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Abstract. Let ̂  be a complex simple Lie algebra. We show that when t is not
a root of 1 all finite dimensional representations of the quantum analog U$
are completely reducible, and we classify the irreducible ones in terms of highest
weights. In particular, they can be seen as deformations of the representations
of the (classical) U&.

I. Introduction

To each complex simple Lie algebra ,̂ Jimbo associates the quantum analog of
its enveloping algebra, let Ut&, where ί is a non-zero parameter, as follows (see
also Drinfeid [2,3]):

Let (aij)i^j^N be the Cartan matrix of ̂  and (α ,̂̂  a basis of simple roots;
Uf8 is the Oalgebra generated by (kf\ehfi)l^i^N with relations:

fc. /cΓ ! = k~ i ./c. = 1; ktkj = kjkh

MA"1 = *?''*/; kjjk^^tr^fp
/c? — k~2

' eΓαίj~vejeJ = 0 for ^7,
Λ2

! f Γ α t J ' v f j f v ι = o for ϊVΛv

where ίf = ί(α'|αί)/2

9 ( ) being the invariant inner product on 0Cα ί? with (αf α f)eZ.

_ *-(m- 1)\ φ um-n+ 1 _ ^-(m-«+l)\

m " " (̂ ^W^̂ R?11^̂  fr A for m > « > 0,
for w = 0 or m = n.
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So tailj = tf = t(*W. There is a coproduct: Δ: Ut^-^Ut^®Ut^ defined by:

=ft®k^ + kt®fi9

and Uβ is a Hopf algebra with antipode S and augmentation ε respectively defined
by:

From now on, we shall assume that t is not a root of 1 and we shall study the
finite dimensional representations of Uf§.

In [4], Jimbo has shown that, for <& = sl(ΛΓ + 1), any irreducible finite dimen-
sional representation can be deformed in an irreducible representation of Ό$. We
shall show, using analogs of highest weight modules, that all finite dimensional
representations are essentially obtained in this way (after possibly tensoring by a
1 -dimensional representation) and that all finite dimensional representations are
completely reducible.

The paper is organised as follows: in sect. II, we give some lemmas on the
general structure of U$, in particular showing a triangular decomposition:
Ut$ = Utn_ ® C[T] (x) Utn+ as vector spaces (see notations below). In sect. Ill, we
give general remarks on finite dimensional representations of U&, which lead
us to highest weights. In Sect. IV we treat the case of Ut sl(2), which is used in sect.
V to get the result for any UfS.

Notations
• T is the subgroup of the group of invertible elements of U$9 generated by

the fe/s, and C[T] is its group algebra.
• Utn+ (respectively l/ tπ_) is the subalgebra of Uβ generated by the e s

(respectively by the /t 's).
• Utb+ (respectively £/,&_) is the subalgebra of Uβ generated by the e^s and

fc^'s). (respectively by ef's and fc^'s).
N N

• A = @Zαf is the root lattice, and Q+ =
i = 1 i = 1

II. About the Structure of U

1. Q-Gradatίon

Proposition 1. The action ofk^s by conjugation gives a Q-gradation on Ut&, Utb+9

Utn+ as follows: a monomial ξ in the generators ei9 fh kh is said to be the degree
"N

a = Zniai>^eZ iff'-i

V / = 1 , . . . , N ktξkΓl = t(ΐ>wξ.

Proof. Let us note first that the t "1'"', 1 5Ξ i ̂  N, completely determine α: as
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and ί is not a root of 1, the if1'00 determine the integers (α£|α) which
in turn determine α as ( | ) is non-degenerate.

As each polynomial ξ where et appears nt times and ft mί times is clearly of
N

degree α = ]Γ (nf — m^, we see that ί/ ,̂ ί/tb±, 17^+ are sums of their subspaces
i

of degree.

Remark. Uf$ ® UfS is then Q x Q-graded, and also g-graded via the total
gradation.

Δ : Uf§ -> U^ (x) U<§ is a morphism of g-graded algebras.

Lemma 1. V(w1,...,wJeNΛ r, e%1 e1βN is non-zero in U^.

