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Abstract. Indecomposable representations have been extensively used in the
construction of conformal and de Sitter gauge theories. It is thus noteworthy
that certain unitary highest weight representations have been given a geometric
realization as the unitary quotient of an indecomposable representation using
indefinite harmonic forms [RSW]. We apply this construction to SU'(2,2) and
the de Sitter group. The relation is established between these representations
and the massless, positive energy representations of SU(2,2) obtained in the
physics literature. We investigate the extent to which this construction allows
twistors to be viewed as a gauge theory of SU'(2,2). For the de Sitter group,
on which the gauge theory of singletons is based, we find that this construction
is not directly applicable.

I. Introduction

Representations of space-time symmetry groups play a fundamental role in physics.
In particular, minimal energy, indecomposable representations [A], in which the
physical sector is realized on a unitary subquotient, have been extensively used in
the construction of Poincare, de Sitter, and conformal gauge theories ([AFFS,
BFH1,2, F, FF1-6, FPS, Ha], and references therein). Especially interesting is the
recent progress in singletons ([FF1-6]), a theory which has its origins in the work
of Dirac [D2]. It is thus extremely interesting that in the recent mathematical
literature, certain representations of this type have been given a very elegant
geometric realization in terms of indefinite harmonic forms [RSW]. Several physical
applications of this indefinite harmonic construction are immediately suggested,
and these possibilities will be investigated in this note. First, let us introduce the
representation in question.

Recall that the unitary irreducible representations of semisimple Lie groups
can be divided into two classes: the regular representations, which occur in the
Plancherel decomposition of L2(G\ and the singular representations, which do
not. More precisely, the representations treated in [RSW] are highest weight
representations lying in the analytic continuation of the holomorphic discrete series
(which we take to include those discrete points known as the "Wallach set").
Basically, the construction is the following. Given a Lie group G, a subgroup H
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is chosen such that G/H is a pseudo-Hermitian symmetric space. For a given
representation of H on a vector space V, G acts on the Dolbeault cohomology of
the associated homogeneous vector bundle, and this action is unitarized by passing
to L 2 indefinite harmonic forms. However, in order for this construction to work,
the space G/H must satisfy a very restrictive requirement. Namely, if K is maximal
compact in G, and, replacing K by a suitable conjugate if necessary, if H nK is
maximal compact in H, it is required that G/HΓΛK carry an invariant complex
structure such that both G/HnK-+G/H and G/HnK-^G/K are holomorphic.

As an example in [RSW], this construction is applied to the indefinite unitary
groups, U(p, q\ realizing most of the unitarizable highest weight modules. Several
possible applications to physics are also noted. A strong formal analogy is
pointed out between the indefinite harmonic construction and Gupta-Bleuler
indefinite metric quantization [Wl, 2]; a relationship between the case G = (7(2,2),
H = 17(1) x 1/(1,2), and twistor theory is implied; and the indication is given that
the Dirac singletons are realized in the context of their paper on the space
Sp(2, R)/C/(l, 1) [RSW, Appendix].

We will investigate these possibilities by first working out in detail the indefinite
harmonic construction for 5(7(2,2). This will serve to introduce the construction
as well as to exhibit the relation to the massless representations as obtained in the
physics literature. Then, after briefly reviewing the most basic gauge theory based
on an indecomposable representation, we will see how the indefinite harmonic
construction allows twistors to be viewed as a gauge theory of the conformal group.
We will also attempt to construct a Gupta-Bleuler triplet in the context of twistors.
Finally, in the hope of obtaining a geometric realization of the Dirac singletons,
we will attempt to apply the indefinite harmonic construction to the de Sitter
group. However, we will find that for this group or any of its covers, the previously
mentioned holomorphic condition cannot be met.

