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Abstract. A renormalization procedure is proposed which applies to lattice
Feynman integrals containing zero-mass propagators and is analogous to the
BPHZL renormalization procedure for continuum Feynman integrals. The
renormalized diagrams are infrared convergent for non-exceptional external
momenta, if the vertices of the theory satisfy a general infrared constraint.
Under the same conditions as in the massive case [4], the continuum limit of
the renormalized theory exists and is independent of the details of the lattice
action.

1. Introduction

Feynman integrals with a lattice cutoff have a very specific structure. They are
absolutely convergent for finite lattice spacing, if all propagators are massive. The
continuum limit behavior of such diagrams is described by a lattice power
counting theorem [3], which uses a new kind of an ultraviolet (UV) divergence
degree (the well known power counting theorems of Weinberg [1] and of Hahn
and Zimmermann [2] do not apply to diagrams with a lattice cutoff). On the basis
of such a power counting theorem a renormalization program for lattice field
theories has been given [4], which is analogous to the BPHZ finite part
prescription for continuum Feynman integrals [5].

These methods work for massive field theories. In the presence of massless
fields, additional arguments are needed to avoid infrared (IR) divergencies. It has
been shown [6] that the UV-power counting conditions only have to be
supplemented by IR-power counting conditions, and IR-singularities are tractable
by the same methods as in the continuum [7, 8]. In this article, we use this power
counting to give a renormalization procedure for lattice Feynman integrals with
massless propagators.

* Present address
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In outline, the idea of the construction is as follows. As in the massive case, the
continuum limit is controlled by UV-divergence degrees. As a convergence
condition, they should always be less than zero. This can be achieved by
appropriate subtractions. However, in the presence of massless propagators,
subtractions at zero momenta are no longer IR-convergent. The IR-divergencies
can be avoided by choosing the subtraction points at non-exceptional momenta,
and by additional finite renormalizations, which are chosen in such a way that in
the sum of all diagrams to a given order all IR-singularities drop out. For example,
in a gauge theory the renormalized coupling may be defined as the value of an
appropriate vertex function at non-exceptional momenta, whereas the self-energy
of the gauge field has only a wave function renormalization and vanishes for zero
external momentum. However, when we want to renormalize diagrams separately
by the forest formula, we run into the problem of IR-singularities also if we choose
normalization points at non-exceptional momenta (cf. Sect. 2.1). For instance, to
make a two-point diagram UV-convergent, in general two differentiations are
necessary. This produces an IR-singularity by differentiating a propagator twice.

To prove the convergence of a renormalization procedure we shall use the
power counting theorem of [6]. This necessitates all subtractions and differenti-
ations being collected in the integrand, leading to a forest-formula like expression.
As indicated above, this induces IR-divergencies also for subtractions at non-
exceptional momenta. A possibility to overcome this problem is to introduce
auxiliary masses in the counterterms. This means we employ the (lattice-modified)
BPHZL renormalization procedure of Lowenstein and Zimmermann [9, 10].
Propagators of a bare mass u (Which may be zero) get a mass-dependence of the
form

WA (s—12M?*, p?+M?*>0,

s is called the mass parameter. Counterterms are now constructed for s=0, and
after all subtractions are done we set s =1, so that we get a renormalized theory of
the original model. Two important points must be taken into account.

1. Due to the auxiliary mass dependence of the counterterms, to get all UV-
divergence degrees smaller than zero, differentiations not only with respect to the
external momenta but also with respect to the mass parameter s are necessary. This
means that subtractions are combinations of lattice subtraction operators and
Taylor polynomials in s. They will be called generalized subtraction operators.

2. Additional finite renormalizations are necessary to avoid IR-singularities
by renormalized subdiagrams. For instance, inserting a self-energy subgraph into
a massless line usually produces a non-integrable singularity. This difficulty is
solved by imposing a normalization condition so that such a diagram vanishes for
zero external momenta and s=1.

Both conditions are satisfied if instead of the subtraction operator 7 [4] we
employ

B+ =25t ), (1.1)

o being the IR-divergence degree of the diagram, and the f are generalized
subtraction operators. Using these subtractions, the renormalized theory is IR-
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finite for all s, including the case s=1, and the continuum limit exists if

1. the external momenta are non-exceptional, and

2. r(V)=4 for all internal vertices V,
where #(V) is the (lattice-) IR-degree of the vertex V (defined below). An internal
vertex is one with no external line. The latter constraint restricts the class of
renormalizable, IR-finite theories. For instance, a massless ®3-theory is IR-
divergent in four-dimensions (r(®3)=3). Note that we have made no statement
about the IR-behavior of the bare theory. The renormalized, massless @*-theory is
IR-convergent, but the bare theory is not.

In Sect. 2.1 we give a 1-loop example which should show the efficiency of the
auxiliary mass method. The reader who is familiar with the method may skip this
subsection. In the remainder of Sect. 2, general notations concerning Feynman
diagrams with an arbitrary number of loops are given. They are essentially the
same as in the massive case [4], and we only sketch the most important ones.
Furthermore, generalized notions of infrared and ultraviolet lattice divergence
degrees are introduced. Due to the introduction of the mass parameter s, this
generalization of the lattice divergence degrees defined in [3] and [6] is necessary.
Finally, the definition of a generalized subtraction operator (GSO) is given. The
main theorem which describes the renormalization of lattice Feynman integrals
and lattice Green functions is given in Sect. 3. In Sect. 4, important properties of
GSO’s are given. In the remainder of this article, the theorem is proved, using the
properties of GSO’s and the power counting theorem of [6], by showing that all
UV- and IR-power counting conditions of this theorem are satisfied.

2. The Auxiliary Mass Method and Generalized Subtraction Operators
2.1. A One Loop Example

Before we are going to define the renormalization prescription to every order, we
shall consider the auxiliary mass method for the one loop case. To be specific,
consider the scalar @*-theory. The propagator is given by

1

Ak;s,a)= ~——— )
(k:8.0= 1o e e
where
2k 4
k=" sin é“, i=1,..,4, =Y k>, 2.2)
i=1

and M <0 is an auxiliary mass, a denotes the lattice spacing, For s=1, the
propagator is massless. A one loop contribution to the four-point function is of the
form (Fig. 1)

fasa= T L5 dtsadnrgsa 23)

q;s,a)= —— A(k; s,a +4q;s,a). .
~na (2m)*

To renormalize the diagram, following the ideas of the (lattice) BPHZ procedure,
one should subtract from the integrand its value at vanishing external momentum
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q. However, for s=1, this produces a non-integrable IR-singularity, i.e. for the
massless theory this method does not work. The idea of Lowenstein and
Zimmermann [9, 10] consists in subtracting at g=0 and simultaneously at s=0,
i.e. giving the counterterm a mass. For non-vanishing ¢, the renormalized
Feynman integral

N ma g4l . ~
R(g;s,a)= J/ QP [A(k;s,a)A(k+q; s, a)—(A(k; 0,a)*] (2.4)
is IR-convergent also for s=1, and the continuum limit exists. Summing all
contributions of the form (2.4), we get the renormalized four point function at one
loop order. It depends on the auxiliary mass M. However, this dependence is only
exhibited by a momentum independent and finite (i.e. in the continuum limit
convergent) term, and hence may be compensated by a finite counterterm to the
lattice action of the form

a* Y o(M)®(na),
neZ*

which satisfies the IR-constraint alluded to in the introduction. In this way,
normalization conditions at non-exceptional momenta may be implemented.

If a diagram having a UV-divergence degree greater than zero is to be
renormalized, we clearly have to differentiate not only with respect to the external
momenta, but also to the mass parameter s. Otherwise, the UV-divergencies would
not be cancelled because of the different mass dependence of the bare and the
counterterm integrand. This situation happens e.g. for two-point functions.

One may try to apply subtractions at non-exceptional external momenta
instead of using the auxiliary mass method. However, this does not work if
subtractions are directly applied to the integrand. To see this, consider the
Feynman integral (Fig. 2)

- ma  d*k R .
J(g;s,a)= | 2nf Vitk,q; a)Va(k, g5 a) Ak s, a) A(k+ g5 5,a), (25)
—7n/a
where the vertex functions V,, V, satisfy
Vi(ik,Aq;a)=0(4) as A—0, (2.6)

and A4 is given by (2.1). Diagrams of the form (2.5) appear in perturbative lattice
gauge theory. The conditions (2.6) insure that the IR-constraints on the vertices are
satisfied.
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The UV-divergence degree of J is at least two. It can easily be seen that a
subtraction operator t:l [4] does not apply to the integrand of (2.5) without
producing a non-integrable singularity, even if we choose a subtraction point g = 0.
For, if A(k+ q) is differentiated twice with respect to g and then ¢ is set equal to g,
we get such a singularity at k= — g. For this reason, we employ the auxiliary mass
method which circumvents this problem. Normalization conditions at non-
exceptional momenta may be implemented afterwards by finite counterterm
contributions to the lattice action, satisfying the IR-constraint.

Finally, some words are in order concerning the IR-constraints mentioned in
the introduction. Consider the Feynman integral (2.5) again, but now set
V, =V, =1.The vertices then have an IR-degree equal to three (three massless legs).
J is the one loop contribution to the unrenormalized two-point function in the
lattice @3-theory. As before, we make the subtraction of order two at ¢=0 and
s=0. Then J remains IR-finite, and the continuum limit exists. However, inserting
(2.5), or its renormalized expression as just described, into a massless line which is
integrated over, results in an IR-divergence. Consequently, to get a finite result we
should subtract from (2.5)its value at g = 0. But J(g; s, a) does not exist for =0 and
s=1, and the same holds for its renormalized form. This means that the massless
@>-theory is IR-divergent in four dimensions.

