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Abstract. We define super Riemann surfaces as smooth 2|2-dimensional
supermanifolds equipped with a reduction of their structure group to the
group of invertible upper triangular 2 x 2 complex matrices. The integrability
conditions for such a reduction turn out to be (most of) the torsion constraints
of 2d supergravity. We show that they are both necessary and sufficient for a
frame to admit local superconformal coordinates. The other torsion constraints
are merely conditions to fix some of the gauge freedom in this description, or
to specify a particular connection on such a manifold, analogous to the
Levi-Civita connection in Riemannian geometry. Unlike ordinary Riemann
surfaces, a super Riemann surface cannot be regarded as having only one
complex dimension. Nevertheless, in certain important aspects super Riemann
surfaces behave as nicely as if they had only one dimension. In particular they
posses an analog d of the Cauchy-Riemann operator on ordinary Riemann
surfaces, a differential operator taking values in the bundle of half-volume
forms. This operator furnishes a short resolution of the structure sheaf, making
possible a Quillen theory of determinant line bundles. Finally we show that
the moduli space of super Riemann surfaces is embedded in the larger space
of complex curves of dimension 111.

1. Introduction

To describe a string moving through spacetime we introduce a two-dimensional
parameter space X and consider functions from X to spacetime. Since the local
dynamics of the string should depend only on the image of X in spacetime, we
require that the action functional describing the string be independent of the
parametrization chosen. Locally it should also not depend on any extra information
describing the auxiliary space X, for instance a metric or connection on X.

When we move beyond the naive picture of strings above to the more
sophisticated picture of an arbitrary conformal field theory, X takes on a more
central role. Nevertheless the point made above are still valid: the classical action
(when it exists) must be an intrinsically-defined functional of fields on X, defined
without any use of the local shape of X. On the other hand, as is well known a
smooth 2-manifold does not have enough information to permit us to define such
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an action, or even to define certain of the fields (the chiral ones) at all. What is
needed is a middle ground between the "bare" surface X and X equipped with,
say, a metric. This middle ground consists of taking X to be a Riemann surface.

We can think about Riemann surfaces in two main ways. A smooth X is a
topological space with an atlas of patches and maps φ^.U^^R2 such that
θaβ = Φ^Φβ1 i s smooth on φβ(UanUβ). If φa have been taken so that gaβ:C^C
are all analytic, then they define a complex 1-manifold, or Riemann surface. In
this case it makes sense to define a subset of all the smooth functions srf on
X\Θ c stf consists of functions which under each φa become analytic functions on
C. A collection of φa is deemed equivalent to φ'a if φa = fa°φ'a for a set of analytic
maps /α :C-»C.

In the second approach one defines a Riemann surface from a bare smooth
2-surface by endowing the latter with additional geometrical structure. For example
we can single out a subspace G of smooth complex functions and declare them to
be the analytic ones. Since a compact X has only one global analytic function (the
constant), it is certainly not enough to give the space Θ(X) of these. Rather one
must specify Θ as a "sheaf" on the open sets of X. Roughly speaking a sheaf is an
assignment of a space of local functions to every open set U of X, or more generally
an assignment of a ring Θ(U) to each U. A ring has operations which behave like
addition, subtraction, and multiplication, but the latter need not be invertible or
even commutative. The various Θ(UΛ) must satisfy a few axioms which say that
they fit together across intersections of open sets the same way the ordinary smooth
functions do.1 In the present case Θ(U) must be isomorphic to the analytic functions
on an open set of C; in particular, it is commutative.

A more convenient construction than simply giving Θ explicitly is to split the
complex tangent space TCX = (TX)®C into two complex-conjugate subspaces
Γ l l 0 I Θ T0ΛX. This can be accomplished for example by giving a real tensor J,
where J(x):TxX-+ TXX and J2 = - 1; then TU0X is the eigenspace of J with
eigenvalue + ί. If we now think of tangent vectors as differential operators, we can
define Θ as being the smooth functions everywhere annihilated by any vector
spanning T0ΛX. Θ(U) then has many local functions, but all of them can be
generated by just one, a local complex coordinate u on U.

If we like we can supply X with more information than just J. For instance
we can give a metric γ on X, or even a frame {eί, e2} for TX. Of course ea cannot
be nondegenerate and smooth throughout X, but we can arrange for a choice on
each patch Ua differing only by SO(2) rotations on patch overlaps. Given such a
frame we can introduce the complex vector field ez = \(eγ — ie2) and its conjugate.
Then Tlt0X can be taken simply to be the space spanned by ez9 or equivalently
we can let

J = iez®ez-ie-z®e\ (1.1)

where {ea} is a dual basis to {ea}. J is clearly real and globally defined, since it is
unaffected by a local SO(2) rotation of {ea}. Indeed it is also unaffected by a local
rescaling of {ea} and so depends only on the conformal class of the metric

1 Sheaves are discussed in e.g. [1,2]
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y = Σae
a(g)ea, as desired. Since every metric can locally be coordinate-transformed

to a form conformally related to the standard one, every Riemann surface is indeed
locally indistinguishable from a patch of C, as required and as was clear from the
first approach.

Each of these two descriptions of Riemann surfaces has advantages. In the first
we can perform all of our manipulations using only analytic functions: the gaβ are
all analytic, as are the transition functions of any holomorphic bundles we may
define and so on. Also we can if we like let the gaβ depend holomorphically on
one or more complex parameters to define a holomorphic family of Riemann
surfaces. On the other hand, we have had to cut X into patches, obscuring the
global meaning of the construction. Moreover, in a parametrized family the
coordinate regions φa(Ua) c C will themselves move around under a finite change
of parameters. Also it is not clear a priori that a holomorphic family is the most
general deformation possible. For all these reasons it is useful, though not essential,
to have the second approach, which in fact is the older one. Here any construction
is intrinsic if it is coordinate-invariant and depends only on the global given tensor
field J. Equivalently we can choose a frame ea to represent J by (1.1), with the
understanding that any e'z=f ez must give the same answers. Here / is a
nowhere-zero complex function combining Weyl and SO(2) transformations. In
this approach one need not show that the space of J tensors modulo diffeo-
morphisms represents the most general deformation—that's a definition. Instead
one must show that the corresponding moduli space is in fact complex, since this
is now not guaranteed.

In other words, to make X a Riemann surface we equip it with a family of
frames related by local transformations in C x Ξ GL(1,C). We say that we have
reduced the structure group of X from GL(2,R) to C x . Similarly in higher
dimensions a complex manifold has a subspace Tlf0X of p complex dimensions,
reducing the frame group from GL(2p,R) to the subgroup GL(p, C) fixing Tί>0X.
Here we find an important new subtlety, however. In one complex dimension any
such reduction is locally equivalent to any other, in a sense to be made precise
later. In several dimensions however some reductions are not equivalent to the
standard one. The conditions for this "local flatness" to hold constrain the possible
frames {ea} we can use to define a reduction.

In this paper we would like to see what happens to the preceding discussion
when we pass to super Riemann surfaces (SRS). We have perhaps belabored the
above well-known points because as we will see their generalization to SRS is not
entirely straightforward. Again we seek a structure on a smooth surface of
dimension 2|2 which permits the definition of an invariant string action but which
is locally trivial, i.e. locally equivalent to the standard surface. The analysis of SRS
and their moduli along the first lines (as patching data) has been carried out in
[3]-[7] and elsewhere. Here we will complement that work with a discussion
following the second line—a differential-geometric treatment. This turns out to
be an interpretation and extension of work begun in [8-13]. Some of these
results were announced in [14]. A number of points made here and in [14] were
independently made in the work of Baranov, Frolov, and Schwarz [15]. Others
are already to be found in the original papers.
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In the next section we review some parts of supermanifold theory and the
theory of reductions of structure groups. We then apply this to SRS, showing that
the torsion constraints of [8,9] are necessary conditions for a frame to be integrable
into a superconformal structure. Next we establish the converse. Then in Sect. 5
we describe the fundamental complex on a SRS. This complex lets us write down
the string action and defines the relevant DET bundles where partition functions
live. Finally we study supermoduli space, its relation to the space of complex
l|l-dimensional curves, and its complex structure.