Let us now introduce some notation. Let G be a connected, reductive Lie group,
and τ an involutive automorphism of G. Let H = (Gτ)° denote the identity
component of the fixed point set of τ. Choose a Cartan involution θ that commutes
with τ. Let K = Gθ denote the fixed point set of θ. Set M = Gτθ and L = HnK.
Denote the respective real Lie algebras of G,H,K,M,L by Qo^oΛo^moΛo The
+ 1 eigenspace decompositions will be written as

9o = *>o + % u n d e r τ> a n d

9o = to + Vo under θ.

Complexifications will be denoted by dropping the subscript. The almost complex
structure on G/H (G/K respectively) is given by adq£ (adpτ/), where ζ(η) is a central
element of ί)o(to) The holomorphic and anti-holomorphic tangent spaces of G/H
are given respectively by

q+ = { ξ e q : [ U ] = iξ}9 q_ = {ξeq lζ, ξ] = - iξ}

(likewise for p + and p _).
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II. Sί/(2,2)

As a way of introducing the indefinite harmonic construction of [RSW], we will
work out the case G = SU(2,2) in detail. First, we will examine the space G/H,
explicitly verifying the holomorphic condition and giving a local coordinate
parametrization of the G-action. Next, we will give an explicit construction of the
holomorphic line bundles induced by one dimensional representations of H, and
then we will outline the unitary construction. At the end of this section, we will
relate the ladder representations as realized in the indefinite harmonic construction
to the positive energy representations as obtained in the physics literature.

A. The Space G/H. Let G = SU(2,2). The requirement that G/H be a pseudo-
Hermitian symmetric space requires H = S{U(1,1) x [7(1, 1)), H = S(U(1) x 17(1,2)),
or H = S(U(291) x 17(1)) [Sr]. In order to satisfy the afore-mentioned holomorphic
requirement, H is further restricted to be S(U(1) x (7(1,2)) or S(ί7(2,1) x 17(1))
[RSW, 2.22]. However, to avoid redundancy, we will work with H — S(U(1) x
[7(1,2)), making note of H = S(U(2,1) x ί7(l)) when necessary. Let us now verify
explicitly that G/H = S(2,2)/S(ί7(l) x ί7(l,2)) does satisfy the holomorphic
condition. Thus

ϊ o = s(u(2)

Parametrize g0 in the following manner:
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The central elements giving the almost complex structure (unique up to sign since
G is simple) on G/H and G/K respectively are
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A necessary and sufficient condition for both G/L-
holomorphic is

>G/K and G/L-+G/H to be

= 0 [RSW,2.21]. (2.1)

Direct calculation shows this to hold.
Now having verified that SU(2,2)/S(U(1) x L/(l,2)) is an appropriate space for

SI/(2,2), let us note a few of its properties. As a pseudo-Hermitian symmetric space,
G/H has a C00 fibration π:G/H^>K/L, where K/L is the maximal compact
subvariety. A typical fiber is M/L, which has the structure of a Hermitian bounded
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symmetric domain [Sr]. In our case,

K/L = S(U(2) x i/(2))/S(i/(l) x i/(l) x U(2)) « PC 1 ,

and dimc K/L = 1. Furthermore, our G/H is an open Si/(2,2) orbit in the complex
flag manifold, SL(4, C)/P, where P is the parabolic subgroup

p

SL(4, C)/JP is equivalent to PC 3 , and by considering G/H as an open subset of
3, we can explicitly exhibit the action of G in terms of local coordinates. Let

be homogeneous coordinates on PC 3 , and let

*
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eSL(4, C)

SL(4, C) acts on the homogeneous coordinates by right matrix multiplication, and
this is easily written in terms of local coordinates. In ί/°, local coordinates are
given by

where zι = -^.

Write geSL(4,C) as

Then zg = (zD + C/zB + A).

Note that P is precisely the stabilizer of z = [0,0,0]. Likewise, in U1 we have
local coordinates

w=[w 1 , w2,w3] where -γ, ^i = yι^ / = 2,3.

