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Abstract. Let & be a complex simple Lie algebra. We show that when ¢ is not
a root of 1 all finite dimensional representations of the quantum analog U,%
are completely reducible, and we classify the irreducible ones in terms of highest
weights. In particular, they can be seen as deformations of the representations
of the (classical) U%.

I. Introduction

To each complex simple Lie algebra ¢, Jimbo associates the quantum analog of
its enveloping algebra, let U,%, where t is a non-zero parameter, as follows (see
also Drinfeld [2,3]):

Let (a;;), <;, <y be the Cartan matrix of % and («;), .,y a basis of simple roots;
U,% is the C-algebra generated by (ki*', e, /), ;< v With relations:

ki Y=k k=1 ko= Kk,

ke P =1tes kif kit =171,
k2 — k2

[el’fj] 51]

22—t

138 1 —a; L —aii— , ..
(_ 1)" J e} aij vejei‘ =0 fori #J,
v 2

v=0

1 —ay

2 (=D [ ) "’sz-"ffjf:=o for i #},

where t; = "%

[(m t m)(tm 1 t—(m—1))'_.(tm—n+1_ﬁl—(m—n+1))
m T (t—t~ 1)([2-—[72)-“([”—[—")

- 0
[”l ll for n=0 or m=n. form>n>0,

, (] ) being the invariant inner product on @ Cux;, with (o;|o;)€Z.
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So = 1% = ("), There is a coproduct: 4: U% —» UG ® UF defined by:
Ak = ki ®@ ki,
Ale)=e;®@k; ' +k®e; A(f)=fi®@ki '+ k®f,
and U,% is a Hopf algebra with antipode S and augmentation ¢ respectively defined
by:
Stky=ki ', Sle)=—t e, S(fy=—1lf;
1=sek)=ek; ") ele) =e(f)=0.

From now on, we shall assume that ¢ is not a root of 1 and we shall study the
finite dimensional representations of U,%.

In [4], Jimbo has shown that, for & = sl(N + 1), any irreducible finite dimen-
sional representation can be deformed in an irreducible representation of U,%4. We
shall show, using analogs of highest weight modules, that all finite dimensional
representations are essentially obtained in this way (after possibly tensoring by a
1-dimensional representation) and that all finite dimensional representations are
completely reducible.

The paper is organised as follows: in sect. II, we give some lemmas on the
general structure of U,¥, in particular showing a triangular decomposition:
U9=Un_Q®C[T]®U,n, as vector spaces (see notations below). In sect. ITL, we
give general remarks on finite dimensional representations of U,¥, which lead
us to highest weights. In Sect. IV we treat the case of U, sl(2), which is used in sect.
V to get the result for any U,%.

Notations
- T is the subgroup of the group of invertible elements of U,¥, generated by
the k;’s, and C[T1] is its group algebra.
- Upn, (respectively Unn_) is the subalgebra of U,4 generated by the e/s
(respectively by the f’s).
- U, (respectively U,b_) is the subalgebra of U,% generated by the ¢;’s and
E). (respectlvely by e;s and k;"’s).

C A= @Za is the root lattice, and Q. = @Na

II. About the Structure of U,%

1. Q-Gradation

Proposition 1. The action of k;'s by conjugation gives a Q-gradation on U %, U,b .,
U, as follows: a monomial ¢ in the generators e, f;, k;, is said to be the degree

N
“=Zn,~di, niGZ if‘f:
1
Vi=1,...,N kck'=i"¢

Proof. Let us note first that the £, 1<i<N, completely determine a: as
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(;/2)eZ and t is not a root of 1, the #{“” determine the integers (a;|o) which
in turn determine « as ( | ) is non-degenerate.
As each polynomial ¢ where e; appears n; times and f; m; times is clearly of
N

degree a =Y (n; — m;)a;, we see that U, %, U,b +» Un, are sums of their subspaces
- +
of degree.

Remark. U%Q®@U,% is then Q x Q-graded, and also Q-graded via the total
gradation.
A:U%->U%®U¥9 is a morphism of Q-graded algebras.

Lemma 1. V(m,,...,m,)eN¥, eT'...e% is non-zero in U,%.

