ί^δ ρ= sup 2.
| c | = 1 ί= 1

ί

Σ
j

, a/

j

ξ-δ,ρ

kl = l ί \ i

ξ~d,ρ

(Al)
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Proof of Lemma 3. As above, let us first prove

\dι

θ D~ιh0\ξ_d^^σι(2δ)\h0\ξρ (A2)

for a holomorphic function ho:Aξ,ρ-*C, with vanishing mean value.
Denote by || | |^ρ the L 2 -norm

\\ho\\lQ= sup f |,

Then, for any v = (v l 9..., v d ) e { - l , \}\ μ e { - l , l } , one has

sup Σ ^2(II'v + w μ ) ξ l^o ( M , m ) (β) l 2 ^l |Λol lL
|ε| ίΞρ («,m)

To prove (A3), let, first, ξ < ξ and consider the function

h'o = ho(Θ — ivξ\ t — iμξ' ή.

Such function belongs to t$p(ξ — ζ', ρ C) and Cauchy's theorem implies

(A3)

Thus, ParsevaΓs identity yields

| 2 2ξ'(n v + mμ)_

Trff 1

Taking the supremum over ζ'<ξ one obtains (A3). Now, consider first the
differential case D = ω-dθ + dt. From the maximum principle, Schwarz inequality,
(DC) and (A3), it follows (dropping the index 0)

sup sup
| ε | ^ ρ ( v , μ ) e { - 1 , l } d τ !

sup Σ|/ί(π,m)| f Σ

sup

J(n • θ + mt)

ft 11 p(n • v + mμ) (ς - δ)

|ω n + w|

The case of the finite difference operator D [see (DM)] is proved in exactly the same

way substituting Ύd+ί withT, (ω n + m) with 2sin I — ) and using (2.9) in place of

(DC).

nω
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Now, let he@p(ξ,ρ;Cd) and / = 0. Then, by (A2),

If 1 = 1, then

- ^ σ o W Σ \hi\lQ =
i

| c | = l i

D 7- c

2

ξ~δ,ρ

= σι(2δ)1\h\ξ,e.

Finally, iί heMp(ξ, ρ; ̂ (C1)), applying (A2) to the functions Σ c Λ j> o n e n a s

-ιh\2

ξ^δiρ= sup Σ ΣD %jCj

k l =• 1 ' 7

sup X

= σo(2δ)2\h\ia.

Σ CjΛy

Appendix B

The estimates of Lemma 5 (for both the Hamiltonian and the mapping case) are
based on the following fact. Let ίΞϊl, 0<<5^^, then

Σ \n\'e-iM
(Bl)

To prove (Bl), let Qn = {xeRd:ni^xi^nt + \, ί= l , . . . ,d} . Then

V
neZd

Qn

R +

> area{xeRd:\x
d:\x\ =
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Now, in the Hamiltonian case, since γ>2, τ^.d^.1

m*O Wl

+ 2 7

!/2 /mίr^/U/ίΛ1/2 ( τ \ l l d + ί

<Kι7δ-k'.

For the mapping case, using (2.9) and again (Bl) with d=l,

V2

which actually gives a better bound than the one indicated in the lemma.

Appendix C

Proof of Lemma 9. Let

A% ΞΞ {(n, m) e Z 2 : n ̂  N, ωn — § < m < ω/t +1},

5 ΞΞ {(n, m) e Z 2 : ωn + 1 < m},

^-<5(M + M )

\ωn-m

Then, one has

(n,m)eZ 2

(«.m)Φ(O,O)

__ o / y /,(fe) I I y •*(£) 4 - 9 V /7^k^ λ 1 / 2

VA2v " ^ ^4^ " * m β

Since, for any n,

using (DC) with τ = 1, one gets

Σ < ! ) Σ
A*N n = N

This last sum can be computed explicitly, using the formula

.5,•"*-<-"Ϊ7Γ-7-*-
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Thus, using the estimate

~, vJs>o,
i-e-β β

one sees that
L a(n,m)<~^k

Now, let
{ 2

ω(x — rή + m—l^yS OJ(X — n) + m}.