Proof.
a) There is always the fundamental representation of 17,̂  (given by the same

formulas as the fundamental representation of ,̂ see Jimbo [6] ) in which the ef's
are non-zero. (One can also mimic the proof in Humphreys [4] p. 97-99).

b) Vie{l , . . . ,N}, V m e N e J V O .
As Δ, and also the Δ(m) = (Δ ®Id®(m~{)°(Δ ®Id®(w-2)° °Δ, are injective, it is

enough to show that Δ(m)(eΠ φ 0. Using the βm-gradation of (Ut$)®m, it is enough
to check that the component of degree (αί? . . . ,α, ) is non-zero.

Now, zl(wl)(eί) = M1 + ~'+um, where wr = ^® •••(χ)/cί®<?ί® A;;"1® •••(x)/c/"
1 fe

at the r-th position) and w sw r = if wrws for r < s. So, one computes Δ(m\efn)) =
[2l(m)(^)]m by the ίf-multinomial formula:

Γ/\ ( m ) C^ > lΊ m = Y _ - _ M f?1 MWm[4 (e')] .....̂ .̂ ..(̂ - (̂ίf)"1 m '
and one gets the term of degree (αί? . . . , αf) for n1 = - = nm = 1. So, it is

-UΛ " Um=-

Now, as kι is invertible, we see that, ^/cf1"1® •••(χ)^/cί~
(m~1) is non-

zero.
c) Let ( W i , . . . , mN)eN. In order to see that e^ e^φQ, it is enough to consider

the component of degree (w^α 1 5 . . . , m^α^) of Δ^^1---^). But it is:

eT1/^2---^®/^1^
which is non-zero according to b).

3. A Basis for C[T]

For α = JΓnΛeβ, let /cα = fcϊ1 - fey.
i

Lemma 2. T/ie feα's, αeβ, are linearly independent.

Proof. Suppose J] λafea = 0, /ίaeC*. As one can always multiply by a fe^ (with a
f inite

suitable β)9 one can assume that the α's in the finite sum belong to Q +.
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Then: (Id <g> S)°Δ (£ Aα/cα) - Σ Aα/cα <g) fcα"
 1 - 0 in Ut& ® U&. Let L (respectively

R) be the left (respectively right) regular representation of Ut&.
So: Σ Wα)0^;1) = 0 in End(l/t#).
Evaluating on e™l -e™N, (m l 5...,mN)eN j v, one gets:

As we can also evaluate on ek™^ - - ek™N for each fceN, we see that t and all its power
tk are roots of a certain Laurent polynomial. As t is not a root of 1, its powers
are 2 by 2 distincts so the Laurent polynomial must be 0. So

Σ λ. = o.
α/tαl^m^) = Γixedvalue

Using this remark, we shall give a proof by induction on the number p of terms
in the sum (recall we have assumed ΛαeC*)

• the case p = 1 is clear
• let us suppose the result true for p terms (p ̂  1), and suppose there are p+ 1

terms: α(0), . . . , a(p\
It is enough to show that there exists (m l 5...,wN)eNN such that:

(because then the argument on Laurent polynomials gives lα(0) = 0, and we are
back to a sum with p terms).

/ N \

(*) reads: 3^ , m^eN* such that: V k = 1, . . . ,p α(o) - α(fc), Σ "W + 0. But the
\ i /

(α(0) — α(/c), ) are non-zero linear forms on ft*, which determine p hyperplanes in
ft*. We have to see that there is a point of Q + outside the union of these hyperplanes.
The proof is exactly the same as the classical one showing that any vector space
on a field of characteristic 0 cannot be the union of a finite number of hyperplanes.

4. Basis for Utn+

As the vector space Utn+ is generated by monomial in the ef's, there is a basis of
Utn+ whose elements are some of these monomials; one can also assume that the
monomials in this basis having a given g-degree form a basis of the corresponding
β-component of Utn+.

Let (Er)rel this basis.

Lemma 3. (Et-kΛ)reI aeQ is a basis ofUtb+. So Utb+ ~ Utn+ (x) C[T] as vector spaces.

Proof. According to the defining relations of Ut&, these elements generate Utb + .
Let us show they are linearly independent.

Suppose Σ^r£r/cαr = 0? AreC*. One can assume that all the terms have the same
Q-degree β. The term of degree (β,0) in Δ(^λrErkar) must be 0, so:

i Σ
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As fcα's, for distinct α's, are independent:

Remark. Let Θ the algebra automorphism given by Θ(ei) = —fh Θ(fi) = —eh

Let Fr = Θ(Er). Then (Fr)rel is a basis of Utn _ having the same properties as (Er\el.