Proof.

a) There is always the fundamental representation of U,¥ (given by the same
formulas as the fundamental representation of %, see Jimbo [6]) in which the e;’s
are non-zero. (One can also mimic the proof in Humphreys [4] p. 97-99).

b) Vie{l,...,N}, VmeN ¢ #0.

As A, and also the 4™ =(A®Id®" Vo(A®Id®™ Po...0A, are injective, it is
enough to show that A™(e}") # 0. Using the Q™-gradation of (U,%)®", it is enough
to check that the component of degree (v;,...,o;) is non-zero.

Now, A™(e;)=u, + --- + u,, where u,=k;® - Rk Re;Qk; ' ® - Qk; * (e
at the r-th position) and wu, = tfu,u, for r <s. So, one computes A™(e{™)=
[A™)(e,)]™ by the t}-multinomial formula:

Pult?)
A(m) e; m __ — T uM... u;‘nm,
[AmE]"= X G "
and one gets the term of degree («;,...,a;) for n; =-=n,=1. So, it is
Du(t?) _ @t -
[eehH T =7

-1 -3 —(m—1
e,k:" ®€,k:" '~-®€iki (m ).

Now, as k; is invertible, we see that, ek '®---®ek; ™"V is non-
zero.

c) Let(my,...,my)eN.In order to see that e --- e # 0, it is enough to consider
the component of degree (m,a,,...,myuy) of AN (e7:...exv). But it is:

eTKD kTN Q@ kT e KON - @K™k y My e
which is non-zero according to b).

3. A Basis for C[T]
N

For a =3 no;€Q, let k, = ki --- k.
1

Lemma 2. The k,’s, x€Q, are linearly independent.

Proof. Suppose Y Ak,=0, 1,6C* As one can always multiply by a k; (with a
finite

suitable ), one can assume that the o’s in the finite sum belong to Q.
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Then: (Id® $)° A Ak) =) Ak, ®k; *=01in UF® U,%. Let L (respectively
R) be the left (respectively right) regular representation of U,%.

So: Y A,L(k,)°R(k; ') =0 in End (U,9).

Evaluating on e7'---elV, (my,...,my)eN", one gets:

S AL =0 Y(my,...,my)eNV.

As we can also evaluate on e§™ --. ek~ for each keN, we see that ¢ and all its power
t* are roots of a certain Laurent polynomial. As ¢ is not a root of 1, its powers
are 2 by 2 distincts so the Laurent polynomial must be 0. So
Ay =0.
af(a]y mo;) = fixedvalue
Using this remark, we shall give a proof by induction on the number p of terms
in the sum (recall we have assumed A,eC¥*)
- the case p=1 is clear
- let us suppose the result true for p terms (p = 1), and suppose there are p+ 1
terms: a@,...,aP.
It is enough to show that there exists (m,,...,my)eN" such that:

(*) (@O, me)¢ { (29)) mak =1,....p}

(because then the argument on Laurent polynomials gives 4,4, =0, and we are
back to a sum with p terms).

N
(*) reads: I(m,, my)eN" such that: Vk=1,...,p (oc(‘”—oc("),Zm,-oci> # 0. But the
1

(e — a®,-) are non-zero linear forms on h*, which determine p hyperplanes in
h*. We have to see that there is a point of Q , outside the union of these hyperplanes.
The proof is exactly the same as the classical one showing that any vector space
on a field of characteristic 0 cannot be the union of a finite number of hyperplanes.

4. Basis for U,
As the vector space U,n, is generated by monomial in the e;’s, there is a basis of
U,n, whose elements are some of these monomials; one can also assume that the
monomials in this basis having a given Q-degree form a basis of the corresponding
Q-component of Upn, .

Let (E,),c; this basis.

Lemma 3. (E,'K,),e; 4o IS abasisof Ub,.So Ub, ~Un, ®C[T] as vector spaces.

Proof. According to the defining relations of U,%, these elements generate U,b, .
Let us show they are linearly independent.