T h e n ^i^j + iy

B B D(n,m) \ωX~y\

W h e r e

 e-ί<W + |y|)

ϊk= j Γx
2kdxdy.

{y-ωχ̂ i} \ωx-y\

Making the linear change of variables (ξ,η) = (x,y — ωx) one obtains

oo / -ηlω 0

Γk= f ^ j eδ{ί+ω)ξξ2kdζ + e-δη j ^ ( 1

1/2 \ -oc -η/ω

Thus, recalling that α = <5(l +ω), one obtains

0 ό/2ω p-η O ^/2ω 1 A

- ω 2 ^/2 /^2 1 - ω 2 5/2 ?? α

Analogously, one obtains

O \ι — CO )

with some r>0. Thus

D

Appendix D

Here, we report the program "INITIAL", which evaluates strict upper bounds on
the norms relative to the initial approximant v.

The program is written in FORTRAN and must, because of the interval-
arithmetic subroutines, be run on a VAX. The basic informations on the structure
of a VAX machine can be found in [39].
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We will try to maintain the notation as close as possible to that of Sect. 7, which
illustrates the basic strategy of the program.

All the functions involved in the program will be trigonometric polynomials of
the form (7.3) and, with abuse of language, we will refer to the real number c as to
Fourier coefficients. A function "α" of the form (7.3) will be represented by (A, Nί,
N2, NA, MAX A), where A is a vector of length NA listing the Fourier coefficients
of a, Nί, and N2 correspond to the relative Fourier indices (n, m) and MAX A is the
m a x i m u m of [\n\, \m\}.

The functions u( 1),..., u(24) will be represented by a unique quintuple (C,Nί, 7V2,
NC, MAXC); in this case NC represents the sum of the number of Fourier
coefficients of all the u's and MAXC is now also a vector \_MAXC{i) refers to u(i)].

All the real numbers R (or vectors) will be represented by a couple of numbers,
RD and RU, which are left and right ends of an interval containing R. (In the
comments R will refer, for short, to such a couple.)

Comments are preceded by "C.. ." . Rigorous bounds on results of a sequence of
elementary operations will be obtained by successive calls of the relative interval-
arithmetic subroutines and, to simplify the reading, these sequences of calls will be
preceded by "C — OP" followed by the FORTRAN standard notation relative to
the sequence of elementary operations in question.

PROGRAM INITIAL
C
C. .This program must be run in "G_floating" (compare FUNCTION U P ) .
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION CD(5512),CU(5512)

f
Nl(5 512)

f
N2(5512),NC(0:24),MAXC(24)

DIMENSION AD(5512),AU(5512),NAl(5512),NA2(5 512)
DIMENSION FACTD(0:24),FACTU(0:24),K(24)
DIMENSION RMD(-24:24,-24:24),RMU(-24:24,-24:24)
DIMENSION UD(24),UU(24),UlD(2 4),UlU(24)
PARAMETER (Pl=l.D+00,P2=2.D+0 0,P5=5.D+00,HALF=.5D+00)

C
C. .The numbers RHO = 0.015 and CSI = 1/10 are given (Since such numbers
C do not have a finite binary expansion we will substitute them
C with upper bounds provided by the interval-arithmetic subroutines,
C the relative lower bounds RHOD and CSID will never be used.)
C

X=15.D+00
Y=1000.D+00
CALL DIV(X,X,Y,Y,RHOD,RHO)
X=P1
Y=10.D+00
CALL DIV(X,X,Y,Y,CSID,CSI)

C
J0 = 24

C
C...Table of the factorials used in the program: FACT(n)=n!
C

FACTD(0)=l
FACTU(0)=l

DO 50 1=1,JO
C-OP. FACT(I)=FACT(I-1)*I

FACTD(I)=I
FACTU(I)=I
CALL MUL(FACTD(I-1),FACTU(I-1),FACTD(I),FACTU(I))

50 CONTINUE
C
C«.. Definition of omega : OM=(SQRT(5.D+00)-1)/2

XD=P5
XU=P5
CALL SQR(XD,XU)
CALL SUM(-P1,-P1,XD,XU)
CALL DIV(XD,XU,P2,P2,OMD,OMU)
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c
C. .The function u(l) is given:

