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Abstract. New solutions of self-dual Yang-Mills (SDYM) equations are
constructed in Minkowski space-time for the gauge group SL(2, (C). After
proposing a Lorentz covariant formulation of Yang's equations, a set of
Ansatze for exact non-linear multiplane wave solutions are proposed. The gauge
fields are rational functions ofexkί(kf = 0,l^ί^N) for these Ansatze. At least,
three families of multisoliton type solutions are derived explicitly. Their
asymptotic behaviour shows that non-linear waves scatter non-trivially in
Minkowski SDYM.

1. Introduction

Integrable theories in 1 +1 dimensions have been developed very successfully in the
last years. It is then a natural problem to investigate their multidimensional
analogues. Namely four- (or n-) dimensional field theories having an associate
linear differential system with a spectral parameter(s). Such linear systems are
known for self-dual (and antiself-dual) Yang-Mills equations (SDYM) [1,2] and
SUSY Yang-Mills [3], as well as for non-Lorentz invariant equations like
Kadomtsev-Petviashvili (KP), or three-wave equations in 2 + 1 dimensions [4,6].
Actually, the dynamics of KP is known much better than that of SDYM in
Minkowski space-time.

The construction of multi-soliton (non-linear multi-plane wave) solutions of
SDYM in 3 +1 dimensions is the purpose of this paper. The SDYM reads there

Fμv = ̂ μvλσF
λσ (1.1)

(here ε o l 2 3 = +1). Since an explicit factor (i) appears, these equations describe
complex solutions for SU(N) gauge fields or equivalently real solutions (real gauge

* On leave from LPTHE Universite Paris VI, 4, Place Jussieu, Tour 16, ler etage, F-75230 Paris
Cedex 05, France



660 H. J. de Vega

potentials) for a SL(N, <C) gauge theory. The last point of view will be preferred
from now on. For a non-compact gauge group the energy density T00(x) is not
positive definite. Actually, it is easy to show that the energy-momentum tensor
Tμv(x) of the Yang-Mills theory identically vanishes in Minkowskian space-time
when the self-dual equations (1.1) are imposed.

Yang's equations [7] are a particularly elegant form of SU(2) Euclidean SDYM
equations. Although the SDYM equations are SO(4) (proper Lorentz) invariant in
Euclidean (Minkowski) space-time, Yang's equations are not fully SO (4) (Lorentz)
invariant. In Sect. 2, we find a fully SO(4) (proper Lorentz) covariant version of
Yang's equations [Eqs. (2.11) and (2.20) respectively]. These covariant equations
derive from a Lagrangian density of a four-dimensional (generalized) sigma model

29 τr[P+QP+Q) ' { '
Here

φ(x) -Q(X)\

-Φ(χ)J

contain the fields, P+ = (1 + σ3)/2 and the space-time metric is

where ημv is the Minkowski metric and (Cμv a constant antisymmetric and antiself-
dual tensor [Eq. (2.22)]. The fields φ, ρ, ρ are assumed to be Lorentz scalars (ρ is not
the complex conjugate of ρ). The Lagrangian (1.2) defines a translationally
invariant but non-rotationally invariant field theory. The C μ v coefficients in (1.2)
can be considered as non-Lorentz scalar couplings spoiling rotational invariance.

In Sect. 3, a first Ansatz describing non-linear multi-plane wave solutions of the
covariant version of Yang's equations is proposed. They can be considered as 3 + 1
dimensional solitons. Actually, the form of the Ansatz is inspired by Hirota's
method. Namely

where qa(0^oί^N) are two-by-two constant matrices with (qa)n =(#3)22
ηi = ki x. Here k^l ^i^N) are arbitrary constant null vectors: kf = O.

In Sect. 3, an explicit formula [Eq. (3.14)] for the coefficients qa is derived from
the self-duality equations. The solution depends on Λf+3 free parameters besides
the null vectors fcf(l ^ i^N). Actually the SDYM equations are fulfilled, thanks to
a trilinear identity [Eq. (3.12)] satisfied by the metric tensor (1.3).