Suppose Y 4,E k, =0, 4,eC*. One can assume that all the terms have the same
Q-degree B. The term of degree (B,0) in A(} 4,E,k, ) must be 0, so:

Y 3 Ek, @ kgk, =0,

Y ( | Y ),,E,kar> ®kky =0.

o\ (/o =a)
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As k,’s, for distinct o’s, are independent:
> AEk,=0, so) AE =0andVr4i=0.
{r/a, =)
Remark. Let 6 the algebra automorphism given by 6O(e;)= —f;, 0(f)= —e;
Ok;) =k .
Let F, = 0(E,). Then (F,),, is a basis of U,n _ having the same properties as (E,),;.
5. The Triangular Decomposition of U,%

Proposition 2. (E, F,'k,),, 1 1xgisabasisof U%.SoUG ~Un_Q@C[TI®Upn.
as vector spaces and U, 9 is a free U,b . -module.

Proof. It is enough to show the linear independence. Suppose )" 4, ,E,. F,k,=0,
Ay €C*. For rel, let o, the Q-degree of E, (and-a,. for F,.). Then, the Q-degree of
E, F, k,is o, — o, and we can assume that the couples (r,#) in the sum are such
that «, — o, = constant.

We shall use an order relation < on Q defined as follows:

fora =Y no;€Q, let my(a) = n;, () Zm )eZ. For o # o, we say that o < o if:
a) (o) <l(o) or

b) () =Il(e) and the smallest index i such that m;(a) # m;(o') verifies: m;(x) <
my(o). This order is total, and compatible with the addition.

Now, consider I, = {rel/ the degree o, of E, is maximal for <}. Then, in
AQY. Ay oEF,k,) =0, the component of Q x Q-degree (maximal, minimal) must be
0:

Y Ak, ®ky M)k, @k, = 0.

relo

Here o, is fixed, so «, also,
Z lr,r’,az(Erka ® Fr’ku) = 0’

relo

lr,r’,aErka> ® Fr’kot =0.

(r',a) 2 by 2 distinct <relo,(r’,a) fixed
As the F,k, are independent, V (', a) fixed ) 4,, ,Ek,=0,s0 4, ,=
relo
III. General Remarks on the Finite Dimensional Representations
Let p a representation of U,% in the finite dimensional vector space V.

Lemma 4. 1. The operators p(e;), p(f;) (1 £i < N) are nilpotent.
2. If p is irreducible, the p(k;)’s are simultaneously diagonalisable and V = @V,

where, for = (u,,..., Uy,
={veV/Ni plk)v=wv.}

Remark. Such a p defines a character w: T — C*, this allows us to speak about
weights of the representation.
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Proof. 1. For 1 i< N, the relation p(k)p(e)ptk) ™t =1"")p(e) shows that if the
spectrum of p(e;) contains a non-zero element, it contains an infinity of elements.
So, this spectrum is {0} and p(e,) is nilpotent. Same proof for p(f;).

2. As the p(k;) commute, they have a common eigenvector v and we have to
see that each is diagonalisable. Let E = {W subspace of V, dim W > 1)Vi, p(k)|y
diagonalisable} E # ¥ as C-veE. Let WeE of maximal dimension and suppose
dim W <dim V:

a) if W is invariant under p(e;) and p(f;), we must have W =V due to the
irreducibility of V.

b) assume there exists weW and je{l,...,N} such that p(e)w¢W. (The case
p(f)w¢W is similar.) As W = @W,, where W, = {w/p(k)w=p,w}, we can assume
that we W, for a certain u. Then p(k)p(e)w =t{"p(e)p(k)w = u;it{p(e)w. So w' =
ple;)w is a common eigenvector of all p(k;’'s and W’ = W @ Cw’ belongs to E, with
dim W’ > dim W. Contradiction.

Definition. A vector veV\{0} is said a highest weight vector if there exists
A=(A,...,An)E(C*N such that: p(k)v=AvVi=1,...,N,

pleyo=0Yi=1,...,N.

Proposition 3. For each finite dimensional representation (p, V), there is at least a
highest weight vector in V.

