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Abstract. A renormalization procedure is proposed which applies to lattice
Feynman integrals containing zero-mass propagators and is analogous to the
BPHZL renormalization procedure for continuum Feynman integrals. The
renormalized diagrams are infrared convergent for non-exceptional external
momenta, if the vertices of the theory satisfy a general infrared constraint.
Under the same conditions as in the massive case [4], the continuum limit of
the renormalized theory exists and is independent of the details of the lattice
action.

1. Introduction

Feynman integrals with a lattice cutoff have a very specific structure. They are
absolutely convergent for finite lattice spacing, if all propagators are massive. The
continuum limit behavior of such diagrams is described by a lattice power
counting theorem [3], which uses a new kind of an ultraviolet (UV) divergence
degree (the well known power counting theorems of Weinberg [1] and of Hahn
and Zimmermann [2] do not apply to diagrams with a lattice cutoff). On the basis
of such a power counting theorem a renormalization program for lattice field
theories has been given [4], which is analogous to the BPHZ finite part
prescription for continuum Feynman integrals [5].

These methods work for massive field theories. In the presence of massless
fields, additional arguments are needed to avoid infrared (IR) divergencies. It has
been shown [6] that the UV-power counting conditions only have to be
supplemented by IR-power counting conditions, and IR-singularities are tractable
by the same methods as in the continuum [7, 8]. In this article, we use this power
counting to give a renormalization procedure for lattice Feynman integrals with
massless propagators.

* Present address
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In outline, the idea of the construction is as follows. As in the massive case, the
continuum limit is controlled by UV-divergence degrees. As a convergence
condition, they should always be less than zero. This can be achieved by
appropriate subtractions. However, in the presence of massless propagators,
subtractions at zero momenta are no longer IR-convergent. The IR-divergencies
can be avoided by choosing the subtraction points at non-exceptional momenta,
and by additional finite renormalizations, which are chosen in such a way that in
the sum of all diagrams to a given order all IR-singularities drop out. For example,
in a gauge theory the renormalized coupling may be defined as the value of an
appropriate vertex function at non-exceptional momenta, whereas the self-energy
of the gauge field has only a wave function renormalization and vanishes for zero
external momentum. However, when we want to renormalize diagrams separately
by the forest formula, we run into the problem of IR-singularities also if we choose
normalization points at non-exceptional momenta (cf. Sect. 2.1). For instance, to
make a two-point diagram UV-convergent, in general two differentiations are
necessary. This produces an IR-singularity by differentiating a propagator twice.

To prove the convergence of a renormalization procedure we shall use the
power counting theorem of [6]. This necessitates all subtractions and differenti-
ations being collected in the integrand, leading to a forest-formula like expression.
As indicated above, this induces IR-divergencies also for subtractions at non-
exceptional momenta. A possibility to overcome this problem is to introduce
auxiliary masses in the counterterms. This means we employ the (lattice-modified)
BPHZL renormalization procedure of Lowenstein and Zimmermann [9, 10].
Propagators of a bare mass μ (which may be zero) get a mass-dependence of the
form

μ2 + (s-l)2M2, μ2 + M2>0,

5 is called the mass parameter. Counterterms are now constructed for 5 = 0, and
after all subtractions are done we set s = 1, so that we get a renormalized theory of
the original model. Two important points must be taken into account.

1. Due to the auxiliary mass dependence of the counterterms, to get all UV-
divergence degrees smaller than zero, differentiations not only with respect to the
external momenta but also with respect to the mass parameter s are necessary. This
means that subtractions are combinations of lattice subtraction operators and
Taylor polynomials in s. They will be called generalized subtraction operators.

2. Additional finite renormalizations are necessary to avoid IR-singularities
by renormalized subdiagrams. For instance, inserting a self-energy subgraph into
a massless line usually produces a non-integrable singularity. This difficulty is
solved by imposing a normalization condition so that such a diagram vanishes for
zero external momenta and s = l.

Both conditions are satisfied if instead of the subtraction operator ζ [4] we
employ

ρ being the IR-divergence degree of the diagram, and the Γ are generalized
subtraction operators. Using these subtractions, the renormalized theory is IR-
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finite for all 5, including the case s= 1, and the continuum limit exists if
1. the external momenta are non-exceptional, and
2. r(F)^4 for all internal vertices 7,

where r(V) is the (lattice-) IR-degree of the vertex V (defined below). An internal
vertex is one with no external line. The latter constraint restricts the class of
renormalizable, IR-finite theories. For instance, a massless Φ3-theory is IR-
divergent in four-dimensions (r(Φ3) — 3). Note that we have made no statement
about the IR-behavior of the bare theory. The renormalized, massless Φ4-theory is
IR-convergent, but the bare theory is not.

In Sect. 2.1 we give a 1-loop example which should show the efficiency of the
auxiliary mass method. The reader who is familiar with the method may skip this
subsection. In the remainder of Sect. 2, general notations concerning Feynman
diagrams with an arbitrary number of loops are given. They are essentially the
same as in the massive case [4], and we only sketch the most important ones.
Furthermore, generalized notions of infrared and ultraviolet lattice divergence
degrees are introduced. Due to the introduction of the mass parameter 5, this
generalization of the lattice divergence degrees defined in [3] and [6] is necessary.
Finally, the definition of a generalized subtraction operator (GSO) is given. The
main theorem which describes the renormalization of lattice Feynman integrals
and lattice Green functions is given in Sect. 3. In Sect. 4, important properties of
GSO's are given. In the remainder of this article, the theorem is proved, using the
properties of GSO's and the power counting theorem of [6], by showing that all
UV- and IR-power counting conditions of this theorem are satisfied.

2. The Auxiliary Mass Method and Generalized Subtraction Operators

2.1. A One Loop Example

Before we are going to define the renormalization prescription to every order, we
shall consider the auxiliary mass method for the one loop case. To be specific,
consider the scalar Φ4-theory. The propagator is given by

where

and MφO is an auxiliary mass, a denotes the lattice spacing. For 5=1, the
propagator is massless. A one loop contribution to the four-point function is of the
form (Fig. 1)

π/α J4£.

ΐ(q',s,a)= j —-4 A(k',s,a)2(k + q',s,a). (2.3)
-π/a (2π)

To renormalize the diagram, following the ideas of the (lattice) BPHZ procedure,
one should subtract from the integrand its value at vanishing external momentum
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Fig. 2

q. However, for s = l, this produces a non-integrable IR-singularity, i.e. for the
massless theory this method does not work. The idea of Lowenstein and
Zimmermann [9, 10] consists in subtracting at q = 0 and simultaneously at s = 0,
i.e. giving the counterterm a mass. For non- vanishing q, the renormalized
Feynman integral

,a))2l (2.4)
-π/a(2π)

is IR-convergent also for s=l, and the continuum limit exists. Summing all
contributions of the form (2.4), we get the renormalized four point function at one
loop order. It depends on the auxiliary mass M. However, this dependence is only
exhibited by a momentum independent and finite (i.e. in the continuum limit
convergent) term, and hence may be compensated by a finite counterterm to the
lattice action of the form

a4 X c(M)Φ4(na),
neZ4

which satisfies the IR-constraint alluded to in the introduction. In this way,
normalization conditions at non-exceptional momenta may be implemented.

If a diagram having a UV-divergence degree greater than zero is to be
renormalized, we clearly have to differentiate not only with respect to the external
momenta, but also to the mass parameter s. Otherwise, the UV-divergencies would
not be cancelled because of the different mass dependence of the bare and the
counterterm integrand. This situation happens e.g. for two-point functions.

One may try to apply subtractions at non-exceptional external momenta
instead of using the auxiliary mass method. However, this does not work if
subtractions are directly applied to the integrand. To see this, consider the
Feynman integral (Fig. 2)

J(q 9 s 9 a ) = 7 ^Vl(k9qιa)V2(k9q;a)2(k'9s9a)2(k + q ' 9 s 9 a ) 9 (2.5)
-π/α (2π)

where the vertex functions F1; V2 satisfy

as /l-»0, (2.6)

and A is given by (2.1). Diagrams of the form (2.5) appear in perturbative lattice
gauge theory. The conditions (2.6) insure that the IR-constraints on the vertices are
satisfied.
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The UV-divergence degree of J is at least two. It can easily be seen that a
subtraction operator tq [4] does not apply to the integrand of (2.5) without
producing a non-integrable singularity, even if we choose a subtraction point q φ 0.
For, if Δ(k + q) is differentiated twice with respect to q and then q is set equal to q,
we get such a singularity at k = — q. For this reason, we employ the auxiliary mass
method which circumvents this problem. Normalization conditions at non-
exceptional momenta may be implemented afterwards by finite counterterm
contributions to the lattice action, satisfying the IR-constraint.