The present approach to SRS also lets us find good local holomorphic
coordinates for supermoduli space. Details can be found in [16].

2. Supermanifolds and Structure Groups

A. Supermanifolds. We will first review two subjects: the theory of supermanifolds
[17] and that of reductions of the structure group of an ordinary manifold
[18]. Supermanifolds in a rudimentary form were first introduced to extend
classical phase space to include spin degrees of freedom [19]. Later they were
adopted as extensions of spacetime itself. The idea is to find a setting where
supersymmetry transformations have the same geometrical status as ordinary
spacetime translations. That is, flat superspace should have vector fields P
satisfying [P, P] = 0 and generating symmetries, but also Q satisfying the basic
supersymmetry algebra [β, P] = 0, [β, Q] ~ P. For this to work with Qμ =
(d/dφμ) 4- ••• we must ascribe to the coordinate φμ a spinorial character.

An ordinary smooth manifold X of dimension p can be thought of as a
topological space and an assignment to every open set U of a ring <s/(U), the
smooth functions on U. On small enough U, srf(U) is generated by p independent
functions—real coordinates ym of X. To obtain a supermanifold X we start with
the same topological space but assign to it a sheaf of rings si larger than s4.
si is Z2-graded; it is not commutative but rather graded-commutative. In fact we
will require that over small enough open sets ί / ς l w e have

J{U)^s4{U)® A{V\ (2.1)

where V is a ̂ -dimensional vector space and Λ (V) its exterior algebra, jtf consists
of the ordinary functions on an ordinary smooth manifold X. Thus if φμ are a
basis of V, then si(U) is generated by the images under (2.1) of ym and φμ. We
agree to treat these two kinds of generators on an equal basis, and we call both
of them "coordinates." The isomorphism (2.1) is not natural, so that across patch
boundaries we will in general get transition functions. These functions must
preserve the usual multiplication on stf and Λ (V), as well as the parity of the
generators ym and ψμ.

A general element of si is now locally of the form

fi(ym) + f2μ(ym)Φμ + f3μv{ym)ΦβΦv+'", (2.2)

which we will denote by f(ym, φμ) in keeping with our resolve to think of all the
elements of si as generalized "functions" on some "space." Also we will sometimes
refer to ym, φμ collectively as yM, where the generic index M runs over p + q values.
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The idea of characterizing a space by its ring of functions is very natural
mathematically. It is also physically natural, for example in Hamiltonian dynamics
where primary emphasis is placed on the ring of observables (in this case actually
an algebra) and phase space itself plays a secondary role. In the latter case one is
inevitably led to extend the ring in order to describe fermions; one then notes that
most of the formulas of ordinary geometry continue to make sense in this setting
[20].

While the isomorphism (2.1) is not natural, still we can canonically construct
the ordinary manifold X from X. Note that the functions in (2.2) with f1=0 are
the same in any coordinate system; they can be invariantly characterized as the
nilpotents of si(U). The subsheaf N c j / o f nilpotents is in fact an ideal, so we
can recover si as the quotient

si ^ J/N. (2.3)

si defines an ordinary smooth manifold X, sometimes called the body of X.
Similarly given a supermanifold X we can always build a bundle E$ over its body
X. We simply take the local sections of E% to be

«% = N/N2.

In any coordinate system these are roughly "the functions with only one ψ." E$
is indeed a bundle of dimension q, by (2.1). We can also reverse this prescription
to construct a large class of supermanifolds: if E is a vector bundle on an ordinary
manifold X then locally E\υ = Rq. Hence taking si to be the sections of Λ E we
see that (2.1) is satisfied. We will also write si = A S9 where $ is the sheaf of
sections of E. If si can be taken to be of this form we say that X is split. (The
terminology is explained in [21].) Even if X is split there may be several different
splittings.2

A more practical criterion of splitness is the following. If we have chosen
trivializations of si on UUU29 i.e. isomorphisms φa:jtf(UΛ)-+si(Ua)<g) Λ (R*),
then we get a ring isomorphism of si\υ nU ® Λ (Rq) with itself. These transition
functions always respect the overall parity of each coordinate, since by definition
si has a globally defined Z 2 grading. If we can arrange that the transition functions
are always of the form

y'm = / r a ( / ) , i P = flΐO>1"Wϊ, (2-4)

then X is split, and conversely. If on the other hand, y'mx φ'μ necessarily have the
form

y'm=fm(yn) + iςv(yn)ΦμΦv+'~,
Φ'μ = gμΛymW + Kκλ(y

m)ΦvΦκΦλ + •••, (2.5)

then X does not split. If we consider not a single manifold X but a family
parametrized by some superspace Z, then we can have more generally

ψ>μ = Γ^ym) + 0j(j,«)^ + . , (2.6)

2 An analogy is to spin structures: even if a space admits a spin structure, there may be several

inequivalent choices
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where Γμ is an odd function of ym and of the coordinates of Z and gμ is an even
function. It is now clear that the above construction of a bundle Eχ from an
arbitrary supermanifold X discards some of the information in (2.5), namely the
pieces k™v,h

μ

κλ,... of the transition function. Thus if we begin with an arbitrary
X, build Eg, and then build X' = (X, A $%\ we find that while X' is always split,
it is not necessarily isomorphic to the original X.3

A simple split supermanifold which we will use later is obtained when X is a
real 2-surface and £ is a spinor bundle. Then φμ,μ = 1,2 are taken to be two real
local spinor sections, everywhere linearly independent. Clearly ym, φμ generate all
of J and satisfy (2.4).

A fundamental theorem asserts that when we consider smooth supermanifolds
we find that every one is split, though not necessarily in a natural way [22,23].
In the complex-analytic case, however, this need no longer be so. If the family has
odd parameters then Γ in (2.6) can be unremovable. Even with only even parameters
an obstruction to splitting can arise [21]. The situation is reminiscent of the theory
of complex line bundles on a Riemann surface: any two bundles of the same degree
are indistinguishable as smooth bundles, but it may not be possible to identify
them using a holomorphίc isomorphism. Indeed the classes of holomorphic line
bundles of degree zero form a Lie group, the Picard group Pic 0.

A map between two supermanifolds f:X->Ϋ is a homomorphism from siy
back to s£%. More precisely / consists of an ordinary continuous map f:X-+ Y,
and for each open U^Y a homomorphism f*\srfγ(U)-*siχ(f~1lJ) respecting
the Z 2 -grading. One important map is the inclusion

t:X<=±X, (2.7)

where we regard X itself as a trivial supermanifold. Here the map on the body,
ϊ.X-+X is the identity, while Z * : J / - > J / is the natural map defined by (2.3). It is
important to note, however that in general no natural projection π:X-+X exists.
If we are given a splitting of X, however, then a simple choice for π exists: take
π* to include jrf into si as the zeroth wedge power of the bundle E defining X.

As in ordinary geometry we can define vector fields directly in terms of the
ring of functions [24]: a vector field is a derivation of si, with now the
appropriate grading behavior, i.e.

] m (2.8)

where vf means the partial derivative of / along the vector field v. We will use
only vectors satisfying (2.8), i.e. vectors which act from the left. Vectors like d/dym

and φv(d/dφμ) are called even sections of the tangent sheaf # of X; d/dφμ and
φμ(d/dym) are odd sections of 2Γ. Here φv(d/dφμ) is the derivation of si obtained
by acting on / ( / " , φμ) from the left with djdφμ, then multiplying on the left by φv.
More generally we can multiply any vector field by any function in si. We
therefore say that ZΓ is a (graded left) "^/-module of rank p\q." One can also
regard S~ as the sheaf of sections of a bundle TX. If X is split, then TX decomposes

Even if X was split to begin with, X' will not be canonically isomorphic to X
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into two ordinary bundles TX®E* over X, where £* denotes the dual to £ . 4

One can generalize 2Γ to an arbitrary sheaf of graded sέ modules 3F. This
means that the super functions (2.2) can multiply the sections of 3F in the usual
way. If moreover #" is locally free, we say that it defines a vector bundle over X.
The latter condition just means that locally the sections of 0 look like rc-tuples
of functions in sί9 with the usual vector space scalar multiplication, and that the
transition functions across patches preserve the grading, so that # has a
well-defined dimension r\s, where r + 5 = n. In particular 3Γ is a vector bundle of
rank p \ q.