Progf. a) As the p(k;)’s are simultaneously trigonalisable, the set of weights P is
non-empty; The subvectorspace V'=@ V, of V is non-zero and invariant under
U,%. We consider the subrepresentation of U,% in V' and look for a highest weight
vector in V',

N
b) In V', we only have to show that V,, = (") Ker p(e;) is not zero (as it is invariant
1

under the p(k;)’s, they have a common eigenvector in it). This follows classically
from the lemma:

LemmaS5. Thereexists aninteger M suchthat:Vjy,...,j,{1,...,N}, p(e;)---ple;) =
0 in End V' as soon as p= M.

Proof. Itis enough to check that: VueP, YveV, p(e;,)--- pe;,Jv=0 for p big enough.
Let us fix pueP; Then v'=p(e;,)---ple; JveV,, with u;= yit,z"“’fk. Let n, be the
number of times e, appears in {e;,...,e; }; u;= i tE%% As V' is finite dimen-
sional, there is only a finite number of weights u, u'V),...,u®, and it is enough to
see that for p>M, ' is not in this list for ie{1,...,N}, let x! = u{®/p;; we have to
find i,e{l,...,N} such that:

t%"k"m%{ Lx{), . x).

As t is non-zero, let us fix TeC such that ¢ =exp(2int). As ¢t is not a root of 1,
7¢Q. As each x{ is not zero, we fix y¥ such that x{ = exp (2iny!). Then, an
equality 2™ = x{ gives:

o lo) X m .
(—'ZI")anaik =y 4+ = for a certain m,
T T
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Z mo o) = ¥ +

As the left-hand side belongs to Z, the right-hand side must also, and as there is
at most an integer m such that y® + m/teZ. Let us put z¥ = y® + m/t. Suppose
that for each ie{1,...,N}, there exists s€{0,...,r} such that

N

Z ol o) = 2.

k=1
We have a linear system, with unknowns (n,,...,ny) and matrix ((e;|o,)) which is
invertible. So, given (z§V,...,z§M), there is at most an integral solution to the
system. As we can form only a finite number of N-uples (z§7,...,z%), we see that
if (ny,...,ny) is not in a certain finite set, there is always an mdex io such that:
Z"""'0"¢{1 x{, L x@}. Let M =sup(ny|+[ny|+ -+ +[ny]) + 1, where (ny,...,ny)
belongs to the excluded finite set, and we get the lemma.

Proposition 4. Let V be a cyclic U,9-module generated by a highest weight vector
vy, with weight 2= (14,...,4y).

1) V is spanned by v, and the p(f;))---p(f; )04, iy,...,1,€{1,..., N}, and such a
vector, if non-zero, is a vector of weight = (iy,...,Uy) wzth W= ) “ty L%,

2) All the weights of V are of this form.
3) For each weight p, dim V, < co and dimV,; = 1.
4) V is an indecomposable U,%-module, with a unique maximal proper submodule.

Proof. (Compare Humphreys [4]). Quite analogous to the classical one, using the
decomposition U g=Un_®@C[T]®U,n. . (For 3), use the same argument as in
Lemma 5 to prove that p(f;,)---p(f;)v+ and p(f;,)---p(f; v+ have the same weight
iff Vi, f; appears the same number of times in {f;,....f;,} and in {f;,,....f; }.

Proposition 5. If p and p’ are irreducible representations with the same highest
weight, they are equivalent.

Now, given an irreducible finite dimensional representation, we know that it
has highest weight, necessarily unique. In order to determine the possible values
of A=(A4,...,4y), we shall consider, for each i=1,..., N, the restriction of the
representation to the subalgebra generated by k7', e, f; (which is isomorphic to
U,sl(2)).

IV. Finite Dimensional Representations of U,sl(2)
We shall call k*', e, f the generators.

Theorem 1. 1. If AeC* is the highest weight of a finite dimensional representation
of Usl(2), then 4= w-t", where we{l, —1,i, —i}, meN.

2. For each meN and we{l, — 1,i, —i}, A=ct™ is the highest weight of an
irreducible representation of dimension (m + 1), and the weights of this representation
are exactly: wt™, wt™ 2,...,0t™"™.