NC(1)=4
MAXC(1)=1

N2(l)=0
C-OP. C(1)=.5/OM**2

XD=OMD
XU=OMU
CALL SQ(XD,XU)
CALL DIV(HALF,HALF,XD,XU,CD(1),CU(1))
Nl(2)=l
N2(2)=-l

C-OP. C(2)=.5/(1-OM)**2
XD=Pl
XU=P1
CALL SUM(-OMU,-OMD,XD,XU)
CALL SQ(XD,XU)
CALL DIV(HALF,HALF,XD,XU,CD(2),CU(2))
Nl(3)=-1
N2(3)=0
CD(3)=-CU(1)
CU(3)=-CD(1)
Nl(4)=-1
N2(4)=l
CD(4)=-CU(2)
CU(4)=-CD(2)

C
C...u(J) is constructed from u(J-l),u(J-2),...,u(1):
C

DO 1 1=1,JO
K(I)=0

1 CONTINUE
DO 2 J=2,J0

C
Co..The vector K (defined in the next comment )is reset equal to
C zero (for this it is enough to set K(l)=0,see FUNCTION NK):
C

...The FUNCTION NK(K,N) provides iteratively the integer vectors
K(l)f...,K(N), such that K(1)+2*K(2)+...+N*K(N)=N (the first
call must be done with the vector K identically zero and the
first output is K=(0,...,0,1), the last one is K=(N,0,...,0)
NK is equal to zero after the last call, otherwise is one).

1000 NNK=NK(K,J-l)

MODK=0
DO 100 1=1,J-l
MODK=MODK+K(I)

100 CONTINUE

:...the function A=(d/dtheta)**|k| [sin theta + sin(theta-t)] is given:
NA=4
MAXA=1
NA1(1)=1
NA2(l)=0

AU(1)=AD(1)
NA1(2)=-1
NA2(2)=0
AD(2)=-HALF
AU(2)=AD(2)
NA1(3)=1
NA2(3)=-1
AD(3)=AD(1)
AU(3)=AD(3)
NA1(4)=~1
NA2(4)=1
AD(4)=AD(2)
AU(4)=AD(4)
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RD=Pl
RU=P1
DO 3 1=1,J-l

C
C. .The Fourier coefficients of the function phi(k) are computed:
C

DO 4 11=1,K(I)
C
C. .The subroutine FMULT computes the Fourier coefficients of the
C product of a function A with u(I).The result is called again A.
C

CALL FMUL(CD,CU,Nl,N2,NC,MAXC,I,AD,AU,NAl,NA2,NA,MAXA)
4 CONTINUE

C
C
C. ..Computation of kl!*k2!*...*kJ!
C

IF (K(I).GE.2) THEN
C-OP. R=R*FACT(K(I))

CALL MUL(FACTD(K(I)),FACTU(K(I)),RD,RU)
ENDIF

C
3 CONTINUE

C
C . The (n,m)-Fourier coefficients of phi(k) are added up in the
C auxiliary matrix RM(n,m).
C

DO 5 N=1,NA
C-OP. RM(NAl(N),NA2(N))=RM(NAl(N),NA2(N))+A(N)/R

CALL DIV(AD(N),AU(N),RD,RU,XD,XU)
CALL SUM(XD,XU,RMD(NAl(N),NA2(N)),RMU(NAl(N)

;
NA2(N)))

5 CONTINUE
C
C...Update of MAXC(j):
C

IF (MAXA.GT.MAXC(J)) MAXC(J)=MAXA
IF (NNK.EQ.l) GOTO 1000

C
C. . .Definition of u(j) and clearing of the matrix RM:
C

NN=NC(J-l)
C
C...Since we chose to work with functions with vanishing mean value, we
C have RM(0,0)=0 (the computer will actually give a value of about
C + or - 10**-16 ,due to approximations involved in evaluating cancel-
C lations):
C

RMD(0,0)=0.
RMU(0,0)=0.