The analysis of the asymptotic behaviour of these solutions shows that they
describe the scattering of Λ̂  non-linear single plane-wave solutions.

In Sect. 4, more general solutions are constructed. We start from a fractional
Ansatz where φ, ρ, ρ are ratios of polynomials in eΆi of the form

N

<C\1)eηi+ X
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Notice that all η's are different in each exponent. For the case N=2 the algebraic
equations for the coefficient are written down explicitly (Appendix A). The analysis
of the asymptotic behaviour suggests constraints on the coefficients such that there
is a single ingoing and outgoing plane wave in directions kι and k2. These
constraints are compatible with the algebraic equations (A.1)-(A.15) and simplify
them enormously. The family of solutions (4.13)—(4.15) depend on six free
parameters besides kt and k2, and it describes the scattering of two non-linear plane
waves. The scattering produces zero phase-shift and only a SL(2, C) rotation of the
outgoing field with respect to the ingoing field [Eq. (4.18)].

A second family of solutions with a fractional structure follows by applying the
Backlund transformations y of [8] to a solution of type (1.4). This family of self-dual
fields depends for N=2 on eight free parameters besides kt and k2. The inter-
pretation of this family as interacting plane waves is straightforward after introduc-
ing two constraints in the parameters [Eq. (4.23)]. Then, we find an ingoing pure
ρ-plane wave (yί-soliton) plus a ρ-plane wave (^4-soliton) yielding for x°-> + oo two
non-linear plane waves of type B. The ρ field is constant for type B solitons (see the
Table 1).

Table 1

η1-> — oo

η = η2= fixed
J-soliton

Ά~Άι — fixed
^4-soliton

*/!-• +00
η = η2

= fixed
i?-soliton

η2-> + oo
η = ηt= fixed
i?-soliton

Φ

Fo/Ao = const

Fo/Ao = const

Q

No/Ao = const

Q

?η) No/Ao = const

2e
η) Nι/A1 = const

eη) N2/A2 = const

The explicit solutions found here show that Minkowski SDYM have a rich
dynamics that can be uncovered by generalizing appropriately 1+1 or 2 + 1
dimensional soliton theory. Although SDYM possess an infinite number of
conserved currents, a non-trivial ^-matrix is found here for the interaction of non-
linear plane waves. The Coleman-Mandula theorem is supposed to hold even
classically and it would imply a trivial ^-matrix. The reason why this theorem is
bypassed is probably linked to the infinite spatial extension of the wave fronts. An
analogous phenomenon appears in KP where lumps have trivial scattering, whereas
plane waves exhibit non-zero phase shifts [4,5]. In conclusion, the study of
scattering of non-linear plane waves seems to be the right multi-dimensional
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generalization of 1 + 1 dimensional multi-soliton dynamics. Actually, in the paper
we shall use the terms soliton and non-linear plane wave as synonyms.

The development of a τ-function like formalism for SDYM in 3 + 1 would be
very interesting. The absence of terms with powers of em higher than one in all our
solutions gives a hint about a possible fermionic character underlying the solutions
obtained in this paper.

2. Lagrangian Theory of Self-Dual Yang-Mills Field:
Lorentz Covariant Formulation

The Euclidean self-dual Yang-Mills equations read simpler in complex coordinates
(yyzz):

F = F—0 F-+F-=0 (2 1)
Here

/ = xί+ix2 , ]/2z = x3-ix4 ,

<2 2 )

Equation (2.1) tells us that self-dual fields are pure gauge in the yz plane for fixed y
and z and in the yz plane for fixed y and z. So, we can write [7]

Ay = D~1dyD , Az = D~ιdzD ,

where the matrices E and D take values in the gauge group. Since we will be
interested in Minkowski space fields, the gauge group will be taken to be SL(N, C).
In this case one can gauge transform Eq. (2.3) yielding

A =y~1rj y A — y " 1 ^ v ' '
Λy l Uyi , siz — χ ozχ .

