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Abstract. Let N(Z) denote the number of electrons which a nucleus of charge
Z can bind in non-relativistic quantum mechanics (assuming that electrons are
fermions). We prove that JV(Z)/Z-> 1 as Z-> oo.

1. Introduction

This paper is a contribution to the exact study of Coulombic binding energies in
quantum mechanics. Let H(N, Z) denote the Hamiltonian

H(N,Z)= Σί-^-ziXiΓ'J+Σl^-^ Γ1,
i= 1 i<j

and let E(N, Z) denote its minimum over all fermion states (we suppose there are
two spin states allowed, although any fixed number could be accommodated). For
comparison purpose, we let Eb(N,Z) denote the same minimum, but over all states
(taken on a totally symmetric wave function, hence b for boson).

It is a fundamental result of Ruskai [9] for bosons, and Sigal [11] for fermions
(see also Ruskai [10]) that there exists N(Z), Nb(Z) so that, for all = 0,1,...,

E(N(Z\ Z) = E(N(Z) + U Z); Eb(Nb(Z), Z) = Eb(Nb(Z) + j , Z).

We let N(Z) (respectively Nb(Z)) denote the smallest number for which the first
(respectively second) equality holds for all j . Sigal [12] showed that

ϊim [JV(Z)/Z] ^ 2, lim[lniVb(Z)/lnZ] ^ 1, (1.1)

and then Lieb [6,7] proved the bounds

N ( Z ) < 2 Z + 1 , JV f c (Z)<2Z+l (1.2)

which implies, in particular, that a doubly ionized hydrogen atom is unstable.
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Zhislin [15] proved that N(Z) ^ Z and Nb(Z) Ξ> Z. A more detailed review of the
history and status of this and related problems is given in [7].

Our main goal in this paper is to show that

Theorem 1.1. lim [N(Z)/Z] = 1.
Z->oo

That is, asymptotically, the excess charge in negative ions is a small fraction of
the total charge. While this is physically reasonable, and partially captures the
observed fact that in nature there are no highly negative ions, it is not as "obvious"
as it might appear at first. For Benguria and Lieb [1] have shown that

\imNb(Z)/Z>\.

(They actually prove that lim is at least the critical charge for the Hartree equation
which is rigorously known to lie between 1 and 2, and numerically [16] is about
1.2.) Thus, the Pauli principle will enter into our proof of Theorem 1.1.

Part of our argument closely follows that in Sigal [12] (see also Cycon et al.
[13]). We differ from Sigal in one critical aspect. He gets a factor of 2 in (1.1) by
using the obvious fact that if one has 2Z + 1 electrons surrounding a nucleus of
charge Z, one can always gain classical energy by taking the electron farthest from
the nucleus to infinity. We will exploit the fact that if you have Z(l -f ε) electrons
and Z is large, classical energy can be gained by taking some electron to infinity.
We will prove precisely this fact in Sect. 3. Actually, for technical reasons, we will
need a slightly stronger result, also proven there. Unfortunately, our proof of this
key classical fact is by contradiction, using a compactness result. Hence our proof
is non-constructive, which means that we have no estimates on how large Z has
to be for N(Z)/Z to be bounded by 1 + ε for any given ε.

The theorem we prove in Sect. 3 says that, with N = Z(l + ε) point electrons,
one gains classical energy by taking some electron to infinity. We prove this by
appealing to an analogous result for a "fluid" of negative charge: if \dp(x) ^ Z(l + ε),
then for some x0 in suppp one has Z\xo\~ι - j\x0-y\~1dp(y)^0. This fact is
proven in Sect. 2. It is interesting that our results in quantum potential theory
require various results in classical potential theory.

In Sect. 4, we construct a partition of unity in [R3iV-the result of Sect. 3 is needed
only to assure that certain sets over U3N. Given this partition, the actual proof of
Theorem 1.1. in Sect. 5 follows Sigal [12]. Section 6 provides some additional
remarks.