C
Co.. (D**-2) ρhi(k) is computed:
C

DO 6 I=-MAXC(J),MAXC(J)
DO 6 II=-MAXC(J),MAXC(J)

C-OP. IF (RM(I,11).NE.0.) THEN
IF ((RMD(I,II).NE.0.).OR.(RMU(I,II).NE.0.)) THEN
NN=NN+1
N1(NN)=I
N2(NN)=II

C-OP. C(NN)=RM(I,II)/(OM*I+II)**2
XD=I
XU=I
CALL MUL{OMD,OMU,XD,XU)
R=II
CALL SUM(R,R,XD,XU)
CALL SQ(XD,XU)
CALL DIV(RMD(I,II),RMU(I,II),XD,XU,CD(NN),CU(NN))
RMD(I,II)=0.
RMU(I,II)=0.
ENDIF

6 CONTINUE
NC(J)=NN

2 CONTINUE
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c
C. .The computation of the Fourier coefficients of u(j) (j«l,...,24) is
C completed.
C. .The second part of the program, where V, Vl, E of Lemma 8 are compu-
C ted according to formulae (7 .6 ) , (7 .7 ) ,(7.8 ) , and (7.1), follows.
C
C. . . EXC=EXP(CSI)

CALL EXPN(CSI,CSI,EXCD,EXCU)
DO 7 J=1,JO
DO 7 I=NC(J-l)+l,NC(J)

C
C...Since the u'ε are odd:

IF ((Nl(I).GT.O).OR.((N1(I).EQ.O).AND.(N2(I).GT.O))) THEN
C-OP. EX=EXP((Nl(I)+ABS(N2(I)))*CSI)

M=Nl(I)+ABS(N2(I))
CALL POWER(M,EXCD,EXCU,EXD,EXU)

C-OP. U ( J)=U(J) + (EX+l/EX)*ABS(C(I))
CALL DIV(Pl,Pl,EXD,EXU,XD,XU)
CALL SUM(EXD,EXU,XD,XU)
CALL MUL(ABS(CD(I)),ABS(CU(I)),XD,XU)
CALL SUM(XD,XU,UD(J),UU(J))

C-ΌP. Ul(J)=Ul(J)+(EX+l/EX)*ABS{C(I))*Nl(I)
X=N1(I)
CALL MUL(X,X,XD,XU)
CALL SUM(XD,XU,U1D(J),UlU(J))
ENDIF

7 CONTINUE
C

DO 8 J=1,JO
C-OP* V=V+RHO**J*U(J)

CALL POWER(J,RHO,RHO,YD,YU)
XD=YD
XU=YU
CALL MUL(UD(J),UU(J),XD,XU)
CALL SUM(XD,XU,VD,VU)

C-OP. Vl=Vl+RHO**J*Ul(J)
XD=YD
XU=YU
CALL MUL(U1D(J),UlU(J),XD,XU)
CALL SUM(XD,XU,VlD,VlU)

8 CONTINUE
DO 9 J=1,JO-1

C-OP. S=0.
SD=0.
SU=0.
K(l)-0

1010 NNK=NK(K,J)
C-OP. P=l.

PD=P1
PU=P1

DO 10 N=1,J
C-OP. P=P*U(N)^*K(N)/FACT(K(N))

M=K(N)
CALL POWER(M,UD(N),UU(N),XD,XU)
BD=FACTD(K(N))
BU=FACTU(K(N))
CALL DIV(XD,XU,BD,BU,XD,XU)
CALL MUL(XD,XU,PD,PU)

10 CONTINUE
C-OP. S=S+P

CALL SUM(PD,PU,SD,SU)
IF (NNK.EQ.l) GO TO 1010

C-OP. E=E+V**J/FACT(J)-RHO**J*S
CALL POWER(J,VD,VU,YD,YU)
CALL POWER(J,RHO,RHO,ZD,ZU)
XD=YD
XU=YU
BD=FACTD{J)
BU=FACTU(J)
CALL DIV(XD,XU,BD,BU,XD,XU)
CALL MUL(SD,SU,ZD,ZU)
CALL SUM(-ZU,-ZD,XD,XU)
CALL SUM(XD,XU,ED,EU)

