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Abstract. A moment map J,: ./ A—>(§1(7)+)* is constructed from the Poisson
manifold .#, of rank-r perturbations of a fixed N x N matrix 4 to the dual
(glin*)* of the positive part of the formal loop algebra gl(r)
=glr)®C[[4, 4~ ']]. The Adler-Kostant-Symes theorem is used to give
hamiltonians which generate commutative isospectral flows on (gl(r) *)*. The
pull-back of these hamiltonians by the moment map gives rise to commutative
isospectral hamiltonian flows in .# ,. The latter may be identified with flows on
finite dimensional coadjoint orbits in (gl(r)*)* and linearized on the Jacobi
variety of an invariant spectral curve X, which, generically, is an r-sheeted
Riemann surface. Reductions of .# , are derived, corresponding to subalgebras
of gl(r, C) and sl(r, ), determined as the fixed point set of automorphism
groupes generated by involutions (i.e., all the classical algebras), as well as
reductions to twisted subalgebras of sl(r, C). The theory is illustrated by a
number of examples of finite dimensional isospectral flows defining integrable
hamiltonian systems and their embeddings as finite gap solutions to integrable
systems of PDE’s.

1. Introduction

In 1979 Moser [32] showed that a number of well-known completely integrable
finite dimensional hamiltonian systems could be uniformly understood in the
framework of certain rank 2 isospectral deformations of matrices. The problem he
considered involved hamiltonian flow (x(t), y(t)) in R?" which, for a fixed nxn
matrix A and real constants, a, b, ¢, d, leaves the spectrum of the matrix

L=A4ax®x+bx®y+cyQ®x+dy®y

invariant. Among the results he obtained were:
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(1) The elementary symmetric invariants of L, regarded as hamiltonians on
IR?" give rise to flows which are mutually commutative, and hence isospectral,
obeying equations of Lax type:

L=[B,L].

(2) Associated to these flows is a certain invariant hyperelliptic curve X. The
quotient of an invariant dense submanifold of the isospectral manifold by a
1-parameter group (or, in certain cases that of a codimension 1 constrained
submanifold) is identifiable with the Jacobi variety #(X) so that the flows are
identified with linear flows in _#(X).

(3) The systems are completely integrable.

In further related developments, Adler and van Moerbeke [6,7], and others
[13,37], recast the Lax equations for finite dimensional systems in the framework
of loop algebras, where the spectral curve and linearization of flow on its Jacobi
variety is very natural. Reyman and Semenov-Tian-Shansky [38,39] have shown
the relevance of the Adler, Kostant, Symes (AKS) theorem [5, 24, 44] to the
linearization of isospectral hamiltonian flows in loop algebras, but did not
examine the relationship to Moser’s isospectral flows. The algebraic approach to
integrable systems of PDE’s developed by Sato [41] and the Kyoto school [9] has
also been related to isospectral flows in loop algebras [11, 14, 42, 49]. Through
inverse spectral methods, integrable systems of PDE’s may be interpreted in terms
of constrained harmonic oscillators in infinite dimensions [10, 32, 33] and
solutions of “finite gap” or multi-soliton type derived algebraically from linear
flows in Grassmanians and Jacobi varieties [8,9, 12, 15,21, 25-28, 31, 34, 36, 45, 46,
50, 51]. The PDE’s that arise may be interpreted as integrability conditions
implied by the commutativity of pairs of isospectral flows in loop algebras [11, 14,
42, 491.

The principal purpose of the present work is to provide a systematic link
between finite dimensional integrable systems, flows in loop algebras, and
integrable systems of PDE’s through the use of moment maps. The construction of
such maps allows us to apply the results of the AKS theorem to deduce a large class
of commuting flows of isospectral type generalizing Moser’s results to perturb-
ations of arbitrary rank. As a consequence of our construction, not only can a
much wider class of integrable finite dimensional systems linearizable on Abelian
varieties be derived, but the intrinsic finite dimensional structure of the “algebraic”
solutions to integrable systems of PDE’s admitting a zero-curvature formulation
can be determined and expressed in terms of commuting flows of finite
dimensional systems. In many cases these systems are of interest in themselves.

More specifically, we consider the generalized Moser problem:

Given an nx n matrix A, consider a general rankr perturbation
L,=A+FGT,

where F and G are maximal rank rectangular n X r matrices. In the space of such
pairs (F,G), endowed with the symplectic structure w=tr(dF" A dG), derive a
maximal Poisson commuting (i.e. completely integrable) set of hamiltonian flows
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(F, G)—>(F(t), G(t)) which give rise to isospectral deformations of L, and prove that
these flows linearize on the Jacobi variety of a suitable spectral curve.

The solution of this problem through the moment map construction together
with the AKS theorem is the main content of Sects. 2—4. In Sect. 2 we consider
various hamiltonian group actions on the space of (F, G)’s. We define moment
maps for these actions and derive in particular a moment map into the space in
which the relevant AKS flows reside, the dual of the positive component of the
loop algebra gl(r). This construction is central for all the subsequent development.
We also address the question of invertibility and show how quotienting by certain
hamiltonian group actions gives rise to a Poisson manifold on which the moment
map becomes an immersion. In Sect. 3 we prove the basic theorem (3.2) showing
why hamiltonians generating isospectral flows of AKS-type in (gI(r)*)* pull back
to hamiltonians which fulfill the requirement of the generalized Moser problem
(i.e. that they be isospectral for L, and that they Poisson commute), both in the
form stated above and in a slightly generalized version (Theorem 3.6). In Sect. 4 we
study the spectral curves, which in general are r-sheeted for the rank r case. We
show how the results of Reyman and Semenov-Tian-Shansky [39], concerning
complete integrability of flows in finite dimensional orbits of loop algebras, and
methods of Krichever and Novikov [25, 26,27], and van Moerbeke and Mumford
[31], concerning linearization in Jacobi varieties, can be applied to our situation to
deduce complete integrability and linearization when the affine part of the curve is
nonsingular. In Sect. 5 we discuss the problem of reductions of such systems under
finite groups of automorphisms, in particular, reductions of gl(r, C) by involutive
automorphisms to the classical Lie algebras and reductions to the twisted
subalgebras of loop algebras. Finally, in Sect. 6 we illustrate these results with a
number of detailed examples involving both finite and infinite dimensional
systems and the links between the two. For the finite dimensional case with rank 2
perturbations, we show how Moser’s results may be deduced as particular cases of
our own and we give an analysis of a rank 2 system which fits into another real
form generalizing Moser’s framework; namely, the Rosochatius system. We then
proceed to the relation with systems of PDE’s, realized as integrability conditions
for commuting flows, treating as examples of the rank 2 case the NLS equation and
the modified KdV equation. We also give, as illustrations of the rank 3 case, the
coupled NLS and the Boussinesq equation.

A sequel to this paper [4] will deal with the generalization of the results in
Sect. 4 involving linearization of the flows and complete integrability for the case
of singular curves as well as presenting a detailed computation of the flows arising
from the examples in Sect. 6.

2. Moment Maps

We first summarize the necessary definitions regarding moment maps (see e.g. [3,
17, 47]). Let (M,w) be a symplectic manifold. For fe C*(M) the associated
hamiltonian vector field X , is defined by:

X jo=df, 2.1)



454 M. R. Adams, J. Harnad, and E. Previato

and the Poisson bracket in C*(M) is:
{fg}=—Xg). (2.2)

Then C*(M) may be regarded as a Lie algebra with respect to the Poisson Lie
bracket and, denoting the Lie algebra of vector fields on M by y(M), the map

B:C*(M)—=yM),  B(f)=—X, (2.3)

is a homomorphism of Lie algebras.

Let ¢: G x M— M be a smooth group action preserving w [written, in short,
(g, x)=gx, g€ G, xe M] and denote by g the Lie algebra of G. The infinitesimal g
action is given by the homomorphism

g:g->xM),
defined by:

d
a(&) (x)= —d~t¢(€Xptf,X)lt=o, {eg, xeM. 2.4)
The G action is called hamiltonian if there exists a moment map:
J:M—-g*

such that the hamiltonian flow generated by <{J, &) (where ¢, > denotes the dual
pairing) coincides with x—¢(expté, x), i.e.,

Xy e=0(). (2.5)
The moment map is equivariant if
J(p(g, x))=Ad¥J(x), VgeG. (2.6)
Let j: g—C*(M) denote the linear dual of J, defined by
J&)=<, 8. 2.7)

If we are only concerned with the infinitesimal action (2.4) (i.e., if we do not require
the flows induced by J to be complete) we may take the following as alternative
equivalent definitions of an equivariant moment map.

A map J: M—g* with J(gx)=Ad¥J(x) and fj:g—y,(M)a Lie
algebra homomorphism. (2.8a)

A map whose linear dual j:g—C®(M) is a Lie algebra
homomorphism. (2.8b)

(The representation of g in terms of vector fields on M is understood to be defined
by a=f-j)

There is also a third characterization that will be useful. Recall that the space g*
has a natural Poisson structure, called the Lie-Poisson structure [48], given by

S S
{¢,w}g*(u)=<u,[£,£]>, o, peC=(g%), peg*,
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where d¢p/op denotes dp(u) thought of as an element of g=g**. We can then
characterize an equivariant moment map equivalently as

A map J: M —g* that preserves the Poisson bracket, i.e. is a
Poisson map with respect to the Lie-Poisson structure; if

¢, pe C(g*), then {J*¢, J*p} =J*{, 1} . (2.8¢)

Definitions (2.8a—c) remain valid when M is any Poisson manifold.

Henceforth, the term “equivariant” will be dropped since all moment maps
considered will satisfy this condition.

Let CZ(M) denote the G invariant functions on M. Since a symplectic G action
on M preserves the Poisson bracket, it follows that C§ (M) forms a subalgebra of
C®(M). If G acts freely and properly on M, then M/G is a manifold with a Poisson
structure inherited from the one on M through the identification C*(M/G)
~ CZ(M). The symplectic leaves of M/G turn out to be the Marsden-Weinstein
reduced manifolds [48], i.e. they have the form

M,=J"Yw/G,=J"10,)/G, 2.9)

where pe g*, G, is the isotropy group of 4 in G and 0, is the G-orbit through p.
Recall that the reduced manifold, M, has a natural symplectic structure w, such
that i*w=mn*w,, where i:J ~'(u)—M isinclusion and n: J ~'(u)—> M, is the natural
projection taking points to their G, orbits.

Let My, be the space of complex N x r matrices, and identify My .~ M3 ,
through the pairing

(F,G)=tr(FTG), F,GeM,,.

We shall consider several group actions on My , x M , which are hamiltonian
with respect to the symplectic form

w=tr(dF AdGT). (2.10)
For n<N let
G!=GL(r,C)x ... x GL(r, ) (n times) (2.11)
be the direct product Lie group and
gr=glr, C)®...®gl(r,C) (n times) (2.11)

its Lie algebra. Let ki, ..., k, be positive integers with k;<r and ) k;=N. For

i=1
Fe My, let F; denote the k; x r block whose j" row is the (k, + ... +k;_; +j)" row
of F; i.e. F has the block form
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G,
: > with each G, a k; x r block, define a hamiltonian G}

Expressing similarly G = (
G,

action on My . x My , by

(8(F.G)=(Figi ',Gigl), g=(81,...8)€G]. (2.12)

Let o}:gf—>x(My,,x My ,) denote the corresponding infinitesimal action. The
associated moment map

JP My, X My,,—(g7)*

is given by
i=1

where the traces in the right-hand sum involve k; x k; matrices.

Identifying gl(r, €)* with gl(r, €) through the trace of matrix products, and
hence (g})* with g}, we have

JUF,G)=—(GIFy,...G, F,)eq;. (2.14)

Restricting the G} action to that of the diagonal subgroup G,={(g, ..., g)€ G/}
~GL(r,©) gives the action G,: My ,x My ,—»My ,x My ,, defined by

g(F,G)=(Fg~',Gg"), geGL(r, @) (2.15)
with moment map
J(F,G)(X)=—tr(G"FX), Xeg,=¢glr, O, (2.16)
or, through the above identification of gl(r, €)* with gi(r, C),
J(F,G)=—G'F. (2.17)

Now let gl(r) = gl(r, ©)® T[4, A~ 1]] be the loop algebra of semi-inﬁnpiied formal
Laurent series in A with coefficients in gi(r, €); i.e., with elements X(4) € gl(r) which

are formal series of the form X(A)= Y a4}, a;egl(r,©), and Lie bracket with
1 i=—o0
Y(A)= Y b;i; given by
j=—o
m+1
[X(4), Y(i)]=k ) ‘+Z . [a,b;12%, (2.18)
o T
(the inner sum being finite and the outer one formal).
The algebra gl(r) has a nondegenerate, ad invariant inner product given by
CX(A), YA =tr(X(A)Y(A))o) = res tr(A” 'X(A)Y(2), (2.19)

where (X(1)Y(4)), denotes the constant term in the formal series X(4)Y(4), or
equivalently the formal residue at A1=0 of A~ X(4)Y(4).