If, instead of V;=V,=1, the vertices satisfy (2.6), which means that r(V,)
=r(V,)=4, then J exists for g=0 and s=1. Furthermore, by finite renormal-
izations, it can always be achieved that diagrams with two massless external lines
vanish at zero external momentum. This means that massless bare fields remain
massless after renormalization. The same situation occurs for diagrams with three
massless external lines. In general, these are the only basic field vertex functions
whose overall subtractions imply additional finite renormalizations. They are
convergent even for zero external momenta, whereas in general exceptional
external momenta must be excluded.

2.2. Diagrammatic Notations

We now give some general notations which will be needed later on. In part, they
are the same as in [4]. Only the modifications and additions will be pointed out
here.

In perturbation theory, a 1PI function, i.e. a one-particle irreducible (1PI)
Green function is written as an asymptotic sum of contributions

N M
< H P(A,n;a)- H [Qj]> ) 2.7)
i=1 j=1 0, 1PI
where
[Q]=a* ZZ QA,na) (2.8)

in general is a contribution of the interaction part of the action. The subscript in
(2.7) indicates that (2.7) is the 1PI part of

—[2(A) ﬁ P(A,na)- ﬁ [Q;]- e~ 5!,
z,"
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where
Zo=[D(A)- e 5o
and 2(4)= T[] . dAfna). A represents all fields A; and S, is the free part of the
i,neZ
action. PyA4,n;a) and Q,(A, n;a) are polynomials in the lattice spacing a and the
fields A4 at n;a and neighboring lattice sites, and they are homogeneous in the fields
A. They represent basic fields or composite operators.

Expression (2.7) is a sum of 1PI Feynman diagrams. We recall that a diagram is
called 1PI ifit is connected and does not get disconnected upon cutting any one of
its internal lines [4]. Divergencies manifest themselves in 1PI diagrams when the
cutoff is removed. Such diagrams must be renormalized. Note that in our notation
we distinguish between 1PI functions and vertex functions. The latter are
amplitudes which result from a Legendre transformation of the generating
functional of connected Green functions. They are not always 1PI, e.g. for theories
with spontaneous symmetry breaking. However, every such diagram is mainly a
product of 1PI graphs, and the latter can be renormalized as described below. In
particular, tadpole diagrams vanish after renormalization. When we take into
account symmetries, the vertex functions must satisfy corresponding Ward-
identities. After renormalization of all 1PI functions (to a given order), normal-
ization conditions of vertex functions are to be implemented by additional finite
renormalizations of proper functions, satisfying the IR-constraint indicated in the
introduction. This must be done very carefully in order not to produce new IR-
divergencies.

In the following we consider the 1PI functions in momentum space

N M N
{ill Pi(‘Ii)’jD1 [Q,]} . 2n)*st <i§1 (1i>’ (2.9)

0,

2 . .
where 65(Q)= Y o* <Q— 7173 m) for Q e R*. Expression (2.9) is a sum of 1PI
meZ?
momentum space Feynman integrals.
In what follows we are using the notations of [4]. Here we only sketch some of

them. Let I" be an arbitrary 1PI diagram
F=($r,5r~@ra¢r,1l>r)~

ZLr(&yp) is the set of internal (external) lines of I" and 4, is the set of vertices of I'.
Every internal line Le % is mapped by ¢, to its endpoints A;, B, € Br: ¢(L)
=(A;,B;). Every external line Eeé, is mapped by w, to its endpoint
Bp=vy(E)e %, . The latter are called external vertices of I'. A vertex is called an
internal one if it is not an external vertex.

An external line E €& carries an external momentum ¢, flowing into the
diagram I'. q denotes a basis of the external momenta of I', e.8. ¢ =(qy,, ..., 4i,, )
where N is the number of external lines of I'. g, is given by momentum
conservation. Every internal line Le %, carries a momentum [, flowing from its
outgoing endpoint A, to its ingoing endpoint B; and being a sum of the internal
and external line momenta of L [4]

Ik, @) =ki(k)+q.(q),
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where (k)=(k,, ..., k,,) is a basis of the internal (=loop) momenta of I'. At every
vertex, momentum conservation holds.
To every Le ¥, corresponds a propagator
a Pyl s, 1)
AL(IL;S7 H, a): n(L) L s (210)
H [eLj(lL; a)+(s— 1)2 Mij+ lu%,j]

j=1

where n(L)e N and the auxiliary masses M ; are restricted by
MZ+ui;>0. (2.11)

Furthermore', e, ;€ %, satisfying

1
eLj(lL; a)= a2 WLj(lLa) >

nfla+0)>0 if [ eBZ=[—n/a, n/a]*, 212)
Nl a) BZ-periodic in I, ’
lim e, (3 a)=1.

s is the mass parameter mentioned in the introduction. The numerator is of the

form . 0
Pyl s, 1, a)= % PO, ) Vi(ly; a) (2.13)

where the sum is finite, P®) are polynomials and Vj; € €, BZ-periodicin I, m;eZ.
For every vertex Be %4 we have a function

VB({IL}B; S, 4, a) € €*

of a form (2.13) in variables {/; } , which are the momenta of lines at the vertex B.
is always assumed to be periodic with the BZ in all momenta.
The unrenormalized Feynman integral of I is given by

N wa .
Idg; s, wa)= | d*ky,...,d*k, I (k,q;s, 1 a), (2.14)

—nja

where m is the number of loops in I' and
fr(k,q;S,Maa): l_l I’}'B({IL}B;Ss,ua a)' H jL(lL;S’,u’a)' (215)
Be%Br Le%r

This function belongs to the class of functions #.

To define a renormalized Feynman integral we need a precise definition of
internal and external momenta of I" as well as of every 1PI subdiagram y of I': k?,
q". This is done as in [4, Sect. 2.2]. In addition, in every propagator and vertex of y
we have to substitute the mass parameter s by s”. Correspondingly, the substitution
operators of [4] must be generalized. For 1PI subdiagrams z, y of I', t being a

subdiagram of 7,
S, k'—=k'(k"), q'—=q‘(k’,q"), s, (2.16)

! The function classes %%, ¢°,and & uscd here are defined in [3] or repeatedly in [4, Appendix A]
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S0 that S, 106,07 1.@) = £ (), (K 67); 57 1), 217)
When applied to k%, ¢°, S, is defined as in [4]. We remind the reader that the k’-
dependence of ¢* via S, occurs only by the explicit k’-dependence of external lines of
7,and that k" is independent of ¢ via S,. Line momenta are always chosen in such a
way that they are natural in the sense of [3].

The notion of a I'-forest (set of non-trivial, non-overlapping 1PI subdiagrams
of I') and related notions are defined in [ 5] or [4, Sect. 2], for instance. Especially,
for any 1PI subdiagram vy of I,

U(y)={y e Uly' is a subdiagram of y and y' %y},
and y(U)=y/y,...y, where y,,...,7, are the maximal elements of U(y).

2.3. Infrared and Ultraviolet Degrees

As mentioned in the introduction, the auxiliary mass method implies that we also
must differentiate a Feynman integrand with respect to the mass parameter s, to
get convergence of the integral in the continuum limit. To describe the order of
subtractions by divergence degrees, we have to introduce IR- and UV-degrees with
respect to momentum and mass variables. We consider functions Ve %“and Fe #
of momentum variables (1, ...,u,), (U1, ..., 02), (d1, ..., ) (415 - - -» G,) and of s of the

form _ _
Wmumm&uﬂkigPMAQW%u%qm% (2.18)

where I is a finite set, P; +0 are polynomials and V;e %y, , m;e Z, m;+ m, if i %k, and

i} V(u,v,q,q;s, 1, a)
FMm%m&m®=vaq;S#M. (2.19)

The numerator Ve % is assumed to be of the form (2.18),

C(u,v,q,(j;s,,u,a)= H Ci(u,v,q,q;&#»a), nENO={O’1’25“'}’
i=1

Clu,v,q,d;s, u,a)=efl;a)+(s—1)>M}+u?, e;e%5 of the form (2.12),
(2.20)

d r

li= Y bavt+ Y cuthet+ Y duqit Y eudy,
k=1 k=1 k=1 k=1

(bits - b)) 0 or (cif,...,c;,)*E0 forall i=1,...,n.

Below u will denote the parameters of a Zimmermann subspace H [3], v will be the
complementary parameters, and ¢, § the external momenta of a diagram. §
represents those external momenta appearing in the parametrization of H. IR-
degrees are always defined for fixed g. Non-fixed variables like u, v, ¢, s—1 are
always explicitly indicated.

UV-degrees are defined as follows:

degrg,V (u,v,q,3: 5, 1,.0) = max (degr,P, + Jegig V). (221)

degra F(u,v,q,q; s, u, a)=degr 5V —degr C(u,v,q,4; s, 1, a)

uqs

=degrgV —2n (2.22)

ugs °
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where n,,, is the number of factors C; depending on u, q or s. IR-degrees are defined
by

degry, V(uv,q,4q;s,1a)= mm (degr,_P;+degray, V),  (2.23a)

ACET s — v
_deﬁfduq(s— 1)V(“> 0,4, 4; S, 14, @)= Tflelln @mqui 5 (2.23b)
and
degrays - 11 (u,0,4, 45 5, 1, @) =degr gy — 1), M1, 0, 4, G5 5, 11, a) (2242)
—degra— 1 Clt, 0,6, 45 5, 1, @) = deglip 1y, V (1, 0,4, G5 5, p, @)= 2my,

where m,,, is the number of C; which depend only on u, ¢ and (s—1) <i.e.
(biy,....,by)=0and Y e;q,=0and #izz())’
k=1

degrmuq(s wF(uv,q,q;s, 1, )=degra|vq(s 1)V(u 0,4,4; 5, 4, Q) (2.24b)
degrulvq(s I)C(u v, LL q,S Hs a) degru[vq(s I)V(u b, q’ q,S K [1) 2mu’

m, being the number of C; depending only onu (i.e. (bits - b)) =0,(d;q, ..., d;,,) =0,

Y exdy=0and uf = M? =0>. degr,P; and degr,_ P; are the usual UV- and IR-
k=1 I

degrees of polynomials (defined in [6, Appendix A], for instance).
The degrees satisfy all “typical degree properties.” For completeness, they are
listed in the appendix. Later on we will use them without any explicit reference.
We now define UV- and IR-divergence degrees of an arbitrary 1 PI subdiagram

yol I'by o= %, o)+ 3y oy +ant), (2.25)
)= ¥ rd)+ ¥ ) dm), (2.26)

where m(y) is the number of loops in 7, and

CU(Z'\L) = degrfszL(lL; S, ,U, a) s

. - (2.27)
r(Ap)=degrj, - A.(l1; s, 1, a)
for Le % and
o(Vy)=degri= Vu({l.) p: s, 1, ),
(V) AT ({ L}B 1, Q) (229)

"(VB) =degriy - 1)173({11,}35 S, 1, @)

for Be %;. These definitions are valid also for reduced diagrams [4].