9 CONTINUE



152 A. Celletti and L. Chierchia

C-OP. EX=EXP(CSI)
EXD=EXCD
EXU=EXCU

C-OP. E=E*RHO*(EX+1/EX+EX**2+1/EX**2)/2
C-OP. EXl=EXP(CSI+V)
C-OP. E=E+(V**JO/FACT(JO))*RHO*(EXl+l/EXl+EXl**2+l/EXl**2)/2

CALL MUL(VD,VU,YD,YU)
BD=FACTD(JO)
BU=FACTU(JO)
CALL DIV(YD,YU,BD,BU,YD,YU)
ZZD=YD
ZZU=YU
CALL MUL(RHO,RHO,ED,EU)
X=2.D+00
AAD=ED
AAU=EU
CALL DIV(AAD,AAU,X,X,ED,EU)
CALL DIV(Pl,Pl,EXD,EXU,XD,XU)
YD=XD
YU=XU
CALL SQ(YD,YU)
ZD=EXD
ZU=EXU
CALL SQ(ZD,ZU)
CALL SUM(EXD,EXU,XD,XU)
CALL SUM(YD,YU,XD,XU)
CALL SUM(ZD,ZU,XD,XU)
CALL MUL(XD,XU,ED,EU)
XXD=CSI+VD
XXU=CSI+VU
CALL EXPN(XXD,XXU,EXlD,EXlU)
CALL DIV(P1,P1,EX1D,EX1U,XD,XU)
YD=XD
YU=XU
CALL SQ(YD,YU)
ZD=EXlD
ZU=EXlU
CALL SQ(ZDfZU)
CALL SUM(EXlD,EXlU,XD,XU)
CALL SUM(YD,YU,XD,XU)
CALL SUM(ZD,ZU,XD,XU)
CALL MUL(XD,XU,ZZD,ZZU)
CALL MUL(RHO,RHO,ZZD,ZZU)
X=2.D+00
AAD=ZZD
AAU=ZZU
CALL DIV(AAD,AAU,X/X,ZZD,ZZU)
CALL SUM(ZZD,ZZU,ED,EU)

C
C. .The computation of the intervals containing the numbers V, VI, E
C is completed. Now we let the computer convert the result in de-
C cimal notation. That the numbers given in Lemma 8 are (generous)
C upper bounds on VU, VlU, EU follows from, e.g., [39].
C

WRITE(*,*)VD,V1D,ED
WRITE(*,*)VU,V1U,EU
END

C
C.FUN,
C

FUNCTION NK(K,N)
DIMENSION K(N)

C
KS=K(1)
K(l)=0

DO 1 1=2,N
IP=I
IF (K(I).GT.O) GO TO 2

1 CONTINUE
K(N)=1
NK=1
IF (N.EQ.l) NK=0
RETURN
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2 κ(IP)=K(IP)-I

KS=KS+IP
IP=IP-1

DO 10 I=IP,1,-1
K(I)=KS/I
KS=KS-I*K(I)
IF(KS.EQ.O) GOTO 3

10 CONTINUE
3 NK=1

IF (K(1).EQ.N) NK=0
RETURN
END

C.SUB.
SUBROUTINE FMUL(CD,CU,Nl,N2,NC,MAXC,I 0,AD,AU,NAl,NA2,NA,MAXA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION CD(5512) ,CU(5512),Nl(5512),N2(5512),

1NC(O:24),MAXC(24)
DIMENSION AD(5512),AU(5512),NAl(5 512),NA2(5512)
DIMENSION RMD(-24:24,-24:24),RMU(-2 4:2 4,-2 4:2 4)
MAXA=MAXC(10)+MAXA
DO 10 I=-MAXA,MAXA
DO 10 II=-MAXA,MAXA
RMD(I,II)=0.
RMU(I,II)=0.