Isospectral Hamiltonian Flows 457

Let gl(r)* denote the subalgebra of gl(r) given by the polynomials in 1 and
-1

gl(r)~ the subalgebra of strictly negative series; i.., series of the form Y a4 We

i=—o00

can write gl(r) as the vector space direct sum gl(r)=gl(r)* @gl(r)~. The inner
product (2.19) then gives the identification
(I0) ¥ ~ (gl ) =l (2.20)

where gl(r); denotes the subalgebra of gl(r) given by Agl(r)~.

Fix n distinct complex numbers, o, a,, ...,a, Since X(A)eglr)* is a poly-
nomial we can evaluate at 1 =o; to obtain X(o;) € gl(r, €). This gives a Lie algebra
homomorphism

o gl —g;
defined by
A (X(A)=(X(oty), ..., X(at,)). (2.21)

The kernel of this map is a(A)gl(r)*, where a(4)= ﬁ (A—0a;). Hence we have the

i=

exact sequence of Lie algebra homomorphisms

0-a(RlF) " —— gl -5 g7 -0,

where 1 is inclusion. The dual sequence is thus
0-(g2)* — (&I *)* > (@A)l H)* >0, (2.23)

where, if we identify (g7)* with g7 by using the trace componentwise, and (gl ")*
with gl(r), as in (2.17), we get

Lemma 2.1.

LY, . L Y)=4Y Y =Yy (Z Yiocf.‘>)f". (2.24)
i1 A—o k5o \ish

Proof. This may be verified by applying both sides to an element X(/)e gl(r)* and

comparing coefficients. The easiest way to see the result, however, is by viewing the

second expression as a meromorphic function and using the interpretation of the

inner product (2.19) as a formal residue at A=0. []

Since 7 is a Lie algebra homomorphism, it follows that .o/* is a Poisson map
Vgith respect to theﬁ]iide-Poisson structures on (g")* and (gl(r)")*. Hence the map
J.: My, x My ,—(gl(r)*)*, defined by

Jo=cd*oJ, (2.25)

is a moment map in the sense of (2.8¢) with respect to the infinitesimal action of
gl(r)* on My ,x My, defined by a,:gl(r)" > (M., x My.,), 6,=0y 0 .oL.

Remark. We use this generalized definition of a moment map because the algebra
¢l(r)* does not have an easily described group. The construction we have given in
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terms of formal series and polynomial algebras is the simplest for our present
purposes. However, it is easily modified to permit a genuine group action as
follows (see also [35]). Let GL(r) denote the loop group H¥(S', GL(r, €)) for some
s>1/2, where H* is the I? Sobolev space with s derivatives. The Lic algebra gl(r) of

GL(r) is the set of Fourier series Y. a;4, 1€ S', with a; € gl(r, €), which converge
in H*. Let GL(r)* be the subgroup of GL(r) given by loops which are H* boundary
values of GL(r, €)-valued holomorphic functions on the interior of the unit circle.

The Lie algebra gl(r)™ of GL(r)" is given by Fourier series of the form Y a;/, so
i=0

gl(r)* cgl(r)*. Finally, if we assume the ;s satisfy |o;| < 1 (by rescaling, if necessary),
then we can define a group homomorphism

2:GL(N " >Gy by a(g(A)=(g(r), ... 8(x).

since g(4) e GL(r)* converges inside the unit circle. The composition of o with the
action of G on My, x My, gives a symplectic action of GL(r)* on My, x M ,.
This action has a moment map J,: My , x My ,—(gl(r)")*, which when composed
with the projection (gl(r) T)* —(gl(r) *)* is J.. In what follows we continue to use the
formal algebras since it is standard in the literature.

Combining (2.14) and (2.24) we obtain the following expression for the moment

map J,.

Proposition 2.2. For (F,G)e My , x My ,, we have
" JGIF,

J(F,G)= D

(2.26)

where we identify (gl(r)*)* with gl(r) .

Note that the restriction of J, to the subalgebra gl(r)Cgl(r)* reproduces the
moment map J, of (2.17).
We now wish to describe the image and fibres of the moment map

jr: MN,r X MN,r—)(gl(r)*—)* .

Since «/* is injective it is enough to describe the image and fibers of J;: My ,
x My ,—(g))* ~ ;. To describe the image of J} first consider Eq. (2.14). Since the
r x r matrix G!'F; has rank k; or less, we may identify ImJ”C(g")* ~g" as the set

ImJ!={(X,,....,X,)eq||X; has rank k; or less}. (2.27)
Now define H to be the direct product group
H=GL(k,,C)x ... x GL(k,, C)CGL(N, C), (2.28)

where the inclusion is along the diagonal. Restricting the natural GL(N, €) action
on My , gives rise to the hamiltonian H action on My , x M ,, defined by

(h(F, G));=(hF;, b " G)), (2.29)
where
h=(hy,...,h,)eH, h,eGL(k,C).
Let
h=glk,,O)D...®glk,, C) (2.30)



Isospectral Hamiltonian Flows 459
denote the Lie algebra of H and b* its dual. If we identify h* with | by taking traces
componentwise, the moment map for the H action (2.29) is given by
Ju(F,G)=(F,GI,...,F,GI). (2.31)
Since the H action commutes with the G} action, we conclude

Proposition 2.3. J'(h(F, G))=J"(F,G) and J(h(F,G))=J(F,G) for all he H and
(F,G)eMy XMy .

That is, the inverse image of any point under J" or J, is invariant under H. In
fact, the inverse image of any point is exactly the H orbit when we restrict to an
open, dense set #/*C My , x My, labelled by the partitionk = (ky, ..., k,) of N (with
k;<r—1), and defined by

M*={(F,G)e My ,x My ,| F;, G, have rank k;}.

Clearly both H and G} leave .#* invariant and the two actions commute.
Moreover, since (F;, G;) are of maximal rank, it follows that:

Proposition 2.4. H acts freely on A* and
(J7) " INF, G)={h(F,G) | he H} =T "(J(F,G)) for (F,G)e.//*. (2.32)
Combining this with Proposition 2.3, we conclude

Corollary 2.5. The infinitesimal gl(r)* action on M#* reduces to an infinitesimal
action on the Poisson manifold #%H with injective moment map J, o: M*/H

—(gl(r)*)* given by
T..ol(F,G)]p) =T ((F, G)), (2.33)

where [(F,G)]y € .4*/H denotes the H-orbit of (F,G)e 4*.

Remark. Notice that the H action and the G} action are not entirely distinct since
the center of G,

9={d1,....dI)|deC\{0}}CG} (2.34)

and that of H,
' ={(d,I,,....d,I, )| d;e C\{0}} CH, (2.35)
(where I, denotes the [ x [ identity) may be identified, together with their action on

My, x My ,. The corresponding Lie algebras d, and d, may be identified with C",
and the moment map

Jog: My, x My ,—df~C"
is given by
Jo(F,G)=(trG{F,,...,trGI'F,). (2.36)

Moreover, d, is the image under .7 of the center D Cgl(r)*, the latter consi~sting of
polynomial multiples of the r x r identity matrix, I,. Therefore, the part of J, which
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generates this algebra is also just the trace

- " tr(G]F,;
«(F, G)=/1< 5 M) I,. (2.37)
i=1 O(,-—-/l
Now, let
A=diag(ory, ..oy 0y, 0ny eey Ogy veny Oy ovny &) (2.38)

be the complex diagonal N x N matrix with eigenvalues a; repeated k; times. Then
Eq. (2.26) can be rewritten as

J(F,G)=AGT(A—Al) " 'F=— Y GTA*FA *. (2.39)
k=0
Let #yCMy . x My, be the open, dense submanifold
My={(F,G)e My, ,x My | F and G have rank t}, (2.40)
and let
My={A+FG"|(F,G)e My} (2.41)

denote the space of rank r perturbations of A. The group G,=GL(r, C) acts freely
and properly on .#,, and therefore gives rise to a manifold structure on the quotient
space of orbits, .#,/G,. Since the projection n: .#,—.#, given by (F,G)—L,
=A+FGT has as its fibers precisely these G, orbits, we may identify .#, with
My/G,. Through this identification .#, has a natural Poisson structure with
functions on .# , interpreted as GL(r) invariant functions on .#,. In the following
section we shall study hamiltonian flows on My , x M , which derive from GL(r)
invariant hamiltonians, project within .#, to flows on .#, which are isospectral,
and leave .#* invariant.

As afinal remark, notice that the groups H and GL(r, C) act freely and properly
on the open dense submanifold # = .#*n.#,C My , x M . Hence the preceding
analysis of the H action on .#* can be equally applied to .#. The G” action on ./4*,
however, only gives a local action on .#, and therefore the moment map (2.14)
must be interpreted in the infinitesimal sense.

3. Isospectral Flows

Poisson Commutativity and the AKS Theorem

We now consider flows of rank r perturbations, L,=A+ FG”, of the matrix A
defined in Sect. 2, which are isospectral and which arise as projections of GL(r, C)
invariant hamiltonian flows in .#,,. Define L, = L,(F, G), the elementary symmetric
invariants of L, regarded as functions of (F, G), by:

N—-1
det(A+FG"—A)= Y LA+ (—)V.
k=0
Since the functions L, determine the spectrum of A + FG”, we are looking for flows

in My , x My , which leave invariant all the L,’s. We shall describe a large family of
such flows in this section.
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To begin with we need to recall the theorem of Adler [5], Kostant [24], and
Symes [44] (see also [38, 39, 20]). Let g be a Lie algebra with a nondegenerate, ad
invariant inner product {, > (ie. {[X, Y], Z)>+<{Y,[ X, Z])> =0). Suppose g is the
vector space direct sum g=I{®I, where f and [ are subalgebras. Then g* can be
identified with F*@1* by identifying * with I°, the annihilator in g* of |, and I* with
f°. Using the inner product we can also identify g* with g. Correspondingly, £* ~1°
is identified with the orthogonal annihilator I* Cg and [* with 1 Cg. If X eg we
write X = X + X1, where X, et and X . €I*. Using this notation we can write
the ad* maps for £* and [* in terms of the bracket in g. Namely, for X ef and
Yel* ~1* we get

adf(X)(Y)=[X, Y], (3.2a)
and for Uel and Vel*~1* we get
adf(U)(V)=[U,V]. (3.2b)

Let I(g*) denote the ring of infinitesimally Ad* invariant functions on g¥*, i.c.
fel(g*) iff {u,[0f/ou, X1>=0 for all X eg and peg*, where df/du denotes df ()
thought of as an element of g~ g**.

Theorem 3.1 (AKS). (1) For f and § € I(g*), let f and g denote their restrictions to
¥ ~1°. Then {f,g}»=0, where {, }. is the Lie-Poisson bracket on I*.

(2) Let fel(g*) and let f be its restriction to *. Using the identifications g* ~ g
and 1* ~, Hamilton’s equation for the hamiltonian f on T is given by

X=[df(X"),,X]=—[df(X")-,X], Xet', (3.3)

where, if (€g, ¢, and {_ are respectively the 1 and T components of &, X "eg* is the
point in g* corresponding to X € g under the identification g ~ g*, and df (X°) e g is the
differential of f at X° considered as an element of g=g**.

Now identify g=gl(r), f=gl(r) ", and 1=gl(r)*. Part (1) of this theorem then
states that elements of the ring of functions

7 ={peC (@ d=b g ¢ €l(gl)*)} (3-4)

commute in the Lie-Poisson structure of (gi(r) *)*. Since the moment map J,: M,

—_—

x My ,—(gl(r)")* is a Poisson map, it follows that elements of the ring of functions
F={Trp| pe F.} CC My, x My,,) (3.5)

Poisson commute on My , x My .. This leads us to our first main result.

Theorem 3.2. L, e # for k=0,1,..., N—1. Hence the hamiltonian flow for any

feZF (in particular, for the L,’s themselves ) preserves the L,’s, i.e. it is isospectral.

—_— L —

Proof. Identify gl(r)* with gl(r) by the ad invariant inner product (2.19). For
X(A)eglr), let X°(A) denote the corresponding element of gl(r)*. Define

br € 1(glr)*) by

S X)) = <p(z)det <I+ %X()L))) , k=0,...N—1, (3.6)
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where p(4) =det(A — AI) and the right-hand side denotes the coefficient of * in the
formal series p(1)det <I + %X ()t)). Let ¢k=$kl<m+)*. We then have,

L=T*¢,eF . (3.1)
This follows directly from Eq. (2.39) and the identity
det(A+FGT— Al)=det(A—Al)det(I+GT(A—Al)"'F). O (3.8)

Although we defined the L,’s as functions on My , x My , they may also be
regarded as functions on the manifold .# ,={A+ FG"|(F,G)e ./} [recall that
MoCMy ,x My, is the open dense submanifold consisting of (F, G)’s that have
maximal rank]. In fact this may be done for all functions in .