If we impose the G-invariant indefinite Hermitian form

Φ with signature ( + 1, + 1, — 1, — 1),

then space St/(2,2)/S(l/(l) x ί/(l,2)) can be described as those ζ positive under Φ.
This is precisely the SU(2,2) orbit of ζ = [1,0,0,0]. Note that in the case of
H = S(ί/(2,1) x ί/(l))5 we merely have a different open Si/(2,2) orbit, namely those
C negative under Φ.

The Killing form on g induces a G-invariant pseudo-Hermitian Kahler metric
on G/H. It is essentially an indefinite version of the Fubini-Study metric, and on
U° it has the following local expression:

^ ^ i
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where diag(/,-) = ( + 1, — 1, — 1) and a = (1 + z1!-^). The inverse glJ, where

QijQ]k = <5*, is given by

and

5. Holomorphic Line Bundles on G/H. The next step in the indefinite harmonic
construction is to take a unitary representation of H on a vector space V and then
form the C00 homogeneous vector bundle, V-+G/H, where V = G x H K As the
ladder representations of G are obtained from one-dimensional representations of
H, let us from this point on restrict our attention to unitary characters of H. The
resulting line bundle can be given a holomorphic structure, and this can be seen
in the following way. First, consider G/H as imbedded in the complex flag manifold,
GJP = PC 3 . Pick xeGc/P. There exists a holomorphic function

sL. Uι -> Gc such that xs^ζ) = ζ.

On l/'nt/-7", defined by

Note sίj(ζ)eP. A given character λ of H, trivial on U(l,2), extends uniquely to a
character of P. With /zij = /l s/j as transition functions, we thus obtain a holomorphic
line bundle Gc x P V over GJP. Restricting to G/H gives the holomorphic structure
oΐGxHV.

If our inducing character corresponds to the integer m, the transition function
on U°nUl is

-[?]••A10(Q = K r . (2.2)

Thus, we have V = Hm, where H is the hyperplane bundle and m is the integer
corresponding to the inducing character.

C. The Unitary Construction. Given a unitary representation of H on a vector
space V, there is under certain circumstances a natural representation of G on the
Dolbeault cohomology HS(G/H,Y), where s = dimcX/L. However, as the natural
G-invariant metric on G/H is not positive definite, this representation must be
unitarized. We will just sketch the idea, and for a more detailed summary, one
may consult [Wl] or [W2].

Note first that the G-invariant indefinite Kahler metric together with the
Hermitian fiber metric on V -> G/H, defines the Kodaira-Hodge star operator

*:Epq(G/H,Y)^En-pn-q(G/H,Y*l (2.3)

where Ea*b(G/H, V) is the space of C00 V-valued (a, b) forms on G/H, n = dimc G/H,
and V* -> G/H is the dual bundle. Thus there is a G-invariant indefinite Hermitian
inner product

(φ,φ}= J φ(x)Λ*ψ(x)d(xH), (2.4)
G/H
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where Λ denotes exterior product followed by contraction of V against V*. The
d and d* operators are defined as in the positive definite case, and the definition
is made that a form

φεEp>q(G/H,V) is harmonic if dφ = 0 and d*φ = O. (2.5)

However, the indefinite case differs from the positive definite case in that a
Dolbeault cohomology class no longer has a unique harmonic representative.
Therefore, [RSW] consider a positive definite metric which is not G-invariant, but
of bounded distortion, and this gives rise to a Hubert space L%q(G/H,Y\ the
completion of the space of C^ forms in Ep>q(G/H, V) relative to the positive definite
metric. This space still carries the G-invariant indefinite Hermitian metric, and
under the appropriate conditions, each Dolbeault cohomology class has a unique
"special" harmonic representative in L%q(G/H, V), that is a representative form that
is both harmonic relative to the G-invariant indefinite metric and of a "special"
form [RSW, 7.23]. Thus the basic L2 harmonic space is taken to be

Jf2(G//ί, V) = {φeL°2>
s(G/H,\):dφ = 0 and δ*</> = 0 as distributions} (2.6)

(one can use forms with distributional coefficients as well as C00).
Now consider the natural map