3. Every finite dimensional representation of U sl(2) is completely reducible.
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Proof. 1.Let v be a vector with highest weight A and put, for peN, v, = (1/p")p(f)?-v.
Then:

1) p(f)vp = (p + l)vp+ 1

i) p(kyv, =A%,

and the formula [e, f7]=f?"1((t* —t 2P)/(t> —t~2))-((k*t 2P~V —

k™22~ V)12 — ¢t~ 2)) and the fact that p(e)-v =0, show that we have:
tZP_t’ZP t*Z(p“l);LZ_tZ(p*I)/{*Z
i) p(e)v, = T e Up-,p2 1.

As V is finite dimensional, there is a first integer m such that v,, = 0. Then, as
tis not a root of 1, A*=¢*""Y 50 A =wt" !, we{l, — 1,i, —i}.

2. Let V be a C-vector space with basis (vg,...,0,), on which k, e, f act by the
same formulas i), ii), iii) with A=wt™ Then p(k), p(e), p(f) verify the defining
relations of U,sl(2): so (p, v) is a representation of U,sl(2) and it is irreducible since
the v,’s are the only weight vectors possible (up to scalar).

3. We have to check that if V is a finite dimensional U,sl(2)-module and V’
an invariant subspace of V, then there is an invariant subspace V" such that
V=vV'aev.

a) Case where V' is of Codimension 1. By using induction on the dimension of
V', one classically reduces to the case where V" is also irreducible; so, it is a highest
weight module. Let us call w-t™ its highest weight.

Lemma 6. 1. C=((kt —k™'t™")*)(t* =t~ %)*) + fe is in the center of U,sl(2) and
it acts in every finite dimensional irreducible representation, by a non-zero scalar.
(Compare Jimbo [3]).

2. For w'e{l,—1,i,—i}, let C'=C—(0't—a' " 't"1)?/t* —t~ %) It acts in
every finite dimensional irreducible representation by a non-zero scalar if the
dimension of the representation is greater than 2.

Proof. One checks immediately that C and C' commute with e, f, k. So, they are
in the center of U,sl(2) and act by a scalar in every irreducible representation. This
scalar is obtained by evaluating on the highest weight vector v,. For C, one gets
((wt™*t — =t~ ™*Y)(t2 —t~2))? which is non-zero as ¢t is not a root of 1.

For C’, one gets: (w??™* D) 4+ @2t 72+ D oy 242 — oy "2t~ 2) /(2 — t~2)2).

But w’=w"?and 0’ =w' "2

It is zero if and only if @?(L2™* 1 472+ D) = o)2(¢2 + 1~ %),

tZ(m+1)+t—2(m+1) CU/ 2
=|— {1, - 1}.
»

S
But
t2(m+1)+t—2(m+1)
[ 1©t2(t2m _ 1) — t—z(m+1)(t2m _ 1)

A
impossibleif tisnot aroot of 1 (m = 1 as the dimension of the representationis m + 1)

tz(m+1)+t~2(m+1)
— 1©t2([2m+ 1)= t—2(m+1)([2m+ 1)

t2 + t—2

impossible if ¢ is not a root of 1.
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Proof of a). Suppose first that dim V' = 2.

Consider the representation of U,sl(2) in V/V’, which is 1-dimensional: ¢;, f;
act by 0 and k; by a scalar w'e{1, — 1,i, — i}. Define C’ as in the lemma and let it
act in Vit takes V" into V”, where it acts by a non-zero scalar according to Lemma
6, and in fact it takes V into V' as it acts by 0 in V/V’ (by choice of w’). So
V, =ker C’ is 1-dimensional and V = V'@ V,. Furthermore, V, is invariant under
U,sl(2) as C’" belongs to the center.

Suppose now dim V' =1 and dim ¥V = 2. The only non-trivial case is the one
where o, the weight of the representation in V' is equal to «’, the weight of the
representation in V/V". So, there exists a basis (v,,v,) in V in which p(k) has matrix

W o
(0 w),aeC.

Then p(k)[p(e)v, ] = t*wp(e)v,, so p(e)v, = 0.

Then p(k)[p(e)v,] = t*p(e)[wv, + av, ] = t*wp(e)v,, so p(e)v, =0 and p(e) = 0.
Similarly, p(f)=0.

Then the relation [e, f]=(k*—k~?)/(t* —t~?) implies p(k)* = p(k ')?, so
oa=0.

b) General Case. V' of any codimension. Let
v ={feZLV,V")f,, is a scalar operator},
V' ={feLWV,V)f,, =0}

Then ¥ is a subspace of codimension 1 in 7.