Here χeSL(N, (C) so detχ = 1. For N=2 we can parametrize χ as

Λ Φ \Q , 4

It will be sometimes convenient to work in the so-called R gauge [7], where for
5L(2,C)gauge fields

jR_J_(-δμφ 0 \
Λ ' - 2 φ { 2 d β β , dμφ) ' μ y ' Z > μ 6 )

We would like to stress that ρ is not the complex conjugate of ρ.
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Inserting Eqs. (2.4) and (2.5) in the self-duality Eqs. (2.1) yields

Φ(dyy-+dzz)ρ-2dyρdyφ-2dzρdzφ = 0 , (2.8)

These equations are not SO(4) invariant, whereas Eqs. (2.1) are clearly rotationally
invariant. It is convenient to use quaternions to describe four-dimensional
rotations. Let us define the 2 x 2 matrix

A SO (4) transformation yields

sxt^ , (2.10)

where s, t e SU(2). This is an explicit realization of SO(4) as SU(2) ® SU(2). We call
s and t left and right SU(2) respectively. Equations (2.8) are translationally
invariant and ήght-SU(2) invariant. They are not left-S£/(2) invariant. Applying
\eϊt-SU(2) transformations leads to the more general equations

φd2ρ-2dμρdμφ-2δμρΣμyδ,φ = 0 , (2.11)

φd2ρ-2dμρdμφ-2δμφΣμvδγρ = 0 .

Here

aμb
μ = j (ayby-+ay-by + az

and I1 is a constant antisymmetric, Hermitian and antiself-dual tensor transforming
under the (1,0) irreducible representation of SO (4) [2]. Σ reads in the real basis (xt)

0 ε -y δ\

- ε 0 -δ -y

y δ 0 - ε

,—δ y ε 0/

where ε,δ,yeR and ε2 + y2 + δ2 = 1. Yang's equations (2.8)[7] are recovered in the
particular frame where ε = l,y = c> = 0. Yang's equations can be derived from a local
Lagrangian [9]. This is also true for the covariant system (2.11). They are the Euler-
Lagrange equation of the invariant Lagrangian

?5vρ) . (2.13)

This can be recast as a sigma model introducing a three-component complex field

r-U i
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and the unit vector ή = (1,0,0). One finds

l j a d y x l j h , (2.15)

where gμv = δμv -\-Σμv is a non-symmetric metric tensor in the four-dimensional
space and Gab(φ) is the metric in the internal space

abKΎ) (ή'Ψ)2

An alternative matrix form of Eq. (2.15) is

1 Ύ«P+dμQd,Q) ( 2 1 7 )

2 8 Ίr(P+QP+Q) '

where

Φ -
-Q -Φ/

All the derivations up to now hold both for SL(2, <C) and SU(2) gauge fields. In the
latter case, one must impose ρ = ρ* (where * means complex conjugate) thoroughly.
This constraint can be consistently imposed since the tensor Σμv is Hermitian.

Let us now consider the Minkowskian version of the self-dual Yang-Mills
theory. We choose the time co-ordinate x0 as

Then

dz = d3-d0 , δ j = δ 3 + 30 . (2.19)

The field equations (2.11) now read

φΠρ-2dρ-dφ-2dρ'C'dφ = 0 , (2.20)

φΠρ-2dρ'dφ-2dφ C dρ = 0 .

The dot means here Lorentzian scalar product:

3 3
2- £ akbk , D = d 0

2 - £ d2

k , (2.21)
k=ί fc=l

and

j (2.22)

, n = (δ,y,ε) , Λ2 = \ .