Proposition 3.3. If fe %, then [ is GL(r, C) invariant. Hence, | ,, is projectable to
aring of functions F, on M 4 whose elements commute in the Poisson structure for
%Ac

Proof. Let GL(r, C) act in the natural way on gl(r)* ~gl(r), i.e.

g<. y Xil') = Y (AdX)V, geGL(r).
Notice this action leaves (gI(r) *)* ~gl(r), invariant. If ¢ I(gl(r)*) it is invariant
under this action, hence its restriction ¢ = |+ is also invariant under the
action. It is clear from (2.26) that J, intertwines the diagonal G, = GL(r, C) action
(2.15) on My, x My, with the restriction of the above action to (gl(r) *)* ~gl(r)y ,
ie.

J-g=g-J,. (39)
Thus J*¢ must be invariant under the G, action. []

It also follows from Proposition 2.4 that % ,x projects to a ring of functions %
on .//*/H which still Poisson commute. In fact, since we have an injective moment
map J, o:.#*/H—(gl(r)*)* we can use part (2) of the AKS Theorem 3.1 to get the
equations of motion on .#*/H.

Proposition 3.4. Let ¢ = ‘ﬁl(ﬁr’m* for some ¢ € I(gl(r)*) and let f=T*,¢. Let X 1 be
the hamiltonian vector field for f on .M*/H. Then X ; at the point [(F, G)]y € A*/H
is defined by

(T 0 X ) (N)=[dP(N ), /] = —[[dD (AN ), N], (3.10)
where dp(N)=(dP(N)) 4 —(dP(N))_ isthe splitting of dp (N) e gl(r) into its gl(r) ™
and gl(r)~ pieces, and

N=N()=T(F,G)e(glir)*)*~glr); - (3.11)

_ We remark that it is also straightforward to write the equations of motion for
J¥¢ on all of My, x My, by the methods used to describe collective motion in
reference [18].
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Shifted Hamiltonians
A slight generalization of the above formulation is possible which allows us to give
isospectral deformations of matrices of the form

L,(a)=A+FaGT” (3.12)

for some fixed ae GL(r, C). The functions & given by the AKS theorem generally
do not preserve the spectrum of this matrix. We can however describe a similar
collection of flows which are isospectral for (3.12) by using a generalization of the
AKS theorem due to Reyman et al. [40].

Let g=I+1 be as in the AKS theorem. An element Y of *~I* is called an
(infinitesimal) character of ¥ if ad*(X)(Y)=[X, Y],.=0 for all X €f. For ¢ € I(g*)
let ¢y be defined by

oy =Pu+Y), peg* (3.13)
and let ¢y = |

Theorem 3.5 (RSTSF). (1) Let ¢ and  be in I(g*), then {¢y, py} =0, where {, }x is
the Lie-Poisson bracket on T*.
(2) If ¢ €l(g*) Hamilton’s equations for ¢y through X e* ~t are given by

X=[dHp(X+ 7)), X+ Y]=—[dY(X +Y))_, X + Y], (3.14)
where (X+Y )" is the point in g* corresponding to X + Yeg.

To apply this theorem to our situation, first notice that any
Y(A)e(glir)")*=Agl(r)" of the form Y(4)=2Y, Yegl(r, ), is a character of gl(r)".
Thus for Yegl(r,©) and ¢ e I(gl(r)*), we define

Pr(X()=H(X()+AY) (3.15)

and set ¢, = ¢Y|(q,(, e If $ and 1 are in I(gl( )¥) we see that, since J, is a Poisson
map, part (1) of Theorem 3.5 implies that J*¢, and J*yp, Poisson commute on
My, x My ,. Define the Poisson commutative rings,

L= {byeCH (N ) ¢y = vlgm 0 P eI} (3.16a)
and
FY={Ttpy|pe FL}CC*(My,x My.,). (3.16b)
Theorem 3.6. Let Yegl(r,C) be such that 1+ Y is invertible. Let fe #Y. Then the
hamiltonian flow of f on My ,x My, preserves the spectrum of
L(a)=A+FaGT,
where a=(I+Y)" !

Proof. This follows as in Theorem 3.2, by noting that the elementary symmetric
invariants L,(a), defined by
N—-1

det(A+FaGT—iD)= ¥ Lya)(F.G)2*+(~2)"
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may be expressed:
Lk(a)zj:klPk.YEFy:
where P(X°(2) =a()PX°(2),  X"(2) € gllr)*.

_To apply part (2) of Theorem 3.5 we use the one-to-one moment map
Jy. 0t M /H—(gl(r)")* to get a result corresponding to Proposition 3.4; namely,

Proposition 3.7. Let fy=7ﬁ0¢y for some ge I(glr)*). Let X 1y be the hamiltonian
vector field for fy on M*/H. Then X, is defined by

Ty 0 X (N)=[@HN +2Y)) 4, N +2Y] = —[[@dHN + 1Y), N +2Y],
(3.17)
where N =A'(3) is J(F, G) and (F,G)e 4.

Proposition 3.3 does not generalize to this case so easily. What turns out to be
the most useful generalization of Proposition 3.3 is the following.

Proposition 3.8. For a=(I+Y)™ ! let GL(r,C),={ge GL(r,C)|gag ™' =a} denote
the stabilizer of a € GL(r, C) under conjugation. Then the functions #* are GL(r, C),
invariant.

Proof. Notice that for ge GL(r, C), we have gYg ™' =Y, and hence for ¢, F ",
geGL(r,C), we see

dy(gN (Mg )= dy(N (7).
Since J, is GL(r, €) equivariant, it follows that J*¢, is GL(r, C), invariant. []

4. Integrability, Spectral Curves, and Linearization

We say that a hamiltonian function & on a symplectic manifold S, @ is completely
integrable if there exists a ring of functions & containing h such that

1) {f,g}=0forall f,geZ.

2) For any pe S the simultaneous level set L, = {x € S| f(x)=f(p) for all fe 7}
is a submanifold of S.

3) For all peS the hamiltonian vector fields X (p), f€ %, span the tangent
space of L,

Such a ring # will be referred to as a completely integrable ring of functions.

Remark. Notice that 1)-3) are equivalent to assuming that the submanifolds L, are
Lagrangian. When S is finite dimensional this agrees with the usual definition of
complete integrability because under the assumptions 1, 2, 3 we may always
choose a set of 1/2 dim S locally independent generators { f;} of # whose domain of
independence extends to an open set in S consisting of a union of L,’s.

In Sect.3 we described a ring of Poisson commuting functions # on
My, x My, whose hamiltonian flows through the point (F, G) leave invariant the
spectrum of the matrix A + FG. The functions in & are invariant under the action
of H and GL(r,C) on My ,x My . Since the GL(r, C) action commutes with the H
action, and maps .#*C My , x My, to itself, it reduces to a hamiltonian GL(r, C)



Isospectral Hamiltonian Flows 465

action on the Poisson manifold .#*/H with moment map
Jy o M H(glr, ©)

given by
T, ol[(F, G)lp) =J(F,G)=—G"F, (4.1)

where (F, G)e 4* and [(F, G)]y € #*/H denotes the H orbit through (F, G). The
ring # reduces to a Poisson commuting ring . of GL(r, C) invariant functions on
M /H. Let Syp. oy, C-A#*/H denote the symplectic leaf in the Poisson manifold
A(*/H through [(F, G)]y and let S ¢,,, denote the Marsden-Weinstein reduction
of Syr. ¢y, through [(F, G)]y by the GL(r, €) action, i.e.

S—'[(F,G)]H =[(J,,0)" I(Jr, ol[(F, G)]H))ms[(F, G)]H]/GJ,(F, G)»

where G; .6, CGL(r, ©) is the isotropy group of J (F, G)=J, ([(F, G)]y). This can
be interpreted simply as the Marsden-Weinstein reduction under H of the
symplectic leaf of .#*/GL(r,C) through G'F.

The main result of this section is contained in the following theorem.

Theorem 4.1. Suppose that k;, the multiplicity of the eigenvalue o; for the matrix A, is
equal tor—1 for alli. Then there exists an open dense submanifold ./ C M* such that
for(F, G)e M thering F 1F. 6 1S completely integrable on Sy gy,,,- The flows of the
ring Fr, ey linearize on the Jacobi variety of an r—1 sheeted algebraic curve.

Remark. This theorem is valid in greater generality (involving all values
1<k,<r—1). The proof for the more general case, which involves desingulariz-
ation of singular curves, will be left to the sequel [4,23].

Before giving the proof of Theorem 4.1 we note that as a corollary we can
construct a ring of Poisson commuting functions 4 on .Z, containing .%, which is
completely integrable on an open dense subset of .Z. To do this we need the
following generalization of a theorem of Mischenko and Fomenko [29]. A related
theorem may also be found in [19].

Theorem 4.2. Let S,w be a symplectic manifold with a hamiltonian action of the
semisimple Lie group G, with moment map J : S—g*. Assume that J is a submersion
and S/G is a manifold. Let # be a G invariant ring of functions on S which projects to
a completely integrable ring of functions on the symplectic leaves of S/G. Then there
exists a ring of functions % containing & which is completely integrable on an open
dense set of S.

Proof. For a semisimple Lie algebra of rank k and dimension 2n+ k Mischenko
and Fomenko [30] have shown that there are n functions on g* which Poisson
commute and are independent on generic orbits in g* Let # be the ring of
functions on g* generated by these n functions. Let & be the ring of functions on S
generated by J*# U UJ*(I(g*)). Since the hamiltonian vector fields generated by
functions in J*# UJ*(I(g*)) are all tangential to the G orbits the functions in % all
Poisson commute. Since J is a submersion, the G action is locally free so the generic
symplectic leaves of S/G have dimension equal to dimS —dim G —rankG.
Hence & locally generates 1/2(dimS—dim G —rank G) independent hamil-
tonian vector fields on S/G. Since rank G independent elements of J*(I(g*)) give
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trivial flows on S/G it follows that # UJ*(I(g*)) is locally generated by 1/2(dim S
—dim G +rank G) independent functions. 5 is generated by 1/2(dim G —rank G)
independent functions. Since J is a submersion and the generic orbits in g* fill out
an open dense set of g*, there must be an open dense set of S on which J*# is still
generated by 1/2(dim G —rank G) independent functions. Since the projection to
S/G of a hamiltonian flow generated by an element of J*# is trivial, and # is
independent from I(g*), it follows that J* 5 is independent from & UJ*(I(g*)). We
conclude that % is locally generated by 1/2 dim S independent functions on an open
dense subset of S. [

This theorem may be applied in conjunction with Theorem 4.1 to conclude
that the hamiltonian functions in & generate completely integrable flows in .#*
itself. To see this, note that the reduced spaces Sy g, which arise by two
sequential Marsden-Weinstein reductions [first by H and then by GL(r, C)] may
be obtained in a single step by reducing under the action of the product
H x GL(r, ). Since this group does not act effectively, it is sufficient to use
H x SL(r,C) instead. There is an H-invariant open dense submanifold .Z C .#* in
which this action is locally free, and hence the corresponding moment map:

Juxsuorno: //7_’5*@51(", O)*,
Jaxsie o) (F, G)=>(Jx(F,G),J(F,G)—1/rtr J(F, G)I)

is a submersion. The symplectic leaves of .#/H are just {S;; g} and hence the
conditions of Theorem 4.2 are satisfied. [

We now turn to the proof of Theorem 4.1. This is accomplished by reducing to

an equivalent theorem in (gl()*)*. Recall that the moment map J, o:.4*/H

—(gl(r)*)* is injective. This can only happen if J, , maps symplectic leaves in
A*/H to symplectic leaves in (gi(r) *)* (with the Lie-Poisson structure).

Proposition 4.3. The map J, o: #*/H—(gl(r)")* has its image in the finite

dimensional subspace
— L TN
INH*= b
(g (')A) {igl i“ai}

The image consists of the Poisson submanifold

(&l = {Z;#' rank ﬂl:k,},

and the map j, o A*H—(glr)* W is a diffeomorphism which preserves the Poisson
bracket. Thus, the restriction of T, , to any symplectic_leaf of //"/H is a
symplectomorphism to the correspondmg symplectic leaf in (gl(r) ") C(gl(r) *)*. The
hamiltonian flow of a function in F leaves M* invariant.