One makes U,sl(2) act in £ (V, V') after identifying £ (V, V') with V' ® V* and
putting: p = (p ® g)o 4, where p =‘poS is the contragradient representation in V'*.
If one fixes a basis (y;,...,y,) of V', one can write any @e.Z(V, V') uniquely as
@ =Y.y ®xf for some xFeV*.

One then checks without difficulty that ¥~ and ¥ are invariant under p.
Applying a), there exists an invariant subspace 7" such that ¥ =7"@ 7. Let
¢ =Y y;®x} a non-zero element in ¥™": it acts in V' by a non-zero scalar and
Ker ¢ = n;Ker xf verifies V = Ker ¢ @ V'. Furthermore, Ker ¢ is invariant under
U,% (because " was) and Ker ¢ is the sought for space.

Corollary. If A= (4y,...,y) is the highest weight of a finite dimensional irreducible
representation of U,¥9, then, necessarily, 2, is of the form 4, = w,ti*. w,e{l, —1,
i, — i}, meN.

V. Finite Dimensional Representations of U,%

1. Any Il-dimensional representation is irreducible, with highest weight w=
(Wy,...,0y5)e{l, — 1,i, —i}". Let us denote it by (p,.C,). If (p, V) is any finite
dimensional irreducible representation, with highest weight 4, then (p® p,)°4
gives an irreducible representation in V®C,, with highest weight w.l=
(wlil,...,g),v}tN).

2. Let /4 a dominant weight of ¢ (with the basis of roots (¢;)). One can associate
to it a character of T, noted t’, by: tl(kl-) = t?””, where (H,,...,Hy) is the coroot
system associated with (xy,..., o).
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The corollary shows that to each highest weight A, one can associate a
1-dimensional representation (p,,C,) and a dominant weight 7 defined by
TH) = o> =meN.

This is the first point of the following theorem:

Theorem 2.
1. If (p, V) is a finite dimensional irreducible representation with highest weight
], then A= w.t", where we{l, —1,i, —i}" and 7 is a dominant weight of 4.
2. Any character of T of this form is the highest weight of a finite dimensional
irreducible representation.
3. Any finite dimensional representation of U, 9 is completely reducible.

Proof.

2. According to the remarks in 1., we only have to consider the case where
J. = t*. But, for each 1e(C*)", one can construct the universal standard cyclic module
with highest weight 4, call it Z(4), by an induced module construction: consider
the 1-dimensional space D,, with basis v, , on which U,b, acts as follows:

€,-.l)+ = 0 Vi
kv, =4Av, Vi
Put Z(A) = U,% (X) D;: it is a left U,%-module in which 1 ® v, is not zero because

U,
U,% is a free right U,b, -module, and 1 ® v, generates Z(4). Taking the quotient
by the maximal proper submodule (see Prop. 4), we get an irreducible module with
highest weight A:V(J). The fact that, when 1 is dominant, ¥'(¢?) is finite dimensional
will follow from:

Proposition 6. Let V(tz) the irreducible module as above, where the dominant weight
A is defined by the positive integers m; = A(H;). Then:

L fritto, =0 Vi=1,..,N.

2. Foreach 1 <i< N, V(t*) contains a non-zero finite dimensional L;-module (L,
is the subalgebra generated by e,, f;, k).

3. V(t*) is the sum of the finite dimensional L;-submodules.

4. The Weyl group W acts on the set P of weights. Each weight subspace V, is
finite dimensional and dimV,, =dimV, VoeW.

5. The set of weights P is finite.

Then, V(t’T‘) being irreducible, it equals the sum of its weight subspaces and 4. and 5.
show that it is finite dimensional.

Proof of proposition (Compare Humphreys [4]).