5. The Triangular Decomposition of Ut&

Proposition 2. (£Γ Fr, - /cα)(r/,α)6/ x 7 x Q is a basis of Ut&. So Ufβ ~ Utn _ (x) C[T] ® Utn +
as vector spaces and Ufl is a free Utb + -module.

Proof. It is enough to show the linear independence. Suppose ^λrr, aEr. Fr,ka = 0,
λrtr tΛeC*. For re/, let αr the β-degree of Er (and-αr, for Fr,). Then, the β-degree of
Er-Fr'-ka is αr — ar> and we can assume that the couples (r,r') in the sum are such
that αr — αr> = constant.

We shall use an order relation ^ on β, defined as follows:
N

for α = Σn/αi eδ> let mί(α)= wίί '(α) = Σ mi(α)e^ For α ̂  α', we say that α < α' if:
i

a) /(α) < /(α') or
b) /(α) = /(α') and the smallest index i such that m f(α) / m f(α') verifies: m f(α) <

m^α'). This order is total, and compatible with the addition.
Now, consider /0 = (re// the degree αr of Er is maximal for ^}. Then, in

^(Σ ^r r' aErFr'kΛ) = 0, the component of β x β-degree (maximal, minimal) must be
0:

relo

Here αr is fixed, so αr/ also,

(r',α) 2 by 2 distinct \r6/0,(r',α) f ixed

As the Fr,/cα are independent, V(r',α) fixed Σ λrtr,tΛErkΛ = 0, so /lr>r, α = 0.
re/o

III. General Remarks on the Finite Dimensional Representations

Let p a representation of Ut& in the finite dimensional vector space V.

Lemma 4. 1. Tlie operators p(ei)ί p(ft) (l^i^N) are nilpotent.
2. If p is irreducible, the p(/cf)'s are simultaneously diagonalisable and V = ® Vμ9

where, for μ = (μl9...,μN),

Remark. Such a μ defines a character μ: T->C*, this allows us to speak about
weights of the representation.
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Proof. 1. For 1 g i^N, the relation ρ(k^p(Φ(^~l =twp(e) shows that if the
spectrum of ρ(ei) contains a non-zero element, it contains an infinity of elements.
So, this spectrum is {0} and p(ei) is nilpotent. Same proof for ρ(fi).

2. As the p(fcf) commute, they have a common eigenvector v and we have to
see that each is diagonalisable. Let E = {W subspace of V, dim W ̂  1/Vi, p(kt)\w

diagonalisable} E Φ 0 as C veE. Let WeE of maximal dimension and suppose
dim W < dim V:

a) if W is invariant under p(et) and p(fi), we must have W = V due to the
irreducibility of V.

b) assume there exists weW and J6{1,..., N} such that p(e )w$W. (The case
P(fj)wφ W is similar.) As W = ®Wμ9 where FΓμ = {w/p(feί)w = μίw}, we can assume
that weW μ for a certain μ. Then p(ki)p(ej)w = ta

i

ljp(ei)p(ki)w = μίt
a

i

ljp(ej)w. So w' =
p(ey)w is a common eigenvector of all p(fcf)'s and W = FF © Cw' belongs to E, with
dim W' > dim W. Contradiction.

Definition. A vector ι;eF\{0} is said a highest weight vector if there exists
λ = (λί9... ,/lN) e(C*f such that: p(ki)υ = λivVi=l9 ... ,7V,

Proposition 3. For eαc/z yϊm'ίe dimensional representation (p, K), ί/zer^ /s αί least a
highest weight vector in V.

Proof, a) As the p(ki)
9s are simultaneously trigonalisable, the set of weights P is

non-empty; The subvectorspace V = ® Vμ of F is non-zero and invariant under
U$. We consider the subrepresentation of U<& in F' and look for a highest weight
vector in V.

N

b) In V, we only have to show that V0 = P| Ker p(^) is not zero (as it is invariant
i

under the p '̂s, they have a common eigenvector in it). This follows classically
from the lemma:

Lemma 5. There exists an integer M such that: Vy^ , . . . Jp e { 1, . . . , N}, p(βj^ - ρ(ejp) =
0 in End V as soon as p ̂  M.