Remark. The tangent bundle to the symplectic leaves in (g(r) *)% is generated by the
ad},, vector fields, and therefore it is reasonable to refer to these leaves as Ad*
orbits, even though the corresponding transformation group is only well defined
on these orbits.
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T

~ "G F
Proof. J, o(F,G)= Y. A
i=1

e(gl(r);)*, since GTF; has rank k;. Any rank k; matrix

u; can be expressed ui—Gi F,, where the pair of rankk; matrices (F,, G;) are
determined up to the equivalence

(Fy G)~(hFy, (h)"'G),  heGL(k).

Thus the map J, o is invertible on (gI(r)*)¥ and hence a diffeomorphism The
equivariance of J, , implies it is a Poisson map and therefore carries symplectic
leaves in .#*/H to those in (gI(r)*)¥. Since the symplectic leaves in .#*/H are just
the Gf(r) orbits, the corresponding orbits in (gl(r)*)¥ are of the form

n .01
{Z g;ﬂ:gz; . gieGL(r)}. Since any function fe.% is the pull-back of one in
i=1 i— A

3

(gl ")¥, its hamiltonian vector field lies in the module generated by the
infinitesimal g" action, and hence is tangential to .Z*. []

Now let 4'(2)=J(F,G). By Proposition 4.3 we can identify
Str.na~ Cwin» (4.2)

where O, denotes the ad* orbit in (gl *)* through 4(1). The map Tro
intertwines the GL(r,C) action on .#*/H with the natural GL(r, ) action on

(glr)*)* ~gl(r), given by
g: Z Xi‘—» Z (Ad, XA 2eGL(r,C).
This action on (gl(r) )* ~gl(r), is hamiltonian with moment map
J : gl(r)g —gl(r, ©)* ~ gl(r, ©)
defined by
0
J<. Y X,Jf) =X,. 4.3)

We thus have J, o=JoJ, ,. Letting @ ) denote the Marsden-Weinstein reduc-
tion of @ ;, through .4°(4) by this GL(r, €) action, we can identify

S[(F o~ Oxw-

Since the ring of functions F is given by the pullback by J, o of the ring of
functions %, on (gl(r)*)* we see that Theorem 4.1 is equ1valent to

Theorem 4.4. Suppose k;=r—1 for alli. For (F, G)e .4 let /' (J)=TJ(F, G). The ring
of functions F ., reduced to 0, is completely integrable on 0 ;).

A theorem equivalent to this is proved by Reyman and Semenov-Tian-
Shansky in [39] using the theory of Krichever [25, 26] (cf. also van Moerbeke and
Mumford [31] concerning linearization of flows in Jacobi varieties). For the sake
of completeness we give a brief summary of this theory here.

Let Z(A)egl(r); be a polynomial in 271, ie

L AN)=Lo+ LA+ + L AT
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Assume #(1) satisfies the following genericity conditions:
1) The spectrum of .#(4) is simple for all but finitely many A.
2) %, and £, _, have simple spectrum.
3) The affine curve in €? described by det(A" ' . (1) —z)=0
is nonsingular and irreducible. 4.9

Let X be the smooth compactification of the affine curve det(A" ™! £(1)—z)=0.
X is called the spectral curve of &. If x € X is not a branch point there is a unique
one dimensional eigenspace E o(x) CC" of 1"~ !(x).Z(A(x)) with eigenvalue z(x), i.e.
AP HX) L (Ax)v(x) = z(x)v(x), where v(x)e E (x). Since X is smooth this extends
across the branch points to give a holomorphic line bundle E ,— X.

Proposition 4.5 [39]. a) X has genus g=4r(r—1)(n—1)—r+1,
b) Eg has degree —g—r+2.

Now let 0, Cgl(r)~ ~(gl(r) ")* be the symplectic leaf through % with respect to
the Lie-Poisson structure of (gI(r) *)*. The elements of ¢/ ,, are polynomialsin A~ ! of
degree n—1. Let T, C 04 denote the elements of O, which are isospectral with &,
ie..M €0 y4isin Ty if and only if $(L) = ¢(4) for all $ € I(gl(r)*). Thus .# € T, has
the same spectral curve as #. The construction above gives a line bundle E ,—» X
of degree —g—n+2. The degree zero line bundles over X are isomorphic to the
Jacobian, Zy, of X. Thus we can define a map

I:Ty— ¢y
by
(M) =EZ®E 4,
where E% is the dual bundle of E,.
Now take ¢ € #, and let £,(4) denote the integral curve of the hamiltonian ¢

with initial point £(1) = £(/). Notice .#,(1) e T for all ¢ since the ring of functions
&, Poisson commutes.

Theorem 4.6. [39]. a) I(Z£,(A)) is a one parameter subgroup of .
b) Every one parameter subgroup of #x can be realized this way.

From this theorem it would follow that %, is completely integrable if we knew
that I: T,— ¢, were bijective. However, this is not the case. Recall that the
functions in %, are invariant under the GL(r,C) action on (gI(r) ")* ~ gl(r); . Thus
this action maps T, to itself.

Proposition 4.7 [39]. The fibers of I are the GL(r,C) orbits in T,.

Let Oy =J"'(%,)/G 4, denote the Marsden-Weinstein reduction of the orbit
04 through (1), where G, is the isotropy group of %, in GL(r, C).

Corollary 4.8 [39]. The ring of functions ., reduced to 0, is completely
integrable on @0 .

We now apply this theorem to prove Theorem 4.4. Because we assume
k=r—1, i.e. each of the eigenvalues «; is repeated r—1 times, for (F,G)e . /",
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N'(A)=J,(F,G) has the form

=1y A (4.5)

where u; e gl(r, C) has rankr—1. Let
LA)=2""a(HAN (L), (4.6)

where a(4)= || (A—a,). Then #(4) is a polynomial in A~ of the form
i=1

PN=Lo+...+ L, a7

with det(4"~'.£(4)) having simple zeros at A=a,, i=1,...,n. If we let (F, G) vary in
A* the u;’s can be arbitrary rankr— 1 matrices so we are able to get arbitrary
polynomials Z(1)=%Ly+...+%L,_ A~ "1 with det(A"~'#(4)) having simple
zeros at A=o; i=1,...,n. Since the conditions (4.4) on £(J) are generic we
conclude that there must be an open dense set .4 C.#* such that £(1) satisfies (4.3)
as long as (F,G)e /.

Let O 4, and O 4(;, be the symplectic leaves of (gl(r) *)* through 4"(4) and £(J)
respectively. Let T, and Ty, be the intersections of @ 4, and O 4 ;, with the set

(XD el ) | gX(D)=d(N(2) for all pe F.},

and let T ;, and Ty, denote the reductions of T, and Ty, by the GL(r, ©)
action on (gl{r)")* at the point J(A (1) =N}, =L, =J(ZL(4). Corollary 4.8 says
that the reduced flows of %, through #(%) span a neighborhood in Ty,
Proposition 4.9. Take ¢ € #, and consider the hamiltonian flow £[4) for ¢ with
Lo(A)=L(). There is a pe F, whose hamiltonian flow N () with N ()= N"(2)
satisfies

A7 "a(D)N(A)=L[(A), allt.
Proof. First take ¢ to be of the form ¢ il + y» Where

~ 1 . —_
Pu(X(2)= Etr((/l’ X4A)o),  X(Aeglr).

Then d (X (2)=AX*"1(J), so Z(2) is determined by
d

3 ZA=RLE D) 2], Lo)=20).

Define
PAX UY=L (G0 ad) X))
then
X ()= 0"l XA ()
so A1) satisfies
d

2= LA a() A1) 4, V(D]
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Multiplying by 1™ "a(/) gives

d . Lo _ _

%(l "a(A)N (W) =LA "a)N (AN Y, AT"a(A)AN (D],

hence 4™ "a(A)N{(2)= ZLLA).
To prove the proposition for general ¢ € . we notice that the ¢ ;,’s determine
the spectrum of #(1), and hence they generate the ring %, when restricted to

Ty(x) Cl

Since multiplication by 4~ "a(4) is injective on gl(r),, we conclude that the
reduced flows of %, through the point A7(1) span a space of dimension
3r(r—1)(n—1)—r+1in Ty, ie. there are at least 3r(r — 1) (n— 1) —r + 1 functions
in #, which are independent on @, If we show @, has dimension
r(r—1)(n—1)—2r +2 we can conclude #, is completely integrable on @ ;. Recall
that Eq. (4.1) gives

gzﬂ gl
(9/(/1)= { Z A )

Since the orbit of a gener~10 HE gl(r, C€) of rankr—1 has dimension r(r—1) we
conclude that for (F,G)e .4, dim0 ;) =nr(r—1).
Finally, to compute the dimension of @ ;) =J ~'(A)/G 4, first notice that for

ﬂ=ﬂ0+...+ﬂn_1i_"+1€(9ﬂ(l)

g2,€GL(r,C), i= n}.

the value J(#)= .4, is arbitrary in gl(r, C) except that

trilo=tr Y gyug; ' (some g€ GL(r,C))
i=1

tr(gug: )= ,; tr(p)=tr.A.

e

13

Hence, assuming /5 is generic, J = (A44) C O 4, has dimension nr(r —1)— (> —1).
Furthermore, since .4, is generic, G, is an abelian group of dimension r in
GL(r,C). However, the action of the one dimensional group {cl,|ce@\{0}} is
trivial in (gl(r) " )*, so we conclude

dim0 ., =nr(r—1)— (> —1)—(r—1)=(n—)r(r—1)—2r+2.
This completes the proof of Theorem 4.4. []

Remark. To this point we have considered the flows of #, on (gl(r)")* mainly as a
toolin understanding isospectral flows in .#,. Of course it is also useful to go in the
other direction. Namely, let L()=%,+...+ %, A7""! be a polynomial
element of glir)y. Let ay,...,a, be n zeros of det(2" '%£(4). Then .4'(1)

( /1) ——A"L(1) <with al)=T] (l—oci)> is in the image of J,, where the ks are
i=1

determined by k; =rank(#/(«,;)). We can now consider a symplectic leafin .4 ¥/H as

a model for the symplectic leaf in gl(r), through 4'(1) and the flows of A(1)

determined by hamiltonians in %, can be interpreted as hamiltonian flows in

M*/H.
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There is some ambiguity here in terms of the choices of the «;’s. Usually the
most convenient choice is to take the «;’s to be the highest order zeros of
det(A"~ 1. 2(A)). Generic flows in .#*/H are of course given only when all the other
zeros of det(A"~!.#(1)) have order one.

5. Reduction to Subalgebras

In the previous sections we have shown a correspondence between complex rankr
isospectral perturbations of the matrix L ,= A+ FG" and the hamiltonian flows of
clements in %, on finite dimensional orbits in (gI(r) *)*. Since there is an injective
moment map J, ,:.#*/H—(gl(r)*)*, we can consider the symplectic leaves of
*/H as models for the finite dimensional orbits of (gl(r) ")*. In this section we
show how to modify our spaces to provide appropriate models for the finite
dimensional orbits in the duals of various subalgebras of gi(r)*.

The first class of subalgebras we consider are given as follows. Let 1C gl(r, C) be
a subalgebra and T gl() the corresponding formal loop algebra. The decompo-
sition gl(r)=gl(r) " @gl(r) ", restricted to T, gives the corresponding decomposition
T=T"®T", where T+ =3l(r)" nT and T~ =3I(r)” AT are subalgebras. The moment
map .7,:MN,, X MN,,—>(gAI(75+)* corresponds to the infinitesimal action

O-r . %Jr _)X(MN,r X MN,r)
given in block form by
(@ (X (F,G)i=(FX(x), —GX"(2), i=1,...n, (5.1

where we have made the usual identification Ty ¢(My ,x My J~My , x My .
We can restrict this to an infinitesimal action of £,

o T =My, xMy,),
with corresponding moment map
jf:MN,r X MN,r_)( +)*
given by
Ji=moJ,, (5.2)
where 7: (gl(r)*)* > *)* is the dual of the inclusion map T+ >gl(r)*.

The subalgebras f we consider will be such that there exists a reductive
decomposition gl(r, €)=t@I with [ an ady-invariant complementary subspace to
tCgl(r,C). This determines a decomposition (gl(r)")*=F")*®([*)*, where we
identify (f7)* ~(1")°, I")* ~(f")°. The map = is given by projection to (*)* along
(T")*. [More generally, we consider a nested sequence of subalgebras f, = gl(r, C)
Of,Df,D... such that each ; admits a reductive decomposition f;=¥,, ,®1,, ;. The
arguments that follow apply equally to each subalgebra of the sequence.] Let

M=THE))={(F, Q)| (J(F,6),)=0 VEel'},

and let 4% = M, .4/% so that J, maps /¥ into (F*)* with J'(J (F, G)) given by the
H orbit of (F, G) for (F, G)e .#¥. Since 1 is ad, invariant, the ad* action on (f*)*
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C(gl(r)")* is the restriction of the ad¥+ action to (f +)* Furthermore, J, is
equivariant for the gl(r)* actions on M N XMy, and (gl(r)*)*. It follows that ./, is
invariant under the T* action on My, x My, (ie. the vector fields in Ima; are
tangent to .#,). Since this action commutes with the H action we also have a T+
action on #/¥/H C.#*/H. If .4¥/H is a Poisson submanifold of .#*/H (ie., a union
of symplectic leaves), this action is hamiltonian with moment map J,,O AMEIH
—(E*)* given by

Ji o= Jr, 0|m%‘/H .