2. Classical Continuum Theorem

Theorem 2.1. Let p be a nonzero finite (positive) measure on U3 which is not a point
mass at 0, and let φp be its potential, i.e.,

ΦP(x) = ί\x-yΓ1dp(y). (2.1)

Then, for any ε > 0, the set of points xφΰ such that

^(x)^(l-ε)|xΓV(^3) (2-2)

has positive p measure.
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Proof. Let Tε denote the set of points in U3\{0} such that (2.2) holds. Our goal
is to show that p(Tε) > 0. First, let us eliminate any possible small point mass at
0 by defining p = p — cδ(x). For some 0 ̂  c < 1,β({0}) = 0. Additionally, defining
ε = εp(U3)/p(U3% one sees that proving the theorem for ε and p is equivalent to
proving it for ε and p with (1 — ε)p(U3) > c. It suffices to assume, therefore, that
s = ε,p = p and p({0}) = 0, and we shall do so henceforth.

Let B denote the set of x φ 0 for which φp(x) = oo. If ρ(B) > 0 we are trivially
done, so assume p(B) = 0. Since ρ({0}) = 0, this means that φp is finite p-a.e. and
we can apply Baxter's Theorem 2 [17]. If we define the measure μ = (l—ε)
{jdp}δ(x), this theorem asserts the existence of a (positive) measure y such that

(a) y^p and y(U3) ̂  p(U3)-μ(U3) = ε\dp > 0,
(b) φp{x) = φγ(x) + φμ(x)y.a.e..

(In Baxter's notation, p = v,p-y = λ and μ = μ.) Thus, p(TJ ^ γ(Tε) = y(U3) > 0.

Π

Remark. One can also prove this theorem by appealing to Choquet's theorem [2,5].

3. Classical-Discrete Theorem

Theorem 3.1. For any ε, there exists No so that, for all sets {3cα}^= 1 ofN ^ No points,
we have

afb

Remarks. This is clearly a classical analog of the quantum theorem that we are
seeking. It says that if the electron excess over the nuclear charge above Z is more
than ε(l — ε)~1Z, then one gains energy by moving at least one of the electrons
off to infinity.

2. Unfortunately, our proof is by contradiction, and therefore non-constructive.
The fact that we cannot make our estimates explicit, even in principle, comes from
this fact.

Proof. Suppose not. Then, there is ε0 > 0 and sequences points {x(a]}a = i w r t n

Nn^>co and

- i α-βnw. ( 1 1 )

for all n and all 1 ^b^Nn.
Equation (3.1) is invariant under rotations and scaling of the x's as well as

relabelling. Thus, without loss we can suppose that

x^ = (1,0,0) = x0,

| x i π ) | ^ l all \^a^Nn.

The measures
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are probability measures on the unit ball. Thus, by passing to a subsequence if
necessary, we can suppose that pn converges in the C(ίR3)-weak topology to a
probability measure dp. We will show that dp violates Theorem 2.1. If y is a limit
point of x|"} and g(z) = (|z|2 + M2)~1/2, then since g is C 1 with bounded derivatives

lim \g(x - χW)dpH(x) = \g(x - y)dp(x).

Thus, by (3.1):

Sg(x-y)dp(x)£(l-εo)\y\-K

By the monotone convergence theorem, we can take M to zero to obtain

$\x-y\-'dp(x)^(l-ε)\yΓK (3.2)

We have just proven (3.2) for any y in the limit set of the {x£°}. Any yesuppp
is such a limit point so (3.2) holds for all yesupp p. Thus we will have a contradiction
with Theorem 2.1 if we show that p φδ0. But since x(p = χθ9 we have (3.2) for
y = x0, i.e.,

$\x-x0Γ
ιdp(x)^(l-8). (3.3)

Since, for dp = δ0, the left side is 1, we can conclude that dpΦδ0. •

We will actually need an extension of Theorem 3.1 to potentials cut off at short
distances, but in a way that may seem unnatural at first. Define

£.7^' * I |ΐαΐxΐ (14)

F o r a set of p o i n t s {x f l }^ = 1 in R 3 , define Ix l^ = s u p | x β | .
a

Theorem 3.2. Let αN-^0αsiV->oo. Then, for any ε, there exists No and δ > 0 so
that, for any N ̂  No and any set of points {xa }%= 1, there is a point xa with \xa\'^.δ\x\O0

and

Y G (x γ ) > ^ ~ £^N Π 5Ϊ
jψa IXfl I

Proof. G is defined to be invariant under scaling (which is why we took the cutoff
to be α|x|, not just α) and rotations. Also, the condition |xα | ̂  (Slx^ has the same
invariance. Thus, if the result is false, we can find ε0 > 0, δN -• 0 and a sequence
with Ixl^ = 1; x ^ = (1,0,0) so that (3.5) fails. Taking the limit, we get the same
contradiction as in the proof of Theorem 3.1. •

4. A Partition of Unity

As noted in Sect. 1, the key element in the proof of Sigal, which we will mimic, is
the construction of a partition of unity. Here we will construct such a partition
which we will use in the next section. The preliminaries in the last section will be
relevant precisely in order to be sure that certain sets cover U3N.