In Minkowski space-time the Lagrange density (2.13) is written

1
2 L \ v ^ Ύ ' l v ^ Ύ ' / ' \ v 6 ί l w ϊ ί / J 1 \Δ.ΔJ)
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where

A conserved energy momentum tensor follows from this Lagrangian,

Tw = j2 dμφdvφ+- (dμρ

dμTμv = 0 . (2.24)

However, this tensor Tμγ is not symmetric due to the presence of the tensor Cμγ,

Tμ,Tvμ ^(dvρdρδxρdρ)(μ^

Φ
This difference cannot be recast in general as the total divergence of an
antisymmetric tensor. That is

Tμv-TvμΦδρθ
ρ

μγ with θ"*v + θβμv = 0 .

This indicates that there is no conserved angular momentum in the theory of fields
(φ9 ρ, ρ) with Lagrangian (2.23). The presence of the constant tensor C μ v in this
Lagrangian makes it manifestly frame dependent. One can think of the unit vector
(COi = (δ, y, ε) as a "vectorial coupling constant", which clearly spoils rotational
invariance.

On the contrary, the original self-dual equations (2.1) and the gauge fields Aμ are
fully Poincare covariant. Aμ follows from the reduced fields (ρ, ρ, φ) through

Λμ = Hδv

μ + K)χ-ιdvχ , (2.25)

where χ is given by Eq. (2.5). Therefore, in this formulation of the self-dual Yang-
Mills fields in terms of the auxiliary field χ, we find that χ is a Lorentz scalar but not a
gauge invariant one. However, it is easy to express gauge invariant quantities in
terms of the field χ. One finds for example for (det/^f) with fixed μ and v,

1

(2.26)

3. Self Dual Soliton Solutions in 3 -I-1 Minkowski Space-Time

We construct in this section Ansatze that solve the covariant version of Yang's
equations presented in the previous section [e.g., (2.20)]. By solitons in 3 + 1
dimensions, we mean a non-linear superposition of plane waves. That is a field like

Aμ = Aμ(x'kl9x-k29...,X'kN) , 0 ^ μ ^ 3 (3.1)

for an iV-soliton solution. Here the constant vectors kί9... ,kN are taken null in
accordance with the massless character of classical gauge theories

(3.2)
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Equations (2.20) are bilinear in φ, ρ and ρ. Therefore, one can hope that Hirota's
method can be applied [4]. This suggests to propose the following Ansatz:

(3.3)

Here the Ka, <Cα and Cα ( O ^ α ^ N ) are constants and

ηi = ki χ = ωiΐ-ki'X , |ω i | = |k ί | l g ί g J V . (3.4)

It is trivial to check that the fields (3.3) fulfill Eqs. (2.20) fir N=l.
Inserting the Ansatz (3.3) in Eqs. (2.20) and equating to zero the coefficient of

έt2) yields the algebraic equations

y ^O , (3.5)

and (Cμv is the antiself-dual tensor introduced in Sect. 2 [Eq. (2.22)].
The system (3.5) looks heavily overdetermίned for TV> 2 since it contains 3N(N

—1)/2 equations and only 2N unknown (we can absorb then constants Kt in a
constant shift of the variables 7/f). However, as we shall see below, there exist non-
trivial solutions of (3.5) for any N. For τV=2, Eqs. (3.5) admit the following
solution:

(3.7)

where A is an arbitrary constant and A = Aί2. We find, therefore, a two-soliton
solution (two non-linear plane waves) that depends on six arbitrary parameters
(KOiK1,K29A9 C o , Co) besides the two light-like vectors kx and k2.

It must be noticed that Eqs. (3.5) for a given couple (ij) and arbitrary N are
identical to the equations for N = 2 , where only the couple (1,2) is present.
Therefore, we find for a fixed pair (ij) (1 ^i<j^N),

*! LJ ' (3-8)
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Now, we must show that there exist coefficients Atj such that Eqs. (3.5) hold for all
pairs (ίJ)(lSi<jύN).

For N= 3, it follows from Eqs. (3.5) and (3.8) that the Au must fulfill the linear
system:

A12(A12-1) = A13(Λ13-1) ,

) = A23(A23-i) , (3.9)

A13(Λ13 + l) = A23(Λ23 + ί) .