3Γ has a richer structure than an arbitrary bundle # ; in the usual way one can
turn it into a sheaf of algebras by defining the graded Lie bracket: [v, ι/]/ = v(v'f) —

By the usual rules of linear algebra on Z 2 -graded spaces one can define the
dual space T*X of forms. We will use the convention for dual bases that
(EA,E

B) = δA; in particular,

where yM = (ym,φμ). Thus if EA = E/(d/dyN) and EA = dyNEN

A, we get
EA

NEN

B = δB

A. We will always adhere to this \ rule for index summation, in
anticipation of applications to spinors.

One can build a de Rham complex as follows [9]. Ω is generated by the
symbols dym, dφμ over si. It is bίgraded. Functions fesi have grading (p,σ) =
(0,1/|), where | / | is the parity of/. The symbol d increases the grading p and does
not affect σ. Ω is subject to the relations

ω A ω' = (-yp'(-)σσ'ωr Λω.

Thus dy1 dy2 = ~ dy2 dy\ dφ1 dφ2 = + dφ2 dφ\ but dy1 dφ1 = -dφ1 dy\ in
contrast to the definition in [17]. Define d:Ωp->Ωp+1 by

d(dyMωM) = dyMAdyN(dNωM\

for a function / and 1-form ω. Thus d acts from the right. It dies not agree with
the usual d when X has no odd coordinates. This unfortunate situation is forced
on us by our insistence on the above \ summation rule, which says e.g. that
one-forms must be written as ω = dxNωN. With these rules d2 = 0. For a two-form
as usual we define

ω = ^dxMdxNωNM = \EBEAωAB,

where EA is any frame for T*X. Then (dω)NM = 2d[NωM] = dNωM — ( — )NMdMωN.

All of the definitions so far have complex analogs. First, the sheaf of real rings
si can as usual be complexified to sic = s7' (8) C, the complex functions on a real

In terms of sheaves, we say that # ^ 3~ © $* as sheaves of ^-modules



614 S. B. Giddings and P. Nelson

supermanifold. Λc has a natural involution, in which f(y, φ) (x) w = /(y, φ)®w for
feJ. Then _

for g, hesic, so s£<^s£c is the subring of self-conjugate functions.

A remark about (2.9) is in order. One sometimes encounters the distinct

convention gh = hg. The latter is appropriate for functional superspaces over

which one performs Minkowski space path integrals. It guarantees that the

functional integral for (φ(σ,ήφ\σ\tf)} gives the complex conjugate of the one

for (φ(σ\ t')ψ\σ, ί)>. In euclidean space φ and φ are independent, so this reasoning

does not apply and we are free to impose (2.9). With (2.9) the conjugate of a vector

again acts from the left; it is defined by ϋf = υf.

A complex supermanifold X is a supermanifold with a global notion of which
functions are holomorphic. Specifically X is a topological space X ringed by a
sheaf Θ such that

• each Θ(U) is a complex graded ring,
• (X, Θ) is an ordinary complex manifold, where (9 = 0/N, and
• locally we have

0*0® A (W) (2.10)

for some complex vector space W.

Equation (2.10) is an isomorphism of complex vector spaces. In particular, on two
overlapping patches (2.10) implies transition functions in which the odd complex
coordinates θμ are expressed as power series in θ'μ, with no θ'μ terms. We call such
functions holomorphic in θ.

Thus the functions on X are generated by p commuting generators um and q
anticommuting θμ. X is split if 0 = A δ, where now δ is the sheaf of holomorphic
sections of a holomorphic bundle E. The derivations ZΓ of & are holomorphic vector
fields. They form an 0-module, since a vector field remains holomorphic when
multiplied by a function in Θ.

Given a complex supermanifold we can find a corresponding smooth manifold
of dimension 2p\2q as follows. First we find the smooth ordinary manifold (X9ts/)
associated to (X, Θ) in the usual way. Since the direct sum of any complex vector
space with its conjugate is naturally the complexification of some real vector space,

W®W^V®RC, (2.11)

we can define a real bundle $r of dimension 2q from δ$ 0 δ$. We can then define
si from Sr using the transition functions of the original Θ. Conversely we can
consider the problem of taking a real X and finding an Θ c= srfc, which makes X
complex, analogously to the ordinary case discussed in the introduction. This we
will do in the following sections.

B. Structure Groups. Given an ordinary real manifold X it is useful to consider
at each point PεX the set of all frames, that is all n-tuples of tangent vectors {Ea}
spanning TPX. These frames do not themselves form a group, but the group
GL(n, R) acts to permute them.
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If X is equipped with additional structure, then at each point certain of the
frames may be singled out. Conversely, the specification of a subclass of "good"
frames at each point of X can induce some additional object on X. For example,
in special relativity we define a class of good frames, those which come from inertial
coordinate systems. Each such frame defines many geometrical objects, for example
its "time" direction, but most of these are not common to all the good frames and
so not intrinsically defined. One object is common to all inertial frames, however:
one proves that the metric, originally defined using coordinates, is in fact invariant.

Thus the choice of a class of good frames permuted by 0(3,1) defines a metric,
while conversely the choice of a metric defines the class of frames in which it takes
its canonical form.

There are other classical examples of reductions from GL(n, R) to a subgroup
G. For example the choice of our almost-complex structure defines a class of good
frames for the complex tangent space, where the first n/2 vectors Ezl lie in Tp'°X,
while the remaining n/2, Ezl are their complex conjugates. Two such frames differ
by a matrix of the form

) ( 2 i 2 )

Conversely, given such a reduction we can define

which clearly does not change if we replace Ezi by XJ{Ezi. As usual {Ezl} is the
basis of T* ( 1 ' 0 )X dual to {Ezl}.

A third example we will need is the choice of a distribution. Suppose X is
equipped with a special subbundle Q) of its tangent space. Let Q) have dimension
k<n. Then we can declare the good frames to be those for which the last k vectors
£ α , α = 1,..., k span ^ , while the remaining Ea,a=l,...,n — k complement 3). Now
two such frames differ by a matrix of the form

B

where A and B are invertible. Conversely given such a reduction let Q> be the space
spanned at each point by the last k vectors of any frame. By construction £) depends
only on the reduction chosen, not on the representative frame. Unlike the previous
two cases, however, in general Q) cannot be regarded as being defined by a tensor
such as a metric or JA

B.
Suppose we have a manifold X and a reduction to a group G. Another manifold

Y with reduction is called equivalent to X if there is a diffeomorphism φ:X^> Y
which sends every good frame of TX to a good frame of T Y [18].

In general the question of whether two reductions are equivalent is a very
difficult one. A much easier question asks whether for each PeX one can find a
neighborhood U of P and a diffeomorphism φ:U -+V such that the reduction on
U is equivalent to the one on V. In particular one can let Y be R", with some
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standard reduction. If X is locally equivalent to Y, then we say that the given
reduction on X is flat. Alternately, flatness means that there exist local coordinates
on U in which the reduction takes a standard form.

In the first example above, Y can be R" with the usual flat metric. (This example
motivates the general use of the term "flat.") The special coordinates near a point
P are then the inertial coordinates for the given metric near P; these exist if and
only if the metric is flat in the usual sense. In the second example, Y can be R"
with the standard identification with C"/2. The special coordinates {V} are then
the holomorphic coordinates. Two different sets of holomorphic coordinates differ
by a holomorphic diffeomorphism. In the third example Y is R" and Q) is everywhere
spanned by the last k coordinate differentials.

We can get a necessary condition for local flatness of a reduction as follows.
Suppose we present a reduction, or G-structure, locally by some specific family of
frames EA vaying smoothly near P. The full set of good frames is then obtained
at each point as UA

BEB where UeG. Consider the tensor defined by the Lie brackets

lEA,EB-] = tAB

cEc. (2.14)

For each of the three examples we can arrange that the "structure functions" tAB

c

on the standard space Y are all identically zero, simply by taking EA to be the
differentials of a coordinate system. More generally suppose that the tAB

c of a
standard G-structure are all constants. If the reduction on X is locally equivalent
to the standard one, then there will exist a local frame EA on X pulled back from
7, and hence satisfying tAB

c = const = tAB

c.