Hence, in this case the symplectic leaves of .#f/H are the appropriate models for
the symplectic leaves in (f*)*. This situation occurs only if I is the center of g(r).
More generally, for subalgebras gl(r)> ¥, Df,D..., it occurs if [, | C{; is central.
In general, when .#{/H is not a Poisson submanifold of .#*/H, we proceed as
follows. By restricting the o,’s if necessary, we find a ¥* invariant symplectic
submanifold Wc.Z¥ along with a subgroup H,C H leaving W invariant such that
W/H,= ¢ /H. In other words, we reduce the H-bundle .#f—./¥/H to an
H-bundle W—W/H, so that the total space is T invariant and symplectic.
(Actually we shall often have different connected components of .#*/H. That is,
¥/H will decompose into the union of a finite number of components

=U W/Hy

with W, the components of W and H{ a subgroup of H leaving W, invariant. In
this case the following arguments must be applied to each component separately.)
It follows that W/H, is a Poisson manifold with a hamiltonian T action whose

moment map _
Joo: W/H—@E)*

is given by J, ol. ki under the identification of .#¥/H with W/H, and (I*)* with
(T*)°. Hence the symplectlc leaves of W/H are the appropriate models for finite
dimensional symplectic leaves in (f7)*

Poisson Submanifold Reduction: gl(r, C)Dsl(r, C)

The first case we consider is t=si(r, C). If we split gl(r, C) =@, where [ = {c],|ce C}
and use the pairing (2.19) to identify (g/(r) *Y* with gl(r), , we get an identification of
(sl(r, ©))* with sl(r, €)g = sl(r, C)ngl(r), . The projection 7: (gl(r)*)* —(sl(r,C) *)*
is then

1 —_
X ()=X(A)— (XA, X(Deglr)y
Thus, in this case (5.2) becomes

J(F.G)=T(F,G)~  u(T(F.G)I,. (5.3)

The space .#; is given by {(F,G)|tr(J(F,G))=0], ic.
TF
tr (l )3 G >=O.

1 A—0;
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Since this must hold for all 4, it is equivalent to requiring
tr(GfF)=0 or tr(F,G)=0.

Since functions of the form ¢ o J 4, where ¢ : h* - C is Ad} invariant, project to
central elements in the Poisson algebra on .#*/H, their simultaneous level sets are
Poisson submanifolds. But {¢,(u)=tru,;, where p=(u, ..., u,) € h*} are such Ad}
invariant functions. Hence .#}/H C .#*/H is a Poisson submanifold.

Reductions of gl(r, C) and sl(r, C) by Automorphisms

Besides si(r, €), we consider the other classical complex algebras (so(r, C), sp(n, C))
and the real forms (gl(r, R), sl(r,R), u(p, q), su(p, q), o(p, q), so(p, q), sp(p, q), sp(n,R),
su*(2n), so*(2n)). These algebras can all be described as the fixed points in gl(r, C) or
sl(r, ©) of a finite group of automorphisms generated by one or two linear or
antilinear involutions.

The involutive automorphisms required are of the three forms (see e.g. [22])

(a) o(X)= —tXTt7 1,
(b) o(X)=tXt"*, (5.4)
(c) o(X)=—tXTt7 1,

where t is one of the three matrices

I, 0 0 0
0 -1, 0 0
J— 2 =
K, 0 0 Ip o I (p+q)=r,
0 0 0 -1

(where I, denotes the p x p identity matrix).

To keep the notation simple we shall only show how to reduce gi(r, C) by any
one of the ¢’s. The same procedure may be applied sequentially to reduce any of the
subalgebras of gl(r, C).

Since 0% =1d we can split gl(r, €) into the + 1 eigenspaces of o. The subalgebra
is the + 1 eigenspace and we let [ denote the — 1 eigenspace. Thus o gives a natural
splitting gl(r, C)=1®1, and we can identify £* with [° C(gl(r, C))*. A bit of caution
should be taken here in terms of real or complex duals. Until now we have
considered gl(r, C) as a complex vector space and (gl(r, €))* as the space of complex
linear functionals into €. If £ Cgl(r, €) is a real subalgebra, then by £* we mean the
real linear functionals (into IR). In this case, the embedding £* ~1° C(gl(r, C))* must
be understood with respect to the real dual on the right-hand side. To identify £*
with [* C gl(r, €) we use the real inner product, Re(tr(XY)), instead of the complex
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one, tr(X'Y), to give a pairing between gl(r, €) and gl(r, €)* ~ gl(r, €). This situation
will arise for subalgebras defined by the antilinear automorphisms; i.e. types (b)
and (c).

With respect to the appropriate (real or complex) pairing, ¢ preserves the
appropriate inner product and hence f and [ are orthogonal. Therefore, when we
identify (gl(r) *)* with gl(r)~ [using either the inner product (2.19) for the complex
case or the inner product

<X(4), Y(2)) =Re tr((X(4) Y(2))o) (5.3)

for the real case], we obtain a corresponding identification of (*)* with
¥, =Tngl(r), - Thus, for each ¢ the corresponding subspace .4;C My , x M., can
be described by

A= {(F,G)|6(J(F,G)=J(F,G)},

—_—

where 6: gl(r)—gl(r) is defined by the action of ¢ on each component of the formal
power series, i.e.

(X XA)=Y a(X)A.

Case (a). For (F, G) to be in .#; we require
" \GTF; n MFTG!
y Tte—y

-— 5.6
i=1 /1——0(, =1 ;u—ai ( )
If this is to hold for all Z it is necessary that

GIF;=—tFfGt™", i=1,..,n.

We can identify the space .#*/H with the set {(G]F,,...,GIF,)|(F,G)e.#*}Cg]
since the projection (F, G)—[(F, G)]y=(GTF,,...,GI'F,)is a principal H fibration.
Thus .4¥/H is identified with the subspace

{(GIF\....GIF,) | GIF,= —(GIF)"t "},

Suppose (F,G)e.#¥. Since F; and G; have maximal rank, there exists an
m; € GL(k;,C) such that

tFsz_G,Tml, Gi[_lzmi_lFi.

Combining these two equations yields
Fi=—m(m])'Fa"t™",  Gi=—(m)"'mGg~"t".

Ift=1I,,or K, , then t" =t, so we have

b,

m,=—m .

This is possible in the case that k; is even for all i. Assume this to be the case and set
Ki = 1/2kl'
Now if (F, G)=(hF,(h~')TG), he His in the H orbit of (F, G), then (F, G) satisfies

tFT=—Glm,, Gt '=m'F,
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where m;=hmnh!, h=(h,,...,h,). Since m; is antisymmetric it is possible to
normalize m; to equal y, by means of this action. That is, each H orbit in ./} has at
least one element (F, G) satisfying

Fi = yK,Git .
Let
W={(F,G)e M*|F;=y,Gi}. (5.7
It is straightforward to check that this is a symplectic submanifold of .#*. The
H-bundle #¥— . #¥/H reduces to the Hi-subbundle W— #¥/H,
Hf = {(hl’ T hn) eH I VK. = hiyklhiT} = {(hb (] hn) € Hl hi € Sp(Ki) C)} . (58)
Finally a direct computation shows that the T* action leaves W invariant, i.e. that
o (X(A)(F,G)e T, W

when X(4) €Tt and (F,G)e W.
On the other hand, if =y, (so r=2p), then t" = —¢ and we have

m,=m! .

By means of the H action, m;—h;m;h[, it is possible to normalize to m;=1, ; i..

[ A

cach H orbit in .Z{ has at least one element (F, G) satisfying G=Fy,. Let
W={(F,G)e l*|G=Fy,}. (5.9

Again, W is a F-invariant symplectic submanifold of .#* which is principal bundle
over ¢ /H, where

Hy={(hy,...h)eH|hlh=1}={(hy,...h)eH|heOk,T)}. (510
Remark. Reductions of gl(r, €) or si(r, C) by o of type (a) alone yield the following
algebras
f=so(r, C): Reduce sl(r,C) with t=1,.
t=sp(p, C): Reduce gl(r,C) with t=y,, r=2p.

Althought=1,  or K, ,leads to a reduction equivalent to t=1I,, when combined
with further reductions under anti-linear automorphisms the result may be
inequivalent.

Case (b). For (F, G) to be in .#; we require

n AGTF, » MGTFt™ !
oy (5.11)
i=1 -

ol

1

i=1 ;L—O(i

For thisto hold for all A it is necessary that the «;’s either be real or come in complex
conjugate pairs. Ordering the os so that oy;=d,,_,;, i=1,...,m and o;=a,
j=2m+1,...,n, Eq.(5.11) implies

T AT -1 .
Gyl yi=tGy Fyqt™ ", i=1,..,m
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(hence k,;=k,;_,), and
GJTFJ=thFJt_1, j=2m+1,...,n

Ift=1,,0or K, , then by an analysis similar to case (a) we can take

p.@
W:{(F, G)G,ﬂk| F2i=F2i_1t’ GZiZG_Zi—lt’ fOI‘ i=1,...,m
and F]=F_jt, GJ=G_Jt,j=2m+1,...,n}. (5.12)

This is a ¥*-invariant real symplectic submanifold of .#* which is a principal H,
bundle over M}/H, where

={(hy,...h)eH | hy=hy_y,i=1,...mand h;=h;, j=2m+1,...,n}.

(5.13)
On the other hand, if t=y,, r=2p, we can take
W={(F, G)eﬂ"IFZi:FZ, Vp Gp=Gyi_1ypi=1,...m
and F;=y, F F, b, G= Gjyp_’}, (5.14)

which again is a T*-invariant real symplectic submanifold of .#* fibering over
W/H,~ #¥/H with
Hy={(hy,...h)eH | hy=hy_, i=1,...,m
and hj=y, hy. ', j=2m+1,...,n}. (5.15)

Remarks. (1) Reductions of gl(r, C) or si(r, €) by o of type (b) yield the following

classical algebras:
gl(r,IR): Reduce gl(r, C) with t=1.

sl(r, R): Reduce sl(r, C) with t=1.
su*(2p): Reduce sl(r, C) with t =y, r=2p.
(2) If we first reduce gl(r, €) [or si(r, €)] to gl(r,R) [respectively si(r,IR)] by
means of a ¢ of type (b), then further reduce by a o of type (a), we get
so(p, q): Reduce sl(r,R) with t=1, ,, p+q=r.
sp(p, R): Reduce gl(r,R) with t=y,, r=2p.

When reducing gl(r,IR) to sp(p, R) a slightly more complicated situation arises.
Taking all «;’s real, the space WC My , x My, which corresponds to gl(r,R) is
W=My (R)x My (R), where My (R) denotes the real N xr matrices. The
subgroup of H which leaves W invariant is

H(R)=GL(k,,R) x ... x GL(k,, R).

The complication that arises in reduction to sp(p,R) is that if m; e GL(k;, R) with
m;=m], we are only able to normalize m; to some I, ,, p;+ q;=k;, by means of the
H(IR) action. In this case, for each choice of (p;, q;) we get a different W and a
different Hy, each such W projecting to a different component of .4¢/H ;i.e., there is
a finite stratification of .#¥/H based on the signatures (p;, q;).
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Case (c). For (F, G) to be in .#; we have

n AGTF n AFTGit™!
— Z bl

(5.16)

,_1}—Ot )u‘ai

Again, we can order the os such that a,;=da,,_,, i=1,...,m, and &=,
j=2m+1,...,n. Then (5.16) implies
GlLF,;=—tFY,_G,,_,t7', i=1,...m
and
GjF;=—tF]Gt™", j=2m+1,...,n
Inthecaset=1, ,or K, ,wefind that for each fixed choice of p;, q;,j=2m+1, ..., n,
with p;+q;=k; we can take
W={(F,G) e M*|Fy;_ =Gt ', Fyy=—Gy_t" ' i=1,....m
and F;=]/—11I,, Gt Lj=2m+1,...,n}, (5.17)
and
Hf:{(hla'“ )€H|h21_(h21 1) l:1
and h;=1I,, (h; 1)TIM,] 2m+1,. } (5.18)

Again WC " is a real symplectic submanifold and .#{/H is the disjoint union of
the submanifolds W/H, corresponding to the various choices of signature (p;, q;).
In the case t=y, we find that for each fixed choice of integers (p;,q;),
j=2m+1,...,n, with p;4q,=k;, we can take
W= {(F, G)Gﬂk“?ﬁ_l = _G—Zl'yp’ F2i= _GZi_I'yp, i= 1, ...,m,
and F;=—1, , Gy, j=2m+1,...,n} (5.19)

PQJ

and
={(hy,...h)eH | hy=(h;" )7, i=1,...m
and hj=1pj,qj(hj hHTy j=2m+1,..,n}. (5.20)

Again, ./¢/H is the disjoint union of the submanifolds W/H; corresponding to
the various choices of signatures (p;, q;).
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Remark. (1) Reductions of gl(r, C) or sl(r,C) by o of type (c) yield the following
classical algebras:

u(p, q): Reduce gl(r,C) with t=1, ,, p+q=r.
su(p, q): Reduce sl(r,€) with t=1, , p+q=r.