Theorem 4.1. For all ε > 0, there exists No and δ > 0, and for each N ̂  iV0 and each
R>0, a family {Jα}^=0 of C™ functions on U3N so that:
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(1) Jo is totally symmetric, {Ja}aψo ί 5 symmetric in {Xb}bfa

(3) suppJo <={{*«}I I * L < R}.
(4) suppJ ac={χ| \χ\00^(l-ε)R, \xa\^(l-2ε)δ\x\x and £ l

(l-2ε)N\xa\-1}.
(5) For a constant C, depending only on ε, £ | V J J 2 ^

(4.1)

Proof. Without loss, we can take R = 1 since the result for R = 1 implies the result
for all R by scaling. Moreover, we can prove (4.1) with I * ! " 1 replaced by |x |~ 2.
For the left-hand side of (4.1) (when R = 1) is supported in the region where
I x l ^ l - ε ) , and in that region | x | " 2 ^ ( l — ε ) " ^ x l " 1 .

Next, we note that instead of finding Jα's obeying (l)-(5), it suffices to find Fa's

obeying (l'),(2'),(3),(4) and (5'):

(5') (Σ(VfJ2

and for any permutation π:

(1 ') Fπ(a)\Xπ(l)>' ' ' » Xπ(iV)) = ^ α i ^ l > > X iv)

/ / \ l / 2

For if Jfl = Fα / ( ΣFj 1 , then Ja has the same symmetry and support properties

/ V Jas F has, and

Σ 2 Σ (4.2)

To understand (4.2), think of F = ( F o , . . . , FN) as a function from R3N to R N + \ in
which case J is the "angular" part of F, and (4.2) is a standard inequality on the
gradient of the angular part.

Now we concentrate on constructing the Ffl's. Let φ be a C00 function on [0, oo)
with

e [ 0 , l ] all y

and define φ = ι/̂ 2. Let αN = (In A^)"1 and choose Nθ9δ as given by Theorem 3.2.
As a preliminary, take F 0 ,F f l as follows. These functions are not C00, but are
continuous and are C1 off the set {x| | x j = |xb | for some a =£b}κj{x\ \xa — xb\ =
oίN\xa\ some a,b} with discontinuities of the gradients allowed on that set:

F0(x) = l-ψ(\x\J9

Σ
bfa
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where Gα is given by (3.3). The symmetry condition (1) is obvious, and (3) holds

since φ(y)= 1 if y^l.
Fa Φ0 implies that 1 * 1 ^ 1 - 2 ^ \xa\ ^ ( 1 - ε ^ l x U , and

Σ
bfa

since φ(y) Φ 0 implies \y| ̂  1 — 2ε. Since \x — y\~* ^ Gα(x,j/), we have proven (4).
That leaves the key conditions (5') and (2').

For (2'), we use Theorem 3.2. This guarantees us that there is an a where the
last two factors in Fa are 1, and so there is an a with Fa(x) = <p(|x|oo). Since

for all 0, for this α,F0(x)2 + Fα(x)2 ^ i proving (2')
As a preliminary to (5;), we want to note that, for some constant C and all γ:

\2 =

For

proving (4.3) with C =
Away from points where \xa\ = \xh\ for some aφb,

= φ'(\x\JV\x

Since \x ̂  is some xn\ and

we see that

Similarly,

Finally, if

then, for b Φ a

ηa = ψ{N-ί\xa\^G {xa,xh)\
bfa

since
or 0.

Recall that Gα(x, y) ̂  α~ x | x | " x , so since % x = In ΛΓ,

(4.3)

(4.4)

xa\ I. (4.5)

bfa L \ fo^fl ^ /J bfa

However, s u p p φ ' c [ l — 2ε, 1—c], so on suppφ'ί iV~1|xfl| ^]
V bfa

GΛN(xa,xb).