10 CONTINUE
DO 1 N=NC(Iθ-1)+1,NC(10)
DO 1 M=1,NA
I=Nl(N)+NAl(M)
II-N2(N)+NA2(M)

C-OP. RM(I,II)=RM(I,II)+C(N)*A(M)
XD=AD(M)
XU=AU(M)
CALL MUL(CD(N),CU(N),XD,XU)
CALL SUM(XD,XU,RMD(1,11),RMU(I,II))

1 CONTINUE
NA=0
DO 2 I=-MAXA,MAXA
DO 2 II=-MAXA,MAXA

C-OP.IF (RM(I,II).NE.0.) THEN
IF ((RMD(I,11).NE.0.).OR.(RMU(I,II).NE.0.)) THEN
NA=NA+1
AD(NA)=RMD(I,11)
AU(NA)=RMU(I,II)
RMD(I,II)=0.
RMU(I,11)=0.
NA1(NA)=I
NA2(NA)=II
ENDIF

2 CONTINUE
RETURN
END

C
C
Co.The subroutines for the interval-arithmetic follow.
C We point out that the machine we used indicates automatically
C several arithmetical errors like overflows or square roots of
C negative numbers. Running this program on other machines might
C require the addition of routines controlling such errors.
C
C.FUN.

DOUBLE PRECISION FUNCTION UP(R)
C
Co..This function gives the smallest strict upper bound on a real number
C R represented in G_floating (double precision) notation.
C

INTEGER*2 KP(4)
REAL*8 R,X
EQUIVALENCE (X,KP(1))
X=R

IF (X.GT.0.) THEN
IF (KP(4).EQ.32767) THEN
KP(4)=-32768
UP=X
RETURN
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ENDIF
KP(4)=KP(4)+l
IF (KP(4).NE.O) THEN
UP=X
RETURN
ENDIF
IF (KP(3).EQ.32767) THEN
KP(3)=-32768
UP=X
RETURN
ENDIF
KP(3)=KP(3)+1
IF (KP(3).NE.O) THEN
UP=X
RETURN
ENDIF
IF (KP(2).EQ.32767) THEN
KP(2)=-32768
UP=X
RETURN
ENDIF
KP(2)=KP(2)+1
IF (KP(2).NE.O) THEN
UP=X
RETURN
ENDIF
KP(1)=KP(1)+1
UP=X
RETURN

ELSE IF (X.LT.O.) THEN
IF (KP(4).EQ.-32768) THEN
KP(4)=32767
UP=X
RETURN
ENDIF
KP(4)=KP(4)-1
IF (KP(4).NE.-l) THEN
UP=X
RETURN
ENDIF
IF (KP(3).EQ.-32768) THEN
KP(3)=32767
UP=X
RETURN
ENDIF
KP(3)=KP(3)-l
IF (KP(3).NE.-l) THEN
UP=X
RETURN
ENDIF
IF (KP(2).EQ.-32768) THEN
KP(2)=32767
UP=X
RETURN
ENDIF
KP(2)=KP(2)-1
IF (KP(2).NE.-l) THEN
UP=X
RETURN
ENDIF
KP(1)=KP(1)-1
UP=X
RETURN

ELSE
UP=X
RETURN

ENDIF
END

C.FUNo
DOUBLE PRECISION FUNCTION DOWN(R)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOWN=-UP(-R)
RETURN
END
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c
C. .The subroutines for the elementary operations follow. That taking,
C basically, UP and DOWN of the results given by the computer is
C enough to get rigorous results follows from [391, pag 177.
C
C.SUB.

SUBROUTINE SUM(AD,AU,BD,BU)
C
C... B = A + B
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
BD=DOWN(AD+BD)
BU=UP(AU+BU)
RETURN
END

C.SUB.
SUBROUTINE MUL(AD,AU,BD,BU)

C
C... B = A * B
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
IF (AD.GE.O.) THEN
IF (BD.GE.O.) THEN
BD=DOWN(AD*BD)
BU=UP(AU*BU)
RETURN
ELSE IF (BU.LE.O.) THEN
BD=DOWN(AU*BD)
BU=UP(AD*BU)
RETURN
ELSE
BD=DOWN(AU*BD)
BU=UP(AU*BU)
RETURN
ENDIF
ELSE IF (AU.LE.O.) THEN
IF (BD.GE.O.) THEN
B=DOWN(AD*BU)
BU=UP(AU*BD)
BD=B
RETURN
ELSE IF (BU.LE.O.) THEN
B=DOWN(AU*BU)
BU=UP(AD*BD)
BD=B
RETURN
ELSE
B=DOWN(AD*BU)
BU=UP(AD*BD)
BD=B
RETURN
ENDIF
ELSE
IF (BD.GE.O.) THEN
BD=DOWN(AD*BU)
BU=UP(AU*BU)
RETURN
ELSE IF (BU.LE.O.) THEN
B=DOWN(AU*BD)
BU=UP(AD*BD)
BD=B
RETURN
ELSE
B=DOWN(AD*BU)
R=DOWN(AU*BD)
IF (R.LT.B) B=R
C=UP(AD*BD)
R=UP(AU*BU)
IF (R.GT.C) C=R
BD=B
BU=C
RETURN
ENDIF