(2) The algebra so*(2p) is obtained by reducing so(2p, €) by a ¢ of type (c) with
t=7, and the algebra sp(p, q) is obtained by reducing sp(p + g, €) by a ¢ of type (c)
with t=K, ,, 2(p+q)=r.

The reduction conditions corresponding to involutive automorphisms are
summarized in Table 5.1.
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Table 5.1. Reductions by involutive automorphisms

ao(x) t H={h}i=1, .n w o, i=1,..,n
a) —tXTt™' I, orK,, heSpk,CT) Fi=7,Git a,eC
Vo h;€ O(k,, €) G=Fy,
b) tXt™! LyorK,, hy=hy eGLk;,C) Fy=Fy_1t, Gy =Gy, it Uy =0y 1€C,
h;e GL(k; R) F,=Ft G=Gj i=1,...m
~ and
7p hyi=hy;_, € GL(k; ©) Fz;':I':z_iﬂly G21=62i_—ll a,eR,
h;e SU*(2x)) Fi=y Ft ', G=y.Gg™ ' j=2m+1....n
¢ —tX"t™! I, 0rK,, hy=(h3L ) eGLKk,©)  Fyy E.G:Zit;l’_FZiZGZiflt—IQZ(I&Zt*Ieq:’
hieU(p,q) Fi=)/—11,,Gt! i=1,..,m
pi+q;=k; and
a,eR,
Ve hy=(h3;") e GL(k, €)  Fp_ ;= jczit j=2m+1,..,n
h;eUlp;,q)) F2i=_GZi:lt
p,+a,=k Fi=—1,,Gt

Twisted Algebras

To conclude this section we discuss a class of subalgebras of g/(r)* which are not of
the form ¥+ for some ¥Cgl(r, C); namely, the twisted subalgebras of gli(r)* [or
sliir, ©)*].

Let ¢ be an automorphism of gi(r, C) [or si(r,C)] of order k and let g=e

—2_

Define an automorphism ¢ on gi(r) by

2mifk

‘7<i_ inj>= i a(X g A, (5.21)

j= j=
and let gl(r)C gl(r) be the subalgebra defined by the fixed points of G, i.e.
gl ={X(2)eglr) | 5(X(A)=X(A)} . (5.22)

If we decompose gl(r, €) into k eigenspaces g;, j=0, ...,k —1, of ¢ with eigenvalues
al,, = ¢’, then

P p

gl(r)= {X(/l)= Y XA X eg; where lsjmodk}. (5.23)

l=—-w

Since 6'is an automorphism of order k, we can also split gl(r) into k eigenspaces,
85 /=0,....k—1, with 6|; =¢’ so

glin)= D §; (5.24)

glir)*= @ &}, (5.25)

where §¥ is identified with the annihilator of P g,.
1%
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Since ¢ is an automorphism it preserves the (real or complex) inner product on
gl(r, €©). Hence & preserves the inner product (2.19) when ¢ is linear, and (5.5) when
o is antilinear. This gives the identification

<® g,)l—/? (5.26)

Letting gl(r)* = gl(r)* ngl(r), we also get the identification
gl y* ~(gllr) )" =gl(r; , (5.27)

where mﬁ Q(T)/O‘Qm o
Let 7: gl(r)* —gl(r)* denote the projection dual to the inclusion i:gl(r)—gl(r).
Under the above identifications 7 is the projection of gl(r) to gl(r) relative to the

decomposition (5.24).
k—1

Lemma 5.1. The projection n: gl(r)—gl(r) along @ g is given by

(X (%)= z FH(X(2). (5.28)

Proof. Direct computation. [] .

Notice n(gl(r)g)=gl(r)o- The infinitesimal gi(r)* action on My, xMy,
restricts to an infinitesimal action of the subalgebra 2l(n*. This action has a
moment map J,: My, x My ,—(gl(r)*)* given by

J,=noJ,.
Proposition 5.2. Assume q'o; = o; for all i,j, 1. For (F, G)e Mo, J (J(F, G)) is the H
orbit through (F, G). Thus, since the H action on A k commutes with the gl(r)* action,
J, reduces to an injective moment map Jo o A*IH—(gl(r)*)*.

Proof. It is enough to show that 7 is injective on the image of 4*: (q7)*—(gl(r) ")*.

" Y,
Suppose n(ivz -

: ) =0. By Lemma 5.1 this implies

=1 A—0U
) Sy o (5.29)

)——O( 10i1; q’oc

0= Z o <i Z
The assumption g'o; # «; assures that all of the poles ¢’o; are distinct. Thus (5.29)
implies ¥;=0, i=1,....,n. [

From Proposition 5.2 we conclude that as long as the g’a; are distinct the
symplectic leaves of .#*/H give appropriate models for finite dimensional orbits in

(gl *)*.

6. Examples

To illustrate the results derived in the previous sections, we now consider in detail a
number of integrable hamiltonian systems. In particular, we show how Moser’s
[32] examples are recovered in the r=2 framework and also consider the
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Rosochatius system [16] which, though briefly mentioned in [32], requires our
extended framework for full details.We then also show how the analysis is related
to completely integrable PDE’s, treating the nonlinear Schrodinger (NLS) and
modified Korteweg-de Vries (mKdV) equation as illustrations of the r =2 case and
the coupled nonlinear Schrédinger (CNLS) and Boussinesq equations as examples
for r=3. The relationship of these PDE’s to our framework resides in the fact that
commutativity of any pair of hamiltonian flows in the loop algebra framework
entails integrability conditions which can be expressed in terms of PDE’s for the
matrix coefficients.

A. Moser’s Examples
(Finite Dimensional s/(2,IR) Flows with Shifted Hamiltonians)

For these examples we take r=2 (so k;=1, i=1,...,n, and
H=9={dI,,....dI,)|d;eC\0}),

the o;’s are taken to be real, and we reduce g/(2) to s/(2, R). This reduction is done in
two steps. First the reduction of gl(2) to gl(2, R) is given by the reality conditions

F=F, G=G, (6.1)

where F,Ge M, ,.
The group H reducesto {(d,1,, ...,d,[,)|d;e R\0}. Secondly, the reduction of
2l(2,R) to sl(2,R) is given by the condition J,=0 which in this case reads

G,-F;=0, i=1,...,n. (6.2)
Since r=2 we can write

Gi=a;F;+bFy,,

(0 1
=1 10
(i.e. G, is the sum of a vector parallel to F; and a vector perpendicular to F;). The

condition (6.2) implies a;=0. Furthermore, the H action transforms

Fi_)diFi’ Gi_’di_lGi, diGIR\O,

where

hence, choosing d;=()/|b,]) !, we can reduce the fibration J '(0)—>J5 '(0)/H to a
fibration W—J;'(0)/H, where W is given by

W={(F,G)e./*| F=F, G;=+Fp,},

and the fibers are given by the orbits of the finite subgroup of H, {(+1,..., £ 1)}.

The different components of W, determined by a choice of + or — signs for
each i, all project onto J,'(0)/H. Henceforth we restrict our attention to the
component

Wo={(F,G)e M*|F=F, G;= —Fy,}.
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1
If we let <—

(o)

> denote the column vectors of F, then G has column vectors

and the symplectic structure on .#* becomes

w=dxXrndy

when restricted to W,
Now, for Yesl(2,R), consider the class, # Y, of translated hamiltonians

dy(W=(u+2Y),

where ¢ € I(sl(2,IR)*)| gzx)+)~ By Theorem 3.6 and Proposition 3.8, such func-
tions pulled back under

J, W (sI2,R)")*
generate commuting isospectral flows for
L=A+FaG"=A+ax@x+bx®@y+cy@x+dy®y,

where

a b 1
2<c d)zay1=(I+Y) i (6.3)

In particular, the elementary symmetric invariants L, of L belong to this class.
There are n of these and the space W, has dimension 25, hence they must generate
the entire ring # ¥ and comprise a completely integrable system.

From (6.3) the matrix Y is given by

1 [—c—24 a
Y‘EZ( —d b—2A>’
where A=ad— bc.

For Y to be in sl(2,IR) we must have b —c=4. On the other hand, the spectral
curve X is given by

n TR,
det(i; if‘_i‘+lY—z<(1) ?)) 0. (64)

1

b
Thus by translating the spectral parameter z by i( AC 1) we can replace Y by

Y’ with
—b a
r_1
Y _2(_d1 b:>>

b d
te d= T If we next replace z by Az/2, we can write (6.4) as

here b'= ——
where o=

a
)
( 0,(%,9) b/~ —Q@?Ha):o

0,G0)—d QG +b—z)
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where, following Moser’s notation,

0= 3 M ©5)

3

for E=(&,,....¢,), 1=y, ...,n,) eR™
The moment map for the SL(2,IR) action on W, is given by

X .
Jsuz,m(if)=%(_£%)f _yiyﬁ»)
Let SL(2,IR)y. denote the stabilizer group of Y in SL(2,IR). According to the
general construction of Sect. 4 the Jacobi variety #(X) on which the flows linearize
is given by the Marsden-Weinstein reduction of the joint level sets of the invariants
L, by the action of SL(2,R)y.. In particular if Y'=0, SL(2,IR)y.=SL(2,IR), so we
reduce by the whole SL(2,R) action. Setting

X-y=o, |VI*=B, IxI*=y,

where o, f, and y are constants, #(X) is given by quotienting the intersection of
these joint level sets with those of the L;’s by the one parameter subgroup generated

by
<°‘ b >esl(2,]R),

_'\/ —0

B

i.e. the hamiltonian flow for
F(X, y)=ox - y—3pXII> =31 V1*.

If, however, Y'+0 the group SL(2,R),. is one dimensional. The conserved
quantities are given by the restriction of Jg; , g\(xX, ) to sl(2,R)y, i.e.

- >

X V-¥ \(—b a
F(f,y*)=%tr[<_ i _yffy)(_ y b)] = —$al X2 —3d| 2 —b'%- .
The quotient of the joint level sets of F(x,y) and the L,’s by SI(2,IR),. may be
identified with any conveniently chosen section transversal to the fibers, giving rise
to a second constraint, G(x, y)=0. This constraint need not be invariant, but
transversality requires that {F, G} =0.

For example, for the Neumann oscillator we take

0 —1
Y=<0 0>’

giving F(X, )= — ||xX||?, and take the level set ||X]|>=1 together with the section
x-y=0, defining T*S"~'. (This may be regarded as a special case of the
Rosochatius system, cf. part B of this section.) The hamiltonian is
H=L,=%Yy}+Y a;x?, where

Voo (0 =1\ L'+ 20+ 2,
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More generally, Moser’s constrained systems, which are given by a pair of
relations

F(x,5)=0, G(x,y)=0,

may best be understood in the sense of Marsden-Weinstein reduction as follows.
Quotienting by the 1-parameter invariance group H generated by F(x, }), and
taking a zero level set for its moment map J (i.e. F=0), we choose a transversal
section to the fibration J5 '(0)—J '(0)/H whose image in J !(0) is defined by
G(x, ) =0. This is applicable whether or not F(x, J) happens to be a part of the
Js12,r) Moment map, as long as it is a conserved quantity.

To see the relationship between the two formulations, note that Moser’s
constrained hamiltonian is of the form: h, =h+ uF, with  chosen so that {h, G} =0
on J }(0). Since the projection J; '(0)—Jy *(0)/H restricted to the section

a6:J5 (0)/Hp~J5 '(0)
defined by G(x,))=0 is a symplectomorphism, the flow of h, in J;'(0) will
correspond to that of 4 in J; '(0)/H, provided X,_[which is tangential to im(o)]
and X, (which is not) project to the same vector field on J; (0)/H . Since F =0 on
Jr '(0), we have X, =X, +uXy, and hence this is the case. It follows that the
constrained system satisfies the same isospectral equations and linearizes on the

same Jacobi variety as the unconstrained one, provided we determine the flow in
J7 Y0)/Hy and map it to J; *(0) by .