, we
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have that

bfa

641

Thus

X \Vbηa\
2^N-HlnNf\xa\-2\φ'(N-'\xa\ X Gα^(xfl,x&))T. (4.6)

As a final gradient estimate,

X
bfa

X
bfa

(xa,xb)
2 ],

J
since |VJxα | | = 1 and

or

and α ̂  1. Thus, since | x j X Gα^(xfl,xb) ^ N when φ'( ) ^ 0 ,
1 fa

— 1 i i V /^ /

xJ > Ĝ  (xfl,x
ι a\ JLJ aN\ ai

(4-7)

Since |x a | ^ ( 1 — 2ε) 5|x|oo on suppFα, we see that, for α # 0 .

by using (4.3)-(4.7). Thus

Σ
a,b

Since Xi 7 2 ^ i, we can take γ = N~1/2 and obtain:

as required.
The J's constructed in this way are continuous but are only piecewise C1. By

convoluting with a smooth, totally symmetric function of very small support, we
can arrange for C00 J's which still obey the required properties. •

Remark. By using φ = ψm in the above construction for m suitable, we can reduce
N1/2 to any desired positive power of N.

5. The Main Theorem

Here we will prove Theorem 1.1. Given the construction in the last section, this

follows Sigal [12] fairly closely. Pick ε > 0. We shall prove ϊϊm N(Z)/Z ^ (1 - 3ε)~ K
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Let {Ja} be as in Theorem 4.1, and let

N

L— y

By the IMS localization formula (see Chap. 3 of [3]),

Σ t (5.1)
α=0 α=0

By condition (5) of Theorem 4.1,

L SCN1/2 (In Nflx^R-K

For α > 0 , supp Jα c {x| \xa\ ^ ( 1 — 2ε)(5|x|00}, and thus:

JaLJa^c1N
1/2(\nN)2\xaΓ

1R-ί (C1=c^-1(l-2ε)"1). (5.2)

Since u s u p p ( V J J c {χ| I x ^ ^ (1 - 2ε)Λ}:

J0LJ0 ^ c2N
1/2{\nN)2R~2 (c2 = (1 - 2s) ' 1 C) (5.3)

Let Ha(N — 1,Z) be the (iV— 1) electron Hamiltonian obtained by removing
from H(N,Z) all terms involving xa, so:

H(N,Z) = Ha(N-lZ)-Aa-\xa\~1Z+ ^ l^-xj ' 1 .

Since Hfl(iV - 1,Z) ̂  E(N - 1,Z) and - 4 α ̂  0, taking into account (5.2) and the
support property of Ja, we have that

(5.4a)

where

d{Z,N,R) = - Z - ^N^ilnNfR-1 + (1 - 2ε)N. (5.4b)

^ N has not been introduced up to now.

By solving for a Bohr atom (and this is where the Pauli principle enters):

so since \xa — xb\^2R on supp J o :

J0(H{N,Z)-L)J0^J0[-c3Z
2N1/3-c2N

1/2(\nN)2R-2+iR-1N{N-l)TiJ0.
(5.5)

Choose î  = N~215. Then, for iV ̂  (1 - 3ε)" ιZ and large Z, d(Z, N, R) > 0 since
i + f < l . Moreover, J0{H(N,Z)- L)J0 ^ 0 ̂  J0E(N- 1,Z)JO since iV12/5

dominats N 7 / 3 and Λ/13/10(ln JV)2 and
Thus,

if N^(l — 3ε)~1Z and Z is large, i.e., for Z large
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Since ε is arbitrary:

It is well known (see [15,13]) that H{Z,Z) has bound states, i.e., that

Z. •

Remark. Without the Pauli principle, Z2N113 becomes Z2N, so one must take
RN = cN'1, in which case the localization term Nll2(\nN)2R^i in (5.4b) becomes
uncontrollable. Our proof must, of course, fail without the Pauli principle because
of the result in [1].

6. Extensions

Our result extends easily to accommodate arbitrary magnetic fields (the same for
all electrons) and/or a finite nuclear mass.

The exact form of the electron kinetic energy entered only in two places: in the
IMS localization formula and in the positivity of — Δ, both of which hold in an
arbitrary magnetic field. We also used the Bohr atom binding energy, but that
only decreases in a magnetic field (i.e., — c3N

2Z1/3 is a lower bound for all fields).
Thus, we obtain a magnetic field independent bound N{Z) with

N(Z)/Z-+1 as Z-+oo.

As for finite nuclear mass, let x0 be the nuclear coordinate, and use Ja(xb — x0)
in place oϊ Ja(xb). With this change, the nuclear coordinates pass through all proofs
with essentially no change at all.
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