We will write the divergence degrees in a vertex dependent form. To every line
Le %, corresponds a pair of basic fields 4;, 4;. L is called an ik-type line, having
i-type and k-type legs. For every field 4;, a UV-dimension d; and an IR-dimension
r;>0 is defined such that

d+o(A)<d+d,, A+r(A)=ri+r,. (2.29)
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Let ny(B) denote the number of k-type legs at the vertex B e 4, (including external
legs) and e,(y) the number of external k-type legs of y. Then we can write

o@)so@k)=4+ Y [o(B)—4]—Y ely)d;,
Bedy k (2.30)
r(y)Zi(y) =4+ BZ/y [r(B)—4]— Ek; e(N7es

where

o(B)= Y n(B)d,+ o(Vy),
¢ . (2.31)
r(B)= ; ndB)r+r(Vy).

These forms of divergence degrees will be used in the following. Especially, we will
see that the IR-divergence degrees r(B) must satisfy some constraints to get IR-
convergence of Feynman integrals.

A general statement about convergence of Feynman integrals with massless
propagators can be made only for non-exceptional external momenta. The
external momenta ¢, ...,qy of a 1PI function

{iljl ﬁi(‘li) : jl;[1 [QJ]}

or of a contributing diagram I" are called non-exceptional [11] if

0, 1PI

N
Y %q;=0, oe{0,1}, (2.32)
i=1

implies that all o;=0 or all o;=1.

2.4. Generalized Subtraction Operators

We now define generalized subtraction operators which apply to Feynman
integrals with zero-mass propagators. Let F be a function of the same momentum
and mass variables as before which is C® in g and s.

Definition 2.1. Let 5e Ny =1{0,1,2,...} and &, be defined by

(t3,F) (u, 0,9, G5 5, 1, a) = osecs gj! % il,..ifo Poinifdis s 4,3 0)

X l:aa;:b(7%]...%igF(u,u,q,tj;s,u,a)lzo,s:o (2.33)
for every function F which is C* in g and s, where P, ;, . ; €%y are totally
symmetric in iy, ..., i, (2n/a)-periodic in ¢y, ..., q,,, and ‘1‘11% Py il qy;a)
=q;,,---q;, If for every such F

[(1—2)F](uv,2q,3; 25, 1, @) =0(2° 1) as 2—0, (2.34)

2, is called a generalized subtraction operator (GSO) of the order .
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The generalization consists in that in %, one also differentiates with respect to
the mass parameter s. By analogy, J,_;, is called a generalized subtraction
operator of order g, if for a function F whichis C*in g and s the function t§_;,F

is of the form (2.33), where ¢ is replaced by ¢ and s by (s—1), and
(1~ ) F) (00,24, G 1+ A6~ 1. )= 022" ), 250, (239)
Obviously, fzs is a GSO of the order ¢ if fz‘b, defined by

70— =,
(t3""F)(u,0,9,q; s, 1, a)

0 0
=2 . Z Py i 15 oo Qs @) <aqi1 o

-4

F(u,v,q,4q;s,p, a))

q=0

(2.36)

is a subtraction operator [4] of the order 6 — b, for every b satisfying 0 < b <. An
analogous statement holds for fg(s_ 1)

We want to apply GSO’s to functions F € & of the form (2.19). To this end, we
have to exclude in (2.34) and (2.35) those values of the variables u, v satisfying

d r z
Y bavet+ Y cpmt Y epq =0
k=1 k=1 k=1

for some ie{1,...,n} with p;=0.

Generalized subtraction operators have important properties which are
responsible for the subtraction of UV-divergencies by applying them to Feynman
integrals, and that subtracted diagrams are IR-finite. These properties will be given
in Sect. 4 when we have defined the renormalization procedure.

3. Renormalization of Lattice Green Functions

We give a prescription how to renormalize 1PI lattice functions

N M
{H Plq)- ] [Qj]} : (3.1)
i=1 j=1 0,1PI
Expression (3.1) is a sum of 1PI Feynman integrals. At first, we define renormalized
Feynman integrals. As indicated in the introduction and in Example 2.1, an
important convergence condition is that every internal vertex B must have an IR-
divergence degree not less than four. This condition will be assumed in the

following.

Let Fz(gr,gp'@rsd)rawf)

be a 1PI diagram with m loops and . {q; s, i, a) the corresponding unrenormalized
Feynman integral. The renormalized Feynman integral of I is defined by

. n/a N
R s, )= [ d*ky,...,d*k, Rk, q;s, 1, a), (3.2)
—mnja

where
Rpk,q;s,ma)=Sr ¥ T (—%,S,) - I{U). (3.3)

UeW yeU
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Here
1. S, are the substitution operators (2.16).
2. # is the set of all I'-forests.
3. I(U) is the unsubtracted Feynman integrand

Irk,q;s, 11, a) (3.4)

with the following substitutions depending on a forest U:
For every line Le ¥ (vertex Be,@r) there is at most one ye U, so that
Le #(Be#,), but L¢ Z, (B¢ #,) for all y’e U(y). If such a ye U exists, we write
A,(V,) as a function of the variables ¢’, k?, s7, otherwise as a function of k, g, s.
4. 1, is given by

1—t,=(1—220521,) (1 —12%) (3.5)

b

for every 1PI subdiagram y of I'. tqy(sv 1) and fgyys’y are GSO’s.
The UV-subtraction degrees d(y) and IR-subtraction degrees g(y) are given by

oy)= EZ [6(B)—4]— 2z e(y)dy (3.6)
o) =4+ 3 [e(B)—4]~ Zed)n. (3.7

e,(y) is the number of external k-type legs of y. r,>0 and d, are the IR- and
UV-dimensions of the field A4, [cf. (2.29)]. Furthermore, the UV- and IR-subtrac-
tion degrees 6(B) and ¢(B), Be %, are constrained by

0(B) 2 w(B)

for every vertex Be %, 38
o(B)=5(B) Y d 8

o(B)=4 for every internal vertex Be %
o(B)<min(4,r(B)) for every external vertex Be %.

o(B) and r(B) are the UV- and IR-divergence degrees of the vertex B [cf. (2.31)].
Note that always o(y)—1=6(y). If §(y)<0, we set 29, =0, and if o(y)—1<0:
811, =0.

5. The order of the factors in

H (_‘E}’S}’)

yelU

(3.9)

is determined by the rule that for y,, y,€ U, y, being a subdiagram of v,
(—1,,S,,) is ordered to the right of (—%,.,5,,).
For disjoint 7y, y,, the order is irrelevant.
Theorem 1. Assume that every internal vertex B of the diagram I satisfies r(B) =4,
and that the external momenta of I' are non-exceptional. Then the renormalized

Feynman integral #:(q; s, u, a) is absolutely convergent for every s and a>0. The
continuum limit a—0 exists and is given by

‘llgl(l)g?r(q;s,u,a)= [ d*ky, ..., d*k, Rk, q,s, 1), (3.10)
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where

Rr(ka q,s,u)= ll_I:I(l) Rr(k’ q; S, 1, a)'

If lir% Ik ,q;s,1u,a)%£0, Ry is equal to the BPHZL renormalized continuum

Feynman integrand defined in [10] (with a different choice of internal momenta
[4]. 1f ‘111_1};1) Ir(k,q; s, u,a)=0, also Rp(k,q,s,u)=0. As for massive field theories,
Feynman integrals which have a vertex with vanishing (naive) continuum limit do
not contribute to the continuum limit at all, after renormalization.

Renormalized diagrams are convergent also for s=1. As an important
convergence condition, r(B) =4 for all internal vertices B of the diagram, i.e. those
vertices having no external line. In general, they result from an interaction or
counterterm contribution to the lattice action. As the theorem shows, vertices with
an external line do not have to satisfy such a constraint. This means that the (non-
vanishing) external momenta provide an IR-cutoff. In most cases, the IR-
subtraction degrees satisfy g(y)= 1 only for diagrams y with two or three massless
external lines, so that these are the only Feynman graphs which are affected by the
additional finite renormalizations [cf. (3.5), (3.7)]. After renormalization, they
vanish at zero external momenta.