The determinant of this homogeneous system reads

Λ23 . (3.10)

After some calculations, one finds using (3.6) that A is identically zero. Hence, a
non-trivial solution exists for TV= 3. For TV^4 the coefficients Ay (1 ̂ i<j^N) are
constrained by TV equations instead of three for TV=3 [Eqs. (3.9)]. However, their
structure is the same and we find that they have nontrivial solutions since the
corresponding determinants vanish as A does in Eq. (3.10).

The key equation A = 0 can be written with the help of the non-symmetric metric
tensor of Sect. 2,

(The self-dual tensor C μ v is given in Eq. (2.22)). We find

<Λi|Λj><fcJ|A:I><A:I|/:i> + <fcί|A:I><fcI|^><ΛJ|A:i> = 0 , (3.12)

where we use the scalar product defined in Sect. 3,

(a\b}=g^aμbv . (3.13)

Actually, Eq. (3.12) corresponds to an algebraic property of the tensor C μ v since it
holds for the arbitrary null vector ki9 kj, kt. It is tempting to make a parallel with
classical two-dimensional theories where integrability is linked to a bilinear
algebraic equation in the r-matrices: the classical Yang-Baxter equations [10].
Here, in 3 + 1 dimensions the multisoliton solutions exist thanks to the trilinear
identity (3.12). Moreover, the structure of (3.12) somehow resembles a zero
curvature (path-independence) condition.

Finally, collecting all equations we find the general expression for Q and
Cf (1 ̂ /^TV) in terms of Kt and kt:

J V - l

( 3 1 4 )

Therefore, this TV-soliton solution depends on TV+4 free parameters

Co , Co , AiN) , # α (0^α^TV) (3.15)

besides the null vectors kί9...9kN. Indeed the parameters Kt (l^z'^TV) can be
considered as initial phases of the ηt. In addition, one can always rescale (φ, ρ, ρ) as

, ρ(x)-*K2ρ(x) , ρ(*)->ρ(x) , (3.16)
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leaving the gauge fields invariant [Eq. (2.6)-(2.7)]. So we have actually (N+3)
parameters. We are not taking into account the SL(2, C) symmetries in the counting
of parameters.

Let us now analyze these multisoliton solutions by studying their asymptotic
behaviour. Inthe^-gauge [Eqs. (2.6)-(2.7)] the gauge field reads for the two-soliton
solution (3.7):

ΐ)klK2e'»] , K,kμe^ + K2kμe">J " '

When ηx -> — GO at fixed η2 one gets

AΪXx^^^a^AviΛ + ilKJKo) , (3.18)

and a similar expression for Aj?\ Here aμ(k,B, C) may be considered as a one-
soliton solution

aμ(k, B, C) S

 K ( ~j f) =k,a(k, B, C) .~j f

More generally, we can study the 7V-soliton solution (3.13) when
ί) and ηt is kept fixed. In this regime

A(

μ

N)(x)ηk-.-O0=aμ(ki,AiN)σi,KiIK0) , (3.19)

where
J V - l

°i= Π [Λ,k i

An analogous expression holds for
When all the frequencies ωk (1 ̂ k^N) are positive, the limit ηk-+ —GO tor kή=i

(l=kt^N) and ηι = fixed corresponds to /-> — oo and

ω . ί _ k Γ x = fixed . (3.20)

That amounts to stay on the wave front orthogonal to the vector kt. So Eq. (3.19)
indicates that the solution A(^] when ωk>0 (1 Sk^N) describes the collision of TV
plane waves. Equation (3.16) describes each of them when ί-» — oo. It is reasonable
to call one soliton to the solution aμ(k,B,<E) [Eq. (3.18)] since Aμ(x) tends
exponentially to a constant when one goes away from the wave front k χ = cte. In
fact, aμ(k,B,<L) is almost a zero field solution since the local gauge invariants
associated to aμ vanish. That is Fμv(a) is non-zero, but its determinant for a given μv
in the internal space is identically zero for all x. However, aμ is not a pure gauge.
When some ηk^> + oo and the rest is kept fixed, A(