Finally, some words are in order concerning the IR-constraints mentioned in
the introduction. Consider the Feynman integral (2.5) again, but now set
Vί = V2 = ί . The vertices then have an IR-degree equal to three (three massless legs).
J is the one loop contribution to the unrenormalized two-point function in the
lattice Φ3-theory. As before, we make the subtraction of order two at q = 0 and
s = 0. Then J remains IR-finite, and the continuum limit exists. However, inserting
(2.5), or its renormalized expression as just described, into a massless line which is
integrated over, results in an IR-divergence. Consequently, to get a finite result we
should subtract from (2.5) its value at q = 0. But J(q\ s, a) does not exist for q = 0 and
5=1, and the same holds for its renormalized form. This means that the massless
Φ3-theory is IR-divergent in four dimensions.

If, instead of V1 = V2 = 1, the vertices satisfy (2.6), which means that r(V^
= r(F2)^4, then J exists for q = 0 and s = l. Furthermore, by finite renormal-
izations, it can always be achieved that diagrams with two massless external lines
vanish at zero external momentum. This means that massless bare fields remain
massless after renormalization. The same situation occurs for diagrams with three
massless external lines. In general, these are the only basic field vertex functions
whose overall subtractions imply additional finite renormalizations. They are
convergent even for zero external momenta, whereas in general exceptional
external momenta must be excluded.

2.2. Diagrammatic Notations

We now give some general notations which will be needed later on. In part, they
are the same as in [4]. Only the modifications and additions will be pointed out
here.

In perturbation theory, a 1PI function, i.e. a one-particle irreducible (1PI)
Green function is written as an asymptotic sum of contributions

Π P^A,nfl). Π [βj]\ , (2.7)
ί = l J = l / 0, 1PI

where

[βj]=a4 Σ Qj(A,na) (2.8)
neZ4

in general is a contribution of the interaction part of the action. The subscript in
(2.7) indicates that (2.7) is the 1PI part of

\ N M

. α)- Π [β;] β~So(X),
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where

and @(A) = f] dA^nά). A represents all fields At and S0 is the free part of the
t,neZ 4

action. Pi(A, nta) and Qt(A, n{d) are polynomials in the lattice spacing a and the
fields A at nta and neighboring lattice sites, and they are homogeneous in the fields
A. They represent basic fields or composite operators.

Expression (2.7) is a sum of 1 PI Feynman diagrams. We recall that a diagram is
called 1PI if it is connected and does not get disconnected upon cutting any one of
its internal lines [4]. Divergencies manifest themselves in 1PI diagrams when the
cutoff is removed. Such diagrams must be renormalized. Note that in our notation
we distinguish between 1PI functions and vertex functions. The latter are
amplitudes which result from a Legendre transformation of the generating
functional of connected Green functions. They are not always 1PI, e.g. for theories
with spontaneous symmetry breaking. However, every such diagram is mainly a
product of 1 PI graphs, and the latter can be renormalized as described below. In
particular, tadpole diagrams vanish after renormalization. When we take into
account symmetries, the vertex functions must satisfy corresponding Ward-
identities. After renormalization of all 1PI functions (to a given order), normal-
ization conditions of vertex functions are to be implemented by additional finite
renormalizations of proper functions, satisfying the IR-constraint indicated in the
introduction. This must be done very carefully in order not to produce new IR-
divergencies.

In the following we consider the 1PI functions in momentum space

Σ 9ι , (2-9)
O, 1PI V = 1 /

where #(Q)= £ <54 ( β- ̂ m ) for βeR4. Expression (2.9) is a sum of 1PI
meZ 4 \ a J

momentum space Feynman integrals.
In what follows we are using the notations of [4]. Here we only sketch some of

them. Let Γ be an arbitrary 1PI diagram

<yr($Γ) is the set of internal (external) lines of Γ and &Γ is the set of vertices of Γ.
Every internal line Le^fr is mapped by φr to its endpoints ALί BLE^Γ: φΓ(L)
= (AL,BL). Every external line Ee/Γ is mapped by ψr to its endpoint
BE = ψr(E) e &Γ. The latter are called external vertices of Γ. A vertex is called an
internal one if it is not an external vertex.

An external line EeSΓ carries an external momentum qE flowing into the
diagram Γ. q denotes a basis of the external momenta of Γ, e.g. q = (qEl, •• ,4£ J V_ 1),
where N is the number of external lines of Γ. qEN is given by momentum
conservation. Every internal line Le ̂ Γ carries a momentum 1L flowing from its
outgoing endpoint AL to its ingoing endpoint BL and being a sum of the internal
and external line momenta of L [4]
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where (fc) = (fc l 5 ..., km) is a basis of the internal ( = loop) momenta of Γ. At every
vertex, momentum conservation holds.

To every Le J5fr corresponds a propagator

AL(1L s, μ, a) = ̂  - M^M - 9 (2.ιo)

where n(L)eN and the auxiliary masses MLj are restricted by

M2

Lj + μ2

Lj>0. (2.11)

Furthermore1, eLjE^c

2, satisfying

ηLj(lLa*Q)>0 if /L e BZ = [ - π/a, π/α]4,

ηLj{lLa) BZ-periodic in /L ,

\imeLj(lL;a) = l 2

L .

s is the mass parameter mentioned in the introduction. The numerator is of the

PL(lL;s,μ,a) = ΣP^(μ,s)V(ί)(lL a), (2.13)
(0

where the sum is finite, P(ί) are polynomials and V(i} e ̂  BZ-periodic in /L, mf e Z.
For every vertex B e ̂ Γ we have a function

of a form (2.1 3) in variables {1L}B which are the momenta of lines at the vertex B. VB

is always assumed to be periodic with the BZ in all momenta.
The unrenormalized Feynman integral of Γ is given by

;s,μ,a), (2.14)
— π/a

where m is the number of loops in Γ and

/Γ(k,g;s,μ,α)= Π VB({lL}B;s,μ,a)' Π ΆL(lL'9s9μ,a). (2.15)
Be^r Le^r

This function belongs to the class of functions 3F .
To define a renormalized Feynman integral we need a precise definition of

internal and external momenta of Γ as well as of every 1PI subdiagram y of Γ: fcy,
qy. This is done as in [4, Sect. 2.2]. In addition, in every propagator and vertex of 7
we have to substitute the mass parameter s by s7. Correspondingly, the substitution
operators of [4] must be generalized. For 1 PI subdiagrams τ, 7 of Γ, τ being a
subdiagram of y,

Sγ : kτ^k\W) , qτ-+q\k\ tf) , sτ^s^ , (2.16)

1 The function classes ̂ , ̂ c, and ̂  used here are defined in [3] or repeatedly in [4, Appendix A]
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S° S},f(k\ qτ; s\ μ, ά) = f(k\W\ q\k\ q*) 9 s\ μ, a) . (2.17)

When applied to k\ q\ Sy is defined as in [4]. We remind the reader that the ky-
dependence of qτ via Sγ occurs only by the explicit ^-dependence of external lines of
τ, and that feτ is independent of qy via Sr Line momenta are always chosen in such a
way that they are natural in the sense of [3].

The notion of a Γ-forest (set of non-trivial, non-overlapping 1PI subdiagrams
of Γ) and related notions are defined in [5] or [4, Sect. 2], for instance. Especially,
for any 1PI subdiagram γ of Γ,

U (y) = {y' E U\y is a subdiagram of γ and / φ y} ,

and y(U) = y/y1...yc, where y l 5 ...,yc are the maximal elements of U(y).

2.3. Infrared and Ultraviolet Degrees

As mentioned in the introduction, the auxiliary mass method implies that we also
must differentiate a Feynman integrand with respect to the mass parameter s, to
get convergence of the integral in the continuum limit. To describe the order of
subtractions by divergence degrees, we have to introduce IR- and UV-degrees with
respect to momentum and mass variables. We consider functions VE ̂ c and F E 3F
of momentum variables (u1? ...,wr), (υl9 ...9vd\(qί9 . . .,<?w)>(#ι> --Λ^ and of s of the

V(u, v, q, q; s, μ,a)= £ Pf(μ, s) V^u, v, q, q; a) , (2.1 8)
ie l

where / is a finite set, Pt φ 0 are polynomials and V{ e mc

m ., mt e TL, mt φ mk if i Φ fe, and

p/ - A V(u,v,q,q;s,μ,a)
F(u9υ9q,q 9s,μ9a)=— - - - -. (2.19)

The numerator Fe^c is assumed to be of the form (2.18),

n

C(u9v9q9q9s9μ9a)= fl Ci(u9v9q9q;s9μ9a)9

Cl{u9v9q9q 9s9μ9a) = ei(li 9 a ) + (s-l)2Mf + μf9 etE^c

2 of the form (2.12),

* ' ™ z _ (2.20)
li= Σ bikvk+ Σ cikUk+ Σ dik<lk+ Σ ^fc>

fc=l k = l k=ί k=l

(^...^^ΦO or (cα,...,c l V)Φθ for all i = l , . . . , n .

Below w will denote the parameters of a Zimmermann subspace H [3], v will be the
complementary parameters, and q9 q the external momenta of a diagram, q
represents those external momenta appearing in the parametrization of H. IR-
degrees are always defined for fixed q. Non-fixed variables like w, v, q, s — 1 are
always explicitly indicated.