As a corollary of this theorem we state the renormalization prescription for 1PI
functions (3.1). Such a Green function is a finite sum of 1PI Feynman diagrams.
The renormalization prescription is as follows. Every contributing diagram y will
be renormalized as described by Theorem 1. The subtraction degrees are given by
(3.8), (3.9). These conditions, however, do not completely fix the subtraction
degrees of the vertices. This is done in the following way. P; may be a basic field or a
composite operator. In the latter case, there corresponds an external vertex to P,
in every diagram y which contributes to (3.1). Furthermore, to every Q;
corresponds a vertex in every y which may be an internal or an external one. For
every composite P; and for every Q; we denote the UV-divergence degree of the
corresponding vertex by w; and t; and the IR-divergence degrees by r; and v;,
respectively. These numbers are independent of y and depend only on the form of
P, and Q,. In the same way, let for every P, and Q; UV-subtraction degrees of the
vertices be given by 6; and #;, and IR-subtraction degrees by ; and o, respectively.
They are always chosen to be the same for all diagrams y contributing to (3.1).
Furthermore, they are constrained by the conditions

0;z2w;, ©;<min(4,r,0;) for composite P; (3.11)

njzmax(4,t;), o;=4, forall j=1,..,M. (3.12)

In general, the constraints (3.8), (3.9) are satisfied for every contributing diagram if
(3.11), (3.12) hold.

Let Py, ..., Py, be basic fields and Py, {, ..., Py be composite operators. Then
the renormalized Green function of (3.1) is written as

No _ N - M
{il;ll P{q,)- NH+1 N§:.[Pdg)]- Ijl [Q,]Zj} ; (3.13)

0, 1PI

and we can state the following
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Theorem 2. The 1P function(3.13)is finite for each a> 0, and also in the continuum
limit a—0, if the following conditions are satisfied.

1. The external momenta q,, ..., qy are non-exceptional .

(3.14)
2. v;2z4 forall j=1,..,M.

The a—0-limit is given by the BPHZL renormalized continuum Green
function of (3.1) [10].

From Theorem 2 we easily get a renormalization prescription for vertex
functions. They are not necessarily 1PI, e.g. for theories with spontaneously
broken symmetries. Nevertheless, every diagram which contributes to a vertex
function is a product of 1PI diagrams and other, finite terms. If the 1PI graphs are
renormalized as described above and such that renormalized tadpole diagrams
vanish, the renormalized vertex functions are IR-finite and convergent in the
continuum limit. Every tadpole line entering a 1PI subgraph is an external line of
this subdiagram of vanishing momentum, hence could produce an IR-singularity.
Vanishing renormalized one-point functions prevent such IR-divergencies.

When Ward-identities are to be satisfied by the vertex functions, then in
general additional finite renormalizations of 1 PI functions are necessary. This can
lead to non-vanishing one-point functions. In this case, it must be checked very
carefully whether no IR-singularities are produced. In particular, every vertex V'
with a leg which gives rise to tadpoles must satisfy stronger IR-constraints than
r(V)=4, namely, omitting the tadpole line, the resulting vertex V' also should
satisfy the condition r(V')=4.

The above theorem gives a well-defined procedure to renormalize theories
containing massless fields (s=1). Massless bare fields remain massless after
renormalization. With respect to universality and power counting renormaliza-
bility, the same arguments as in [4] go through. The same holds for the
counterterm philosophy. All subtractions can be written as counterterms of the
lattice action, eventually after some symmetrizations of the subtractions [4]. Also,
they can always be chosen to be local. Counterterms and consequently re-
normalized Green functions depend on the auxiliary masses. This dependence can
be absorbed by addition of finite counterterms satisfying the IR-constraints. In this
way, normalization conditions at non-exceptional momenta may be implemented.

The constraints on the IR-subtraction degrees are stronger than those of [10].
This is not a lattice artifact. They are necessary to avoid IR-singularities by
subtractions. When we consider lattice Green functions in configuration space, the
external momenta are integrated over, and the constraints (3.11), (3.12) may be
replaced by the weaker conditions

6;Zw;, ;=min(r;, d;),
ni2t;, 4=<o;=min(v;,n;).

As a simple example of Theorem 2, consider the massless lattice ®*-theory with an
additional ®®-interaction:

S(P)m=a* Y. [gP*(na)+ia’P°(na)].

neZ4
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The IR-dimension of the @-field is equal to one. Hence, #(®*) =4 and r(a>®%)=6.
Powers of the lattice spacing have no influence on the IR-degrees. Hence, the
massless model is IR-finite renormalizable.

4. Properties of Generalized Subtraction Operators

Before we are going to prove Theorem 1, we list important properties of GSO’s.
The first two lemmas state those properties of GSO’s which are responsible for the
subtraction of UV-divergencies by applying them to Feynman integrals as
described in Sect. 3.

Lemma 4.1, Let fgs and fg(s_l, be GSO’s and F € ¥ of the form (2.19). Then
1. a) degr, tq(s nF Sdegr, F,

4.1)
b) degr, i F <degr,F .

Suppose that for every i=1,....,n the coefficients satisfy (b;1,...,b;)=0 only if
(d;,...,d;,,)=0 and M?=0. Then

b w.
‘ a) degrvqs q(s 1)F<degrqu

4.2)
b) degrs, 2 F <degr, A

0vgs qa vqs

Proof.
o ab 11
d iy 9_; s Mo
egr; [a@ 1P o F(u,v,q,q sxttﬂ]q_ms_lzo
b al

<degr F <deat.F
egua( 1)”(’)’ (u,v,q,q; s, u,a)<degr,F(u,v,q,q;s, 1 a),

and that proves 1.a. The proof of 1.b follows the same way. To prove 2.a, note that
by assumption all propagators which depend on g or (s — 1) are also dependent on
v, hence

b 1
degrn | ———— = F q;
8l s |:6(S —1)* oq' (4,0.4: 55,1, a)]q— 0,s—1=0
— o o'
éde vq.s )( 1)1; ') a1 (u v, q’q S, /J,, )<degrvqu(u’ U, q’ Q> S5 ,LL, a)"(b_‘_m)’
where |l[|= Y [. Consequently
i=1
i

- * 0
Q15— 1P Py i1 s i ) [a(s 5 g P 0,35 u,a)}

=0,s—1=0
S(g+b)+degryg Fu,v,q,4; 5, 1, ) — (b +|l) = ®ymeu%¢;M®,
for |l|=g. 2.b follows analogously. ]
GSO’s, 0— 10, and t%: F >F defined by
1—t0=(1—22:1)(1-13). 4.3)

Lemma 4.2. Let tq(b 1y qs
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Let Fe% be of the form (2.19). Then
1. degrg t2F <degr,t%F +4. (4.4
2. degr, t%F <degr,F. (4.5)

Assume that for every i=1,...,n the coefficients satisfy (b;y,...,b;))=0 only if
(digs .- di) =0 and M?=0. Then

3. degruqs t90F< degruqs (4.6)
and
4. degry(1—12 )F<degr,,qu—(5 +1). 4.7)

These are exactly the properties necessary to reduce UV-divergence degrees of
a Feynman integral systematically by application of £22. The statements 2. and 3.
are direct consequences of Lemma 4.1. We only have to note that if F satisfies the
additional constraint so does fst . The proof of 1. is nearly identical to that of [4,
Lemma 3.1.1]. To prove 4., note that

degr,(1 — ) F(u,0.4,: 5, 1,0) < degr, (1~ ) F
by Lemma 4.1. Hence it is sufficient to show that
degr;(1 —tqs)F<degr,,qu—(5+ 1),
and this is done by using the same methods as in [4, Lemma 3.1.4]. []

The following two lemmas state properties of GSO’s with respect to the IR-
degrees of a function. Note that the g are fixed momenta.

Lemma 4.3. Let % be a GSO and F e F of the form (2.19). If for alli=1,...,n the
coefficients satisfy (d;y, ...,d;,) £0 only if M}?+ u?=+0, the inequality

degrmqu(s— 1)ZZSF = degrﬁlqu(s—- nF (4.8)
holds.
Proof. At first, we have

b 61
degrﬁlqu(s— 1) ]:55—17 @Z F(ua v, 4, q, S, U, a)jl

i _ _
—degrulqv(s 1) a Ab a Y] (u v, q’ qa S:ﬂ3 a)zdengqv(s*l)F(u’ v, q« q;S, H, a)’

g=0,5=0

where for the first inequality we have used the constraints on the denominator of F.
Relation (4.8) is now a direct consequence of the inequality. []

Lemma 4.4. Let fg(sh 1) be a GSO and FeZ of the form (2.19). Then
1. degr (s — Dol q(s 1)F>degruq(s i - 4.9
F—op. (4.10)

2. degru[qv(s l)tq(s 1)F>degruq(s v
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If for everyi=1,...,n the coefficients satisfy (b;, ..., b;))=0 only if (d,,,...,d,,)=0
and M? =0, the inequalities

3. degrﬂ]qv(SW l)i:g;(s~ 1)F g degri:lqv(s— 1)F s (41 1)
and

4‘ degruq(s 1)|v(1 q(s 1))F>degru|qv(s 1)F+max(0 0 + 1) (4 12)
hold.

Proof. Let be Ny and I=(l4,...,1,)eN}.
1. For every function F e,/f we have

o° o'
degrays- 1) l:ﬁ(s 1) 3q —— F(u,v,9,4;ss, 'u,a):lq=o,s-1=o
i 0
Z(_igg_ru?;(s—l)lum@F(“’U’Qaq’;s’ﬂaa)
>degruq(s 1)|uF(uav,q,q;S,.u,d)—(b+lll),

hence for g=|]|
o 0
degruq(s 1)]1,(3 1)ng,il ,,,,, ig(qla'*'sqw;a) [a(s 1))5 a Al (u>an7q;saﬂ»a)]

g=0,s—1=0
>(b + g) + degrtft\](s— l)]l)F(u> v, 4, q_s S, Uy a) '_(b + il{)
=degra— 1y, F,v,9,4; 5,11, 0).