μ

N) and A^] give just a constant
connection. A non-trivial behaviour appears when several ηk-+ + oo, keeping fixed
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their differences. For example, let ηx and η2 -> + oo in A{2) with η^ = η2- r\\ fixed. We
find

η3 = fixed . (3.21)

Here k3=k2—k1. The gauge field here tends exponentially to a constant when one
goes away from the plane ί/3=cte. Since

k2 = (k1-k2)
2 = - 2 ω 1 ω 2 [ l - c o s ( £ 1 £ 2)]<0 (3.22)

if ω 1 ω 2 >0, the resulting outgoing waves are not like the ingoing ones (3.19). For
ί-> + oo, the wave speed is less than one. So, we can conclude that the scattering of
the two massless plane waves leads to a pair of massive lumps. The fact that the two
terms in Eq. (3.21) peak at the same plane η3 = In {Kx /K2) is probably a feature of the
simple Ansatz (3.3).

Everybody familiar with Hirota's method would probably have noticed that
terms of the form em + ηj are absent in Eq. (3.3). The equations of motion (2.20) do
not admit them through the Ansatz (3.3). They will appear in the solutions of the
next section.

4. Multi-Soliton Ansatz and Soliton Scattering

The Ansatze found in Sect. 3 are not the more general self-dual fields with ingoing
multi-plane wave asymptotics in Minkowski space-time. The first possible
generalization is a fractional Ansatz

Φ=-&, β = j , β = j , (4.1)

where A, F, TV, and TV are polynomials in eηι (1 ̂ i^ri) of the form

c}1)em+ X <C\feηι + ηJ+...+<Cin)eηi + η2 + ' '+ηn . (4.2)
1 ^ ί < j ^ n

The coefficients <L\\]

 ik(0^k^n) are constants to be determined by imposing the
field equations (2.20). The Ansatz (4.1) is clearly inspired by the structure of the
known solutions in other integrable equations [4-6].

Equations (2.20) and (4.1) yields the following set of homogeneous equations
for A, F, TV and TV:

ΔF[Ad2F-Fδ2A-A2(dF)2 + A

2 2 O , (4.3)

(4.4)

(4.5)
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Here we use the scalar product {a\b} [Eq. (2.23)]. It must be noticed that

(a\a}=a a . (4.6)

Let us first restrict to the two-soliton case (n = 2). That is

Δ=Δ0+Διe
ηι+Δ2e

η2+Δl2e
ηi + η2 ,

F=F0+F1e
ηi+F2e

η2+F12e'll + η2 ,

Here η^x-ki and k\ = k2=0 as in Sect. 3. Inserting Eqs. (4.7) in Eqs. (4.3)-(4.5)
and equating to zero the coefficient of each independent exponential: eη\ eη2, eηi + η2,

e2ηi + η2^ e t c ? i e a ( j s to the set of 15 algebraic equations listed in the Appendix after
remarkable simplifications. Since they contain 16 unknowns [the constant coef-
ficients in Eq. (4.7)], a non-trivial solution may exist as we explicitly show below.

Before describing the explicit solutions, let us study the asymptotic behaviour of
the Ansatz (4.7) and the invariants associated to it.

When η1 or η2 tends to ± oo keeping η2 or η1 fixed respectively, we find

fo+fen no + ne _ ήo + ήe
ρ ρ = ( 4 ' 8 )

T —Tr\F F α — ~ F Fa

1 μ\~ ιι\raμrv * Γzβr

Here η = k χ stands for η2 or η1 respectively and δo,δ,fo,f,ηo,η,ήo, and ή are
constants.