1. Let w= f™*1.p, and let us show that, if w # 0, it is a highest weight vector,
with highest weight different from t* (such a vector cannot exist as V(t) is
irreducible). First, k;-w=1t; “J'(""“)f'"'“k 0y = DM g0 i w £ 0, it s
a weight vector with welght t# -0t 0% £ 7 Then, as for 1#— j,e; and f; commute,
e;w=0. For i = j, the relation
2mit 1) pm2mt 1) p2p=2mi ki—ztiZm,

[eo /141 ] = f1-"

2 -2 22
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and the fact that k;-v, = t{"v, shows that e;;w = 0. So w would be a highest weight
vector.
2. For 1 £i < N, consider the subvectorspace spanned by v, f;v,,..., f™m+1
v.. Commutation rules between e;, f; and k; show that it is invariant under L.
3. Let V' the sum of the finite dimensional L,-submodules. According to 2),
V' #{0}. To check that V"= V(¢%), it is enough to see that it is invariant under
all e;, f}, k;.

Remark. 1 —aye{l,...,4}. If 1 —a;;=1, then e;e; = eje;. For 1 —a;; =2, put e, ;=
ee;—ti*ese;. Then, if 1 — a;;= 2, one defining relation gives eje; ; — t#+24ve; e, =
0. If 1 —a;;=3, put ¢;; ;=ee;;—t}**"e, je;, and we have ee;; ;=87 2%e,; e,
For | —a;=4,pute;;; ;=ee;; ;—t} *"e,,; je; and then: eje; ;; ;= t12+2%e
Same remark with the f’s. Now, the invariance of ¥’ will result from the following
fact: if W is an invariant finite dimensional L;-submodule, then the vector space
spanned by e W, (W, kW, e W, f,;W,....,e;;; ;W and f,,, ;W (where
Jje{l,...,Nj\{i}) is finite dimensional and invariant under L, according to the
remark. So, U G(W)< V',

4. The finite dimensionality of each V is proved as in Proposition 4. Let u = t"e P
and o, W associated with the simple root o;. Let us show that ¢,(¢"), defined as
"™, belongs to P. But the subspace (V.. is invariant under L;; let us fix

keZ

v,€V,\{0}. According to 3), there is a non-trivial finite dimensional subspace V"
of @ Vjisuy, invariant under L; and containing v,. According to the complete
reducibility theorem for U, sl(2), V" is a direct sum of irreducible L,-modules. As
p=1t"is a weight for the representation in V", u, = "V appears as a weight of
one of the irreducible summands. According to Theorem 1, 1, *"" js also a weight
for this irreducible L;-module. But, as the possible weights are restrictions of those
of V", there is k in Z such that:

g M = R thatis 2(H,) = — key(H,).

i,i,j

1,0, jCi

But :
2(1(H;)

o=+ ko,
(ai’ai) “ '

Oy (ﬁ) = Ilj -

So, t""'e P,

5. Using 4, the proof is exactly the same as the classical one.
Proof of Point 3) in Theorem 2. (Complete reducibility) We shall use a result due
to Professor A. Borel, which he has obtained as a generalisation of an argument
allowing him to prove the complete reducibility theorem for complex semi-simple
Lie algebras without using the Casimir operator.

His result is the following:
Theorem (A Borel): Let A be an algebra, M an additive category of A-modules and
S the set of classes of simple A-modules in M. Assume:

1. M is closed under the formation of subquotients. Every element of M has a

finite Jordan—Holder series.
2. There is an involutive functor V — V* on M, reversing the arrows, preserving

&, direct sums and short exact sequences.
3. There is a partial order < in & such that V< W =V* < W*_ (In the sequel,

write < for ).
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4, Let 0> U —V—W—0 be a short exact sequence in M, with U and W in &.
If V is indecomposable, then U < W.

Then under those conditions, every element of M is a direct sum of elements in & .

In fact, Borel’s proof remains true if one replaces (2) by the little more general
hypothesis:

(2') There are two functors F; and F, on M, reversing arrows, preserving &,
direct sums and exact sequences, and which are inverse one of the other. Then, (3)
must be true for F, and F,.

It is under this form that we shall apply the result to 4 =U,% and to the
additive category of finite dimensional U,%-modules.

Let us check that the four conditions are satisfied:

1. is clear.

2. Let F, the functor contragredient representation (p, V)—(p,, V*), where
py ="p°oS(Sisthe antipode), and F, the functor skew contragredient representation:
(0, V)= (05, V*), where p,="poS" (S' is the skew antipode: §':U,% — U,¥9 is linear,
antimultiplicative and inverse of S).