The first statement of the lemma is now a direct consequence of this inequality.
2. For every Fe %, we have

o° o'
degru]qv(s 1) [6(3 ) q F(u v, 4, Q>S H, a):|
o° o
2¥8 aq(s— Div a( )b a ol
g_d_eglﬁl(s‘* 1)|vF(us v, 4, q’ S, Hy a)—(b+|l|),

g=0,s—1=0

>degry F(u,v,q,4;s, 1, a)

and for g=|l|
o0 0
degrﬁ]qv(s—l)(s-1)bpg,i1 ..... ig(ql""sqw;a) |:a a Al (u v, q’q’s n,a ):I
( ) g=0,s—1=0
=degra— 1, Ft,v,9.4;8,1,0)—(b+g),
ie.
degrulqv(s l)tq(s 1)F>degruq(s l)IvF_Q‘

This proves the second statement of the lemma.
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3. All the propagators which depend on g or have a non-vanishing auxiliary
mass are also dependent on v. Hence
o
degru|qv(s 1)|: ( 1)b aq F(u v, qaqas i, a ):|

ab al
—degrulqv(s 1) a( l)b a [F(u v, 4, q,S H, a)

g=0,s—1=0

g degrlﬂqu(s— 1)F(u> v, q, qs S, U, a) ‘

Consequently
1

ab
degrﬁlqu(s—l)(s_1)bpg,il ..... ig(qla . ’qw’ )[: ( 1)17 a 1F(u v, qaqas ﬂ?a)}

q=0,s—1=0
z dcgrﬂ[qv(s— I)F(ua v, 4, q, S, U, a) >

and this proves the third inequality.
4. (1—1t25-1)F is of the form

Vu,v,q,q;s, 1, a)
C(u,v,4,q; s, 1, a)C(u,v,0,3; 1, a2 ™’

[(1— q(s 1))F:| (u,0,q,9; s, 1, a)=

where V,e%‘. Using the behavior (2.35) of the subtracted function and that
V,eC”, we get
Vy(u,v,29,@; 1+ As — 1), 1,a)= 0(2¢" 1), A—0.

This yields
y degruq(s Div >degru|q,,(s 1V, +max(0,0+1).

By the constraint on the denominator, we get
degras— 0 CU v, 4, G5 5, 1t @) =degryus— 1, C(h 0,9, G5 5, 11, @),
hence
degruq(s v (1 - iz(s— 1))F] (u> v, 4, q_> S, Uy a)

g degrﬂlqv(s— 1) Vg(ua v, 4, q—’ S, Uy a)

_degrﬁlqv(s 1)[C(u v, 4, q_, S, Uy a) : C(u U, 0 q_a 17 U, a)g+ 1] +maX(0’ Q + 1)

—‘degrulqu(s 1)(1 q(s 1))F+max(0 Q+ 1)

g degrﬂlqv(s— l)F + maX(O, Q + 1) 5

where we have used Lemma 4.4.3. []

5. Convergence Proof

To prove Theorem 1 we show that all conditions to apply the power counting
theorem of [6] to (3.2) are satisfied. Let I' be a 1PI diagram and m the number of
loops in I'. The subtracted Feynman integrand (3.3) corresponding to I is of the

form
(, >S5, U, ) (51)

R (k,qg: =
b ds s 1A= g s Byl i)’




Renormalization of Lattice Feynman Integrals 657

where

n(L)
Bi(k,q;s,ma@)= [] [1 (epfly;a)+(s—1)> M+ pui),
Le#r j=1 (5.2)
k) y 2 2 yny(Ly) 2 L. .
By(k; poa)=11 T1 n [eLj(ki;a)+MLj+ﬂLj]"1’( ’/)[eLj(kz;a)+ﬂl,j]n2J( ),

y Le%, j=1

ny (L, 7), ny (L, y)€ {0,1,2, ...}, the first product is over all 1PI subdiagrams y of I',
and
Ik, @)=k (k)+4q.(q), ki=ki(k). (5.3)

R, belongs to the class of functions % and is periodic in ki, ..., k,,.

Let & be the set of all [, Le %}, and of all k] for arbitrary 1PI subdiagrams y of
I'and Le &Z,. The set % is natural [4].

Let

Uiy ooy, Vgyeenly (5.4)

be an arbitrary basis of &, r+d=m (uy, ..., U, vy,...,v,€ ¥ and det(d(u, v)/d(k))
+0), and let H be a Zimmermann subspace, i.e. a class of affine subspaces of
(ky, ..., k,,), defined by constant uy, ...,u, and variable v, ...,v,. Then all k, k” are
linear functions in u,v, g:

k=k(u,v,q), Kk'=k'(u,v,q). (5.5)

(v)=(vy,...,v,) is called the parametrization of H. The set of all classes H, for all
bases (5.4), is denoted by #.
We will show that for every He #

4d +degry R (k(u, v,9), q; 5, 1, a) <0, if d>0, )

4r+degry, Rp(k(u,v,q),q; s, u,a)l= >0, if r>0. (IT)

Then all the conditions are met for the power counting theorem of [6] to apply to

the renormalized Feynman integral (3.2), and Theorem 1 is proved. Note that (II)

must only be shown for s=1. If s+ 1, all propagators are massive and (II) is trivially

satisfied.

To prove (I) and (II) we will use the method of complete forests [5].

Ry (k,q; s, u, a) is written in a form which depends on H, i.e. as a sum of terms which

are described by complete forests and satisfy (I) and (II). A I'-forest U € #" is called

complete on H, parametrized by (v), if '€ U, and if for any y € U all lines of j(U) are
constant on H relative to y, i.e.

kj(u,v,q) is independent of v for every Le &,
or all lines of §(U) are variable on H relative to 7, i.e.

kj(u,v,q) is dependent on v for every Le %y, .
7(U) is said to be constant or variable on H, respectively.

Lemma 5.1 [5]. Let T be a 1P1 diagram, He # and W™ the set of all I'-forests
which are complete on H. Then

Rf(k’ q;S, K, a): v ;/H XU(k: q; S, U, a)> (56)
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where
Xylk,q; s, a)=(1—2p) Ye(k", q"5 8™, 11, @)ler s g = gisr =5 (5.7a)

and
?y(ky’ qy’ Sv> :ua a) = IA?(U)(ky» qy’ Sva /,l, a) : Sy 'Ul f(%) i\Iy,(kyi’ CIW§ Sw» Iu7 a) s (57b)

foranyyeU,v,, ...,y being the maximal elements of U(y). For minimal vy set f’} = IAy.
F(y) is defined by
1%, if yeBU)
= . ; (5.8)
fo {—ry i 1¢AU),
where B(U) is the set of all ye U having 7(U) variable on H and being a maximal
element of U(t) for some te€ U having T(U) constant on H.

Let U be a I'-forest, ye U and y, ..., 7, the maximal elements of U(y). Then S,
means a linear substitution

S,k —=kMk?), q"—q"(K',q"), s"—s, (5.9)

where the k’-dependence of ¢” is only by the explicit k’-dependence of external
lines of y;, and k™ is independent of ¢”. Especially, if H € 5 is given by variable (v)
and constant (u) and if (U) is constant, then q"(k?, ¢*) depends only on u and ¢’.

The prove of the UV-convergence conditions (I) is along the lines of the proof
[4]. Let H e # be defined by variable (v)=(vy, ..., v,) and constant (u)=(u, ..., u,),
and let Ue %", For ye U define

My(y)=4% m(z(U)), (5.10)
where the sum is over all t€ U(y)u{y}, 7(U) variable, and m(7(U)) is the number of
loops in 7(U). For y=T, My(I')=4d [4]. Then the following lemma holds.
Lemma 5.2. For every yeU,

1. degr, Y(K'(u,v,9),47; 57, i, a) < — My(y) for F(U) constant, — (5.11)
equality holding only if My(y)=0.
2. degropy Yk, 0.9). 3 8", 1,0) S8(3)— M) for 7(U) variable. (5.12)
For I,
3. degr, Rp(k(u,v,q),q; 5,11, a) < —4d. (5.13)

The proof of Lemma 5.2 is quite similar as the proof of [4, Lemma 5.2], the
only difference being the appearence of the mass parameters s”. Nevertheless, as
Lemma 5.2 of [4] is a consequence of the general properties of a subtraction
operator listed in Lemma 3.1 of [4], the validity of the above lemma is based on the
corresponding conditions of generalized subtraction operators listed in Lem-
ma 4.2. For this reason, the proofis left as an exercise to the reader. By Lemma 5.2,
the UV-conditions (I) are satisfied.



Renormalization of Lattice Feynman Integrals 659

6. Proof of the IR-Convergence Conditions (II)

To prove the inequalities (II) we will use the technical notion of an augmented
diagram [10] I" of I'. ['is constructed by collecting all external lines of I into a new
vertex By,. Momentum conservation in I implies momentum conservation in B, If
I has more than one external line, I is 1PLif I is. If I' has no external lines, then
r=r.

More precisely, let

F:(gr,(’)@[‘agl":d)l"rwl")

be a 1PI diagram having at least one external line. Then the augmented diagram I
of I' is defined by

I'=(%:, 6 Br, br. w1,

where
Lir=Lr0ér (Lrnér=0),
Er=0,
Br=%Bro{Bo}, Bo¢r,
and

br: Lr—>RBr X B,
¢r(L)=¢r(L) if LeZr,
¢r(E)=(Bo,w(E)) if Eeér.

The domain of y;.: & — % is empty. Every line Le #;\ - is called a g-Linie of I".

We now state two lemmas which are consequences of the assumed non-
exceptionality of the external momenta and the IR-constraints (3.9). They will be
useful later for the induction through a complete forest.

Let I be a 1P diagram having m loops and I the augmented diagram of I'. For
every 1PI subdiagram y of I', the IR-subtraction degree is given by

o(y)=4+ BGZ% Le(B)—4]— ; elMris (6.1)

where the o(B) are constrained by (3.9). Let E(I') be the number of g-lines of I" and
71, ..., 7. be mutually disjoint 1PI subdiagrams of I', I'¢ {y, ..., }.