Proof. It is enough to check that: VμeP, Vt?e V'μ9 ρ(ejl) p(ejp)υ = 0 for p big enough.
Let us fix μeP; Then v' = p(ejί)" p(ejp)vGV'μ, with μj = μffp1"*. Let nk be the

number of times ek appears in \eh,...,ej }; μ = μfίf
nkαίk. As V is finite dimen-

sional, there is only a finite number of weights μ, μ(1), . . . ,μ(2), and it is enough to
see that for p^M, μ' is not in this list for ie{l, . . . ,N}9 let x\s) = μpVμ^; we have to
find io e{l? 5N} such that:

As £ is non-zero, let us fix τeC such that ί = exp(2iπτ). As t is not a root of 1,
τ<£Q. As each x[5) is not zero, we fix y\s) such that x[5) = exp (2iπyf }). Then, an
equality tp*fl/* = x[s) gives:

(αjα^ m
— ̂ — Σ n/A = ̂  + ~ for a certain m,

^ i τ
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As the left-hand side belongs to Z, the right-hand side must also, and as there is
at most an integer m such that y\s) + ra/τeZ. Let us put zf} = yf} + m/τ. Suppose
that for each ie{l,...9N}, there exists se{0, . . . ,r} such that

k = l

We have a linear system, with unknowns (nl9... 9nN) and matrix ((αf αk)) which is
invertible. So, given (z^0, ...,Z^N)), there is at most an integral solution to the
system. As we can form only a finite number of N-uples (z(^\ . . . , z^), we see that
if ( n l 5 . . . , n j v ) is not in a certain finite set, there is always an index i0 such that:
t%*^φ{l9xW,...,χV}. Let M = sup( | W l | + |H2 | + ...+ nN\)+l, where (nl9...,nN)
belongs to the excluded finite set, and we get the lemma.

Proposition 4. Let V be a cyclic Ut& -module generated by a highest weight vector
v+ , with weight λ = (λ1,. .. 9λN).

1) V is spanned by v+ and the p(fiί)~ p(fip)v + 9 il9...9ipE{l9...9N}9 and such a
vector, if non-zero, is a vector of weight μ = (μl5 . . . , μN) with μk = λk - t^jakij.

2) All the weights of V are of this form.
3) For each weight μ, dim Vμ < oo and dim Vλ=l.
4) V is an indecomposable U ̂ -module, with a unique maximal proper submoduie.

Proof. (Compare Humphreys [4] ). Quite analogous to the classical one, using the
decomposition U$=Utn-®C\_T~\®Utn+. (For 3), use the same argument as in
Lemma 5 to prove that p(fjl)' p(fjr)v+ and p(fil) p ( f i ) v + have the same weight
iff Vz, fa appears the same number of times in {/},,. . . Jjr} and in {/ίl? . . . ,/ίp}.

Proposition 5. // p and p' are irreducible representations with the same highest
weight, they are equivalent.

Now, given an irreducible finite dimensional representation, we know that it
has highest weight, necessarily unique. In order to determine the possible values
of λ = (λl9...9λN), we shall consider, for each i=l9...9N, the restriction of the
representation to the subalgebra generated by k f l

9 e i 9 f t (which is isomorphic to

IV. Finite Dimensional Representations of £7,81(2)

We shall call k±l

9 e, /the generators.

Theorem 1. 1. //ΛeC* is the highest weight of a finite dimensional representation
o/£7fsl(2), then λ = ω tm, where ωe{l, -l,i, —i}9 meN.

2. For each meN and ωe{l, — l,i, — i}9 λ = ω-tm is the highest weight of an
irreducible representation of dimension (m + 1), and the weights of this representation
are exactly. ωtm, ωίm"2,...,ωί"m.

3. Every finite dimensional representation o/l/fsl(2) is completely reducible.
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Proof. l.Let t; be a vector with highest weight / and put, for /?eN, vp = (\/p\}p(f}p v.
Then:

ϋ)
and the formula 0,/p] = fp~l((t2p-Γ2p}/(t2 -Γ2})-((k2Γ2(

k~2t2(p~l))/(t2 - ί"2)) and the fact that ρ(e) v = 0, show that we have:

iii) ρ(e)vp = (t2-r2) (t2~r2) "*-i^ = "

As V is finite dimensional, there is a first integer m such that vm = 0. Then, as
t is not a root of 1, /14 = ί4(m~υ, so A = ωίwι~1, ωe{l, — U, — i}.