An arbitrary frame E'A = UA

BEB, where U.X-+G, will in general have t'AB

c

differing from tAB

c. It can happen, however, that certain components of t'AB

c are
unchanged after any such "gauge" transformation. Each such gauge-invariant
component must take its standard value in order for X to be locally flat. The
smaller the group G, the larger will be the set of these G-invariant conditions.

In the examples, one first notes that if G = O(ή) then there are no invariant
components of tAB

c, and hence no conditions of the type we are considering. This
just means that as far as first derivatives are concerned, every metric is the same
as any other. It is of course this fact which makes Riemannian geometry suitable
for implementing the Equivalence Principle of general relativity. If G = GL(n/2, C).
however, we have E'zl = U/E^ and (since EzJ = d/duj)

Thus while tzizJ

zm is complicated, t'zlJ remains zero. Hence an almost-complex
structure can be flat (locally identical to C"/2) only if it satisfies

ίz./ = 0, (2.15)

a simple repackaging of the condition that its Nijenhuis tensor should vanish [25].
Similarly when X has a distribution one shows that Si can be flat (locally isomorphic
to TRk c ΓR") only if

fβ/ = 0; α,j8=l,...,fc; c = l,...,n-fc. (2.16)
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This is the familiar Frobenius condition.
It is clear from the first example that our necessary condition does not in

general suffice to conclude that a G-structure is flat. For G = O(n) the condition
is vacuous, and yet not every metric is flat! However, in both of the other
examples an "integrability theorem" tells us that in fact there are no further
obstructions: a reduction satisfying (2.15) (respectively (2.16)) defines a complex
manifold (respectively a foliation of X).

If a G-structure is flat to first order then in some cases we can use it to define
a connection, regardless of whether it is truly flat. Consider again the case of O(n).
If a given reduction admits an orthonormal frame of commuting vector fields near
each point PeX, then it is flat. Even if no such frame exists locally, there still may
exist near each point P a frame such that tAB

c = 0 at P. We can then declare that
the coefficients of the connection vanish in such a frame. In more invariant language,
the condition t(P) = 0 imposes conditions on the first derivatives of EA about P.
If these conditions fix the derivatives completely then we get a map from tangent
vectors on X to tangents on its frame bundle. Such a "lift" determines a connection.

In the case of O(n) we have uniquely defined a connection by the fact that it
vanishes in a locally inertial frame, a result sometimes known as Levi-Civita's
theorem. We will find an analogous result for super Riemann surfaces, but with
only some, not all, of t set to zero.

3. Superconformal Structures

We begin with the definition of super Riemann surfaces appearing in [26,15,6]:
A SRS is a l|l-dimensional complex manifold X equipped with a holomorphic
subbundle 3) ^ TX. More precisely 3 is a subsheaf of rank 0| 1 in ZΓ %. Furthermore
we demand that 3) satisfy a nondegeneracy condition: given any section D of 3,
the vector [Z), D~\ must be non-vanishing and everywhere linearly independent of
D. This is as far as we can get from satisfying the Frobenius condition (2.16). Thus
there is no sense in which 3) singles out a special function η of the holomorphic
coordinates u and θ as a "good" coordinate, the way T1>0X distinguishes u from
ΰ on an ordinary Riemann surface. Nevertheless we will see that in some ways a
SRS behaves as if it had just one dimension.

In practice the notion of a single SRS is not very interesting. This is a general
rule in super geometry: the points of a supermanifold are not the whole story.
Indeed if we define "points" as maximal ideals of J / , we see that they are simply
the points of the underlying manifold X. Similarly when we define a class of
super-objects we typically get a superspace describing them. If we look only at
individual SRS, for example, we trivially find that they are all split: with only one
odd dimension (2.5) always reduces to (2.4). (Recall that the transition functions
involve θ but not θ.) Indeed it is easy to see that the set of all SRS is just the
spinmoduli space, the space of all Riemann surfaces equipped with a spin structure
[5]. Given such a surface we simply choose any local coordinate u and take the
generator θ to be (du)1/2 in the given spin structure. We can then let
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span Q). Beginning with a differential u' gives Df = (du/du') 1/2D, and so ^ , the
space spanned by D, is well defined.

To see all of supermoduli space, including its odd coordinates, one must consider
families of SRS parametrized by both even and odd coordinates. Such a family is
essentially a complex manifold W of dimension p+l\q + l together with a
projection to a p^-dimensional parameter space Z, whose fibers are SRS [6]. $)
is now a subbundle of the vertical (or "relative") tangent to W,^~^- ^ satisfies
the same consistency condition as before. We will sometimes use shorthand notation
in which Z is suppressed, but it will always be in the background, the "source" of
anticommuting parameters in formulas like (2.6).

Clearly a SRS is nothing but a reduction of the structure group of X. Originally
this group is GL(212, R), the real 4 x 4 graded matrices of the block form

u = r2 u2
P..)

where Ot are 2 x 2 matrices of even functions and Y t are odd. A matrix in which
every entry has its natural parity will be called "graded-even" [17]. One can take
U to be of this form because even a "bare" X, with only its supermanifold structure,
has a class of frames compatible with its grading. These are the frames {Ea,Ea}
in which the first two vectors are even sections of 2Γ while the last q are odd. Such
frames are related by the graded-even transformations (3.1). A transformation of
this form is invertible whenever the "reduced" matrices Uird, obtained by setting
all the Grassmann generators to zero, are invertible as ordinary matrices.

A frame can be used to reduce the structure group from GL(212, R) to GL(111, C).

Exactly as in the classical case, we can make all the tangent spaces complex and

consider base EZ,E+,E-,E_ with E- = EZ,E_ =E+. Two such bases are deemed

equivalent if they are related by

(3.2)

Note that we have rearranged and rows and columns of (3.1). U is now a 2 x 2
graded-even matrix, invertible in the sense described above.

One can also introduce a standard space C1'1 with standard frame Ez = d/du,
E+ — d/dθ. A given frame is then equivalent to the standard one up to first
derivatives if and only if it satisfies [27]

tz+

z = tz+-=t++

z'=t+ + -=O, (3.3)

the super version of (2.15). These equations imply also the conjugate relations
ί_ _z = 0, etc. because of our choice of the convention (2.9). Note that (3.3) is more
restrictive than the case of two ordinary complex dimensions, since [ £ + , £ + ] is
not automatically zero.

Given a frame everywhere satisfying (3.3) we expect that an integrability theorem
will imply that to all orders it is equivalent to C1'1. The appropriate modification
of the classical theorem appears in the next section.

Ez

E'+

E-

E'_

(U M
ϋ)

E
E

E

E
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So far we have considered a frame as defining an almost-complex structure on
X. Reducing the structure group still further gives an "almost-superconformal"
structure, as follows. We consider two frames to be equivalent only when they are
related by (3.2) with U preserving the space spanned by E+. That is, U lies in the
supergroup

Gl = {(θ β ) ^ i n v e r t i b l e } (3 4)
A class of frames related by Gx defines a subspace 3) a TX; thus a family of frames
on patches of X related across patch overlaps by G1 defines a distribution Q) and
vice versa.

On C111 with its standard coordinates we introduce the standard almost-
superconformal structure:

Ez = du; E+=D = dθ + θdu. (3.5)

Even though the brackets tAB

c of this frame are not identically zero, still they are
constants. Thus we will call this frame, and any other reduction locally equivalent
to it, flat. Alternately, we say that a flat reduction defines a "superconformal
structure," omitting the prefix "almost." Any set of local coordinates u,θ for
which (3.5) define a superconformal structure will be called "superconformal
coordinates" for that structure. Two different sets of superconformal coordinates
for the same superconformal structure are said to differ by a "superconformal
diffeomorphism," much as two sets of holomorphic coordinates differ by a
holomorphic diffeomorphism [4].