Suppose that an arbitrary parametrization of the loop momenta of I' of the
form

k{w,p)= Y Dyw;+p;, i=1,...,m, (6.2)
=1

is given, where det(D) =0 and p; are fixed momenta, so that for all line momenta [,
le &y,

m

lL=1w.q,p)= ‘Zl (CLw;+ Q@)+ Puip), (6.3)

j=

where Q;, P, are linear.
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Let Ay, A4,...,A, be the mutually disjoint, connected subdiagrams of
I'/y,...y, which are spanned by the g-lines and the lines Le.%, having
Q@)+ P(p)*+0, and so that for E(I')=1 always B, e A, (cp. the definition of I')
and for E(I')=0: A,=0. By momentum conservation, all A, ..., A, are 1PI, hence
their number of loops m(A;)=1, i=1,...,b. Furthermore, let )»1,...,/16 be the
elements of {y,,...,y.} which corresponds in I'fy,...y. to reduced vertices not
contained in &, U...U%,,,.

Lemma 6.1. If the external momenta of I' are non-exceptional, we have
m(Ady)=E(N)—1. (6.4)
If in addition for all internal vertices Be€ % r(B)=4 and o(B) =4, the inequality

AT)+ 3 max(0,g()—4m(T)> —4m(Ify1...7) (6.5)

holds, where T=([/y,...y)/Aq,...A,, and ¥(T) and m(T) are the IR-divergence
degree of T and the number of loops in T, respectively.

For non-exceptional external momenta and E(I')=2, A, is 1PL If E(I'=0,
Ao=0, and for E(I'=1, &z, consists of one g-Linie.

Proof. We always have m(4,)=0. If E(I') =2, and the external momenta of I are
non-exceptional, the diagram spanned by the lines of %3 %, is connected
and contains all external vertices of I'/y;...y.. This proves the first statement.

To prove the second statement, we first note that if 4,=1"/y,...7,, (6.5) is
trivial. Thus, let us assume that A, =/7,...7.. The number of loops in T satisfies

~ b —_

D)=y 00— ¥ ml)
SiTfr1-20 ~(ED =D =00~ 3 m(A) (69
()~ 3 m).

Furthermore
rT)—4m(T)z4+ Y [r(B)—4]—4m(T) (by (2.30), T has no external legs)
Be®BT

24+ Y [HB-41+ ¥ (L)
BeBrTnBr i=1 \k
b
+ izzl (; ek(Zi)rk-4> + (; ek(ZO)rk—4>(1 —0gry,0)
—4m(l'/y,...v.)+4 ;b:l m(A,) [by (2.31)]

> i <Z ek(ii)rk_“) —am(T'/y;...v.)
i=1 \ k
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where we have used r, >0, m(A4;)=1 for all i=1,...,b and that r(B)=4 for all
internal vertices Be %, (#;N% contains only internal vertices of I'). Finally

r(T)+ ._il max (0, o(4;)) —4m(T)

> i (Z ek()‘i)rk—’4>+ i max (034—Zek()“i)rk+ > [Q(B)—4]>
i=1\k i=1 k Be%,,

—4m(I'/y,...p0)Z —4m(I[y;..7.),
where we have used that all Be %, are internal vertices and for them o(B)=4. [

To state the second lemma, let X, ..., %, be the connected, mutually disjoint
subdiagrams of I'/y,...y, spanned by the lines Le %, .. satisfying P;(p)=0.
Every 2, is 1PI and satisfies m(2,) > 1.

Lemma 6.2. Set T=(I'/y,...y)/Z,...E,. If all vertices Be % satisfy o(B)<4 and
o(B)=1(B), the inequality
r(T)+ ;1 max (0, o(y)) —4m(T) z o(I) —4m(I'/y1...7.) (6.7)

holds.

Proof. Let A, ..., 2, be the elements of {y,,...,7.} which corresponds in I'/y;...7.
to those vertices not contained in %5 U...u%s,. Then, using m(T)=m(I'/y,...7,)

- _i m(2)), we get
A1)+ ¥ max(0,0(:)—4m(T)

= |:4+ Y [r(B)—4]+ i; (; ek()»i)rk—4) + él (% ek(fi)rk~4>

BeBrnNnABr
- st | - [n00-4 5 |+ 5 maxoei)
24+ 3[4+ 3 (Yelon—4) - el

BeBrnBr

+ izil max (0.4 T et |3 @B)—4) ~4n(Tfy,...0)

(by r,>0 and m(£)=1)
> <4+ Y [o(B)—4]— ; ek(F)rk> —4m(I'/yy...70),

BeABr
where we have used e, (T)=¢,(I') for all k and o(B) <r(B), ¢(B) <4 for all vertices
Be%, [

Using the mechanism of complete forests we now prove the IR-power counting
conditions (II). The starting point is Lemma 5.1. The idea of proofis along the lines
of [10].
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Always in the following let I' be a 1 PI Feynman diagram and m the number of
loops in I', H € 5 given by variable (v)=(vy, ...,v,) and constant (u)=(uy, ..., u,),
and let U be a I'-forest which is complete on H. At first, for every y e U we define

Nyly)=4 L m(@U)). (6.8)

The sum is over all T € U(y)u{y}, T(U) constant, and m(7(U)) is the number of loops
in 7(U). For y=TI, Ny(I')<4r. This follows from M (I")=4m— Ny(I')=4d and
r+d=m (cf. (5.10)).

The next lemma states the action of the operators £, onto f/y

Lemma 6.3. For every ye U, the following inequalities hold.
1' degrx‘dq?'u(sy - l)f)va(ky(ua v, q)’ qya Sya H, a)

degrﬁlqu(sV - l)f/:/(ky(us v, q)’ q/, S?’ Hs a) fOV '}7( U) Uariable
> 4 min [degri, 1 VK1, 0,), 473 57, 1 @) — (@) — 1),
degrﬁlqvv(s?’ -1) Yy(kv(u> v, q)> qy, SV, K a)] fOV ')7( U) constant .
(6.9)

2. degripie - 1oty LK (4,0,9),47; 57, 1, a)

degrygruer - o Gk (W, 0, 9), 475 57, 1, @) Jor o(»)=0

min [@@(sv - 1)|0Yi(kv(u, 0,q),q";s%, 11, a),

degrtiuer -1y LK (1,0, 9), 473 5%, @) +e())]  for  o(y)>0. (6.10)
3. Suppose y(U) is variable. Then the inequality

Y

degruq/ﬁ(sy - 1)[0(1 - fy) Yy(ky(u> v, CI), qy, Sy’ 25 a)
; degrﬂlqu(sy— l)z(ky(ua v, q)a qy, Sya U, a) -+ max (Oa Q('Y)) (61 1)
holds.

Proof. t, is written in the form

A

A A N s oA _a A
T'/_T}'l+‘C}’2_TV1‘E}’2_‘E}'1+(1_Ty1)‘cy2:

where .
A D -1 A 75
Tyl _tgg}&“/—l}: Iyz—tqs};zw

If 7(U) is variable, every factor in the denominator of }A’y depends on v or is
independent of ¢” and (s”—1).
1.a) Using (2.11), Lemma 4.4.3 and Lemma 4.3, we get
degrqu"’(s“’ - l)(1 - fyl)fyZ fIy(ky(us v, Q)s qyy Sya K, (l)
= degtigrer - 1) Ey2 Bk (1,0,9), 475 87, 1, @)
g degrﬁlqvv(s?~ 1) ? (ky(u’ v, q)> qy, Sy’ U, a) .
b) Using (5.7b), (5.8) and Lemma 4.4, we get
degrﬁquu(sV - l)fyl i}y(ky(u, v, q)a qy, Sy; U, a)

o ey -1 T .9).475 57, . a) for j(U) variable
= Vdegrzgs— 1o By (K 0.9).47: ", 1) —(o()— 1) for  7(U) constant.
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Taking the minimum, assertion 1. follows.
2.3) degrﬁf/(sv— 1)[1}(1 - fy])fyz Y/(ky(u, U, q)a qy’ Sya i, a)

g degralq?’v(m’ - 1)f~/2 ﬁ(k""(u, v, q)s qya Sy> u, a) -+ max (Os Q(?)) 5
(by Lemma 4.4.4)
.Z degrﬁlq?’v(sv - 1)? (k“/(u’ v, 4)7 q}YJ Sy’ Hs a) +max (0’ Q(}’)) H
(by Lemma 4.3).
b) Note that g(y) <0 implies 2., ¥,=0. If o(y)>0, we get
degr@(s\’— 1)|vf*,'1 Yy(ky(ua v, q), q/, Sy’ u, a)
Z degr@(ﬂ - 1)jv fly(ky(ua v, q)> qya Sy’ ,u> a) (by Lemma 441) .
Assertion 2. now follows by taking the minimum.
3. Let $(U) be variable. Then Lemma 4.4.4 yields
degr@(s‘f - l)lv(1 - f}rl) Y/(ky(ua v, q)a qya Sya K, a)
Z degrﬁlq"”v(sy - l)ﬁ(ky(l’h v, q)> qy7 Svr H, a) +max (Oa Q(y)) .
Using 1 —%,=(1—1,;)(1—1,,) and 2.a, the assertion follows. []

Using Lemma 6.3, we get the following lemma which states lower bounds on
the IR-degrees of the functions defined in Lemma 5.1.

Lemma 6.4. 1. For every yeU
degruq/?(s'f — ljlvi\,“/(ky(ua Ua 51): qu Sys :u’ a) Z Q(y) - NU(V) l.f ?( U) constant .
degrﬂ|qu(sV -1) ?7(1(1/(”’ v, q)’ qy’ Sya Hy a) g - NU(?) (612)
(=holding only if Ny(y)=0).