2. Let V be a C-vector space with basis (v0,..., ι;OT), on which fc, e, / act by the
same formulas i), ii), iii) with λ = ωtm. Then p(k\p(e\p(f) verify the defining
relations of LΓ

ίsl(2): so (p, t;) is a representation of C/tsl(2) and it is irreducible since
the ϋp's are the only weight vectors possible (up to scalar).

3. We have to check that if V is a finite dimensional LΓ

ίsl(2)-module and V
an invariant subspace of V, then there is an invariant subspace V" such that
V=V'®V.

a) Case where V is of Codimension 1. By using induction on the dimension of
V, one classically reduces to the case where V is also irreducible; so, it is a highest
weight module. Let us call ω tm its highest weight.

Lemma 6. 1. C = ((kt- k~lΓl)2/(t2 - r2)2) + /<? is in the center of I7fsl(2) and
it acts in every finite dimensional irreducible representation, by a non-zero scalar.
(Compare Jimbo [3]).

2. For ω'e{l,-I,/,-/}, let Cf = C-(ω't-ωf'ίΓ1)2/(t2-Γ2)2. It acts in
every finite dimensional irreducible representation by a non-zero scalar if the
dimension of the representation is greater than 2.

Proof. One checks immediately that C and C' commute with e,f,k. So, they are
in the center of C/tsl(2) and act by a scalar in every irreducible representation. This
scalar is obtained by evaluating on the highest weight vector vQ. For C, one gets
((ωίm+1 -ω~^Γ(m+l]/(t2 -Γ2))2 which is non-zero as t is not a root of 1.

For C', one gets: ((ω2ί2(m+1} + ω~2Γ2(m + υ - ω/2ί2 - ω'"2r 2)/(ί2 - ί"2)2).
But ω2 = ω~2 and ω'2 = ω'~2.
It is zero if and only if ω2(t2(m + 1} + r 2(m + 1)) = ω/2(ί2 + Γ2),

ω
But

j 2 ( m + l ) _|_ j - 2 ( m + l )

impossible if ί is not a root of 1 (m ̂  1 as the dimension of the representation is m + 1)

ί2 + r2

impossible if t is not a root of 1.
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Proof of a). Suppose first that dim V ^ 2.
Consider the representation of Utsl(2) in 7/7', which is 1 -dimensional: ei9ft

act by 0 and kt by a scalar ω'e{l, - 1, i, - i}. Define C" as in the lemma and let it
act in V: it takes V into V ', where it acts by a non-zero scalar according to Lemma
6, and in fact it takes V into V as it acts by 0 in V/V (by choice of ω'). So
72 = kerC is 1 -dimensional and F= V ®V2. Furthermore, 72 is invariant under
£7,81(2) as C' belongs to the center.

Suppose now dim V = 1 and dim V = 2. The only non-trivial case is the one
where ω, the weight of the representation in V is equal to ω', the weight of the
representation in V/V. So, there exists a basis (i^ , υ 2 ) in V in which p(fc) has matrix

ω α \ „
n ' αeC

0 ω/
Then pί/OK^i] = t2ωp(e)vl9 so pO?)^ = 0.
Then p(/c)[p(φ2] = t2p(e)[ωv2 -fαt^] = t2ωp(e)v2, so p(φ2 = 0 and p(e) = Q.

Similarly, p(f) = 0.
Then the relation [e,/] = (k2 - k~2)/(t2 - Γ 2) implies p(/c)2 = p(/c - 1)2, so

α = 0.

b) General Case. V of any codimension. Let

iT = {/eJ2?(7, 7')//,F is a scalar operator},

Then i^' is a subspace of codimension 1 in fΛ
One makes Uts\(2) act in JSf (K, V) after identifying jSf (7, 7') with 7'® 7* and

putting: p = (ρ®ρ}°Λ, where p = lp^S\^ the contragradient representation in 7*.
If one fixes a basis (yι, . . . , j> p ) of 7', one can write any φe«£?(7, 7') uniquely as

Φ ^Σ}7!®^!* f°r some xf e7*.
One then checks without difficulty that i^ and Y' are invariant under p.