ENDIF
END
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C.SUB.
SUBROUTINE DIV(AD,AU,BD,BU,CD,CU)

C
C. . . C = A / B
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
IF (AD.GE.O.) THEN
IF (BD.GT.O.) THEN
CD=DOWN(AD/BU)
CU=UP(AU/BD)
RETURN
ELSE IF (BU.LT.O.) THEN
CD=DOWN(AU/BU)
CU=UP(AD/BD)
RETURN
ENDIF
ELSE IF (AU.LE.O.) THEN
IF (BD.GT.O.) THEN
CD=DOWN(AD/BD)
CU=UP(AU/BU)
RETURN
ELSE IF (BU.LT.O.) THEN
CD=DOWN(AU/BD)
CU=UP(AD/BU)
RETURN
ENDIF
ELSE
IF (BD.GT.0.) THEN
CD=DOWN(AD/BD)
CU=UP(AU/BD)
RETURN
ELSE IF (BU.LT.O.) THEN
CD=DOWN(AU/BU)
CU=UP(AD/BU)
RETURN
ENDIF
ENDIF

R=0.
CD«1/R
RETURN
END

C.SUB.
SUBROUTINE SQ(AD,AU)

C
C... A = A**2
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
IF (AD.GE.O.) THEN
AD=DOWN(AD*AD)
AU=UP(AU*AU)
RETURN
ELSE IF (AU.LE.O.) THEN
B=AD
AD=DOWN(AU*AU)
AU=UP(B*B)
RETURN
ELSE
B=AD
AD=DOWN(AD*AU)
C=UP(B*B)
AU=UP(AU*AU)
IF (C.GT.AU) AU=C
RETURN
ENDIF
END

C.SUB.
SUBROUTINE SQR(AD,AU)

C
C... A = SQRT(A)
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
BD=AD
BU=AU
AD=SQRT(AD)
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1 AD=DOWN(AD)
IF (UP(AD*AD).GT.BD) GO TO 1
AU=SQRT(AU)

2 AU=UP(AU)
IF (DOWN(AU*AU).LT.BU) GO TO 2
RETURN
END

C.SUB.
SUBROUTINE POWER(M,XD,XU,YD,YU)

C
C... Y = Y**M , M positive integer:
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION N(0:20)
IF (M.EQ.O) THEN
YD=l.D+00
YU=1.D+00
RETURN
ENDIF
CALL BIN(M,N,IMIN,IMAX)
YD=XD
YU=XU

DO 1 1=1,IMIN
CALL SQ(YD,YU)

1 CONTINUE
ZD=YD
ZU=YU
Il=IMIN

DO 2 I=IMIN+1,IMAX
IF (N(I).NE.O) THEN
12 = 1

DO 3 J=lfl2-Il
CALL SQ(ZD,ZU)

3 CONTINUE
CALL MUL(ZD,ZU,YD,YU)
11 = 1

ENDIF
2 CONTINUE

RETURN
END

C.SUB.
SUBROUTINE BIN(M,N,IMIN,IMAX)

C
C. .This subroutine gives the binary decomposition of any strictly
C positive integer M < 2**20.
C . The outcomes are the vector N , IMIN and IMAX:
C
C M = Sum(i=IMIN,..,IMAX) N(i)*2**i.
C