In order to analyze these fields, it is useful to look at the invariant physical
quantities associated to them. One could consider the energy-momentum tensors of
the Yang-Mills theory since any self-dual field is a solution of the Yang-Mills
equations. For the gauge group SL(2, <C), Γμ

v depends on a free parameter [11 ]. It is
easy to show that

identically vanishes using the self-dual Minkowski equations

F —- F i Fλσ (4 10)

It should be recalled that the energy density T00(x) is not positive definite for a non-
compact gauge group as SL(2, C).

Let us consider the gauge invariants det(Fμ^). One could also use the conserved
asymmetric energy momentum tensor (2.24), but the behaviour of all these
quantities are qualitatively similar. We obtain from Eqs. (2.26) and (4.8),

• (<5o/o -e2"δff + (δon -noδ) (δoή-δήo) [δ2β

+ (δfo -fδ0) (δfo -βo + 2δfe")e2"] + (δon -δn0)
 {4Λ2)

•(δon-δήo)
2e2"} .
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Since eη varies fast with η, det(Fμ^) is peaked around its stationary points. There are
up to six stationary points, although some of them may be complex. One would
naturally call a soliton a field having only one real maximum. Therefore, a solution
with an asymptotic behaviour (4.8), in general, describes several ingoing "one-
solitons" propagating collinearly. It is natural to look for particular cases of (4.8)
with only one peak. Let us first choose φ(x) to be asymptotically constant for
η1-+±co and η2-+ ± oo. It follows in that case from Eq. (4.1) and (4.7) that

φ(x)=— = —=—=— , (4.13)
Ao Aγ A2 Δ12

and hence φ(x) is everywhere constant. Now the field equations (4.3)-(4.5) yield

Δ12 = ̂ - , N12 = N l A 2 + N*Al N/IAI , (4.14)

Δo ' Ao ΔQ

and a similar equation for Nl2 • We find in addition the quartic constraint

(k1\k2)(ΔtN1N2-ΔoΔ1NoN2-ΔoΔ2NoN1+Δ1Δ2NoNo) + (l~2) = 0 .

(4.15)
We have found therefore a self-dual solution depending on six free parameters
between the nine coefficients Δo, Δί9 Δ2, Nθ9 Nί9 N2, No, N1 and N2. [They must
fulfill Eq. (4.15), and they are defined up to two general constant factors, see
Eq. (3.16.]

Let us analyze the asymptotic behaviour of this solution. For fh-^ + oo,
η2 = fixed, ρ and ρ take the form (4.8). More precisely

Nλ_N1

_! _° (4.16)
N, _No_
Aγ A0

where
ρ±(η2)= lim ρ(ηl9η2) ,

i/i-> ± oo

and similarly for ρ±(η). Analogous results follow for η2^±oo and fixed ηx. In
conclusion, we have two non-linear plane waves both in the initial (ί-> — oo) and
final (ί-> + oo) state. Equations (4.16) show that there is no phase-shift due to the
interaction in this case. The effect of the interaction is a constant gauge rotation of
the field

Aμ (η) = SAμ (η)S * , (4.17)
where

Aμ(η2)= lim Aμ(ηuη2) ,
>/l^±00

and S follows from Eq. (4.16):

:SZ(2,(C) . (4.18)

It is possible to obtain fractional Ansatz solutions [Eq. (4.l)-(4.2)] by applying a
suitable Backlund transformation to the jV-soliton polynomial solution (3.3)-
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(3.14). Let us apply the Backhand transformation (y) of [8] to the N=2 solution
(3.7). We find an expression like (4.1) where

A =V(c1,c2,δί,δ2) ,

N=V(al9c2,βi,δ2) ,

N=-V(cl9a29δ1,β2) , ( 4 > 1 9 )

F=F0+Fίe
ηί+F2e

η2 .
Here

(4.20)

The coefficients

A,al9a29c1,c2,β1,β2,δί9δ29F0,F1, and F2 (4.21)

are only restricted by the constraints

a1δ1-c1βί = \=a2δ2-c2β2 . (4.22)