3. Anelement in S is characterised by its highest weight cu.tz, where we{l, — 1,
i, —i} and 7 is a dominant weight in %.

Let < the usual partial order on the weights in 4. Define the order on & by:

otf<otfen=0 and IS

As S(k;) = S'(k;) =k ', w.t" is a weight in (p, V)<>w ™.t " is a weight in (p,, V*)

(or (pi, V*)).
So, to prove V< W=V* < W* we are back to the classical case: if w, is the
longest element of the Weyl group W, then i = — w, defines an involution in h*

preserving the weight lattice and the order on it. On the set of characters of T of
the form w.t", where we {1, — 1,i, — i}" and fi is a weight of %, one has an involution
I given by: I(w.t") = w ™~ 1.1"%, which preserves the order. Now, it is easy to see that
if V is an irreducible U,%-module with highest weight w.t!, then F, (V) and F,(V)
are irreducible with highest weight L.t

4. We shall follow Borel’s proof for the classical case.

Let O— V(w.t')— V- V(w'.t")-0 be a short exact sequence with V inde-
composable. Then V is cyclic with respect to any vector v not contained in V(w.t").
Put A= w.t, u=w.t"

Let us show that 4 # u. If not, V; is 2-dimensional and there is no weight v > 4
in V. So V, is killed by U,n,. So, any veV,\{0} is a highest weight vector and
generates an irreducible submodule whose intersection with V; is 1-dimensional.
As dim V(4), = 1, taking veV,\ V(4),, we see that the cyclic module generated by
v should be V. Contradiction.

So, A # u. We shall prove that there is in ¥\ V(1) a vector with weight p killed
by U,n,. As such a vector must generate V, it will follow that A < u. Let us note
that the space VY"+ of vectors killed by U,n, is 2-dimensional: dim V'Y"+ <2
because dim V(A)U"+ =dim V(u)""+ =1, and dim VY"+ >1 because V(1)""+ c
VU« One can suppose that u is not < 4, because, if u < A, taking the dual exact
sequence 0 — V(uw)* - V* - V(A)* -0, one has I(x) < I(4) and in particular I(4) is
not < I(x). So one gets dim (V*)V"*+ = 2, but as (V*)""+ is the dual of V/U n,.V, it has
the same dimensions as VU"+.
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So suppose that u is not < A. Then V cannot have weights v < u because such
a weight would be necessarily a weight of V(1) and we should have u <v < 4. Now,
there is xeV whose image in V(u) generates V(u),. So, for i=1,...,N, p(k;)x —
wxeV(A) and p(e;)xeV(4). Put y, = p(k;)x — u;xeV(4), and note that (p(k;)—
1))y = (p(k;) — u;)y;. As pis not </ it cannot be a weight in V(4); so, there is
ie{1,...,N} such that: p(k;) — u;],; is invertible. Put z = (p(k;) — u;) " (y;)e V(A).
Then (p(k;) — u;)z=y;=(p(k;) — p;)x. So x'=x—z is such that: Vi, (p(k;)—
u)x' =0, ple;)x'e V(1) and has the same image as x in V(2). Let us show that in
fact p(e;)x' =0 Vi.

If not, let i such that p(e;)x’ e V(A)\{0}. Then Vje{1,...,N},

Pl pley)x’ = 1 pler) p(k;) X = 13 1;plep)x’ = M p(e,)x.
So p(e;)x’ should be a vector with weight w'.t"*% > o'.t" = u. Impossible. So, x’ is
the sought for vector and we have also proved that dim V"= 2.

The only remaining case is the one where u <A, with dim VU™ =2. As
dim V(2)V"+ = 1, there is an xe VV"+\ V(4)V"+. Its image in V(u) is not zero and is
killed by U,n. . So each of its components X, in the decomposition V(u) = @ V(u),
is a highest weight vector if X, # 0. So, as V(u) is irreducible, only x, # 0. So the
u-component x, of x is not zero and, as it is also killed by U,n., it is the sought
for vector.

The theorem is now completely proved.

These results have been announced in [7].
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