DIMENSION N(0:20)
M0=M
DO 1 1=0,20
N(I)=MOD(M0,2)
M0=M0/2

1 CONTINUE
C
C...Computation of IMIN and IMAX:
C

I=-l
2 1=1+1

IF (N(I).EQ.0) GO TO 2
IMIN=I
1 = 21

3 1=1-1
IF (N(I).EQ.0) GO TO 3
IMAX=I
RETURN
END

C.SUB.
SUBROUTINE EXPN(AD,AU,BD,BU)

C
C. . . B = EXP(A) , 0 < A < 1/2 :
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IMPLICIT DOUBLE PRECISION (A-H,O-Z)
XD=1.D+00
XU=l.D+00
BD=1.D+00
BU=1.D+00

C
C. . . R - K!
C

RD=l.D+00
RU=l.D+00
DO 1 K=l,15
CALL MUL(AD

f
AU,XD,XU)

C=K
CALL MUL(C,C,RD,RU)
CALL DIV(XD,XU,RD,RU,YD,YU)
CALL SUM(YD,YU,BD,BU)

1 CONTINUE
C
C...R = 10**-17 is an upper bound on Sum(k=16,17,...){(1/2)**k/k!}

R=1.D-17
BU=UP(BU+R)
RETURN
END

We indicate, now, the modifications necessary to use the above program for the
standard map case (for ease of notation we symbolically indicate intervals with
numbers and sequences of calls of interval-arithmetic subroutines with the
standard FORTRAN notation).

Suppress N2 and NA2; substitute (everywhere it appears) 5512 with 760, 24
with 38; RM becomes a (-38,38)-vector.

Define OM as{SQRT(D5)—ί) * PI, where "PI" denotes an interval containing
3.141592653589793....

Add a subroutine COSINE, which evaluates cosx with an accuracy of about
10**-16 in the fashion of the above SUBROUTINE EXPN.

The function u(\) is given by the following sequence of instructions: NC(1) = 2,
MAXC(1) = \, Nl(l)=l, C(1)=-1/(4*(COS(OM)-1))5 JV1(2)=-1,
C(2)=-C(l).

The function 4 = (d/dtheta)**|fc| (sintheta) (which substitutes the function
4 = (d/dtheta)**|fc| [sintheta + sin(theta-ί)] above) is given by the following
sequence of instructions: NA = 2, MAXA = ί, ΛL41(1)=1,
4(1) = HALF*(-1)**(X + 1), JV41(2)=-1, 4(2) = HALF.

In the second part of the program one needs simply to recall that, now, Ch(csz)
is defined as cosh(csi) (compare Lemma 11).

Remark 13. It is clear that the efficiency of "INITIAL" can be certainly improved,
however in order to get "significantly" better results one should probably turn to
more efficient computers (compare the data reported in Appendix E). Also, we
tried to make the program as simple as possible so as to reduce the possibility of
mechanical (and human, of course,) mistakes.

We conclude by mentioning that the running-time of "INITIAL" on the
VAX 8600 of the E.T.H. in Zurich was about, respectively, 60min of CPU time for
the standard map and 140min for (HI). The running-times of the "numerical"
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version of "INITIAL", i.e., a version without interval-arithmetic, were about,
respectively, 8 and 14 minutes.

Appendix E

Here we report some data relative to the behaviour of the KAM algorithm (see
Sect. 6) with respect to the initial approximation υ in the Hamiltonian case (HI).

Let υlo = υ be the polynomial approximant (7.3) of "order /0".
In the following table we report "with four significant digits" (see below) and for

Z0 = l, 2, ...,24, the maximum ρ for which the KAM algorithm with initial
approximant vlo converges yielding a KAM torus analytic in Mp(ξ, ρ; C) for some
c > 0. "With four significant digits" means that the KAM algorithm diverges if one
increases the values of ρ by 1/10000. (The value of/ at which the algorithm diverges
is, in the present situation, between 5 and 18.)

1

2

3

4

5

6

7

8

9

10

11

12

Q

0.0008

0.0023

0.0033

0.005

0.0055

0.0068

0.008

0.0078

0.009

0.0097

0.0104

0.0113

0.8/210

0.6/211

0.5/210

0.5/213

0.4/212

O.3/211

0.3/211

0.25/2 n

0.2/213

0.19/211
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