From the previous discussion any flat frame must satisfy the necessary condition
that its tAB

c matches the G x -invariant components of tAB

c. This yields the conditions
(3.3) as well as

tJ = t+J = 0. (3.6)

In addit ion the nondegeneracy condit ion implies that t++

z must be nowhere-
vanishing:

t++

zΦ0. (3.7)

This in turn can be used to show that half of each of the conditions (3.3), (3.6) are
actually redundant, related to the others by Jacobi identities via the definition
(2.14). For example ί+/ = 0 follows when we use

[ £ + , [ £ _ , £ _ ] ] + 2[£_,[£ + , £ _ ] ] = 0 . (3.8)

If a reduction defines a distribution Q) which is everywhere equivalent
to the standard one up to first derivatives, then in particular Q) is holomorphic;
thus we recover the definition of [26] from (3.3) and (3.6). Conversely a complex
supermanifold X with holomorphic distribution <2> yields a family of frames: take
E+ to be a holomorphic section of 3) and Ez some holomorphic vector field
everywhere linearly independent of E+. With this choice (3.6) is clearly satisfied.
It remains to be shown, however, that our definition agrees with the supergravity
definition. In particular the latter approach makes extensive use of connections,
curvature, and so on, none of which have yet appeared.
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B. Comparison to 2d Supergravity. Before discussing supergravity per se, we note
that an almost-superconformal structure can always be further reduced from the
group G1 (see (3.4)) to the smaller group

j (3.9)

by virtue of the nondegeneracy condition (3.7). That is, since t+ +

z is nonvanishing
we can always rescale Ez to ensure that

ί + / = 2. (3.10)

G is then the residual group of transformations preserving the "gauge
condition" (3.10). Since the rescaling was canonical, the new G-structure contains
no more information than the old G-structure. We will call either one an almost
superconformal structure.

There is another gauge-fixing condition one can always impose without any
additional choices. Consider the condition

2 ί + _ ~ + ί + +

 + = 0 . (3.11)

(We will motivate this condition in a moment.) Given a frame not satisfying (3.11)
we can always uniquely obtain one which does by a G transformation of the form

Γ\
4. Given a frame which does satisfy it we get other such frames only when0 1

we apply transformations of the form

0 ew + il

where d+ is E+ regarded as a differential operator. The transformations (3.12) are
readily seen to be the 1/(1) and super-Weyl transformations studied in [9]. Thus
it seems likely that the usual supergravity approach to SRS will be just a partially
gauge-fixed version of the discussion in the previous subsection. To verify this
expectation we will now discuss those torsion constraints in [8,9] which have not
yet appeared in (3.3), (3.6), (3.10), (3.11).

Recall that in the supergravity approach one augments a choice of frame EA

by an additional choice, that of a (/(l)-structure with a connection. Thus we
suppose that EA agree across patch boundaries not just up to transformations of
the form (3.12), but in fact up to its 1/(1) subgroup, and we introduce a connection
1-form φA with appropriate transformations. (A different frame in the same
superconformal class will in general define a different connection, just as two
conformal metrics on a Riemann surface define different connections Vz.) We then
define the torsion and curvature by

Here M is the generator of (7(1); it equals + i on tensors with one upper z index
and so on. A convenient choice of torsion constraints then
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Tab

c=Txβ>=T+J=T.J = 0; Γ + +

z = - 2 , (3.13)

together with the conjugate conditions.

To compare (3.13) to our constraints, we first note that from the definitions

tAB

c=-TAB

c + 2φ[AMB]

c.

Thus of the constraints (3.13), some do not involve the connection at all, namely
0 = t+ + ~ = ί+ _z = ί_ J = t+ + z = 2ί+ _ ~ + £ + +

 + = 0 and their conjugates. Each
of these conditions has already appeared, either as a genuine integrability condition
(Eqs. (3.3), (3.6)) or as a gauge choice (Eqs. (3.10), (3.11)). The other two conditions

Γ z / = 7 V +

 + = 0 , (3.14)

can simply be solved for φz and φ + , respectively. They serve the same role as the
usual no-torsion condition ΎJ of Riemannian geometry: given a reduction all the
way down to SO(2) one obtains a unique connection by imposing (3.14).

Thus one can recover the full torsion constraints and the residual symmetry
group of 2d supergravity from the superconformal approach. Conversely all of the
conditions in (3.3), (3.6) not yet mentioned follow from (3.13) via the Jacobi identities.
The present approach makes it clear, however, that not all of the torsion constraints
are on an equal footing. The integrability constraints (3.3), (3.6), and (3.7) will prove
to be essential in the construction of an analog of the Cauchy-Riemann operator.
The others are inessential (or conventional [28]), in that they fix things which
don't need to be fixed in order to define string actions.

As mentioned, some of (3.3), (3.6) are redundant. Furthermore, if one has a
reduction not satisfying these conditions it seems to be possible to modify it in a
standard way so that it does [29]. This fact may be a consequence of the rigidity
property discussed in Sect. 6.

There are sometimes reasons to prefer the superconformal approach over
supergravity. In the latter approach one reduces all the way to ί/(l), choosing a
metric EZ®EZ + E+®E~, only to write down conformally invariant actions.
Similarly one obtains a connection, which however does not figure in the action.
On the other hand, the entirely analytic approach of [4] is not always the most
convenient either. Sometimes it is easier to deal not will holomorphic families of
surfaces, bundles, and so on, but rather with equivalent families of frames,
connections, etc. on fixed smooth spaces. The present approach interpolates
between these two.

Whether we begin with (3.3), (3.6) or with (3.13), the conditions we arrive at
are necessary conditions for the flatness of an almost-superconformal structure.
To see that a reduction which is everywhere equivalent to the standard reduction
(3.5) to first order is flat, or equivalent to (3.5) to all orders, one needs
another integrability theorem. One can prove such a result by first passing to a
Wess-Zumino gauge [9], but in the next section we give a proof directly from the
integrability conditions. One reason for doing this is that for complex super-
manifolds the proof given here generalizes easily to any number of dimensions.
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4. Complex and Conformal Integrability

We have already seen that the torsion constraints (3.3) and (3.6) are necessary
conditions for the integrability of the complex and superconformal structures,
respectively, i.e. for the existence of local complex or superconformal coordinates.
In this section we turn to the task of proving the converse: the conditions (3.3)
and (3.6) are sufficient to guarantee the integrability of the complex and super-
conformal structures. This result involves the super extension of the Frobenius
theorem, with a few modifications of the classical proof. The follwing discussion
of integrability roughly follows the approach in [30].5

Integrability is a local question. Once we have covered X by patches with
holomorphic coordinates in each patch, it follows by definition that across patches
our coordinates will be related by holomorphic diffeomorphisms of C1'1, since the
complex structure itself is globally defined. Similarly a superconformal structure
will give an atlas of coordinate charts related by superconformal diffeomorphisms.
On each patch we can take X to be split; moreover any parametrized family of X
is locally a cartesian product. Thus without loss of generality we will work on a
neighborhood Ό a R2'2, or more precisely the product Z x U of U with some
parameter space. We will usually suppress Z from the notation. A neighborhood
U is of the form (U,s#(U)® Λ (R2)), where ί / c l is an ordinary open set and

are the smooth ordinary functions on U.

A Complex Integrability. We will work in stages, first discussing complex integr-
ability. Specifically, suppose that {EZ,E+} satisfy the complex torsion constraints
(3.3), i.e. the commutators [ £ z , £ + ] and [ £ + , £ + ] don't contain any E- or E_
pieces. {EZ,E+} therefore are said to define an integrable distribution Γ in the
complexified tangent space of X. We will show that this implies the existence of
coordinates u, θ such that d/du, d/dθ span Γ.

The first step in the proof is to show that there exist complex vectors Y, Ψ
(generically called Y{1)) spanning Γ, such that [7 ( J ), 7 ( J )] = 0. Let P be a point in
U and v a complex coordinate centered at P. We can then pick complex coordinates
{v1} = {v,v,η,ή] on Ό such that at the point P,Γ is spanned by {dV9dη}. This
statement means that the given vectors E+,EZ take the form

Ez = adv + βdη, E+=adυ + bdη, (4.1)

when we set v and η to zero, a and b are nonzero constants. Equation (4.1) can
always be arranged by a linear transformation on the coordinates v1.