UV-degrees are defined as follows:

•fcVfa V 9 q 9 q ; s, μ, a) = max (degrsPf + degr- Vt), (2.21)

degr-sF(w, υ9q9q; s, μ, α) = degr -SF- degr-,C(w, υ9 q9 q\ s, μ, d)

= dii?ώsK-2nttlϊi, (2.22)
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where nuqs is the number of factors Ct depending on M, q or s. IR-degrees are defined
by

mm(d^ (2.23a)

F ί s (2.23b)-

and

^(s- i)\vF(u9 v9 q, q; s, μ, fl) = degr^(s_ i^Hw, v9 q, q; s, μ9 a)

-degrtt-(s_ 1 ) (ϋC(w, v9 q, q; s, μ, a) = degriΓq(s_1]lvV(u, v9 q, q; s, μ, a)-2muqs,

where muqs is the number of Ct which depend only on u, q and (5—1) (i.e.

2 _ \

k=ιe*qk a ^ / '

s _ !)F(M, ι;, (̂ , q\ s, μ, α) = degrώ|ϋί(js_ 1)F(w, ι;, ̂ , ̂  5, μ, α)

M being the number of Cf depending only on u I i. e. (fc,-1,..., bίd) = 0,(diί,..., diw) = 0,

= 0 and μ? = M? = 0 . degr.Pf and degrs _ ί Pt are the usual U V- and IR-
fc=l /

degrees of polynomials (defined in [6, Appendix A], for instance).
The degrees satisfy all "typical degree properties." For completeness, they are

listed in the appendix. Later on we will use them without any explicit reference.
We now define UV- and IR-divergence degrees of an arbitrary 1PI subdiagram

(2.25)
Le^v Be@y

r(y)= Σ r(AL)+ Σ r(VB) + 4m(γ), (2.26)
Le^y Befflγ

where m(y) is the number of loops in 7, and

ω(AL) = degrΪLSΔL(lL'9 s, μ, α) , ^

s _ υ^L(/L; 5, μ, a)

for Le J5fr and

ω(VB) = aefffi:}BSYB({lL}B; s, μ, a) , 2

}β; 5, μ, α)

for Be^Γ. These definitions are valid also for reduced diagrams [4].
We will write the divergence degrees in a vertex dependent form. To every line

Le £?Ί corresponds a pair of basic fields Ab Ak. L is called an //c-type line, having
z-type and fc-type legs. For every field Ai9 a UV-dimension dt and an IR-dimension
rt > 0 is defined such that

4 + ω(AL) ^dt + dk, 4 + r(2L) ^ rt + rk . (2.29)
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Let nk(B) denote the number of fe-type legs at the vertex B e 38 Ί (including external
legs) and ek(γ) the number of external fe-type legs of γ. Then we can write

4+ £ [ω(B)-4] - £ e^K ,
(2.30)

where

ω(β)=Σπfc(β)d, + ω(Fβ),

* , (2-31)

These forms of divergence degrees will be used in the following. Especially, we will
see that the IR-divergence degrees r(B) must satisfy some constraints to get IR-
convergence of Feynman integrals.

A general statement about convergence of Feynman integrals with massless
propagators can be made only for non-exceptional external momenta. The
external momenta g l 5 ...,qN of a 1PI function

N M ]

Π Λfo)- Π [β;]
= 1 7=1 J θ , l P I

or of a contributing diagram Γ are called non-exceptional [11] if

N

Σ f\ ( f\ Λ "I /Λ O Λ \0^ = 0, α^ejO, 1), (2.32)
i= 1

implies that all α~0 or all α—1.

2.4. Generalized Subtraction Operators

We now define generalized subtraction operators which apply to Feynman
integrals with zero-mass propagators. Let F be a function of the same momentum
and mass variables as before which is C°° in q and s.

Definition 2.1. Let <5εN0 = {0,l,2,...} and ?qs be defined by

sb 1 w

x ^T Λ—••• 3—F(u,v ,q ,q ; s ,μ ,a) (2.33)
\_ds° dqh dqίg Λ = o,s = o

for every function F which is C°° in q and s, where Λ,,^,...,/ ε^ are totally

symmetric in il9...9ig9 (2π/α)-periodic in qί9 ...9qw9 and lim P^ ί l f... j ί g(^ι, ...,qw;a)

— Qi^ •••j^ig If for every such F

[(1 — ζs)F](M, i;,A^, q;λs,μ, a) = 0(λδ+ί) as Λ,-»0, (2.34)

ί̂ s is called a generalized subtraction operator (GSO) of the order δ.
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The generalization consists in that in ?qs one also differentiates with respect to
the mass parameter s. By analogy, ΐ Q

q ( s _ l } is called a generalized subtraction
operator of order ρ, if for a function F which is C00 in q and s the function tρ

q(s- ί}F
is of the form (2.33), where δ is replaced by ρ and s by (s— 1), and

^^^^- (2-35)

Obviously, ?qs is a GSO of the order δ if ?q~\ defined by

(2.36)

is a subtraction operator [4] of the order δ — b, for every b satisfying Q^b^δ. An
analogous statement holds for Γ^s_1}.

We want to apply GSO's to functions F e ̂  of the form (2.19). To this end, we
have to exclude in (2.34) and (2.35) those values of the variables u, v satisfying

d r z

Σ bikυk+ £ cikuk+ £ eikqk = Q
k=l k=l k=l

for some ιe{l, ...,n} with μf = 0.
Generalized subtraction operators have important properties which are

responsible for the subtraction of UV-divergencies by applying them to Feynman
integrals, and that subtracted diagrams are IR-fϊnite. These properties will be given
in Sect. 4 when we have defined the renormalization procedure.

3. Renormalization of Lattice Green Functions

We give a prescription how to renormalize 1PI lattice functions

Π Λte) Π [βj (3.1)
i = l .7=1 J O . I P I

Expression (3.1) is a sum of 1PI Feynman integrals. At first, we define renormalized
Feynman integrals. As indicated in the introduction and in Example 2.1, an
important convergence condition is that every internal vertex B must have an IR-
divergence degree not less than four. This condition will be assumed in the
following.

Let = >

be a 1 PI diagram with m loops and ^Γ(q; s, μ, a) the corresponding unrenormalized
Feynman integral. The renormalized Feynman integral of Γ is defined by

where

;s,μ,a)= 7 d4k^ ...,d4kmRΓ(k,q;s,μ,a), (3.2)
— π/a

RΓ(k,q;s,μ,a) = SΓ £ Π (-f,Sr)-/r(C7). (3.3)
UeW γeU
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Here
1. Sγ are the substitution operators (2.16).
2. W is the set of all Γ-forests.
3. IΓ(U) is the unsubtracted Feynman integrand

/Γ(fc,g;s,μ,α) (3.4)

with the following substitutions depending on a forest U:
For every line Le^Γ (vertex Be3ur) there is at most one γe (7, so that

Le ^γ(B e J>y), but Lφ &f(B φ ̂ r) for all y' e U(y). If such ayeU exists, we write
2L(VB) as a function of the variables qγ, fc7, s7, otherwise as a function of fc,g,s.

4. τy is given by

for every 1PI subdiagram y of Γ. f^ΓΛ) and fj^ are GSO's.
The UV-subtraction degrees δ(y) and IR-subtraction degrees ρ(y) are given by

(3.6)

(3.7)
5e^y Λ

efc(y) is the number of external /c-type legs of 7. rk > 0 and rffc are the IR- and
UV-dimensions of the field Ak [cf. (2.29)]. Furthermore, the UV- and IR-subtrac-
tion degrees δ(B) and ρ(B), B e J>Γ, are constrained by

δ(B)>ω(B)
ρ\B)lδ(B) for every vertex Be^, (3.8)

ρ(B) = 4 for every internal vertex Γ

ρ(B) ^ min(4, r(B}) for every external vertex

ω(B) and r(B) are the UV- and IR-divergence degrees of the vertex B [cf. (2.31)].
Note that always ρ(y)-ί^δ(γ). If <5(y)<0, we set ̂  = 0, and if ρ(y)-l<0:
fQ(y) - 1 _ πLqy(sv-i)~Ό

5. The order of the factors in

Π (- W
yet/

is determined by the rule that for y l 5 y2 e U, y^ being a subdiagram of y2

(-τyιSyι) is ordered to the right of (-τy2Sy2).

For disjoint y l 5 y2, the order is irrelevant.

Theorem 1. Assume that every internal vertex B of the diagram Γ satisfies r(B) ^ 4,
and that the external momenta of Γ are non-exceptional. Then the renormalized
Feynman integral $Γ(q;s,μ,a) is absolutely convergent for every s and a>0. The
continuum limit α-»0 exists and is given by

\im@Γ(q;s,μ,a)= j rf4fc1? ...,d4kmRΓ(k,q,s,μ), (3.10)
—
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where

RΓ(k, q, s9 μ) = lim RΓ(k, q;s9μ,a).
α->0

If lim ίΓ(k,q;s,μ,a)φQ, RΓ is equal to the BPHZL renormalized continuum
α->0

Feynman integrand defined in [10] (with a different choice of internal momenta
[4]). If lim ΐr(k,q'9s,μ,a) = 0, also RΓ(k,q,s,μ) = 0. As for massive field theories,

«— >o
Feynman integrals which have a vertex with vanishing (naive) continuum limit do
not contribute to the continuum limit at all, after renormalization.