2. Let ye U and 2 be a maximal element of U(y).

a) degrygrsr-1)8,% Y;.(k}'(% v, q),q*; 5% 1, a)= — Ny(A)
(=holding only if Ny(2)=0). (6.13)

In particular
degrgryr - 1)'fr?r(kr(ua 0,9),q":s", p,a)> —4r.
b) degrﬂlqyu(s? - 1)Sy(1 - f/) ?}M(kl(ua U, Q)’ q/3 Sl» i, a) g - NU()")
(=holding only if Ny(1)=0),

for 9(U) constant and 2(U) variable. o
C) degru/ﬁ(s?' - 1)|uSyfl Y/‘.(k].(u’ % q)a qla SA: i, a) g max (Oa Q()°)) - NU()”) (61 5)

(6.14)

for 3(U) constant and A(U) constant.
d) degr@(ﬂ— 1)|uSy(1 - fl) f/'l(k)‘(ua v, q)a q/a Sly U, a) g max (0’ Q(;‘)) - NU(;') (61 6)

for y(U) constant and A(U) variable.
The statements a)-d) are also valid without S, and with g*, (s*—1) instead of ¢,
(s7—1).
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Proof. By complete induction. o
1. For minimal y, we have y=7(U) and Y,=1,. In general

degrl‘thyv(s‘/ - l)fy(ky(u’ U, q)> qy, Syv U, a) g 0 >

because of (2.11) for every line Le &,.

If 9(U) is constant, let X, ..., X, be all 1PI subdiagrams of y which are spanned
by the lines Le &, satisfying k} (0, 0, g) + 0. Because of o(B) <4 and o(B) = r(B) for all
Be#,, using Lemma 6.2 and writing T=y/X,...%,, we get

degr@(s”" - 1)|vfy(ky(u7 v, q): qy: S*/’ K, a)
g degru/tfi(sy - 1)TT(ky(ur v= 07 q = 0)3 q/y Sys Ky a)
=r(T)—4m(T) 2 e(y)—4m(y)=0(y) = Nu(»).
This proves the first statement of the lemma for minimal ye U. R
2. Letye U and 4 be a maximal element of U(y). By hypothesis of induction, Y,

satisfies Lemma 6.4.1.
To prove the statements 2a) and 2b) of the lemma, we use Lemma 6.3.1 and get

degrﬁlqlv(sl - 1)‘?1 ﬁ(kl(uy v, q): ql) S).v H, a) g - NU(;")
(=holding only if N (1)=0)

and

%mq%wsi - 1)(1 —1t;) ifz(k)'(”’ v, q), qli s, 1, a)
= min [degry gz, - 1)?» degryjgrnsi—1)ts 7,1
Z —Ny(4)
(=holding only if N,(4)=0).

S, is a linear transformation
S, 4" =g k', v,q).q"), s">s,
where the k?-dependence of ¢* is only by the explicit k’-dependence of the external
lines of 4, i.e. lines which belong to £ ). The denominator of £, Y, is independent
of ¢* and (s*—1), hence
_d_CQQIqVU(sV - l)SyfA ?l(k;'(ua v, Q)’ q)‘; S}', H, (1)
_Z degrn‘4|q’~u(s’1 - 1)7?}~ i\/).(k/l(u’ v, q)’ ql, Sl: 25 a) g - NU(;“)
(=holding only if Ny (1)=0).
If 7(U) constant and X(U) variable, every denominator factor of (1—%,)Y, is
independent of ¢* and (s*—1) or dependent on v, and g¢*k’(u,v,q),q") is
independent of v. Hence
degrﬁlq”u(s?— l)Sy(1 - fl) ?A(kl(u’ U, q)’ q;: Sl» H, a)
g degrtﬂq’lv(s’1 - 1)(1 - f)) i\,};(k;‘(ua U, q)’ q;a SA) K, a) g - NU()“)
(=holding only if N (2)=0). (6.17)
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~ Next, we prove the statements 2.c and 2.d of the lemma. Let j(U) be constant. If
AMU) is constant, we get
@E@(M - 1)|vf)~ z(kl(ua v, q), qlé s%, t, a) Zmax (0, o(4)) — Ny(4),
where we have used Lemma 6.3.2. If Z(U) is variable, using Lemma 6.3.3, we have
degrizzn - 1)p(1—12) Yi(k*(u, v, q), ¢*; 5%, 1, a) 2 max (0, o(4)) — Ny(2).
Using the above mentioned property of the substitution operator S,, we get

degrim - 110 Syt Valk (u, v,9), ¢* 5%, 1, @)
> degrizie 1ot V(KA 0,9), 4% 5%, 1, a)
2max(0,0(4)) — Ny(4)
and
degrime - 1S,(1 =) V(X w, v,9), g% 5%, p )
zde_gruq/\(s/L 1)|u(1 —1,) Y;(k (u,0,9),q%; 5% p, a)
= max (0, 0(1)— Ny(4).
3. Let yeU and y,,...,7. be the maximal elements of U(y). By hypothesis of
induction, Lemma 6.4.2 holds, where 4 represents yy, ..., .. We must show that y

satisfies Lemma 6.4.1, which concludes the proof.
In general,

degru|q“/v(s7 1)A (k)’(u v, q) qy. Sy 122%% )
>degru|qu(sv 1) (U)(k (u v, q) C[ Sv M, a )

+ ‘—21 deglyigrosr— 1S, S () ¥, (K7, v,9), g5 8™, i, a)

20+ 3 (=Nyfr)

= —Ny(y) (=holding only if Ny (y)=0),

where we have used that Ny(y)= Z Ny(y,), and that all propagators of IWU)
depend on (s?—1).

Now let 7(U) be constant.

Let ¥,,...,%, be the mutually disjoint, connected and consequently 1PI
subdiagrams of 7(U) spanned by the lines Le.%,y, satisfying kj(0,0,q)+0.
Using ¢(B)=<4 and ¢o(B)<r(B) for all vertics Be#, and writing

=0/71-- 1)/ 21 2, we get
degr@(sy— 1)|vfly(ky(u’ v, q): q}', Sya ﬂ, a)
z de_gr@(sy - 1)|VTV(U)(ky(u’ v, q)a qva Sy’ M, a)

+ 'Zl degr@(s”* 1)|vSyf(yi) ?y,(kw(ua v, q)’ qyl; Syxa /la a)
=degriz - 1) I r(k(u,0,0), 475 5", u, @)

+ .;1 degruftﬁ(sy - 1)|uSyf(yi) f/'yl(k}’z(u, v, q)’ qy!; Syls ,U, a)
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4

> Nyy)

i=

= H(T)—4m(T)+ 3 max(0,0()

29(y)— [4m(37(U))+ _:il N U(yi)}, (by Lemma 6.2)
=0(y)—Nyly. O

Finally, using Lemma 6.4 we can prove that the renormalized Feynman
integrand R, satisfies the IR-conditions (II).

Theorem 3. Let I' be a 1P1 Feynman diagram having m loops and
Upy ooy lyy Vg ey Uy,

r+d=m, be an arbitrary basis of ¥, the set of all l;, Le %} and of all k} for all 1PI
subdiagrams y of I and Le #,. Let He A be given by variable (v, ...,v,) and
constant (uy, ...,u,), and U a I'-forest which is complete on H. Then X, of Lemma 5.1
satisfies

degrﬁleU(k(ua v, q)a q; S8, U, a)'s=1 > —47', (618)
hence
degry, Rp(k(u,v,9),4; s, 1, @)= | +4r>0. (6.19)

This means that the IR-convergence conditions (IT) are satisfied, and Theorem
1 is proved.

Proof of Theorem 3. We must show that
degrﬁ]v(1 - fl") Yf(kr(u’ v, q)$ qra Sra H, a)qu =q,sT'=1 > —4r.

At first, note that the denominator of £, ¥,-is independent of ¢* and of s” — 1. Using
Lemma 6.4.2, we get

degrﬁlvfl' i\/vl"(kr(us °A q)a qr, Sra u, a)‘qr=q,sr= 1

2 degrﬁlqrv(sr— l)fl“ i\/I“(kr(u’ v, q): qra Sr: H, a) > —4r.
All what remains to prove is that
degrﬁlv?l"(kr(ua 0, Q)’ qra SF, H, a)'qr=q,sr= 1> —dr. (620)

Let y4,...,7, be the maximal elements of U(I'), so that

i\,Iﬂ(kra qr; SF, M, a) = fI_"(U}(kr: qr’ sra i, a) + 'Zl Srfy, flyi(kyla qy'; Syla i, a) .

1. Suppose that I'(U) is variable. Then N (') = Y, Ny(y)=4r(=holding only
if Ny(I')%0). Using o

degrﬁlvff(U)(kr(u’ [ q)a ql"; Sra ,I.t, a) g 0
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and Lemma 6.4.2, we get

degrﬁlv?l"(kr(ua v, q)a qra Sra Hs a)lqr=q.sr= 1

g degraluff(U)(kr(uv v, Q)s qr’ Sra U, a)lqr:q,sr= 1
c
+ Z degrﬁlqrv(sr— 1}S1“fy,~Yy,(ky‘(ua v, q)a qy‘; Syla KU, a)> —4r.
=1

2. Suppose that I'(U) is constant. ~ - _
Take all mutually disjoint, connected subdiagrams A, ..., 4, of I'/y;...7.
spanned by the g-lines and all lines Le %y, satisfying

k1(0,0,9)+q.(q) *0.

Furthermore, let 4,,...,4, be the elements of {y,,...,7.} which corresponds in
I'[yy,...,7. to vertices not contained in Bz, U...uBz,, and let g, ...,0,€ {1, ... 7}
the remaining ones, i.c.