The coordinates v,η define a map c from U to C1'1. Furthermore, near v = 0,
c^ takes the subspace 7" isomorphically to T 1 ' 0 ^ 1 ' 1 ) , since (4.1) remains invertible
even when v,η are not zero. Let I = c^\Γ, the restriction of c^ to Γ on a
neighborhood U' czύ where it is invertible. Then on U' one can define

Y = Γ1(dv); Ψ=ΓHdη) (4-2)

It is then easy to check that

Another discussion of integrability appears in [31]
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o. (4.3)

The condition for complex integrability says that [ Y(/), Y(J)] itself lies in Γ; therefore

since / is one-to-one, we conclude that

[r ( / ) ,y ( J ) ] = o. (4.4)

We have thus constructed a commuting set of vector fields which span Γ.
The existence of vectors Y(I) satisfying (4.4) will allow us to define the desired

complex coordinates by a standard procedure. However, first we must check that
a single vector field can be integrated to provided a flow, i.e. given a vector Y on
R212 (say), we want to find a family of maps A(y):R2l2-+R2{2 such that

ψ = YίΛ(y)l Λ(0) = identity. (4.5)

In the case where Y is an even vector, we show integrability order by order. Write

A(v*;y) = (Ztf y), Ξtf y)) and Y'tf y) = (Y\Y\ Y\Vn). If we have not a single
vector field but a family of them with / — 2 odd parameters ζ\ we simply lump the
ζι with η, ή and consider flows on R2|/ with most of the components of Y1 equal to
zero. To accommodate this case we therefore consider any number of ηι and Ξ\
Expanding (4.5) in the rf gives 2ι coupled first-order differential equations, which
we can interpret as defining the flow of a single ordinary vector field in a space
of dimension 2ι. This problem has a unique solution by a classical theorem of
differential geometry [30].

The case of an odd vector field Ψis a bit tricker. Indeed, a necessary condition
for a solution of

dA
— =ΨlA(ψ) ] (4.6)

to exist (for odd φ) is clearly [Ψ,Ψ]=0 (since (d/dφ)2 = 0). To see that this is also
a sufficient condition, again let Z, Ξ be the even and odd components of the map
A. Then Eq. (4.6) becomes

α = ΨV(Z, Ξ); a = Ψ\Z, Ξ\ (4.7)

where α, a are defined by

Z(v, η;ψ) = υ + ψφ, η), Ξ(υ, η;ψ) = η + φa(υ, η).

To show that these equations have a solution, expand (4.7) in powers of φ and
solve for a, α, ignoring the terms proportional to φ on the right-hand side. Take
the solution thus obtained and put it back into the φ terms. We immediately see
that they vanish, and therefore that the solution is consistent, if and only if
[ !P,!P]=0.

Application of this result now provides us with a definition of the desired
complex coordinates. Define the families of diffeomorphisms A{i):U x R->R2'2,
i = l , 2 b y
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(4.8)

and similarly define diffeomorphisms B{ί),B{2), parametrized by odd parameters
# \ # 2 , by the equation

dBw ^ 1 m ψ (4 9)Re ψ i m ψ
dθ1 ~ ' dθ2 ~

The vectors Y,Ψ are the ones constructed in (4.2); in particular [f, f ] = 0 .
Geometrically M 1 , ^ 2 , ^ 1 and θ 2 are the "time" of flow along the integral curves of
the respective vector fields. Now define χ:R2|2-> 0 by

/ defines new coordinates for U by

{yM}=(M1,M2,θ1,θ2) = χ-1. (4.10)

Let Ϋm denote the real vector QReY9-%lmY9%ReΨ9-%ImΨ). Then the
relation (4.4) trivially implies the relation [7 ( M ), Y(ΛΓ)] = 0. Further, it can easily be
checked that the vectors χ*(δ/dyM) are nondegenerate near P. These two conditions
are sufficient to ensure that the coordinates yM are well defined; it is also easy to
see that Ϋm = iS/dyM.

To sum up, we have shown that there exist coordinates u — u1 -f iu2, θ = θ1 + iθ2

such that
Y = du, Ψ=dθ (4.11)

span the distribution Γ. The frame {EZ,E+} then has an expansion

Ez = bdu + βδθ, E+=γdu + cdθ9 (4.12)

where b, c are nonvanishing near P. Note that in general b, β, c, y will not themselves
be holomorphic functions. The point is that there exists a local GL(1|1,C)
transformation of EA taking (4.12) to an equivalent frame (4.11).

B. Conformal Integrability. Once we have a complex structure, we can go one step
further and inquire as to whether the full torsion constraints (3.3), (3.6), (3.7) are
sufficient to provide a superconformal structure. The important constraints at this
stage are t+ J = t+J = 0, i.e.

[ £ + , £ _ ] = ε £ + + έ £ _ . (4.13)

(Recall that these torsion constraints, combined with the complex structure
constraints (3.3), imply the other conformal constraint in (3.6) via the Jacobi identity
(3.8).)

The proof of the integrability of such an almost-superconformal structure
follows the same basic strategy as that used to prove complex integrability. As
before, work on a coordinate neighborhood U, where E+ takes the form in (4.12)
and £_ is given by the complex conjugate equation. Once again we work near a
point Pe U; we take P to have coordinate u = 0. Setting u = θ = 0, E+ has the form

E+=yodu + code = f+9 (4.14)
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where c0, y0 are some constants. The reduced vector field /+ extends to a "constant"
vector field on the whole open set t/, and if we let /_ be its complex conjugate
we get [/+,/-] = 0. Let E+ = κdu + kf+ define functions k and K on U. For an
arbitrary vector ocdu + af+ we define a projection 77:

77(αδu + α / + ) Ξ α / + , (4.15)

together with the c.c. relation. If we define Q) to be the subspace of the tangent
space spanned by E+, then clearly

π = J7|s:®->span{/+} (4.16)

is an isomorphism in some neighborhood U' c U. Now let F + = π~1(f+). Then
F+ takes the form

F+=f++δdu; (4.17)

it satisfies the same nondegeneracy condition (3.7) as E+. It is once again easy to
check that

π [ F + , F _ ] = [ / + , / _ ] = 0 , (4.18)

where F_ is the conjugate of F+. However, the fact that F+ lies in Q) together
with the constraint (4.13) implies

[F+,F^ = φF+ + φF_. (4.19)

Since π is one-to-one on Q)®Q), (4.18) implies

[ F + , F _ ] = 0 . (4.20)

From this last equation we see that F+ (respectively F_) varies analytically
(anti-analytically); indeed, since F+, F_ look like F + = mdθ + μdu, F_ = fhdρ + μdϋ,
the conditions (4.20) and (3.7) yield the statement that m,μ are analytic. To put
the frame in the canonical form (3.5), we now just follow the argument sketched
in [6]. We rewrite F+ as F+ = n(u,θ)(dθ + v(u,θ)du), and then introduce new
coordinates θ, ur(u, θ) so that dθ + v(u, θ)du = dθ 4- Θ5M/. It is easily checked that it
is always possible to find such a u\ and thus we have conformal integrability.

We conclude by stating the general result on integrability:

Result. Given a frame EA satisfying the torsion constraints (3.3) (the complex
torsion constraints), there exist complex coordinates M, θ near any point of X such
that da,dρ everywhere span the same space as EZ,E+. Thus the almost-complex
structure specified by EA is locally equivalent to the standard complex structure
on C1'1. Furthermore, if the frame EA also satisfies the torsion constraints (3.5),
(3.7) (the superconformal torsion constraints), then we can choose new holomorphic
coordinates u,θ such that d/dθ + θ(d/du) spans the same space Q) as E+. In this
case the almost-superconformal structure specified by EA (see (3.4)) is locally
equivalent to the standard flat superconformal structure on C1'1.

5. An Important Sequence

A key feature of ordinary Riemann surfaces is the fact that the holomorphic tangent
3~ has just one complex dimension. This observation enables us to write down a
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differential operator with values in a line bundle, namely the dual ω = 3~* to 2Γ.
We simply choose any nonvanishing local section ez, and define

d = ez®dz, (5.1)

where dz is ez regarded as a complex differential operator. Since 3Γ is one-
dimensional it doesn't matter which section ez we choose.