Renormalized diagrams are convergent also for s = l. As an important
convergence condition, r(B)^4 for all internal vertices B of the diagram, i.e. those
vertices having no external line. In general, they result from an interaction or
counterterm contribution to the lattice action. As the theorem shows, vertices with
an external line do not have to satisfy such a constraint. This means that the (non-
vanishing) external momenta provide an IR-cutoff. In most cases, the IR-
subtraction degrees satisfy ρ(y)^ 1 only for diagrams y with two or three massless
external lines, so that these are the only Feynman graphs which are affected by the
additional finite renormalizations [cf. (3.5), (3.7)]. After renormalization, they
vanish at zero external momenta.

As a corollary of this theorem we state the renormalization prescription for 1PI
functions (3.1). Such a Green function is a finite sum of 1PI Feynman diagrams.
The renormalization prescription is as follows. Every contributing diagram y will
be renormalized as described by Theorem 1 . The subtraction degrees are given by
(3.8), (3.9). These conditions, however, do not completely fix the subtraction
degrees of the vertices. This is done in the following way. Pt may be a basic field or a
composite operator. In the latter case, there corresponds an external vertex to Pί9

in every diagram y which contributes to (3.1). Furthermore, to every Qj
corresponds a vertex in every y which may be an internal or an external one. For
every composite P{ and for every Qj we denote the UV-divergence degree of the
corresponding vertex by ωt and τj and the IR-divergence degrees by r and vj9

respectively. These numbers are independent of y and depend only on the form of
Pt and QJ. In the same way, let for every Pt and Qj UV-subtraction degrees of the
vertices be given by δt and ηj9 and IR-subtraction degrees by ρf and σj9 respectively.
They are always chosen to be the same for all diagrams y contributing to (3.1).
Furthermore, they are constrained by the conditions

4,^,^) for composite Pt (3.11)

, for all ; = 1,...,M. (3.12)

In general, the constraints (3.8), (3.9) are satisfied for every contributing diagram if
(3.11), (3.12) hold.

Let P1? ...,PNo be basic fields and P#0 + 1, ...,P^ be composite operators. Then
the renormalized Green function of (3.1) is written as

Π NftPtqfi- Π [β;]£J , (3-13)
o + 1 j = l J θ , l P I

and we can state the following
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Theorem 2. The 1 PI function (3.13) is finite for each a > 0, and also in the continuum
limit α->0, if the following conditions are satisfied.

1. The external momenta g1? ...,qN are non-exceptional.

2. v^4 for all j=ί,...,M.

The 0->0-limit is given by the BPHZL renormalized continuum Green
function of (3.1) [10].

From Theorem 2 we easily get a renormalization prescription for vertex
functions. They are not necessarily IPI, e.g. for theories with spontaneously
broken symmetries. Nevertheless, every diagram which contributes to a vertex
function is a product of IPI diagrams and other, finite terms. If the IPI graphs are
renormalized as described above and such that renormalized tadpole diagrams
vanish, the renormalized vertex functions are IR-finite and convergent in the
continuum limit. Every tadpole line entering a IPI subgraph is an external line of
this subdiagram of vanishing momentum, hence could produce an IR-singularity.
Vanishing renormalized one-point functions prevent such IR-divergencies.

When Ward-identities are to be satisfied by the vertex functions, then in
general additional finite renormalizations of IPI functions are necessary. This can
lead to non-vanishing one-point functions. In this case, it must be checked very
carefully whether no IR-singularities are produced. In particular, every vertex V
with a leg which gives rise to tadpoles must satisfy stronger IR-constraints than
r(F)^4, namely, omitting the tadpole line, the resulting vertex V also should
satisfy the condition r(F')^4.

The above theorem gives a well-defined procedure to renormalize theories
containing massless fields (5 = 1). Massless bare fields remain massless after
renormalization. With respect to universality and power counting renormaliza-
bility, the same arguments as in [4] go through. The same holds for the
counterterm philosophy. All subtractions can be written as counterterms of the
lattice action, eventually after some symmetrizations of the subtractions [4]. Also,
they can always be chosen to be local. Counterterms and consequently re-
normalized Green functions depend on the auxiliary masses. This dependence can
be absorbed by addition of finite counterterms satisfying the IR-constraints. In this
way, normalization conditions at non-exceptional momenta may be implemented.

The constraints on the IR-subtraction degrees are stronger than those of [10].
This is not a lattice artifact. They are necessary to avoid IR-singularities by
subtractions. When we consider lattice Green functions in configuration space, the
external momenta are integrated over, and the constraints (3.11), (3.12) may be
replaced by the weaker conditions

As a simple example of Theorem 2, consider the massless lattice Φ4-theory with an
additional Φ6-interaction:

int = α4 Σ
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The IR-dimension of the Φ-fϊeld is equal to one. Hence, r(Φ4) = 4 and r(a2Φ6) = 6.
Powers of the lattice spacing have no influence on the IR-degrees. Hence, the
massless model is IR-finite renormalizable.

4. Properties of Generalized Subtraction Operators

Before we are going to prove Theorem 1, we list important properties of GSO's.
The first two lemmas state those properties of GSO's which are responsible for the
subtraction of UV-divergencies by applying them to Feynman integrals as
described in Sect. 3.

Lemma 4.1. Let ?qs and Γ« ( s_υ be GSO's and Fe J5" of the form (2.19). Then

1. a)
ι \ ι 7 / ^ τ - ι ^ - i τ - τ V * /

Suppose that for every i = ί,...,n the coefficients satisfy (bn,...,bid) = Q only if
(dn,...,diw) = OandMf = 0. Then

2. a)
**/ - - - σ - ι / t / s - ί / v Λ — j.;- — ~--σ-vijs- ? M 0"\

Proof.

- Γ dfc a' _ "I

— ~F(u v q q sμ α)<d^ F(u υ q q s μ a)

and that proves l.a. The proof of l.b follows the same way. To prove 2.a, note that
by assumption all propagators which depend on q or (s— 1) are also dependent on
v, hence

db & t

^-—^—^(u^q^s^a)\ )

db dl

u,υ,q,q; s,μ,a)^degr^sF(ι/, v9q,q; s,μ,a)-(b +1/|),

where |/ |= £ / f. Consequently
ί = l

'[«£IF|"
)-(& +I/I) = degr^s^

for |/| = g. 2.b follows analogously. Π

Lemma 4.2. Lβί ^(;iυ, ζs GSO's, ρ-l^δ,and τfs: &-+^ defined by

l-fί = (l-ζ(7ί1))(l-ζβ). (4.3)
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Let FE^ be of the form (2.19). Then

1 . degr^fgF ̂  degr0fgF + δ . (4.4)

2. deg?0f^F^degr0F. (4.5)

Assume that for every i = l , . . . 5 n ίfre coefficients satisfy (6ίl5 . ..,fo ί d) = 0 orc/y if
M?=0. Tftβn

3. degr~ sτtF:gdegr~ sF, (4.6)

and

4. degr6(l-τ$F^degr~sF-(<5 + l). (4.7)

These are exactly the properties necessary to reduce UV-divergence degrees of
a Feynman integral systematically by application of τQ

q

δ

s. The statements 2. and 3.
are direct consequences of Lemma 4.1. We only have to note that if F satisfies the
additional constraint so does PqsF. The proof of 1. is nearly identical to that of [4,
Lemma 3.1.1]. To prove 4., note that

degr»(l - ΐ$F(u, r, q, q; s, μ, a) ̂  degrft(l -

by Lemma 4.1. Hence it is sufficient to show that

and this is done by using the same methods as in [4, Lemma 3.1.4]. Π

The following two lemmas state properties of GSO's with respect to the IR-
degrees of a function. Note that the q are fixed momenta.

Lemma 4.3. Let ?qs be a GSO andFe^ of the form (2.19). Ifforalli=\9...,n the
coefficients satisfy ( d i ί 9 ...,d ί w)φO only if M? + μ?φO, the inequality

ώkl,(S-i)F (4.8)

holds.

Proof. At first, we have

db dl

s _ 1} F(w, t;, ^f, q; s, μ, fl)^degrfi|gf?(s_ 1}F(M, υ, q, q; s, μ, a),

where for the first inequality we have used the constraints on the denominator of F.
Relation (4.8) is now a direct consequence of the inequality. Π

Lemma 4.4. Let t*q(s-ί} be a GSO and FE^ of the form (2.19). Then

1. degr^-Di^-DF^degr^.D^F. (4.9)

2. degr^^.D^.^F^degr^-D^F-ρ. (4.10)
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If for every i=ί,...,nthe coefficients satisfy (biί9..., bid) = 0 only i f ( d i l 9 . . . 9 diw) = 0
and Mf = 0, the inequalities

3- d^όMs_1)^(s_1)F^_degrύMs_1)F, (4.11)

and

4. degr^ ( s_1 ) |,(l-ίJ ( 5_1 ))F^degrΛ M s_1 )F + max(0,ρ + l) (4.12)

hold.