Jfs

2{G/H9 V) -> HS(G/H, V), (2.7)

which sends each form to its corresponding Dolbeault class. Under certain
conditions, the G-invariant Hermitian metric < , > is positive semi-definite on
J^S

2(G/H,\), and the kernel of the map corresponds to the null space of < , >
(2.4). The null space is a closed, invariant subspace, and the quotient

iP2(G/iί, V) = &S

2(G/H, V)/(null space of < , » (2.8)

forms a Hubert space that carries a unitary representation of G. As (QO,K) modules,
&2(G/H, Y)κ is isomorphic to HS(G/H,Y)K, and JT2(G///, V) gives a unitarization
of the action of G on the Dolbeault cohomology HS(G/H, V).

D. Ladder Representations. As already mentioned, certain conditions must be met
in order for the above construction to work. In particular, assuming that G/H
satisfies the holomorphic condition, the inducing representation of H must satisfy
a "L2-condition" [RSW: 13.12]. Applying this condition to representations of
SU(2,2) induced by one dimensional representations of H, be inducing character
of H must satisfy

m ^ - 3, me/, (2.9)

where m is as in (2.2). This produces the highest weight ladder representations,
and the duals are lowest weight representations. A change of basis shows that they
correspond to globalizations of the positive energy modules

D{j + U,0); 2 j ^ l , 2 j e Z , (2.10)

described in the physics literature ([F,BFH1]). Namely, we have massless
representations (i.e. representations that restrict to massless, unitary irreducible
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representations of the Poincarέ group) of positive helicity where

£=-", ;=-?-!• (in)
The massless representations of negative helicity, D(j + 1,0, j), can be constructed
in an analogous manner by working instead with G/H = Si/(2,2)/S(ί/(2,1) x (7(1)).

We will now examine the subspace structure of the (g0, K) module JΊfs

2(G/H, Y)κ.
As JFS

2(G/H,\)K is an irreducible highest weight module, it is the irreducible
quotient of the highest weight module J^S

2(G/H,\)K by its maximal invariant
submodule. The subspace structure of all such modules for SU(2,2) has been
determined by Jakobsen [J]. Using his results, which utilize Weyl equivalence, we
find that the null space corresponds, in the notation of [F] and [BFH1], to

(2.12)

III. Gauge Theory and Twistors

As mentioned in the introduction, indecomposable representations have been used
extensively in the construction of gauge theories. In this section, we will first
review the most basic example of a gauge theory based on an indecomposable
representation, Gupta-Bleuler electrodynamics. We will then see how the indefinite
harmonic construction allows twistors to be viewed as a gauge theory of the
conformal group in this sense. Finally, we will attempt to construct a Gupta-Bleuler
triplet for twistors.

A. Gupta-Bleuler Electrodynamics. Maxwell's equations on Minkowski space may
be written in terms of differential forms as

δF = J9 (3.1a)

dF = 0. (3.1b)

Equation (3.1a) implies current conservation, δJ = 0; and on topologically trivial
domains, (3.1b) implies F = dA, where A is determined up to a closed, and thus
exact, one form. In other words, F can be expressed in terms of a potential A
which has an unphysical gauge degree of freedom characterized by A = dA. In
terms of A, Eqs. (3.1) become

δdA = J, (3.2)

whose huge kernel is a manifestation of the gauge degree of freedom. In order to
construct a quantum theory, this gauge degree of freedom must be controlled, so
instead of (3.2), one considers

J (3.3)

(this corresponds to adding a gauge fixing term, in the Feynman gauge, to the
Lagrangian). When the Lorentz condition, δA = 0, is imposed, (3.3) yields Maxwell's
equations in the Lorentz gauge. There is still a residual gauge degree of freedom
given by A = dA, where A must satisfy

δdΛ = 0. (3.4)
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Note that current conservation implies

δd(δA) = 0. (3.5)

In group theoretic language, we have the following. Denote

X3 = {A:ΠA = 0}9 (3.6a)

χ2 = {A: • A = 0, δA = 0}, (3.6b)

X1 = {A:A=-- dΛ, δA = 0}. (3.6c)