For a complex manifold of dimension greater than one, (5.1) has no immediate
analog. If X is equipped with a one-dimensional distribution Q), then we can follow
this same recipe to get a differential operator with values in the dual ^ * . Such a
d, however, lacks two other key features of (5.1), features which are central to its
usefulness:

• The operator d takes its values in a bundle ω which can be regarded as a
square root of the bundle of volume forms: vol ^ ω (x) ώ. Thus it can be used
to define a quadratic functional on the set of functions on X, the "matter
action"

• The operator d forms a short exact sequence:

O-^ci^Λβ0'1-^. (5.2)

Here Θ are the local holomorphic functions, si are the smooth ones, and
Ω0Λ are smooth (0, l)-forms. The sequence (5.2) is called a "resolution of Θ"
and it forms the basis of the theory of DET line bundles.

Unfortunately neither of the above properties is generally valid in greater than
one dimension. In particular, the half-volume forms are in general wedged from
many covectors, not the dual of a single one. Nevertheless, in this section we will
see that matters improve when we pass to SRS. We will recover both of the above
properties; in this sense SRS behave as if they had just one dimension, even though
the nonintegrability of 2) prevents us from finding a single good coordinate η with
D = d/dη.

To examine the first property, we note that volume forms are not simply top
wedge products in the super category. Indeed, since dθidθj = dθjdθ\ wedge products
never stop. Instead, define [17]

vol = DET(T*X),

the line bundle whose transition functions are the Berezin determinants of the
transition functions of T*X. A section of vol can be integrated over a compact
SRS to give a number [32]. In addition, a section of vol over a family of compact
SRS can be integrated to give a function on the parameter space.

In the holomorphic case we can write vol = ώ ® ώ, where ώ = D E T ( Γ * ( 1 ' 0 ) ^ )
is a holomorphic line bundle. The key observation needed to establish the first
point above is that for SRS one has

ώ ^ ^ * . (5.3)



Geometry of Super Riemann Surfaces 627

To prove this choose any local set of superconformal coordinates u, θ, and set up
the correspondence [dudθJ[<-+D*. (D* is the section of ^ * dual to D = dθ + θdu.) If
any other choice u', θ' results in the same correspondence, then we will have shown
that (5.3) is canonical. But u\ θ' have the property that D is proportional to
Of — dθ> + θ'du>. Reexpressing D in terms of u\ θ' we get [4]

Du' = θ'DΘ'. (5.4)

From this one shows that

We have taken D of (5.4) for the last step and abbreviated du to d.
Thus [du'dθ'~] = (Dθ')[dudθ'], while D' = (DΘ')~1D. This establishes the isomor-

phism (5.3), and with it the existence of an operator d on a SRS taking values in
the half-volume forms. Tn local superconformal coordinates d simply looks like
[dudθ~\®D [4]. In arbitrary holomorphic coordinates we can instead write [14]

/z / (5.5)

analogously to (5.1). Here EA is a reduction to G (see (3.9)). Equation (5.5) is clearly
coordinate-invariant. It is also G-invariant, since the Berezin determinant of the
graded matrix in (3.9) is B2. f P 1 = B. The fact that inverses appear in Berezin
determinants is the key difference between 2 and 111 dimensions. It is this fact
which lets a volume form transform as the dual to a vector field once a distribution
3) has been chosen.

We can now just verify the second point above. Once again, on an ordinary
manifold of dimension greater than one the prospects for such a result appear dim.
If a function is annihilated by one directional derivative, this usually says nothing
about its other derivatives, and so it seems hard for (5.2) to be exact at s$. On a
supermanifold, however, a single vector field can be nonintegrable, as is D. Thus
locally imposing Df = 0 also imposes D(Df) = df = 0, so that being in the kernel
of d indeed ensures that / is holomorphic. Let J / 0 ' 1 denote the smooth sections
of^ώ, i.e. J / 0 ' 1 = ώ®sd. It is easy to show that every differential in srf0Λ

is d of something, and so we get a short exact sequence

O-^CL^ΛJ/ 0 ' 1-^, (5.6)

the fundamental sequence of a SRS. Equation (5.6) plays the same role as the
Dolbeault sequence on ordinary Riemann surfaces.

Before closing this section we now give another characterization of d. Another
intrinsically defined differential operator is the Dolbeault operator, d'.j/->ΩOtl,
where Ωp'q are the smooth (p,q)-ϊorms. d can be defined using only the complex
structure, not the full superconformal structure. However, Ω0Λ is two-dimensional,
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and d defines a sequence with more than three entries,

We can truncate this sequence, however, if we replace Ω0Λ by the sheaf of closed
local (0, l)-forms iT 0 ' 1,

O-^Θcz+JA&O'^Q. (5.7)

So far this is nothing new. If X has a superconformal structure, however, we can
canonically identify closed antiholomorphic forms with arbitrary smooth sections
of the line bundle ώ:

J0Λ^^0Λ. (5.8)

Note that by itself if0'1 is not the sheaf of sections of any bundle; its sections
satisfy a differential equation. To verify (5.8), choose local superconformal
coordinates and identify β[dϋdθ~] with (dΰ — dθ-θ)Dβ -f dθβ, where β is any
function. As before one shows that this identification factors through a change of
coordinates.

We can identify d with Sunder (5.8). Thus we again recover the fundamental
sequence (5.6), from (5.7). A theorem about resolutions then implies that the
cohomology of $ can be computed from the kernel and cokernel of d [1]. Moreover,
one can couple holomorphic line bundles to the sequence (5.6), leading into a
theory of δ coupled to families of bundles as well as families of SRS. This theory
let us define the action for supersymmetric first-order systems and the bundles
where the resulting partition functions live. As in the classical case, line bundles
are partially classified by an integer invariant, the Chern number. All bundles of
vanishing Chern number can be represented by connections on the trivial bundle,
but in contrast to the classical case, these connections are not necessarily flat [33].

6. Moduli of SRS

A fundamental result in Riemann surface theory states that the moduli space Ji
of curves is itself a complex space [34]. We can think of this result in two ways.
From a complex analytic point of view we can first define the notion of a
holomorphic family of Riemann surfaces, roughly a projection

π\W^Z (6.1)

whose fibers are all Riemann surfaces.
Given such a family we can ask whether it contains "every" Riemann surface,

and if so whether it contains each one "only once." More precisely, one can first
ask a local question: near each point Q of Z does moving in Z constitute the most
general deformation of the Riemann surface Xo = n~1(Q)Ί To answer the question
one defines the "Kodaira-Spencer map" associated to π at Q. This map takes
the space TQZ of tangents to Z to an abstract space of deformations of Xo.
If it is everywhere an isomorphism, then locally π:W-+Z describes a general
deformation with no redundant parameters.
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In general no good family (6.1) of deformations of a complex manifold will
exist. For the case of Riemann surfaces, however, such a family exists and is
moreover universal, in the sense that any other family can be built from it. The
parameter space Z of their universal family is called the moduli space of Riemann
surfaces, and is denoted by Jί. It is by construction a complex space. An analysis
of SRS along these lines has been carried out in [5,6]; again one finds a universal
holomorphic family of SRS with parameter space the supermoduli space Jί.

A. "Classical" Approach. There is a more classical approach to the moduli
problem, however, one which is more in line with the differential-geometric
viewpoint of this paper. This approach sometimes has practical advantages over
the more abstract Kodaira-Spencer treatment, and in any case it seems more
familiar to string theorists. Accordingly in this section we will briefly describe some
basic facts about Jί in the present language. In particular we will discuss the
related space Jίc of complex l|l-dimensional curves, and its relation to M.

To begin, we can think of defining ordinary moduli space Jί as simply the
collection of all Riemann surfaces. More precisely we call two Riemann surfaces
equivalent if there exists a holomorphic diffeomorphism between them [34]. Jί
then becomes the space of all inequivalent complex structures J on a fixed 2-surface
(see Sect. 1), with a topology induced from the function space of all J. We can at
once build a family of Riemann surfaces over Jί, and this time the family includes
every surface exactly once by definition. What is now not clear is whether the family
thus obtained is holomorphic, nor even whether Jί is a complex space.

To show that Jί is complex one can equip it with an almost-complex structure,
show that the latter is integrable, and invoke the integrability theorem. Similarly
one can define the space Mc of complex curves as the space of integrable complex
structures J on a fixed surface Xr of 212 real dimensions, equip it with a natural
almost-complex structure, and verify integrability, as done in [27]. The result of
Sect. 4A, suitably generalized to several dimensions, then shows that Mc is a
complex space. To turn this into a result about the moduli space M of SRS, we
will now show that M is embedded in Mc.