Proof. Let fceN0 and I = ( l l 9 ...,/w)eN£.
1. For every function FE^.WQ have

^ degr«^(s- DI, g ( 5__1 ) b ̂  ^(^ ̂  ̂  «; 5, μ, α)

^ degr^(s_ 1)kF(ίγ, t;, ̂  ̂  5, μ, a)-(b + 1/|) ,

hence for g = |/|

s-Di^-lf^.i^...^^!,...,^^ Λ-T - T^^-jF^v.q.
\_O(S—1) Oq = 0,s-ί=0

= degr-(s_ 1)|υF(M, t;, ̂  q; s, μ, a) .

The first statement of the lemma is now a direct consequence of this inequality.
2. For every FE^, we have

8b dl ,
-̂ F -̂ί f(^ ̂  9, 9; 5

? ̂s — i ) cq

db dl

^ degr-(s_ ί)lυF(u, v, q, q\ s9 μ, a)-(b + \l\) ,

and for g = \l\

Sb dl _
..tigι9'''w9 -^ - -^—lF(u9υ9q9q9s9μ9a)

\_0(S—1) Oq

ru^(s _ 1)}vF(u9 v9q9q; s9 μ, a)-

i.e.

This proves the second statement of the lemma.
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3. All the propagators which depend on q or have a non- vanishing auxiliary
mass are also dependent on v. Hence

8b dl ,
nb -̂ί **(", ι>, 4, <?; 5, μ, α)

—i) oq

db &

^ degraMs_ 1}F(M, t;, q, q; s, μ, α) .

Consequently

and this proves the third inequality.
4. (1 -ί*(s-i))JF is of the form

- l >
where Vρe^c. Using the behavior (2.35) of the subtracted function and that
FρeC°°, we get

This yields

By the constraint on the denominator, we get

degr-(s_ l)]vC(u9 v, q, q\ s9 μ, a) = degr f i |gl7(s_ 1}C(w, v9 q, q; s, μ, a) ,

hence

M, t;, ,̂ ̂  5,

Fρ(M, t;, ̂  q; s,μ, a)

- degrfikl7(s- D [C(w, t;, ̂  ̂  s, μ, α) C(w, v, 0, <?; 1 , μ, α)ρ+ ̂  + max(0, ρ + 1)

t ; ( s_n(l-^ ί s_1))f + max(0,ρ + l)

rύMs_ 1}F + max(0, ρ + 1) ,

where we have used Lemma 4.4.3. Π

5. Convergence Proof

To prove Theorem 1 we show that all conditions to apply the power counting
theorem of [6] to (3.2) are satisfied. Let Γ be a 1PI diagram and m the number of
loops in Γ. The subtracted Feynman integrand (3.3) corresponding to Γ is of the

ύπ ^ V(k9q 9 s 9 μ 9 a )
RΓ(k, q; s, μ, a) = -—- - -— - -, (5.1

Bί(k9q9s9μ9a)B2(k9μ9a)
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where

n(L)

Bί(k9q'9s9μ9a) = fl Π teiA 5 *) + («- I)2 M2

Lj + μ2

Lj),
Le*Γj=l

n(L) V'*>

B2(k; μ,a)=U Π Π ^Lj(k^ a) + M2

Lj + μlj]"^ » \eLβl; a) + μ2^^»,
γ Le^γ j=l

WI/L, 7), n2j{L, 7)e (0,1,2,...}, the first product is over all 1PI subdiagrams 7 of Γ,
and

lL(k, q) = kL(k) + qL(q), WL = fc[(fe). (5.3)

RΓ belongs to the class of functions J^ and is periodic in fcl5 ...,/cm.
Let J§? be the set of all 1L, Le ^£τ, and of all ky

L for arbitrary 1PI subdiagrams 7 of
Γ and L£jS?r The set jSf is natural [4].

Let
w l 5 . . . , M r , !>!,...,[;«, (5.4)

be an arbitrary basis of J5f, r + d = m (w l 5 . . . 5M r, ι;l5 ...,ι;d6JSf and det(3(w5ι;)/3(/c))
φO), and let H be a Zimmermann subspace, i.e. a class of affine subspaces of
(fc l 5 ...,fcm), defined by constant w l 5 . . .,M r and variable ι;l5 ...,t;d. Then all fc, fc7 are
linear functions in M,z;,g:

k = k ( u , v 9 q ) 9 W = W(u9v9q). (5.5)

(u) = (ϋι,..., vd) is called the parametrization of H. The set of all classes if, for all
bases (5.4), is denoted by 3P.

We will show that for every

4d + degrύRΓ(k(u,v,q),q;s,μ,ά)<09 if rf>0, (I)

?(3f),g;5,μ,α)| s : = 1>0, if r>0. (II)

Then all the conditions are met for the power counting theorem of [6] to apply to
the renormalized Feynman integral (3.2), and Theorem 1 is proved. Note that (II)
must only be shown for s = 1 . If s φ 1 , all propagators are massive and (II) is trivially
satisfied.

To prove (I) and (II) we will use the method of complete forests [5].
RΓ(k,q'9 s, μ, a) is written in a form which depends on H9 i.e. as a sum of terms which
are described by complete forests and satisfy (I) and (II). A Γ-forest U E W is called
complete on H, parametrized by (υ)9 if Γ e U, and if for any γeU all lines of y(U) are
constant on H relative to 7, i.e.

ky

L(u, v, q) is independent of v for every Le ̂ ([/) ,

or all lines of y(U) are variable on H relative to 7, i.e.

fc£(w, v9 q} is dependent on v for every Le J^(C/) .

y(U) is said to be constant or variable on H9 respectively.

Lemma 5.1 [5]. Let Γ be a 1PI diagram, He^ and HT* the set of all Γ -forests
which are complete on H. Then

,a)= X £u(k9q,s9μ,a), (5.6)
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where

Xu(k,q;s,μ,a} = (\-τΓ)ΫΓ(kΓ,qΓ;sΓ,μ,a)\kr = k.qr = q.sr=s, (5.7a)

and

Ϋγ(k\q*ιs\μ,a) = Tnϋ)(k\q*ls\μ,a) S7 f\ f(yi)Ϋ7ι(k^q^9s^9μ9a)9 (5.7b)
i= 1

for any y e U, y1 ? . . ., γc being the maximal elements ofU(y). For minimal y set Ϋy = Ty.
/(y) is defined by

-*' if (5.8)τγ if { }

where J*(t/) is the set of all y e t / having y(U) variable on H and being a maximal
element of U(τ) for some τe U having τ(U) constant on H.

Let U be a Γ-forest, y e U and y 1? . . ., yc the maximal elements of U(γ). Then Sy

means a linear substitution

Sy:k
y*-*kyι(ky), qy>^qy*(ky,qy), sγ^s\ (5.9)

where the /cy-dependence of qjl is only by the explicit fcy-dependence of external
lines of yb and kyι is independent of qy. Especially, if He Jf is given by variable (v)
and constant (u) and if γ(U) is constant, then qyι(ky, qγ) depends only on u and qy.

The prove of the UV-convergence conditions (I) is along the lines of the proof
[4] . Let H e J f be defined by variable (v) = (υί9...,vd) and constant (u) = (u^..., ur\
and let U e i^^. For y e t / define

Mϋ(y) = 4Σm(τ(C/)), (5.10)
τ

where the sum is over all τ e t/(y)u{y}, τ([7) variable, and m(τ(C/)) is the number of
loops in τ(U). For y = Γ, M[/(Γ)^4d [4]. Then the following lemma holds.

Lemma 5.2. For every yet/ ,

1. degr,yy(fcy(M,ι>,9),qyl sy,μ,a)^-Mv(y) for y(U) constant, (5.11)

equality holding only if Mv(y) = 0.

2. degr^Y7(W(u9υ,q),q*ιs\μ9a)^δ(y)-M^γ) for y(t/) variable. (5.12)

3. dQgτύRr(k(u9υ9q)9q 9s9μ9a)<-4d. (5.13)

The proof of Lemma 5.2 is quite similar as the proof of [4, Lemma 5.2], the
only difference being the appearence of the mass parameters sy. Nevertheless, as
Lemma 5.2 of [4] is a consequence of the general properties of a subtraction
operator listed in Lemma 3.1 of [4], the validity of the above lemma is based on the
corresponding conditions of generalized subtraction operators listed in Lem-
ma 4.2. For this reason, the proof is left as an exercise to the reader. By Lemma 5.2,
the UV-conditions (I) are satisfied.
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6. Proof of the IR-Convergence Conditions (II)

To prove the inequalities (II) we will use the technical notion of an augmented
diagram [10] Γ of Γ. Γ is constructed by collecting all external lines of Γ into a new
vertex B0. Momentum conservation in Γ implies momentum conservation in B0. If
Γ has more than one external line, Γ is 1PI if Γ is. If Γ has no external lines, then
f = Γ.