Applying a), there exists an invariant subspace ^/r such that Ίf = f^' 0 f^/r. Let

Φ = Σ);i®:x;?ί a non-zero element in f^": it acts in V by a non-zero scalar and
Ker φ — n f Kerx* verifies 7 — Ker φ® V. Furthermore, Kerφ is invariant under
Όty (because Y*" was) and Kerφ is the sought for space.

Corollary. Ifλ = (λlί...9 λN) is the highest weight of a finite dimensional irreducible
representation of Ut$, then, necessarily, λk is of the form λk = ωkt™

k. ωke{l, — 1,
i, — i}9 mfceN.

V. Finite Dimensional Representations of Ut&

1. Any 1 -dimensional representation is irreducible, with highest weight ω =
(ω l 5...,(%)e{l, — l,i, — ί}N. Let us denote it by (pω.Cω). If (p, 7) is any finite
dimensional irreducible representation, with highest weight A, then (p®pω}°Δ
gives an irreducible representation in 7(χ)Cω, with highest weight ω.λ =
(ω1λl9...9ωNλN).

2. Let 1 a dominant weight of ̂  (with the basis of roots (αf)). One can associate
to it a character of Γ, noted ί3, by: ^(fc.) = ίp°, where (Hl9...,HN) is the coroot
system associated with (α l5 . . . , αN).
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The corollary shows that to each highest weight λ, one can associate a
1 -dimensional representation (pω9Cω) and a dominant weight I defined by

(Hί) = < , α ί > = m ίε^.
This is the first point of the following theorem:

Theorem 2.
1. // (p, V) is a finite dimensional irreducible representation with highest weight

λ, then λ = ω.ί1, where ωe{l, — 1, i, — i}^ and 1 is a dominant weight ofφ.
2. Any character of T of this form is the highest weight of a finite dimensional

irreducible representation.
3. Any finite dimensional representation ofUt& is completely reducible.

Proof.
2. According to the remarks in 1., we only have to consider the case where

λ = tλ. But, for each Ae(C*)N, one can construct the universal standard cyclic module
with highest weight λ, call it Z(λ\ by an induced module construction: consider
the 1 -dimensional space Dλ9 with basis v+, on which Utb + acts as follows:

et.v+ = O W

ki.v+ — λtv+ V f .

Put Z(λ) = Ut& (X) Dλ: it is a left Ut ̂ -module in which 1 ® v+ is not zero because
Utb +

Ufl is a free right Utb+ -module, and l®v+ generates Z(λ). Taking the quotient
by the maximal proper submodule (see Prop. 4), we get an irreducible module with
highest weight λ: V(λ). The fact that, when I is dominant, V(tλ) is finite dimensional
will follow from:

~
Proposition 6. Let F(ίΛ) the irreducible module as above, where the dominant weight
λ is defined by the positive integers mi — λ(Hι). Then:

1. ymι + ι. ί ; + = =o V ί = !,„.,#.

2. For each 1 ̂  i ̂  N, V(tλ) contains a non-zero finite dimensional Lrmodule (L{

is the subalgebra generated by e ^ f i . k f 1 ) .
3. V(tλ) is the sum of the finite dimensional Li-submodules.
4. The Weyl group W acts on the set P of weights. Each weight subspace Vμ is

finite dimensional and dim Vσμ = dim Vμ V σeW.
5. The set of weights P is finite.

Then, V(tλ) being irreducible, it equals the sum of its weight subspaces and 4. and 5.
show that it is finite dimensional

Proof of proposition (Compare Humphreys [4]).
1. Let w = f™l + 1-v+ and let us show that, if w Φ 0, it is a highest weight vector,

with highest weight different from ί' (such a vector cannot exist as V(tλ) is
irreducible). First, fc/w = ί/β^mι + 1)/?tl + 1fej^+ =t^a^ + lh}HJ]w. So, if w^O, it is
a weight vector with weight ^^K + iK _^ ^ Then, as for ί ^ j , β j and /) commute,
efw = 0. For i =j, the relation

f 2(mi+ 1) _ t-2(ml+ 1) r, 2 / .-2m ΐ __ j- -2f2ml

r fmf+1-ι fWί.^ _ LJ _ . i Li _ "i Li
L^bJί J Ji 2 - 2 2 - 2
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and the fact that k{-v + =t™lv+ shows that ef w = 0. So w would be a highest weight
vector.

2. For 1 ̂  i <^ rV, consider the sub vectorspace spanned by υ + , /f υ + , . . . , /™l + *
v+. Commutation rules between ehft and kt show that it is invariant under Lt.