These three spaces form a sequence, X3^X2^. Xl9 of invariant subspaces,
none of which is invariantly complemented. In other words, we have an inde-
composable representation of the Poincare group in which Xx carries the irreducible
representation D(0,0), which corresponds to the longitudinal, or gauge, photons;
X2/Xi carries the representation D(0,1) + D(0, — 1), which corresponds to the
transverse, or physical, photons; and X3/X2 carries the representation D(0,0),
which corresponds to time-like, or scalar photons. This structure is known as the
Gupta-Bleuler triplet. Note that (3.4) and (3.5) imply that both the gauge and
scalar modes propagate as free fields.

B. Twistors as a Gauge Theory. One of the basic results of twistor theory is a
correspondence between algebraic and complex analytic data on P C 3 and solutions
of the massless free field equations on Minkowski space (see [We] for a
mathematical discussion of twistors as well as for the original references). In one
formulation, the Penrose transformation maps H0Λ ( P T 4 , Hm) to positive frequency
fields of helicity j , where

m=-2j-2 (3.7)

and PΎ+ is positive projective twistor space. As a homogeneous space, [PT+ is
equivalent to SU(2,2)/S(U(l) x 1/(1,2)), and glancing at (2.11), the connection to
the indefinite harmonic construction is immediate. In particular, we have a partial
Gupta-Bleuler structure

X2 = {φεL°2

Λ(G/H):dφ = O,d*φ = 0} = jfl(G/H,Hm)9 (3.8a)

X\ = {φeL°2

Λ(G/H):φ = 3Λ,d* φ = 0}. (3.8b)

As Dolbeault cohomology classes correspond to field strengths in Minkowski
space, the identification of the Dolbeault cohomology with the quotient X2/X1

allows the Dolbeault coboundaries, representing the twistor "gauge" degree of
freedom, to be interpreted as conformal gauge fields. Positive frequency, negative
helicity fields may be obtained in a similar manner by identifying [PT*~ with
Sl/(2,2)/S(l/(2,1) x 1/(1)) and using twistor duality [EG].

For the case of helicity one, electromagnetism, the gauge subspace is D(3,^9j)
(from (2.12)). Note that in Dirac's work [Dl] , which deals with field strengths, the
gauge subspace is also D(3, | , | ) ; but in [BFH1], which deals with potentials on
the projective cone, the gauge subspace is D(l,^,^). This is certainly not surprising
as in twistor theory, Dolbeault classes correspond to field strengths and not to
vector potentials.
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Viewing twistors as a gauge theory based on an indecomposable representation
of the conformal group also brings out a similarity with Dirac singleton theory
[FFl-6]. Singletons are a gauge theory based on an indecomposable representation
of the de Sitter group, and here the gauge structure is a global phenomenon. In
other words, locally, all modes are gauge, and consequently all of the physics
resides on the boundary at spatial infinity. Likewise, if one considers the structure
(3.8) locally, say on a polydisc, then by the ^-Poincare Lemma, all closed forms
are exact; and thus locally, all modes are gauge.

C. Ambitwistors. The structure of (3.8), however, is inadequate for a full Gupta-
Bleuler program. There, as in twistor theory, the self-dual and anti-self-dual cases
are treated separately, thus precluding the introduction of currents. To overcome
this limitation, the twistor program has been generalized to ambitwistors, the basis
of which is ambitwistor space,

A = {(L 1 ? L 3 )ePT x P T * : L 1 c L 3 } .