More precisely, let

be a 1 PI diagram having at least one external line. Then the augmented diagram f
of Γ is defined by

where

and

if

if Ee«Γ.

The domain of ψf '• &f-+$r is empty. Every line Le jSf r \JSf Γ is called a q-Lίnίe off.
We now state two lemmas which are consequences of the assumed non-

exceptionality of the external momenta and the IR-constraints (3.9). They will be
useful later for the induction through a complete forest.

Let Γ be a 1PI diagram having m loops and f the augmented diagram of Γ. For
every 1 PI subdiagram y of Γ, the IR-subtraction degree is given by

Q(y)=*+ Σ [ρ(β)-4]-Σ**(yK> (6 i)
Be@γ k

where the ρ(5) are constrained by (3.9). Let E(Γ) be the number of g-lines of f and
7 1,...,y c be mutually disjoint 1PI subdiagrams of Γ, Γφ{γl9...9γc}.

Suppose that an arbitrary parametrization of the loop momenta of Γ of the
form

fci(w,p)= Σ DijWj + Pi> * = !,.. ,m, (6.2)
7 = 1

is given, where det(D) φ 0 and pt are fixed momenta, so that for all line momenta 1L,

)= Σ (CJjWj + QM + PLb), (6.3)
7=1

where QL, PL are linear.
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Let A0,Aiy...9Ab be the mutually disjoint, connected subdiagrams of
Γ/yι- yC9 which are spanned by the g-lines and the lines LE^Γ having
QL(^} + PL(P}^^ and so that for £(Γ)^1 always BQeAQ (cp. the_definition of f )
and for E(Γ) = 0: A0 = 0. By momentum conservation, all Λ 1 5 . . . , Ab are 1 PI, hence
their number of loops m(Λ^\, i = l,...,b. Furthermore, let λ l 9 ...,λβ be the
elements of {?!,...,yc} which corresponds in Γ / y 1 . . . y c to reduced vertices not
contained in 3$Λ u.

Lemma 6.1. // the external momenta of Γ are non-exceptional, we have

m(Λ0)^E(Γ)-l. (6.4)

// in addition for all internal vertices Beέ%Γr(B)^4 and ρ(B)^4, the inequality

r(T)+ Σ max(0,ρ(λi))-4m(T)>-4m(Γ/y1...yc) (6.5)
i = l

holds, where T = (Γ/yί...yc)/A0...Ab, and r(T) and m(T) are the IR-divergence
degree of T and the number of loops in T, respectively.

For non-exceptional external momenta and £(Γ)^2, A0 is 1PI. If E(Γ) = 0,
Λ0 = 0, and for E(Γ)= 1, 5£ :^0 consists of one g-Linie.

Proof. We always have m(A0) ^ 0. If E(Γ) ^ 2, and the external momenta of Γ are
non-exceptional, the diagram spanned by the lines of ̂ fion^r/yi yc is connected
and contains all external vertices of Γ/y1...yc. This proves the first statement.

To prove the second statement, we first note that if AQ = Γ/γl...γc, (6.5) is
trivial. Thus, let us assume that A0 Φ Γ/yl. . .γc. The number of loops in T satisfies

i = 0

..7c)-(£(Γ)-l)(l-V),o)- Σ m(*ύ (6-6)
i= 1

b _

= m(Γ/yί...yc)- Σ m(AJ.
i= 1

Furthermore

[r(S)-4]-4m(T) (by (2.30), T has no external legs)

+ Σ Σ ek(^i)rk~4\ + Σ ̂ 0)^-4(1 - ),o
i = l k k

Σ m(Λ) [by (2.31)]

Σ
i=ί\k
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where we have used r fc>0, m(Ai)^l for all i = l , . . . , b and that r(B)^4 for all
internal vertices #e JV(^rn^V contains only internal vertices of Γ). Finally

r(T)+
ι=

> Σ (Σe/A K-4W Σ max(Q,4-Σek(λί)rk + Σ [(?(«) -4]
fc

where we have used that all B e 3$λ. are internal vertices and for them ρ(B) ^4. Π

To state the second lemma, let Γ1? ...,Σb be the connected, mutually disjoint
subdiagrams of Γ/y^^.y, spanned by the lines LeJ^Γ/yι _ V c satisfying PL(p)φO.
Every Σi is 1 PI and satisfies m(Σί) ^ 1 .

Lemma 6.2. Set T=(Γ/y1...yc)/Σί...Σb. If all vertices Be^Γ satisfy ρ(B)^4 and
ρ(B) ^ r(B\ the inequality

r(T)+ Σ max(0,ρ(yί))-4m(Γ)^ρ(Γ)-4m(Γ/71...7c) (6.7)
i= 1

Proo/ Let /11; ...,λe be the elements of (y l 5 ...,yc} which corresponds in Γ/yl...yc

to those vertices not contained in J^u. .uJ^. Then, using m(T) = m(Γ/y1...γc)
b

- X m(Γf), we get

r(T)+ Σ max(0,ρ(y;))-4m(T)
i= 1

Ί Γ h - Ί
- Σ<^K - 4m(Γ/rι...yc)-4 Σ m(Σ() + Σ max(0,ρ(y,.))

k _\ I i = ι J i = ι

Σ [KB) -4] + Σ Σ e/AK-4 - Σ e»(Γ)r*

)-4)\ -4m(Γ/yι...yc)
i = l k Bz@Ύι

(by rk>0 and

where we have used ek(T) = ek(Γ) for all k and ρ(£):gr(£), ρ(5)^4 for all vertices
BE^Γ. Π

Using the mechanism of complete forests we now prove the IR-power counting
conditions (II). The starting point is Lemma 5.1. The idea of proof is along the lines
of [10].
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Always in the following let Γ be a 1 PI Feynman diagram and m the number of
loops in Γ, H e JΊf given by variable (v) = (v^ ...,vd) and constant (M) = (M I ? ...,ur),
and let U be a Γ-forest which is complete on H. At first, for every y E U we define

Nu(y) = 4 Σ m ( τ ( U ) ) . (6.8)
τ

The sum is over all τ e l/(y)u{y}5 τ(C7) constant, and m(τ(U)) is the number of loops
in τ(C7). For y = Γ, Λ^OO^Φ . This follows from M^OO^m- Λ^(Γ)^4d and

= m(cf. (5.10)).
The next lemma states the action of the operators τy onto Ϋr

Lemma 6.3. For every yet/ , the following inequalities hold.
y^v- υf y$y(fcv(tt, t>, 4), 4y; sy, μ, α)

Γ degr f ikV| ;(sv-i)?y(fcy(M,t;,^),^;sy,^iz)

, u, q), gy sy, μ, α) -
^y; s\ μ, α)]

/or y(C7) variable

£ m n

degrfi|gv,,(5v- i

v _ 1)lvτyΫy(ky(u, υ, q\

/or

for

for

3. Suppose γ(U) is variable. Then the inequality

(M, ι;, ^f), ^f y; sγ, μ, α)

constant .
(6.9)

. (6.10)

(6.11)

holds.

Proof. τy is written in the form

where
τγί

If γ(U) is variable, every factor in the denominator of Ύy depends on υ or is
independent of qy and (sy — 1).

l.a) Using (2.11), Lemma 4.4.3 and Lemma 4.3, we get

- τyl)τy2 Ύy(k\u, v, q\ qy\ sy, μ, a)

(Sv - 1 > τy 2 ?T(/cy(w, t;, ^f), ^y sy, μ, α)

(u, v, q\ qy; 5y, μ, α) .

b) Using (5.7b), (5.8) and Lemma 4.4, we get

degΓβ|βvϋ(sv - i)-f yι ίy(fc7(w, ϋ, fl), <?y s7, μ, α)

> fdegr f i | ey i7( sv_ D^/C^W, ϋ, q\ qy; sy, μ, α) for γ(U) variable
= \dQ^^(sγ_ί){vΫy(ky(u,v,q\qy sy,μ,a)--(ρ(y)-\) for γ(U) constant.
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Taking the minimum, assertion 1 . follows.
2.a) degr^y- 1)(,(1 - τ y l ) τ y 2 Ϋ y ( k y ( u , v, q\ qy; sy, μ, a)

7(M, v, q\ qy; s\ μ, α) + max(0, ρ(γ)) ,

(by Lemma 4.4.4)

Γfil^v _ i ) Ϋy(ky(u, v, q), qy s\ μ, a) + max (0, ρ(y)) ,

(by Lemma 4.3).

b) Note that ρ(y)^0 implies τylΫy = 0. If ρ(y)>0, we get

(w, ι?9 <?), qy\ s\ μ, α)

t ̂ X^ s^^fl) (by Lemma 4.4.1).

Assertion 2. now follows by taking the minimum.
3. Let 7(17) be variable. Then Lemma 4.4.4 yields

^(sy _ 1)b(l - τ y l ) Ϋy(ky(u, v, q\ qy; sy, μ, a)

u, v, q\ qy; sy, μ, a) + max(0, ρ(y)) .