3. Let V the sum of the finite dimensional LΓsubmodules. According to 2),
V Φ {0}. To check that V = V(t\ it is enough to see that it is invariant under
a Ά e j 9 f j 9 k j .

Remark. 1 - α0 e{l, . . . , 4}. If 1 - atj = 1, then eiej = e^. For 1 - au ̂  2, put eu =
e^j — tf^βjβi. Then, if 1 — atj = 2, one defining relation gives ep^ — tf + 2aιjeίjei =
0. If l-fl 0. = 3, put eiίiίj = eieij-tt + 2aτjeijei, and we have eίeitij = tf + 2aιjeiίijei.
For 1 - 00. = 4, put eί>ί>u = e^j - tf + 2aιjei^jei and then: ̂ ,MJ = ί12 + 2fll^ ί>ί>ίt/f.
Same remark with the /f's. Now, the invariance of V will result from the following
fact: if W is an invariant finite dimensional LΓsubmodule, then the vector space
spanned by e^WJiW^W, eitjWJitjW,...,eitititjW and fiιititjW (where
je{l,...,N}\{i}) is finite dimensional and invariant under L f according to the
remark. So, Ut^(W)a V.

4. The finite dimensionality of each V is proved as in Proposition 4. Let μ = ί/7eP
and σteW associated with the simple root α f . Let us show that σ^7), defined as
ΐσi(μ\ belongs to P. But the subspace @Vt~μ+kα. is invariant under Lt; let us fix

/ceZ

yμeFμ\{0}. According to 3), there is a non-trivial finite dimensional subspace V"
of ®Vtμ+kΛ., invariant under Lt and containing vμ. According to the complete
reducibility theorem for ί/ίfsl(2), V" is a direct sum of irreducible Lf -modules. As
μ = ίμ is a weight for the representation in F", μ. = if ( HI) appears as a weight of
one of the irreducible summands. According to Theorem 1, t^(Hί) is also a weight
for this irreducible Lr module. But, as the possible weights are restrictions of those
of V", there is k in Z such that:

if w= ίf* >+*'*<*.>, that is 2μ(H{) = - kvAHi).
But

So, rσ'(/i)

eJP.
5. Using 4, the proof is exactly the same as the classical one.

Proof of Point 3) in Theorem 2. (Complete reducibility) We shall use a result due
to Professor A. Borel, which he has obtained as a generalisation of an argument
allowing him to prove the complete reducibility theorem for com p] ex semi-simple
Lie algebras without using the Casimir operator.

His result is the following:

Theorem (A Borel): Let A be an algebra, M an additive category of A-modules and
y the set of classes of simple A-modules in M. Assume:

1. M is closed under the formation of sub quotients. Every element of M has a
finite Jordan-Holder series.

2. There is an involutive functor V-+V* on M, reversing the arrows, preserving
£f, direct sums and short exact sequences.

3. There is a partial order ^ in ̂  such that V ̂  W^> F* ̂  W*. (In the sequel,
write < for ^ ).
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4. Let 0-»1/->F-»VF— > 0 b e α short exact sequence in M, with U and W in £f.
If V is indecomposable, then U < W.

Then under those conditions, every element ofM is a direct sum of elements in £f.
In fact, BoreΓs proof remains true if one replaces (2) by the little more general

hypothesis:
(2') There are two functors F1 and F2 on M, reversing arrows, preserving ,̂

direct sums and exact sequences, and which are inverse one of the other. Then, (3)
must be true for F1 and F2.

It is under this form that we shall apply the result to A = Ut& and to the
additive category of finite dimensional Ut ̂ -modules.

Let us check that the four conditions are satisfied:
1. is clear.
2. Let F! the functor contragredient representation (p, F)-»(p1? F*), where

P! = *p ° S (S is the antipode), and F2 the functor skew contragredient representation:
(p, F)-»(p2, V*\ where ρ2 =

 tp°S' (S' is the skew antipode: S'-.Ufl ^>Ut$ is linear,
antimultiplicative and inverse of S).

3. An element in S is characterised by its highest weight ω.tλ

9 where ωe{l, — 1,
i, — z} and I is a dominant weight in .̂

Let ^ the usual partial order on the weights in ̂ . Define the order on ̂  by:

ω.tλ ^ ω'.tλ oω = ω' and

As S(ki} = Sf(ki) = k^ΐ,ω.tβ is a weight in (p,K)oω~1.ί~/ϊ is a weight in ( p l 9 F*)
(or (pt , F*)).