B. Rosochatius System [Finite Dimensional u(1, 1) Flows] [16,32]
For this example the phase space is still 7*S" ! as for the Neumann oscillator, but
an additional inverse square potential is added to give the hamiltonian
u?
H‘=%Zyi2+2x—’2 +eY ax?. (6.6)
We again use r=2 but now reduce gi(2) to u(1,1) by the involution o(X)

=7,XTy,. This corresponds to a definition of u(1, 1) taken with respect to the off
diagonal hermitian form
0 i
h =
(55 o)

chosen to simplify the reduction of the resulting system to the Neumann oscillator.
Assuming the «;’s are real this gives the reality condition

W={(F,G)el*|G=Fy,}.
1 1 -
If we denote the columns of F by 7 (Z, p), then the columns of G are 75 (—p,2).
The reduced group H, is given by U(1) x ... x U(1) (n times) and has moment map
JH(Z_:p_)=%(plz_l_Zlﬁla ~~'7pnz_n_znﬁn)'
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We consider the Marsden-Weinstein reduction of W at

Tz D) =Y =2ty s )

ie. Jg( |/ —2(uy, ..., 4y))/H. The quotient has a transverse section given by
requiring z;=x; to be real. Since Im(z;p;)=]/ —2u; we can write

Ui
pi=—yit) *2;, yieR

and the constrained symplectic form is
w=dxrdy.
On the constrained space, the moment map

i=1 ).—O(i

JA(F,G)=— =N

takes the form

= = : A Xy =i 1 0 ui\ (0 1
M(x’y;l)____%i;(i—a){(x? —x.y.>+‘/:§”i<0 1>_2<x-2 0 0/))°

To obtain the hamiltonian consider the translated invariant
<0 1)) LA LT+ Ly

0 0/) a(4) ’

N
¢52det <) +¢é

where
$0=82xi27
21=%@Xﬁ@yﬂ—%ZMhy+QX9<Z<%>>4%Za#ﬁ%2mf

— 6 2) (T %) ’
=i (L) —eY 0.

0 1
For ¢+0 the stabilizer in U(1,1) of s(g (1)> is generated by <0 0>. The

projection of J,, (X, y) onto this subalgebra is

, 2
.7 97 _ 2 _2 _l
X-y+)/ =2 —lyl <in2> 0 1

1% —%-y+)/—2 1'0 0

This function generates the flow

=42

F(X,y)=3tr

(X, )= (X, j+1tx) on R*".

We reduce R?" by this R action at F(x, y)=+. This gives an R-fibration n: F (1)
—F~!(1)/R of which a cross section is given by

G(X,§)=x-7=0.
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Hence, the constrained space we consider is
F7Y1)/R~T*s"!

with projected hamiltonian H® (such that n*H* = H?|,.- 1(1y) given by (6.6). Note that
choosing i'=0 corresponds to a further reduction to the subgroup su(1, 1) ~ sl(2,R)
giving back the Neumann oscillator of the previous section.

The spectral curve X for this system is defined by

_ N (X5 4) 0 1 1 0)\ _
P(/l,z)zdet<*/1 +s<0 O>+Z<0 1))—0.

Defining a new parameter w by
2
Hi
2(@ < Vg )

X is given by w?=S%/), where

S(4) _1 x} v 1 xi \?
ro = o) () 4 (52%)

x? pi/xt X7
+<Zi—ai)<zi_°‘i> +8<Zﬂh‘°‘i>' ©7)

From this it is evident that if ¢4 0 the genus of X is n—1 and if e=0 the genus is
n—2.
One can rewrite (6.7) as

S
GZ(A)"‘ZZX_ +Z/1 OC)Z,

where

(xy;—yx)* + 25:?/?)#} +2(x} /x)u? ] e 638)
i )

FiE%Z[

are n invariants with one relation ) F;=e.

Remark. For the degenerate case ¢ =0, the stabilizer is the entire SU(1, 1) generated
by ¥ x2 ¥ x.y:» and Y(y?/2 + u/x?)= H°. Thus these are all constants of motion.
Setting " x?=1and Y x,y,=0 gives an invariant symplectic submanifold on which
the flow linearizes on the C*-extended Jacobi variety of the genus n—2 curve.
Fixing H® = E = const and quotienting by the stabilizer of < 1 0> gives a constant
(in the ordinary Jacobi variety), i.e. the flow is entirely vertical in the extension [and,
in fact, strictly periodic, i.e. generated by a U(1) action]. This corresponds to
geodesic flow on S"~!. For full details regarding the flow for the general case,
expressed in abelian integrals, see [16].
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C. Nonlinear Schridinger Equation
(Finite Gap Solutions from sl(2, C) and Reductions)

The NLS equation is a PDE determined as the integrability condition for a
commutative pair of flows on the dual of a reduced loop algebra ¥+ Csl(2,€)*, (see
e.g. [14]). The “finite gap” solutions are determined by flows on finite dimensional
symplectic leaves in (*)*. Using the moment map J, these flows can be pulled back
to isospectral flows of matrices which can be interpreted as finite dimensional
hamiltonian systems (cf. [36]).

The NLS equation has two distinct forms

U+ |/ — 1u,=2ul?u, (6.9a)
U+ —1u,=—2ul’u. (6.9b)

These arise from the complex form of NLS:

Ut )/ — U =200, v, —)/—1v,=2u*. (6.10)
by setting v=# or v=—1i.

The reduction of gi(2,€) to si2,T) is given by the condition J,=0; ie.,
J,1(0)/H gives the appropriate model for finite dimensional symplectic leaves in
(sIZ,€©) *)*. By an argument similar to that in part A of this section, the fibration
J51(0)—J5'(0)/H can be reduced to a fibration W—J;'/H, where

W={(F,G)e.*|G=Fy,}

is an sI(2,€)* invariant symplectic submanifold of J;!(0) and the fibers of
W—J;'(0)/H are given by the orbits of the finite subgroup
{(£1, £1,..., £ )} CH.

1
Let the column vectors of F be denoted by ﬁ(i’, ¥), X,yeC". Those of G are
1
then —2—( — ¥, X) and the symplectic form is given by w =dx A dy when restricted to

——

W. The moment map for the SL(2, C) action on W is

0%y 0,9 >

- y)
Jy(5 == . -
=5 S Sy
where Q, is given in (6.5).

Let #()=J,(% ) and 2()=0

AT

Consider the ad* invariant functions on (s/(2, €))* given by

DX (D) =3tr <(“(j?,ik X(A)Z) > k=1,2, ...
0

If we let ¢, denote the time parameter for the hamiltonian flow of ¢, we have as
usual

N =L+ LA+ + L, AT

d
gV D=L D), A )]
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or equivalently,

d
a, L)=[A*ZL0)+, L] (6.11)
In particular
‘—;:—cg’(/l)z[/lgo+$1, L], (6.12a)
éj—ff(i)=[12$0+/1$l +Z,, L(A)]. (6.12b)

The leading term %, is given by the value of the SL(2, €) moment map, i.e.

2
$0=%<inyi 2 Vi >’

—Yx =YXy
and is thus an invariant of the flows. To get NLS we choose the level set
Yx2=0, Yy}=0, and Yxy=)/—1 (6.13a)
and define

s v S |4
5,”1:(“ _S) and $2=<U —S)’

u=—Yox?, v=Yuy!, and s=3Yuxy;—3)/—1Ya. (6.13b)

Because of our choice of & it follows that

where

§=— l ;1 (trtAl?), and wv—]/—1S=3tr(A2L*(2)),,

and therefore we can choose s=0, i.e.

Youxy;=|/—1Y0;, and S=}/—1luv. (6.13¢c)

Letting x denote ¢, and t denote ¢,, the commutativity of the two flows imply
Eq. (6.10).
The real form (6.9a) comes from a reduction to f, =su(2), i.e.

L={Xesl2,@) | X=—XT}.

Applying the results of Sect. 5, case c, requires the «’s to appear in complex
conjugate pairs and the following relation,

X2i-1= —Vai»  X2i=V2i-1- (6.14a)
The real form (6.9b) comes from a reduction to f, =su(1,1), i.e.

f,={Xesl2,C)|X=—tX"t},
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1 0 . . .
where t= ( 0 — 1). Again applying the results of Sect. 5 we may for this case

choose the «;’s to be real, together with the reality conditions

x; =)/ —1y;. (6.14b)

An analysis similar to that in part A of this section gives the curve X and the
Jacobi variety #(X) on which the flows linearize. Furthermore, a study of the
reality conditions (6.14a) and (6.14b) leads to the linearization of the flows for (6.9a)
and (6.9b). These computations have already been done in [36]. Note that to
reconstruct u,v explicitly it is necessary to do a further integration of the
hamiltonian equations corresponding to the restriction of the moment map to the
stabilizer of /=%, 1.e. ¢,. The nonreduced isospectral manifold then becomes a
C* extension of #(X) as discussed in [36].

——

D. Modified Korteweg-de Vries Equation [ The Twisted Loop Algebra si(2,IR)]

The mKdV equation
U — 6u U+ Uy =0 (6.15)

is determined as the integrability condition for a pair of commutative flows on the
dual of a subalgebra of gl(2)*. In this case the subalgebra is a twisted loop algebra
[14,49]. .

We begin with the reduced algebra sl(2,R) as in part A of this section and thus
restrict attention to the si(2,R)™ invariant symplectic subspace W—.4* given by

W={(F,G)e #*| F=F and G=—Fy,}.

1 1
As above, we write F=—2(>2',)7) with x,yeIR" so that G= ﬁ(—ﬁi) and the

symplectic form of .#* becomes w =dx A dy when restricted to W.

—

Now define the twisted loop algebra si(2,IR) by
SI2, R)={X() esl2,R) | tX (M)t =X(— 1)},

where t= <(1) 0 1). An element &(4)esl(2, R) has the form

)= Y &A, GeslaR),

i=—o

___ \0 ~1)

We identify si(2, R)* with 5/(2, IR) using the inner product (2.16). This gives an
identification

. . 1T 0).... . . s
where ¢; is a multiple of < ) if i is even and ¢, is off diagonal if i is odd.

GI2, R )* ~ (12, R) ) =512, R), ,

where 5I(2, R); is the subalgebra of 5(2, R) consisting of elements of the form

Xw=§ X,

j==
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Under this identification the moment map
T2 W GI2, R )* ~512, R)g
for the 5I(2,R)* action on W is given by

nAXY noogy?
FG)—A " (GIF; tG[Fg '\ 4 i; 22 —af ,;l A2 —o?
T ,Zl o —A w+li ) 2 L] LAy
i=1 ;Lz—aiz izzl }.Z—aiz
Let 4'(4) denote J,(F, G) and
a(l) 1
LAN)=—- 2 N D=L+ = $1+ +/12n s Lon—1s

where a(A) = H (22 —0?). Notice Z(4) €52, R), because a(4) is a polynomial in A2,
Define qSkeI(sl(Z R)*) by
. /12k ( ) ,
O X(A)=%tr T X(%) k=1,..,n—1.
0
Let t, denote the time parameter for the hamiltonian flow of ¢ |z then
L= [(2*2(2)+, ()] (6.16)
“k

The flows are isospectral for both A7(4) and #(4), and hence det(4"(1)) and
det(#£(2)) are invariant. The spectral curve X is hyperelliptic with affine part given
by

2 =det(A*"Z(1)).
The leading term

RN 0
3 6.17
%o= 2( 0 _inyi) ( 2
is an invariant of the flows which we choose to be zero.
It follows that
1 iy
gl_Z(—ZaiX? 0 ) (6.17b)

is also an invariant, which we fix by

Yayi=1, Yoxi=1. (6.18)

1 0 0 p 1 0
yz_u<0 _1), 33_<q 0), 34_w<0 _1>, (6.19)

Define
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where
u=3Yolxy;, p=3yeyi—-iyoel, (620)
q=—3Yuixi+3Ye?, w=Yalxly!-2u}al.
The function
(L + L L+ L3 L) =u+5(q—p)
is also a constant which we set equal to zero.

Letting x denote the variable t; and t denote t,, it follows from the
commutativity of the flows for ¢, and ¢, that u satisfies the mKdV equation (6.15).

—_—

E. Boussinesq Equation [Rankr=3 Deformations; Constrained sl(3,R) Flows ]

Here we consider the Boussinesq equation [2, p. 232]
Sty + Uy + 12(uu,),, =0 (6.21)

as an example of rankr=3 perturbations (cf. also [43]).
The x and t Boussinesq flows are given by Lax pairs

0 0
where

0 0 O 0 1 0

A=A10 0 O]+ 0 0 1], (6.23a)
1 0 0 (—3u,—3v —3u 0
0 0 0 2u 0 1

B=Al1 0 O+ | —u,—3v —u 0|, (6.23Db)
010 —u,—3v, —2u,—3v —u

and % is a matricial polynomial in A7, =%+ £\ ' +...+ LA "
The commutation relation
0 0

yields the equations
U +20, =1,  Ugeo+ 30, —6uu,=3u,+3v,,
which, upon elimination of v, yield (6.21).