Using 1 — τ y = (l — τ γ l )(l — τy 2) and 2.a, the assertion follows. Π

Using Lemma 6.3, we get the following lemma which states lower bounds on
the IR-degrees of the functions defined in Lemma 5.1.

Lemma 6.4. 1 . For every yell

degr^(sv _ 1 )( „ Ϋy(ky(u, v, q\ qy sy, μ, a) ̂  ρ(y) - Nv(γ) if γ(U) constant.

degr f i |βvϋ(sv- i)?y(fcy(w, t;, ^), ̂ y; 5y, μ, α) ̂  - JV^y) (6.12)

( = holding only if Nv(y) = Q).

2. Let yeU and λ be a maximal element of U(y).

a) degr6|eVl,(Sy- l}SyτλΫλ(kλ(u, v, q\ qλ; s\ μ, α) ̂  -N^λ)

( = holding only if Nv(λ) = 0) . (6 j 3^

In particular

rv(sr-1}τΓΫΓ(kΓ(u, v, q\ qr; sr, μ, α) > - 4r .

b) degr^,^^ - 1) Sy(l - τλ] Ϋλ(k\u9 v, q\ qλ; s\ μ, a) ̂  - Nv(λ)

( = holding only if Nv(λ) = 0) ,

for γ(U} constant and λ(U) variable.
c) degr^(sv - ί}lvSyτλΫλ(k\u, v, q\ qλ; s\ μ, a) ̂  max(0, ρ(λ)) - Nv(λ) (6.1 5)

for y(U) constant and λ(U) constant.

d) degr^(sv _ l]lvSy(l - τλ) Ϋλ(k\u, v, q\ qλ; s\ μ, a) ̂  max(0, ρ(λ)) - Nv(λ) (6.1 6)

for y(U) constant and λ(U) variable.
The statements a)-d) are also valid without Sy and with qλ, (sλ~ 1) instead of qy,
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Proof. By complete induction.
1. For minimal y, we have y = y(U) and Yy = /r In general

degrfl |qyt;(5Y _ l}ΐy(ky(u, v, q\ qy\ s\ μ, a) ̂  0 ,

because of (2.11) for every line
If y(t/) is constant, letΣl9...,Σbbe all 1PI subdiagrams of y which are spanned

by the lines Le ̂ y satisfying fc£(0, 0, 4) φ 0. Because oϊρ(B) ^ 4 and ρ(B) ^ r(B) for all

Γ using Lemma 6.2 and writing T = y/Σ1...Σb, we get

y- ί)lvly(kγ(u, v, q\ qγ; s\ μ, a)

, v = Q,q = 0), ̂  ̂  μ, α)

= r(T) - 4m(T) ̂  ρ(y) - 4m(7) = ρ(γ) - Nv(y) .

This proves the first statement of the lemma for minimal y e t / .
2. Let y e t / and λ be a maximal element of t/(y). By hypothesis of induction, Ϋλ

satisfies Lemma 6.4.1.
To prove the statements 2a) and 2b) of the lemma, we use Lemma 6.3.1 and get

degr^A^A- i)τλΫλ(kλ(u, v, q\ qλ; s\ μ, a)^ -Nv(λ)

(-holding only if JV^-O)

and

^Λ- υ(l - fλ) Ϋλ(kλ(u, v, q\ qλ; s\ μ, a)

( - holding only if ΛΓ^Λ) - 0) .

Sγ is a linear transformation

where the fcy-dependence of qλ is only by the explicit /cy-dependence of the external
lines of λ, i.e. lines which belong to JSf?(l/). The denominator of τλΫλ is independent
of qλ and (sλ — 1), hence

λ

- holding only if N^λ) = 0) .

If y(U) constant and λ(U) variable, every denominator factor of (1 — τλ)Ϋλ is
independent of qλ and (sλ — 1) or dependent on t;, and qλ(ky(u,v,q\qy] is
independent of R Hence

d e Γ v v - Sl -τλ) Y,(/cA(w, t;, )̂, ̂  sλ, μ, α)

- τλ) Ϋλ(k\u, v, q\ qλ; s\ μ, a) ̂  -

- holding only if Nv(λ) = 0). (6.17)
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Next, we prove the statements 2.c and 2.d of the lemma. Let y(U) be constant. If
λ(U) is constant, we get

- 1}lvτλΫλ(k\u, v, q\ qλ; s\ μ, a) ̂  max(0, ρ(λ)) - Nv(λ) ,

where we have used Lemma 6.3.2. If λ(U) is variable, using Lemma 6.3.3, we have

(u, v, q\ qλ; s\ μ, a) ̂  max(0, ρ(λ)) - Nv(λ) .

Using the above mentioned property of the substitution operator Sr we get

iiSV- Djt, SyτλΫλ(k\u, v, q\ qλ; s\ μ, a)

(u, v, q\ qλ; s\ μ, a)

and

degr^(sv- i)|ι,Sy(l -

r^Λ(5Λ _ 1)|t,(l - τ;J ?A(feλ(M5 ̂  Λ %λ\ s\ μ, fl)

3. Let ye U and y 1 ? ...,yc be the maximal elements of (7(7). By hypothesis of
induction, Lemma 6.4.2 holds, where λ represents y l 5 ...,yc. We must show that y
satisfies Lemma 6.4.1, which concludes the proof.

In general,
(u9 v, q\ qy; s\ μ, a)

/y(l7)(fcy(M, v, q\ qy\ s\ μ, a)

( = holding only if Nv(γ) = 0) ,

c

where we have used that Nv(y)^ Σ N^y^ and that all propagators of /?(17)

depend on (5y-l). / = 1

Now let y(U) be constant.
Let ZΊ,...,^ be the mutually disjoint, connected and consequently 1PI

subdiagrams of y(U) spanned by the lines LeJ2^(C/) satisfying fcί(0,0, q)ή=0.
Using ρ(B)^4 and ρ(B)^r(B) for all vertices Be&y, and writing
T=(y/yι~ yc)/Σι...Σb, we get

(M, t;, q\ (f\ s\ μ, α)

y([/)(fc^ ̂  tf), ̂ y; 5y, μ, α)

yι(/cyi(t/, v, q\ qΎl; sγ\ μ, a)

^M, 0, 0), q>; s\ μ, a)

i= 1
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max(0,ρ(y;))-

^ρ(y)- 4m(y(C7))+ Σ Nυ(jι} L (by Lemma 6.2)
L i=l J

=βω-^ω- a
Finally, using Lemma 6.4 we can prove that the renormalized Feynman

integrand RΓ satisfies the IR-conditions (II).

Theorem 3. Let Γ be a 1PI Feynman diagram having m loops and

r + d = m, be an arbitrary basis of 3? , the set of all /L, Le 5£Γ and of all ky

L for all 1 PI
subdiagrams y of Γ and LeJS?r Let HeJ^ be given by variable (vlί...,vd) and
constant (u l5 . . ., MΓ), and (7 α Γ-forest which is complete on H. Then Xυ of Lemma 5.1
satisfies

u, v, q\ q; s, μ, a)\s=l > -4r , (6.18)

hence

(u, v, q\ q; s, μ, a)\s= t +4r >0 . (6.19)

This means that the IR-convergence conditions (II) are satisfied, and Theorem
1 is proved.

Proof of Theorem 3. We must show that

degr f l l t ?(l -τr) ΫΓ(kΓ(u, v, q\ qr\ sr, μ, a)\qT=qtSr = l > -4r .

At first, note that the denominator of τr ΫΓ is independent of qr and of sr — 1 . Using
Lemma 6.4.2, we get

Γ(u, v, q\ qr; sr, μ, a)\qΓ = qtSr=ί

ύlqrv(sr-1}τΓΫΓ(kΓ(u, v, q\ <f\ sr, μ, α)> -4r .

All what remains to prove is that

(/cΓ(^, v, q\ qr; sr, μ, α)|,r =,,s.= t > - 4r . (6.20)

Let y l 5 ...,yc be the maximal elements of U(Γ\ so that

7Γ(feΓ, ^Γ; /, μ, α) = /f ([/)(fcr, qr /, μ,^) + £ SΓf V ι 7yί(fc^, ^yι sy , μ, α) .

1. Suppose that Γ( (7) is variable. Then NV(Γ)= ^ Nu(yί}^4r( = holding only

if N^ΓJΦO). Using i = = 1

degrά[t;/f(t7)(/cr(t(, v, q\ (f\ sr, μ, a) ̂  0
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and Lemma 6.4.2, we get

, v, q\ qr' /, μ,

, v, q\ qr sr, μ,

+ Σ degr^r^r _ ! } SΓτ% Z;i(/cy^, ϋ, q\ q^ sy*, μ, a) > - 4r .
i — 1

2. Suppose that Γ(U) is constant.
Take all mutually disjoint, connected subdiagrams Λ0,...,Λb of Γ/yl...yc

spanned by the g-lines and all lines Le J^V(C/) satisfying

Furthermore, let λl9...,λe be the elements of {7ι,...,7c} which corresponds in
Γ/yly . . ., yc to vertices not contained in ̂ Ou . . . u^b, and let ρ l 5 . . ., ρz e {y1; . . ., yc}
the remaining ones, i.e.