As ambitwistors are probably not as familiar as twistors, we will briefly outline
the program, and for a full treatment, the reader should consult [P]. A is a five-
dimensional complex hypersurface in PT x PT* and corresponds to null lines in
compactified, complexified Minkowski space, ML For a "nice" Stein domain U ^ M,
the corresponding region in A is denoted by L(U). There are natural projections

π^A^PT, π3:A->PT*,

where π ί (L 1 ,L 3 ) = L i. Using these projections, line bundles on PT and PT* can
be pulled back to A; and the pull-backs of the hyperplane bundles are denoted by
Θ(m, n). In generalization of the twistor program, cohomology classes in H0Λ(L(U\
Θ(m, m)\ m ^ — 1, correspond to general massless fields on U with m = 2j — 2. It
should be noted, though, that the ambitwistor formulation uses the dual twistor
representation [EG], in which cohomology classes are mapped not to field
strengths, but to equivalence classes of potentials modulo gauge transformations.
In other words, cohomology classes transform into potentials which are determined
only up to a Minkowski space gauge transformation.

Many results have been obtained with ambitwistors. Currents have been
introduced for the Maxwellian system by [G], using a procedure which generalizes
to arbitrary spin. The φ4 equation [H] as well as interacting Yang-Mills fields
have also been written in ambitwistor space. For Yang-Mills fields, it has been
determined that the axial Yang-Mills current represents the obstruction to
extending to a third order neighborhood in the ambient space PT x PT* [HM];
and this obstruction can be represented by an inhomogeneous Cauchy-Riemann
equation on a cohomological level ([K, MK]). It is interesting that in [Ha], it has
also been found that in order to introduce interactions for conformal Yang-Mills,
one must go off the projective cone in 2 + 4 conformal space.

For a general Yang-Mills field, the inhomogeneous Cauchy-Riemann equation
in ambitwistor space will involve a non-trivial ^-connection, so we will for now
fix our attention on the abelian case. This corresponds to the Maxwellian system,
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and the inhomogeneous Cauchy-Riemann equation has the form

dφ = J, (3.9)

where φeH0Λ(L(U% 0(0,0)), JEH02{L{Ό\ Θ{- 3, - 3)), and the equation is under-
stood to hold on a third order neighborhood of L{U) in PT x PT*. Equation (3.9)
together with d*φ = O give a pair of equations with the same form as Maxwell's
equations (3.1), and this seems to point toward a Gupta-Bleuler program that
centers around the inhomogeneous Cauchy-Riemann equation.

D. The Gupta-Bleuler Program. From the above considerations, the problem of
constructing a twistorial Gupta-Bleuler program can be viewed in two steps. First,
determine the triplet on PT x PT* or, more appropriately from a group theoretic
point of view, on P T + x P T * " ; and then second, determine how to pass to A.
With the first step in mind, let us briefly recall the solution of the inhomogeneous
Cauchy-Riemann equation in the case of a Hermitian (positive definite) complex
manifold. For forms of degree greater than zero, (3.9) is an overdetermined system
of partial differential equations; and one has the consistency requirement that
dJ = 0. This equation also has a large kernel consisting of forms satisfying dφ = 0,
so one thus looks for a canonical solution orthogonal to the kernel of d. Hodge
theory gives the orthogonal decomposition

φ = dΛ + d*θ + ω9 (3.10)

where ω is harmonic, so the canonical solution lies in the image of <9*. One thus
considers the equation

dd*θ = J, (3.11)

or for general J, the elliptic equation

• θ = (δd* + d* d)θ = J. (3.12)

Note that_if in (3.12), δJ = 0, then dδ*dθ = 0, so (dδ*dθ,δθ) = (δ*δθ,δ*δθ) = 0,
and thus δ*3# = 0. In this case, (3.12) is equivalent to (3.11). Equation (3.12) is
actually a subtle boundary problem in disguise (having to do with defining the
Hubert space analogue of the formal adjoint d*\ and it has been shown that for
certain domains, there is a unique solution of the form φ = δ*θ to (3.9) (see [FK]
for a full treatment).

Although this is no longer exactly true in the indefinite case, there is an
interesting parallel with the Gupta-Bleuler formalism. Equation (3.11) has the
same form as Maxwell's equations for the potential, and (3.12) corresponds to the
wave equation resulting from gauge fixing. This motivates us to define (at least
locally as d*φ = 0) an ambitwistor potential θ, where θ is a (0,2)-form such that
d*θ = φ (this potential is not to be confused with the ordinary potential
in Minkowski space). However, as the metric is indefinite, δJ = 0 (current
conservation) no longer implies the equivalence of (3.11) and (3.12). In order to
recover solutions to (3.11) from (3.12), we must impose a "Lorentz condition" dθ = 0.