So, to prove F g W=>V* ^ FF*, we are back to the classical case: if w0 is the
longest element of the Weyl group W, then i = ~ w0 defines an involution in f)*
preserving the weight lattice and the order on it. On the set of characters of T of
the form ω.f, where ωe{l, — 1, ι, — i}N and μ is a weight of ̂ , one has an involution
/ given by: I(ω.tμ) = ω~1.tl(μ\ which preserves the order. Now, it is easy to see that
if V is an irreducible Ut ̂ -module with highest weight ω.t\ then F 1 ( V ) and F2(F)
are irreducible with highest weight ω'1.^.

4. We shall follow BoreΓs proof for the classical case.
Let 0-> V(ω.t1)-^ V -* V(ω'.tμ)->0 be a short exact sequence with V inde-

composable. Then V is cyclic with respect to any vector v not contained in V(ω.tλ).
Put λ = ω.t\ μ = ω.tβ.

Let us show that λ^μ.lϊ not, Vλ is 2-dimensional and there is no weight v > λ
in V. So Vλ is killed by Utn+. So, any ueKλ\{0} is a highest weight vector and
generates an irreducible submodule whose intersection with Vλ is 1 -dimensional.
As dim V(λ}λ = 1, taking υeVλ\V(λ}λ, we see that the cyclic module generated by
v should be V. Contradiction.

So, λφμ. We shall prove that there is in F\ V(λ) a vector with weight μ killed
by Utn+. As such a vector must generate F, it will follow that λ<μ. Let us note
that the space Vu<n+ of vectors killed by Utn+ is 2-dimensional: dim Vu*n+ ^2
because dim V(λ)u'n+ = dim V(μ)u<n+ = 1, and dimVu<n+^l because V(λ)u<n+ c
Vu*n+. One can suppose that μ is not < λ, because, if μ < λ, taking the dual exact
sequence 0-> V(μ)* -+ F* -> F(/)* -^0, one has I(μ) < I(λ) and in particular I(λ) is
not < l(μ\ So one gets dim (F*)^ - 2, but as (V*)Utn+ is the dual of V/Utn>.V9 it has
the same dimensions as Vϋtϊl+.
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So suppose that μ is not < λ. Then V cannot have weights v < μ because such
a weight would be necessarily a weight of V(λ) and we should have μ<v^λ. Now,
there is xeV whose image in V(μ) generates V(μ)μ. So, for i= 1, . . . ,JV, p(ki)x~

and ρ(eι)xeV(λ). Put yt = p ( k t ) x — μ^xeF^), and note that (p(kj) —
) — μ f)χ/ As μ is not < λ it cannot be a weight in V(λ); so, there is

ie{l,...,N} such that: p(fej) — M^U) *s invertible. Put z = (p(fcί) — μ^'^y^eFf/l).
Then (p(kj) —μj)z = yj = (p(kj) —μj)x. So x'= x — z is such that: Vi, (p(kί}~
μ^x' = 0, p(ei)x'eV(λ) and has the same image as Λ: in F(/l). Let us show that in
fact p(e ̂ x' = 0 Vί.

If not, let i such that p(ei)x'eV(λ)\{0}. Then V je{ l , . . . , JV} ,

p(kj)p(ei)xf = ffp(ei)p(kj)xf = t^μ^e^x' = ωf

jt
(f+^}p(eί)x'.

So ρ(ei)x' should be a vector with weight ω'.f+oli > ω'.tμ = μ. Impossible. So, x' is
the sought for vector and we have also proved that dim Vu^= 2.

The only remaining case is the one where μ < λ, with dim Vu*n+ = 2. As
dim V(λ)u<n+ = 1, there is an xeVUtn+\V(λ)Utn+. Its image in V(μ) is not zero and is
killed by Utn + . So each of its components xv in the decomposition V(μ) = Θ V(μ)v

is a highest weight vector if xv ^ 0. So, as F(μ) is irreducible, only xμ φ 0. So the
μ-component xμ of x is not zero and, as it is also killed by Utn + , it is the sought
for vector.

The theorem is now completely proved.
These results have been announced in [7].
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