At first, the following lower bounds on the IR-degrees can be given.
a) The denominator of SΓτρYQι is independent of qr and sr — 1, hence

\vSrΐeJei(keι(u, v, q\ qρ>; sρ\ μ, a)\qΓ=qtSr = l

fli^r^r- ί}SΓτρYρ.(kρι(u, v, q), qρ>; sρί, μ, a)

^ - N^Qi) ( = holding only if Λ^fe) - 0) , (by Lemma 6.4) .

b) For Qi variable, using the same arguments as for (6.17),

- τ J fρι(/cρ£(t/? ϋ, <?), ̂  5ρι, μ, α)|βr = ίf sr = !

r^r _ ί}SΓ(l - τρ) ΫQι(k^(u, v, q\ <f~ sβ\ μ, a)

^ - Nufai) ( = holding only if N^QI) = 0) , (by Lemma 6.4) .

c) For every A 1 ? ...,λe

qλ* = qλ>(tf(u9v9q)9q%Γ = q = qλ'(u)

is a linear function, hence

Γτ\yj/cλl(w, v, q\ qλl; sλi, μ, a)\qΓ = qtSr- ί =

^ degr^(,Λ, _ l)lvτλΫλi(kλί(u, v, q\ qλί\ sλ\ μ, a)

^max^ρ^-Λf^), (by Lemma 6.4)

and for λ^U) variable

rώ|t;iSΓ(l - τ;J Ύλι(k\u, v, q\ qλl; sλ\ μ, a)\qΓ = qtSr-

( sAi _ 1)(ι;(l - τ\) yλι(/cλί(ι/, ι;, g), ^f λ l; sλl, μ,

^ max(0, ρ(Λi)) - ΛΓ^f) (by Lemma 6.4) .
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Next, we use the inequalities a)-c) to conclude the proof of Theorem 3. By
assumption, the external momenta of Γ are non-exceptional, and for every internal
vertex B e &Γ9 we have r (B) ^ρ(B) = 4. Applying Lemma 6. 1 to

w, υ, q\ qr\ /, μ, a)\qΓ = qtSr=ί

Γ([/)(fcΓ(u, ϋ, g), qι /, μ, α)|sr = i

J Ϋ0,(k**(u, v, g\ gβi; s", μ, α)|qy = fl

i= 1

+ Σ (-^c/(ί?i))+ Σ
i = 1 i = 1

r(T)-4m(Γ)+ Σ max(0,ρ(l,.))-

>-4m(Γ(L/))+ Σ N^) (by Lemma 6.1)
i = l

Conclusions

We have proposed a renormalization procedure for lattice Feynman integrals
which applies also in presence of zero-mass propagators. The method is a fusion of
the lattice version of the BPHZ renormalization prescription [4] and the auxiliary
mass method of Lowenstein and Zimmermann [9,10]. It applies to a wide class of
lattice field theories. Under very general conditions, the renormalized theory is IR-
convergent for every finite lattice spacing, and the continuum limit exists. The set
of renormalizable, IR-finite theories is constrained by the condition that all
vertices should have an IR-degree not less than four. Apart from the possibility of
massless propagators, the assumptions on the structure of momentum space
Feynman integrals are the same as in the massive case [4]. The integrand should be
periodic with the Brillouin zone in all the momenta, a property which is reflected
by the fact that the counterterms are also periodic. The propagators are assumed
to have only one pole in the Brillouin zone. In particular, the renormalization
program does not work for lattice fermions whose propagators have poles on the
boundary of the Brillouin zone. Furthermore, the integrand should be differenti-
able to such a degree that all subtractions necessary to subtract the divergencies
can be done without problems.

With respect to universality of perturbation theory and power counting
renormalizability, the same arguments as in the massive case [4] apply also to
massless lattice field theories. The continuum limit of the renormalized theory does
not depend on the specific choice of the lattice action. It is given by the continuum
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field theory which is described by the (naive) continuum limit of the lattice action
and is renormalized by the BPHZL finite part prescription [9,10]. Furthermore, if
all coupling constants are dimensionless, a lattice field theory is renormalizable by
power counting if and only if its (formal) continuum limit is renormalizable. Also,
the counterterm philosophy is the same as in the massive case. After some
symmetrizations with respect to the external momenta of the Green functions (as
described in [4, Sect. 4]), the subtractions can always be written as counterterm
contributions to the lattice action, which can be chosen to be local.

Actually, we have defined the renormalization procedure for scalar fields only.
This we have done to simplify the notation. There is no problem to generalize the
method to fields carrying internal symmetries and spin. This can be done by
introducing so-called index-distributions in Feynman integrals [4] which associ-
ate every line ending with a set of symmetry labels. The definitions (2.27), (2.28) of
divergence degrees are replaced by

ω(AL) = max degr£sz1L(/L, αL, βL; s, μ, a) ,

r(AL) = mm degr£ (s _ ί}ΔL(lL9 αL, βL; s, μ, a)

for every line L and

) - max deg{^BSFB({/L, αL}β; s, μ, a) ,

for every vertex B, where the maxima and minima are over all possible symmetry
labels of line endings at the vertex B.

Renormalized Green functions depend on the auxiliary masses introduced by
the subtraction scheme. This dependence may be absorbed by additional finite
renormalizations satisfying the IR-constraints and leading to equivalent re-
normalization schemes. For instance, by an appropriate choice, this corresponds
to subtractions at non-exceptional momenta plus additional finite renormaliza-
tions at vanishing momentum for two- and three-point functions necessary to get
IR-finite amplitudes in higher orders. In most applications, these additional
subtractions are needed only for diagrams with two or three massless external
lines.

The renormalization program proposed here applies also to lattice gauge field
theories. After convenient gauge fixing, such a theory is perturbatively renormaliz-
able by power counting, i.e. with increasing number of loops the order of
subtractions needed does not increase, and the continuum limit of the re-
normalized theory exists. The counterterms needed can always be chosen to be
local. A priori, only little can be said about their structure. However, if there exists
a BRS-symmetry on the lattice, the Green functions satisfy the corresponding
Slavnov-identities. It then should be possible to show that to every order, the
counterterms needed are of a restricted form which allows the theory to be
renormalized simply by renormalizing the parameters in the original lattice action.
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Appendix. Properties of Lattice Degrees

In this appendix we list those properties of the IR- and UV-degrees defined in
Sect. 2.3 which are permanently used in the text without explicit reference. They
are direct consequences of the definitions.

Let Ve<#c be of the form (2.18). Then

(s-i)\vV(u, v, q, q; s, μ, a)\q = 0 > s _ ί = 0 ̂  degr^(s_ l){vV(u9 v, q, q\ s, μ, a)

-^foϋ^g s,^^
and

degr0F(ι/, v, q, q; s, μ, a)\q = 0,s = 0 = degr-sF(w, υ, q, q; s, μ, a)\q = 0,s = 0

F(w, v, q, q; s, μ, α) , (A.2)

degr^F(u, v, q, q; s, μ, α)|ί = θ5S = 0 ̂ degr0F(w, v, q, q; s, μ, a) .

The degrees of derivatives and of sums and products of functions of the
function class 3F satisfy inequalities which are direct generalizations of the
corresponding inequalities for the UV- and IR-degrees with respect to the
momenta only, as given in [3, Lemma 2.2] and [6, Lemma 2.1], respectively.

Let F,F !,..., Fe be of the form (2.19). Then

.
i- l,...,e

'uq(s-l)\v Σ ^i= ._mm

'V '?""" (A.3)

Π Fί^ Σ
i = 1 ί = 1

degr^(s_1)|t; Π FI^ Σ
i= 1 i= 1

and
f^ .jnax

f" '""e

^s Π Fi^ Σ
i = 1 i = 1

Furthermore, for every foeN0 = {0, 1,2, ...} and / = (/ l 5 ...,/w)eNo, we have

db dl

_ b γ 1 9 9 9 9 9 9

(A 5)

9 v, q, q; s, μ, a)-(b + \l\)9

and
_ _ _

degr^ -^ —t F(u9 v, q, q; s, μ, a) ̂  degr^F(w, v, q, q; s, μ, a) ,

ττ—iF(u,v,q,q ,s,μ,a)^degτ^F(u,v,q,q;s,μ,ά)-(b + \l\),

where |/ |= X I,
i= 1
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Note added in proof. The constraints on the IR-degrees of the vertices imposed by the
convergence theorems of Sect. 3 may be relaxed somewhat [10]. Namely, there may be at most
one internal vertex B with an IR-degree r(B) equal to 3. Correspondingly, the IR-subtraction
degree ρ(B) of that vertex must also be equal to 3, i.e.

(If the external momenta are integrated over, then 3 ̂  ρ(B) ^ r(B)). That is possible because the
IR-dimensions of the fields satisfy rk^\. All statements remain true with this modification, and
the only change is in the proof of Lemma 6.1.

The generalization will be useful in applications.