Therefore, the solution (4.19)-(4.22) depends actually on eight free parameters
besides kx and k2. Asymptotically, it behaves like Eq. (4.8) setting / = 0 . As
discussed below Eq. (4.12), it is simpler to consider particular cases of the solution
(4.19)-(4.22) in order to analyze their "soliton" content. Let us for example assume

Sδ2 = c2F0 and δ^c^S . (4.23)

The asymptotic behaviour of the fields in this case (see the Table 1) leads us to
interpret the solution as describing the collision of a type A soliton with a type A
soliton which produces two types of solutions in the final state (ί-> -hoo). The
solitons Type A, A and B are particular cases of Eq. (4.8) as defined in the Table 1.
Therefore, Eq. (4.19) describes inelastic processes: transformations of solitons. It
must be noticed that det.Fμ-vanishes for solitons of type A, A and B as well as it
vanishes for the one-soliton described in Sect. 3.

A full and systematic exploration of the two-soliton and iV-soliton solutions
within Ansatze (4.1)-(4.7) is beyond the scope of the present paper.

We also want to remark that all the Ansatze presented in this paper are specific
of a space-time with Lorentzian signature. For Euclidean signature all solutions
become just constants due to the requirement kf = O [Eq. (3.2)].

Single non-linear plane wave solutions are known in Yang-Mills theory [12]. If
one imposes the self-duality condition in a SU(2) gauge theory, they become
dependent on one arbitrary matrix function of k χ = x + instead of two. Our
multiplane wave solutions describe the scattering of such single non-linear plane
waves, provided they have a rational form like Eq. (4.8).
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Appendix

Inserting the fractional Ansatz (4.1) for N=2 in Eqs. (2.20) yields the follow-
ing fifteen algebraic equations in the sixteen unknowns [ΔA,FA,NA,Nχ,
Λ =0,1,2, (12)].

F0(N12Δ0-Δ12N0)+F2(N0Δ1-Δ0Nί)+F1(.N0Δ2-Δ0

+ F2(N0Δ1-ΔoN1) + F1(ΔoN2-NoΔ2)] = 0 ,

(1 +Λ)(N0Δi -NίΔ0)(F0F12 -ΛF1F2) + (l -A) [FfcN^ -NtΔ12)

1(N1A2-N2A1)] = 0 . (A.2)

Equation (A.3) follows by exchanging (1 <->2) and (Λ-> — Λ) in Eq. (A.2). Equations
(A.4)-(A.6) are obtained by exchanging NΛ-*NA and Λ-> —A (.4 = 0,1,2,(12)) in
Eqs. (A.1MA.3),

Ff2(Δ1Δ2- Δ0Λ12) + Δ2

12(F0F12-FιF2+N1N2) + A^2N12N12

(A.7)

2 A, Δ2 (2F0F12 + N, N2) + N0N0Δ
2

l2 + Nί2Nί2Δ
2

0

>2,Λ->-Λ) = 0 , (A.8)

Δl(F0F12 -F,F2 + N.N,) -Fξ(Δ0Δ12 - Δ γ Δ 2 ) + Δ,Δ2N0N0

(A.9)

+ Δ12N0(Δ12N1 -Δ1N12) + (Δ1Δ2 -^0^12)^1^12

+ Δ0Δ1N12N12-Δ2N2N12 + A[Ai2N0(Δ1N12-Δ12N1)

Δ2(F0F12-FιF2) + F2(Δ1Δ2-Δ0Δ12)

+ (Δ0Nι-A1N0)(Δ1N12-Δί2Nί)

+ ΛΔ, [NoiΔtNn-ΔuNJ-ΔoNM

NA,A^-A) = 0 , (A.ll)
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1Δ2~A0A12)(2F0F1+N0N1)

NA,Λ-^-Λ) = O . (A. 12)

Equations (A.13)-(A.15) follow by exchanging (l<->2) and (Λ^>—Λ) in Eqs.
(A.10)-(A.12).
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