The indefiniteness of the metric also implies that the Hodge decomposition
(3.10) is no longer true. Just as in Minkowski space electrodynamics, there is a
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residual gauge degree of freedom even after gauge fixing. Formally, on the space
of ambitwistor potentials, a candidate for a Gupta-Bleuler triplet is the following:

3 { 0}, (3.13a)

χ2 = {θ: • θ = 0, dθ = 0}, (3.13b)

χί = {θ:θ = δ*α, dθ = 0}. (3.13c)

But in spite of this formal analogy, there is a serious drawback in the physical
interpretation of (3.13). In the positive definite case, dd*θ = 0 implies d*θ = 0, and
thus that φ = 0.ln the indefinite case, this is no longer true: dd*θ = 0 implies only
that 3*0, and thus φ, has zero norm. So whereas in the positive definite case the
potential determines a unique canonical solution, φ = d*θ, to the inhomogeneous
Cauchy-Riemann equation, in the indefinite case the potential determines a
solution only up to a harmonic form (i.e. both d and d* closed) of zero norm. This
is the same type of behavior as in the self-dual case on ordinary twistor space,
where, by the indefinite harmonic construction of [RSW], each Dolbeault class
has a harmonic representative determined only up to a zero norm harmonic form.
As a result, the quotient X2/Xi corresponds to zero norm field strengths. In other
words, it represents the conformal gauge fields on the field strength level, which
are completely unphysical.

Therefore, we abandon the ambitwistor potential and attempt to formulate the
Gupta-Bleuler triplet on the level of field strengths. To this end, it is natural to
consider "weak" harmonic forms satisfying

Πφ = 0. (3.14)

In order to maintain the interpretation of currents as (0,2)-forms, the inhomo-
geneous equation should be taken to be

ΠΦ = d*J. (3.15)

However, to recover (3.9), applying the Lorentz condition d*φ = 0 is not enough
as it yields d*dφ = d* J, or equivalently

dφ = J + γ, (3.16)

where γ is an arbitrary zero norm, harmonic (0,2)-form. But this is not really a
problem, for as all zero norm quantities are unphysical, we can take physical
currents as equivalence classes of closed (0,2)-forms modulo zero norm harmonic
forms. We now have as a candidate for the Gupta-Bleuler triplet the following:

0}9 (3.17a)

χ2 = {φ:dφ = O,d*φ = 0}, (3.17b)

χl = {φ:φ = dΛ,d*φ = 0}. (3.17c)

Initially, we may consider φ to be a smooth compactly supported form in
E0Λ{PJ+ x FT*-,0(0,0)), finite under the G-invariant indefinite metric. Then
there is no problem in defining the formal adjoint d*9 and this should not seriously
impair the physical development of the theory. With (3.17), one can consider
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propagation and quantization in the context of ambitwistors. This, as well as
completion under an appropriate norm, will be the subject of future work.

There is a lot of motivation for further investigation. The ambitwistor program
has the capacity to treat all spins in an equivalent manner, and this suggests the
existence of a generalization of the Cauchy-Riemann equation to arbitrary spin.
Since interacting Yang-Mills fields have been constructed with ambitwistors, this
is especially interesting as it may lead to an interacting theory with higher spins.
Furthermore, as points in ambitwistor space correspond to null lines in complex
Minkowski space, further investigation may contribute to the already noted
connection between ambitwistors and strings [IY, Ho, Swl,2].

IV. The de Sitter Group

One of the most interesting gauge theories based on an indecomposable representa-

tion is that of the Dirac singletons [FF1-6]. The representation in question is

highly singular, lying in the "Wallach set" of the analytic continuation of the

holomorphic discrete series. As the indefinite harmonic construction applies to

certain representations in the analytic continuation of the holomorphic discrete

series, we will apply it to the de Sitter group in the hope of obtaining a geometric

realization of the Dirac singletons.