The Lax pairs (6.22) are obtained by imposing symplectic constraints on AKS
flows in (sI(3,R)*)* as follows.
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Consider the hamiltonians

BN () =1t (“f) P 0)) (624a)
P (N (D) =htr ((a(@) AMN(;)) (6.24b)
0
Let
Hy=®, =tr(N oM )= 3(F o) tr (A7), (6.25a)
A3

Hy =P, =tr(N N+ N o N D=2T a) tr( N, A+ [F(E ) =5 )] tr
(6.25b)

generate the x and t flows, respectively, where
NA)=N g+ N AT+ N2+ (2.26)

(l)‘/V(i) Lo+ LA + ...+ LA ", we have

With 2(1)=

0
a$=[(dHO)+>$]a

and

0
52 =ladH,).. 2],

where
(dHo), =1%o+ 2y,

and
(dH)), =P L2+ WLyl 1+ L\ L)+ L+ LoLr+ L L.

As usual, %, is preserved by all of the flows so we can choose
000
(6.27)

$0=<000.
1 0 0

In general, letting t, denote the flow for @, and s, the flow for ¥,, we have

d

I — ¥=[P),, ¥]=—-[* %) _, ], (6.28a)
k

%$=[(ﬁk$2)+,$]=—[(ﬂkafz)—,i”]- (6.28b)
k
From this it follows that

(6.29a)

d
dig1=[$0a$k+1]
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and

d

P = LL:. 6.29b

dskgl [ o i+j;k+l ! j] ( )

If we take
ap 4 das
312 bl bz bs >

€y € C3

it follows from (6.29a and b) that a,, as, b,, b; are constants of motion. We choose
a,=by=1and a;=b,=0, so ¥, has the form

a, 1 0
$1= bl 0 1 )
€ € —a

Setting
Al AZ A3
Z,=| B, B, B,
C, G G
we have
0 0 0 a; 1 0
(dHo)+=z<0 0 O|+(b, 0O 1
1 0 0 Cl C2 _al/
and
0 0O at+b,+ A4, a, 1
(dHl)_‘.:l 1 0 0 + a1b1+C1+B3 b1+62 _al .
0 1 0 bICZ+A1+C3 CI+A2_C2a1 C2—01+A3
To put these in the form (6.23a) and (6.23b) we need to add constraints. Let
a(A
Py =egri=tu( i) |
v 0

ln
G,( NV (A)=b,—A,, and Gy(N(})=a,.

FA V()= ¥, (V)= tr ((““))2 M/(i)3> ,
0

Computing Poisson brackets we find
{F,G,}=1, {F{,G,}=0,
{Fz,G1}=*'G2, {F2s62}=1-
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It follows that the constraints F,=F,=G,;=G,=0 define symplectic sub-
manifolds of the symplectic leaves in {s/(3,R)*)*. Since Fy and F, are commuting
constants of motion, the constrained hamiltonians H, and H, are given by

ﬁozHo—{Ho>G1}F1“{Ho,Gz}Fz
and
ﬁ1=H1_{HlaG1}F1_{H1,Gz}F2-

Since the F’s and G’s vanish on the constrained space, the constrained
hamiltonian vector fields are given by

(dﬁo)+ =(dH0)+ _{HOa Gl} (dF1)+ _{HO: Gz} (dF2)+

and
(dﬁ1)+ =(dH1)+—{H1aGl}(dF1)+“{Hu Gz}(sz)w
Computing
d
{Ho’Gl}z_E(b1*A3)=—A2+ZB3,
d 2
{HI’GI}=—E(bl_A3)=2A1+2C3+2b1~b1C2’
{Ho, G,} —ia A
0 M2f— dx 17— 23>
d
{Hlst} ——a;=A4,+B;,
dt

we find

0 0 0 0 1 0

(dﬁo)+=/1 0 0 0]+ 0 0 1

1 0 0 Cl+A2—2B3 C2_A3 0
and

0 0 O 2b, 0 1

(dH,),.=A{1 0 O]+ c;—A4, b, +c, 0 .
010 2b,c,—2b3—A,—C; ¢,—B; b, +c,

Now Z(A) is traceless so A;+B,+C;=0, ie., 24,—B,—C;=34,. Fur-
thermorg @,(N' (1)) =4b, +2c, is a constant of motion which we choose to be zero.
Thus (dH ). takes the form

00 0 2b, 0 1
@H), =1 0 0|+| ¢, —4, b, 0 )

01 0/ \—6p2+B, ¢,—By —b,
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Taking
bi=Ay=—%c,=u, c¢,—A4,=—u,—3v,
¢,—By=—2u.—3v, B,=6u*—u,—3v,,

(dH,), and (dH,), take the form (6.23a) and (6.23b) respectively.

Remark. Since the constraints F; and F, are from the set of commuting functions
@, ¥, it follows that the @’s and ¥’s still Poisson commute after applying the full
set of constraints F; =F, =G, =G, =0. In fact these constraints may be interpre-
ted as a part of the Marsden-Weinstein reduction of the orbits in (sI(3, R)*)* by
the sl(3,R) action. F, and F, give parts of the s/(3,IR) moment map and G, =0,
G, =0 defines a section of the Marsden Weinstein reduction by the abelian
subgroup of s/(3,R) generated by the hamiltonian flows of F; and F,.
We now use the moment map

733/%1(*’@(“3)”*

to interpret these flows as isospectral rank 3 perturbations. For simplicity, let us
assume that the eigenvalues o, are real and distinct; thus k; =1 for each i. We write
the matrices F and G, (F,G) e .#*, in the form

q1 P
F=| ], G=|:], (6.30)
Gn Da
where ,, p,;€ €>. The reduction of (gI(3)*)* to (sI(3,IR) *)* requires that §,, p,e R?
and
14(F,G)=(q1P1s--s4n- Pn)=0. (6.31)
The groups H and & are the same, and the action is given by §;— o, p;—=a; '
;€ R\0. Thus we can identify the reduced space J'(0)/H with the space
W={(F,GeM*|G, p;eR> |G| =1, g p;=0}
~T*$?x ... xT*S? (ntimes). (6.32)
The symplectic structure induced on W is such that the latter identification is

symplectic.
The moment map, restricted to W, now gives
T
7 & Did;
Ji=AHA=1Y ———.
s=N (=1} P

Writing the columns of F and G as (X, 7, 2) e R3" and (i, 7, W) e R*" respectively [so
G;=(x; Y5 z;) and p;=(u; v, w;)], we have
Q,(Xu)  Q,(u)  Qu(zu)
N (A== 0x,0)  Q,(,0) Q,(z0) (6.33)
Q% W) QW) Q,(Z W)
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where 0 2 is given in (6 5). Substitution of this into (6. 24a and b) gives the
0=F,=F,=G,=G, may be regarded as deﬁmng constralned hamiltonians H,
and H, in W whose flows furthermore leave invariant the submanifold determined
by the relations

0 0 0 0 1 0
No=|0 0 0], N;= u 0 11, (6.34)
1 00 ¢ +Yo, —3u 0O
where
ci+Y o= =) x;wa, (6.35)
and
u= —ZXiUiO(,- (6'36)

is the solution of the Boussinesq equation (6.21).

F. Coupled Nonlinear Schrodinger Equation (su(T, 2) Flows)
The CNLS equation is ([2], p. 97)

I/ - 1ut + Upx = 2“(]“‘2 + IU'Z) 5

(6.37)
V= 1,4 v =20(ul* +[v]?).
This is obtained from the complex form
V= lu,+u =2u(lU +vV),
)/ —1v,+ v, =20mU+0vV),
(6.38)

—)/—1U,+ U, =2UU +vV),
— )/ = V4V =2V(U +0V),

with the reality condition U = #, V= 0. Other real forms may also be obtained as for
the CNLS equation by choosing differing signs U=+, V=+7. As in the
preceding example, Eq. (6.38) is obtained as the integrability condition for a pair of
commutative flows given by Lax equations of the form (6.22), with:

2 0 0 0 a o
A=——V3_1; 0 -1 0| +|u 0 0, (6.39a)
0 v 0 O
0 0 0 i v
1 o +2lu 0 o)

0 v 0 0

Iu|2+lv|2 —d,  —0
—lu*  —bu (6.39b)
— i |v|2



496 M. R. Adams, J. Harnad, and E. Previato

These may again be interpreted as flows on (s[(3,C)")* generated by AKS
hamiltonians of the class (6.24a, b), with a reduction to the subalgebra fstt(T, 2)
Csl(3, ©). The moment map J; will then give an interpretation of the flows on finite
dimensional symplectic leaves in (su(1,2)")* as isospectral flows of matrices.

Using the same notation as in the preceding example, the reduction gi(3, €)
5i(3,C) is given by the condition J,=0, i.c.

tr#,=0. (6.40)

The reality conditions #=U, 1=V giving (6.38) follows from the reduction of
sl(3, ©) to su(1,2) by

—tZjt ' =Y, (6.41)
with
1 0 0
=0 -1 0
0 0 -1

Taking (F,G)e M, 3 x M, 5 with rows (F;=(x;, y;,z;), G;), (so k;=1) and real
eigenvalues «;, the reduction procedure of Sect. 5 gives:
Gi=)/~ 1%, — 72 —7) (642)

from (6.41). Here x;, y;, z;€ € provide complex Darboux coordinates on the
reduced space W=(%7)" with symplectic structure

W= VTIZ(dxi ANdX;—dy; Ady,—dz; ndZ).
To implement (6.40) we take the constraint
Pxil? = Iy —1zi*=0, (6.43)
and quotient by the S! action
g (X v 2)=(8x;, 8y, 82), geS'

on each of the n copies of C3.

This quotient space may be identified with €2, where Darboux coordinates are
given by n,=e™V %y, and {;=e ¥V %z, and the phase 6, is given by
x; =€V~ 1%x,|. Since the moment map is independent of this phase we may write it
(and its components) in terms of #; and {,,

» l/_—1/1 Qi n:Q; Gio;
jsu(l,l)(é, n=N(A)= _;1 ] =g —nl> =0l (6.44)
—Goi —Tm; —ICiIZ,,
_ A -1 -2
——m($0+$12 + A+ ),

where

e=)/Ini*+1¢I>. (6.45)
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The leading term % is an invariant of the flows since it is given by J,(; ). We
choose the level set

$O=E(§ —01 8), (6.46)
0 0 -1
1.C.
Yinl*=1/3, YILF=1/3, Yn/Inl*+I>=0,
and Y n(;=0, Y{)/In*+I1*=0. (6.47)

Furthermore %, satisfies (6.29a) and (6.29b). Thus, if we write

a )
$1=uba,
v d ¢

we see that with our choice of &, the entries a, b, ¢, d are invariants of all the flows.
We choose a=b=c=d=0 where

as)/ IR+ ~Fe), b=/ S,
c=—)/ =1L @l)*~32), and d=—)/—1Fund;. |

<

Thus
0 u v
Li={u 0 0}, (6.49)
v 0 O
where
u=—)/ 1S/l + 07,  v=—)/ 1L al)/in 11
(6.50)
Let #, be denoted by
a; by ¢
32=]/—1 a, b2 cz)s
\ a3 b3 C3

and let x denote t; and ¢ denote t,. The commutativity of the @, and &, flows then
implies

a; _ax _6x
$2=|/-—1(ux b2 C2 .
Uy b3 C3/

Wi;h (_as)x=(|ulz+lv|2)x, (b2)x=(— U1} (c3)x=(—10]")y, (c2)x=(—DU),, and (bs),
=(—uv),.



498 M. R. Adams, J. Harnad, and E. Previato

Setting @,(A(2))=0, it follows that a, =[u|*+ |v]%. To get
A=(d¢p(N(A)+ =ALo+L,,

(6.51)
B=(dp,(N(A); =A*Lo+AL; +L,
in the form (6.39a, b), we must set
b, +ul*=cs3+v]*=bs+vii=c, +ui=0. (6.52)

These quantities are invariants of all the flows in %, and therefore this does not
require constraining the hamiltonians. To see this, consider the matrix

Let ¢ € #, and 7 denote the parameter for its hamiltonian flow. Then

d
77 5= L0, d¢( L) o]+ [£1,dd(L) -],

and di Li=L [ Lo, d)(L)_ 1]+ [ Lo, dP(F) - ] %;. Allowing arbitrary matrices
T

for dp(¥)_, and dp(¥) _, leaves the lower right-hand 2 x 2 block zero. Since S has

<i(b2 +u?)  i(c,+ 1714))
i(by+uv) i(cs+|v]?)

as its lower right-hand 2 x 2 block we see that these quantities are invariants of the

flows.
The detailed computation of the linearized flows on Jacobi varieties of spectral
curves for these and other examples will be presented in the sequel [4].
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