{01, o0 0} U{AL oo o) = {7157}
{QI’ ...,Q,}ﬁ{)»l, ...,le} :0,

At first, the following lower bougds on the IR-degrees can be given.
a) The denominator of S;£, Y, is independent of ¢" and s" —1, hence

I+e=c.

degri&]vST‘ee, i}gi(kgl(uv v, q)a qgl; SQ'7 K (1)|qr =q,sT =1
z degrﬁlqrv(sr— l)SI"’LA-Ql f;i(kgl(us v, q)a qg'; SQ:" K, a)
> —Nylo;) (=holding only if N,(¢;)=0), (by Lemma 6.4).
b) For g; variable, using the same arguments as for (6.17),
degrﬁleF(l - fg,) i\Ig,(kgi(us o8 q)> qu; SQ‘) K, a)'qr=q,sr= 1
; degrﬁlqrv(sr— I)SI"(1 - fgl) ?g,(k&(u’ U, Q)’ qu; SQI: H, (1)
= —Nylo;)) (=holding only if Ny(9,)=0), (by Lemma 6.4).
c) For every 4y,...,4,
q*=q"(k"(u, v, 9), q")gr == g™ (1)
is a linear function, hence
degrmusrfa, ?A,(kll(“, v,q), q;”'; s*, U, a)qu:q,sF— 1=0
g degru/qz(.s’ﬂ - l)lv‘fll ?)q-(kli(u; v, q)’ qli; Slla K Cl)
=2max(0, 9(4))—Ny(4), (by Lemma 6.4)
and for J,(U) variable
de’grﬁIuST(1 _fl,-) ?A,(k)'l(ua v, q), qll; Slla H, a)lqr:q,sr— 1=0
Z degrﬁ(s}'i - 1)|v(1 - f}.,) ?l,(kli(ua v, Q)a q;”; S;ua H, a)
=>max (0, o(4;))— Ny(4;) (by Lemma 6.4).
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Next, we use the inequalities a)—c) to conclude the proof of Theorem 3. By
assumption, the external momenta of I" are non-exceptional, and for every internal
vertex Be%, we have r(B)=¢o(B)=4. Applying Lemma6.1 to
F/“/l 3 Ao Ay, We get
degra]v?r(kr(u: v, q)s qr’ Sr, U, a)lqr= q,sT=1
>degra|vif(U)(kr(u v Q) q; Sr: i, )|sr 1

+ Z degry, Srf'(0:) ¥, (k%(u, v, 9), g% 5%, 11, )l g — g 57— 1

; degrulvsrf(A }/) kl'(u v, q) q 5 .la 12 a)lqr=q,sr:l
2 degr, [ (k" (u,v=0,4=0),g=0;5=1,11,0)

+ 2 (=Nyle) + Z [max (0, o(4;)) — Ny(4;)]

i

=r(T)—4m(T)+ Z max (0, o(4;) — Z Nu(r:)

||MN

— [4m(f(U))+ xz NU(yi)} (by Lemma 6.1)

= NNz —4r. O

Conclusions

We have proposed a renormalization procedure for lattice Feynman integrals
which applies also in presence of zero-mass propagators. The method is a fusion of
the lattice version of the BPHZ renormalization prescription [4] and the auxiliary
mass method of Lowenstein and Zimmermann [9, 10]. It applies to a wide class of
lattice field theories. Under very general conditions, the renormalized theory is IR-
convergent for every finite lattice spacing, and the continuum limit exists. The set
of renormalizable, IR-finite theories is constrained by the condition that all
vertices should have an IR-degree not less than four. Apart from the possibility of
massless propagators, the assumptions on the structure of momentum space
Feynman integrals are the same as in the massive case [4]. The integrand should be
periodic with the Brillouin zone in all the momenta, a property which is reflected
by the fact that the counterterms are also periodic. The propagators are assumed
to have only one pole in the Brillouin zone. In particular, the renormalization
program does not work for lattice fermions whose propagators have poles on the
boundary of the Brillouin zone. Furthermore, the integrand should be differenti-
able to such a degree that all subtractions necessary to subtract the divergencies
can be done without problems.

With respect to universality of perturbation theory and power counting
renormalizability, the same arguments as in the massive case [4] apply also to
massless lattice field theories. The continuum limit of the renormalized theory does
not depend on the specific choice of the lattice action. It is given by the continuum
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field theory which is described by the (naive) continuum limit of the lattice action
and is renormalized by the BPHZL finite part prescription [9, 10]. Furthermore, if
all coupling constants are dimensionless, a lattice field theory is renormalizable by
power counting if and only if its (formal) continuum limit is renormalizable. Also,
the counterterm philosophy is the same as in the massive case. After some
symmetrizations with respect to the external momenta of the Green functions (as
described in [4, Sect. 4]), the subtractions can always be written as counterterm
contributions to the lattice action, which can be chosen to be local.

Actually, we have defined the renormalization procedure for scalar fields only.
This we have done to simplify the notation. There is no problem to generalize the
method to fields carrying internal symmetries and spin. This can be done by
introducing so-called index-distributions in Feynman integrals [4] which associ-
ate every line ending with a set of symmetry labels. The definitions (2.27), (2.28) of
divergence degrees are replaced by

(,()(LT ) max degrlLs (IL’ oCL’ ﬁL9 S, /,l, a) s

ar, Br

r(4;)= g{liﬂri degrpy - Ay, 0p, Brs s, u, a)

for every line L and

CU(VB) maX degr{lL}BsVB({lLa aL}Bn S, 1, a),

r(VB) mm degr Tse-n VB({lLa OCL}ByS U a)

for every vertex B, where the maxima and minima are over all possible symmetry
labels of line endings at the vertex B.

Renormalized Green functions depend on the auxiliary masses introduced by
the subtraction scheme. This dependence may be absorbed by additional finite
renormalizations satisfying the IR-constraints and leading to equivalent re-
normalization schemes. For instance, by an appropriate choice, this corresponds
to subtractions at non-exceptional momenta plus additional finite renormaliza-
tions at vanishing momentum for two- and three-point functions necessary to get
IR-finite amplitudes in higher orders. In most applications, these additional
subtractions are needed only for diagrams with two or three massless external
lines.

The renormalization program proposed here applies also to lattice gauge field
theories. After convenient gauge fixing, such a theory is perturbatively renormaliz-
able by power counting, i.e. with increasing number of loops the order of
subtractions needed does not increase, and the continuum limit of the re-
normalized theory exists. The counterterms needed can always be chosen to be
local. A priori, only little can be said about their structure. However, if there exists
a BRS-symmetry on the lattice, the Green functions satisfy the corresponding
Slavnov-identities. It then should be possible to show that to every order, the
counterterms needed are of a restricted form which allows the theory to be
renormalized simply by renormalizing the parameters in the original lattice action.
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Appendix. Properties of Lattice Degrees

In this appendix we list those properties of the IR- and UV-degrees defined in
Sect. 2.3 which are permanently used in the text without explicit reference. They
are direct consequences of the definitions.
Let Ve®* be of the form (2.18). Then
degruq(e I)IUV(u 0,4, q’ S, Uy a)lq 0,s—1=0 —degruq(s l)lvV(u’ v, 4, 677 S, U, a) >
degrﬁ]qv(s~ I)V(us U, % q’ S, H, )quO,s— 1=0 g degrﬁlqv(s~ I)V(ua v, 4, q, S, H, a) 9

and

(A1)

degr V(u v, (4, CI» S, U, a)'q 0,s=0"" degr,,qu(u, v, 4, q_a S, Uy a)|q=0,s=0
<degry,V(u,0,4,4; 5,1, @), (A2)

degr,V(u,v,q,4; s, it a)l,= o, s o < degr,V (u,v,q, q; s, 1, @) .

The degrees of derivatives and of sums and products of functions of the
function class & satisfy inequalities which are direct generalizations of the
corresponding inequalities for the UV- and IR-degrees with respect to the
momenta only, as given in [3, Lemma 2.2] and [6, Lemma 2.1], respectively.

Let F,F4,...,F, be of the form (2.19). Then

e
degrﬁluq(s— 1) i:ZI F.z iszflf{,e degrqu(s—l)Fi,

e

degras— .Z F. >i mm degruq(s ieFis

:e . (A.3)
degrﬂlvq(x—l) 'Hl F.2 ,;1 degrqu(s— l)Fis
degruq(s v l‘_[l Fzg ;1 degruq(s l)lsz
and e
degrvqs ‘Z F,< max degrvqu”
=t . (A4)
degrvqs ﬂ F;< ) degrg F;
=1 i=1

Furthermore, for every beN,=1{0,1,2,...} and I=(l,,...,],,) e N}, we have

o° 0 _ _
degrulqv(s 1) a(S 1)b a Al (M, 0,4,9;S, U, a) g degrﬁ)qu{s* I)F(ua 0,4,9,S, 1, a) s

ob pL (A.S5)
degruq(s Vv 370 4 As—1) o' F(” 0,4,4;S, 1, a)>degruq(s 1)|uF(”a 0,4,q; s, 1, a)—(b+|1]),
and o
degrvﬁaql F(u,v,q,3;s, 1, a)<degr, F(u,v,q,G; s, 14, a),
» o (A.6)
Qe o g P 0.05, 10 ) S TR0 F 00,0, 51,00~ b+ ),

where |l| = i L.
i=1
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Note added in proof. The constraints on the IR-degrees of the vertices imposed by the
convergence theorems of Sect. 3 may be relaxed somewhat [10]. Namely, there may be at most
one internal vertex B with an IR-degree r(B) equal to 3. Correspondingly, the IR-subtraction
degree o(B) of that vertex must also be equal to 3, i.c.

r(B)=0(B)=3.

(If the external momenta are integrated over, then 3 < o(B)<r(B)). That is possible because the
IR-dimensions of the fields satisfy r, = 1. All statements remain true with this modification, and
the only change is in the proof of Lemma 6.1.

The generalization will be useful in applications.