As before, the first step is to construct the space G/H and verify the

holomorphic condition. Let G = Sρ(2, U). The requirement that G/H be a pseudo-

Hermitian symmetric space requires that H= 1/(1,1) [Sr]. Note that since all

pseudo-Hermitian symmetric spaces are simply connected and in one-to-one

correspondence with pseudo-Hermitian Lie algebras, it is sufficient to deal with

Sp(2, R). Thus

8 o = sp(2,R),

= u(2),

= su(l,

Parametrize g0 in the following manner:

9o=
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With respect to our parametrization, let us note the following:

(1) The Cartan decomposition (gθ5 θ) is unique, and thus the Cartan decomposition
is invariant under AdG(K).

(2) The pseudo-Hermitian Lie algebra (g 0 ?

τ) is unique up to conjugation under
AάG(K).

Proof. (1) This is obvious by inspection. (2) Since (go>
τ) is pseudo-Hermitian, ί)0

is the g0 centralizer of a u(l) subalgebra, t 0 . t 0 ^ su(2), otherwise t)0 = u(2). t 0 is
maximal compact in su(2), and thus all such t 0 are conjugate under AdG(K). The
corresponding Q0 centralizers are thus conjugate, giving the claim.

The central elements giving the almost complex structure (unique up to sign
since G is simple) on G/H and G/K respectively are

/ 0 0 0

0 - i 0 0

0 0 - ΐ 0

0 0 0/

and η = -

i 0 0 0

0 i 0 0

0 0 — i 0

0 0 0 -ί

Direct calculation gives
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However, this time [ p n q + , [ p n q + , f n q _ ] ] / O . This is not surprising in view of
the fact that p _ n q + / 0 . In view of (1) and (2) from above, this result is
independent of the specific realization of f)0 within our parametrization. Thus,
Sp(2, R)/U{1, 1) does not satisfy the holomorphic condition necessary to apply the
indefinite harmonic construction of [RSW].

But this does not mean that the indefinite harmonic construction is completely
inapplicable to the de Sitter group. By restricting the massless representations of
SU{2,2), one may obtain the massless representations of the de Sitter group
[AFFS]. The Dirac singletons, however, are not realized in this context [AFFS].

V. Conclusion

In this note, we have taken a very elegant mathematical construction and examined
some potential physical applications. First, we explicitly constructed the indefinite
harmonic representations in the case of SU{2,2) and established the relationship
to the minimal energy representations as obtained in the physics literature. We
then saw that the indefinite harmonic construction allows one to view twistors as
a gauge theory of the conformal group. In particular, it is now clear that
the coboundaries of the twistor cohomology represent a gauge degree of freedom,
on the level of field strengths, associated with an invariant subspace of an
indecomposable representation of the conformal group. With this point of viςw,
we also noted a similarity between twistors and the Dirac singletons.

However, as the self-dual and anti-self-dual cases are treated separately, the
basic construction is not suitable for a full Gupta-Bleuler program. Ambitwistors
appear to provide the basis for a generalization. In analogy with Minkowski space
electrodynamics, one can formally define an ambitwistor potential which, in
ambitwistor space, parallels the vector potential in Minkowski space. There is
formally a Gupta-Bleuler triplet for the ambitwistor potential, but its physical
interpretation is trivial. We thus attempted to construct a Gupta-Bleuler triplet
on the level of field strengths, arriving at (3.17). Further investigation, though, is
necessary; and this seems completely justified in view of the capacity to treat higher
spin fields uniformly as well as the already noted connection with strings.

Lastly, we attempted to apply the indefinite harmonic construction to the de
Sitter group but found that the indefinite harmonic construction is not directly
applicable to the de Sitter group or any of its covers. One may still obtain the
massless representations by restricting the massless representations of S U (2,2), but
contrary to claims in the literature, the singleton representations are not realized
in this geometric context.
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