Jίc consists of integrable reductions of Xr to GL(1|1,C); Jί consists of integrable
reductions to the smaller subgroup Gx of upper-triangular matrices. Since the
former are a special case of the latter, we get a natural "forgetful" map
φ\M-*Jlc. However, φ need be neither one-to-one nor onto. Some complex
manifolds may admit no holomorphic distribution Θ as in Sect. 3; others could
in principle admit many different choices. What we will see is that the former
possibility is realized, while the latter is not: locally, at least, superconformal
structures are rigid in their complex class.

We will work near a given SRS X and examine the possible deformations of
its complex structure J. Recall that evey supermanifold contains an embedded
copy of its body as the "locus where the nilpotents are zero" (see (2.7)). In the case
of Jϊ, the body is spinmoduli space Jίspin and its image is called the "split locus"
for reasons mentioned at the beginning of Sect. 3: each SRS described by a point
of ^ s p i n is in fact split. For simplicity we will initially take X to be on the split
locus, generalizing later to all of Jί.
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Choose superconformal coordinates for X, so that locally J takes the form6 [27]

j = i(Ez ® Ez + E+ ® E +) + c.c

= i[{du - dθ-θ)®δu + dθ®{δθ + 03J] + c.c.

= i[du®du + dθ®dΘ~\ + C.C..

J is well defined across patch boundaries, it satisfies J 2 = — 1 and it defines
T*(1'0)X = span{dw, dθ}, which is integrable. Let J' = J + iΔ be a nearby complex
structure. Then we have

so the components of Δ are

0 c.c.\

JU y e I (6-2)

Je" kg" J

Most of the information in Δ does not represent true deformations in Jίc. For
example, the Lie derivative of J along any real vector field Y describes a Δ
corresponding to a diίfeomorphism, and hence a trivial change in Mc. In the case
of ordinary Riemann surfaces we have

77 0 /'

j ^ = 2daY
u. (6.3)

What is left when we delete all the trivial changes (6.3)? The obstruction to solving
(6.3) for Y given an arbitrary j u

u is the Dolbeault group Hξ1Λ(X). By the
Dolbeault theorem, this is the same as H1(ω*\ where ω* is the holomorphic
tangent to X. By Serre duality, the latter is in turn dual to H°(ω2), and we recover
the familiar result that the cotangent to M is the space of quadratic differentials [34].

In the super case things are almost as straightforward at the split locus. At
first it seems as though the four real components of a vector field Y are insufficient
to eliminate most of the eight degrees of freedom in (6.2). We still have not imposed
the integrability conditions (3.3), however. Solve to first order for the + ί
eigenvectors ηz,η+ of J'. Expand dηz,dη+ in terms of ηz,η+ and their conjugates
and set the terms with η\ η ~ to zero to get the four equations,7

0,0 = 0; d,j = dj;
dsk = 0; d,y = dύk. K *

Now we can subject J to a diffeomorphism as before, finding

6 This J is actually the dual to the object considered earlier; it maps T*X to itself
7 Since the exterior derivative is dual to the Lie bracket these equations are just a restatement of (3.3)
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j β " = 2δay«; r/ = 2<3aF
β; βs" = 2dsY"; k/ = 23sY

e. (6.5)

Note that a holomorphic vector field Y trivially leaves J unchanged. Also (6.5)
automatically satisfy (6.4), as they must since they don't affect the complex structure
at all.

Now we can ask when a perturbation is both legitimate (satisfies (6.4)) and
nontrivial (not of the form (6.5)). That is, given j,γ9β,k we ask how much of the
information can be removed by adding something of the form (6.5). Expanding j
as j = 7\ + θj2 + θj3 + \θ\2j4 etc., we find that the obstruction to removing j l Q

u is
again Hξ1Λ(X). For both j 2 ύ

θ and yιa

θ the obstruction is H$1/2Λ{X); for γ2a it
is H®Λ(X). All told, using the Riemann-Roch theorem we find 4g - 3 independent
even deformations and 4g — 4 odd ones. The dimension of Mc is thus [35]
4g-3\4g-4.

Since supermoduli space is known to have dimension 3g — 3\2g — 2, we at
once see that certain deformations of X admit no superconformal structure.
However, one can easily show that every nontrivial deformation of a SRS is still
nontrivial when regarded as a deformation of a complex curve: simply take the
variation of such a family (e.g. the one described in [16]) and show that it cannot
be written in the form (6.5). Thus we have that M is embedded in Mc, at least
near the split locus.

B. Analytic Treatment. To get a more general result we should look for a proof
which does not rely on special coordinate systems. For this we will employ the
analytic approach mentioned at the beginning of this section.

A Riemann surface can be thought of as patches of C with transition functions
gΛβ respecting the holomorphic structure. To deform the surface we can deform
each patching function, replacing it by a new one, g'Λβ again respecting the complex
structure of C. The new and old are said to differ by a local automorphism of the
standard complex structure on C. The generators of such automorphisms are
clearly just the holomorphic vector fields, local sections of the sheaf 3Γ. Requiring
that g'aβ continue to satisfy the cocycle condition, and that it not be related to gaβ

by a mere change of local trivializations, leads by a standard argument to the
identification8

Since &~ ^ ω* for a Riemann surface, we again recover the result about quadratic
differentials from Serre duality.

For complex 111 manifolds the situation is much the same. Holomorphic vector
fields again generate automorphisms of the complex structure on patch overlaps,
and so we get

For SRS, however, the automorphisms must preserve the full superconformal
structure. The infinitesimal analog of (5.4) says that local automorphisms are

More precisely, ?ΓM = R1
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generated by
aut = {υ = adu + %{Da)D}. (6.6)

We have chosen superconformal coordinates, but in fact aut is intrinsically defined.9

It is clear from (6.6) that we have 3Γ = a u t © ^ , and so

Thus the holomorphic tangent to moduli space everywhere sits naturally in that
of Jic, generalizing the previous subsection. Moreover, at the split locus we have
@ = ω~1/2®Θ, so that H1^) indeed supplies the extra g\2g — 2 dimensions of
Mc missing from Jί.

Since Jί sits holomorphically inside Jϊc while the latter is a complex space
[27], so is Jί. Alternately one can simply construct complex coordinates for Jί
which everywhere respect the natural almost complex structure induced from Jίc\
this is done in [5,16].

7. Conclusion

In this paper we have described some of the foundations of super Riemann surface
theory. Further developments regarding line bundles on SRS will appear in [33].
Much work remains to be done, both in the direction of formal developments of
the tools and techniques of SRS and in the direction of application of these tools
to string theory.

Many challenging questions remains about supermoduli. It is not yet clear
whether Jί is globally split, and if so whether a canonical splitting exists. If not,
M may still admit a holomorphic projection to its body which would permit one
to integrate over the odd coordinates only.

There are also outstanding problems in the application of SRS techniques to
superstring theory. The need for a rigorous derivation of the superstring Polyakov
measure on ordinary moduli space has been reinforced by recent uncertainties
about essential issues such as holomorphic factorization and would also be useful
for the verification of properties like unitarity and fmiteness. Further, non-
perturbative questions for the superstring are even more poorly understood than
for the bosonic string. Possible escapes from perturbation theory are found in the
operator formalism and in generalizations of superconformal quantum field theory.
It is not yet clear that SRS as presently defined are exactly the right arena for
either of these. It may turn out that an elaboration of the geometrical structure is
needed to accommodate the physics of picture-changing operators; such a
modification might well affect the global nature of the stable-curve compactification
oiM [36,37].

There is an emerging picture of the theory of SRS as a rich mathematical
structure with a number of interesting departures from the theory of ordinary
Riemann surfaces. These departures are the source of many remaining interesting
questions about SRS. These include the existence of a suitable super version of

9 One can show that aut is related to the canonical bundle by aut ^ (ώ*)2 [6]
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the Jacobian and its relation to the Picard variety, as well as issues centering on
integration. Line integrals on SRS need to be better understood, and a framework
for integrating the string measure on supermoduli space remains to be given
[38-41].
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