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Abstract. It is shown that for non-vanishing lattice spacing, conventional
infrared power counting conditions are sufficient for convergence of lattice
Feynman integrals with zero-mass propagators, If these conditions are supple-
mented by ultraviolet convergence conditions, the continuum limit of such a
diagram exists and is universal.

1. Introduction

In a recent paper [1] we have proposed a convergence theorem, which states
existence of the continuum limit for a wide class of Feynman integrals with a lattice
cutoff if certain ultraviolet (UV) power counting conditions are satisfied. What is
counted are lattice divergence degrees in Zimmermann subspaces, i.e. in affine
subspaces of the integration momenta. To avoid infrared (IR) singularities, we had
assumed all propagators to be massive. In the present article we extend the
considerations to integrals containing zero-mass propagators. While the lattice
provides a UV-cutoff, IR-singularities are expected to be quite the same as for
continuum diagrams. As will be shown, IR-power counting conditions similar as
for continuum diagrams [2-5] are sufficient to guarantee the convergence of lattice
Feynman integrals, at least for non-vanishing lattice spacing. If these conditions
are supplemented by the UV-power counting conditions of [1], the continuum
limit of the Feynman integral exists and coincides with the formal limit, i.e. it is
given by the integral resulting from the a -> 0-limit in the integrand.

This article is organized as follows. At first, in Sect. 2, the notion of an IR-degree
is introduced in a form which is similar to the definition of a UV-degree in [1].
The power counting theorem for Feynman integrals with zero-mass propagators
is formulated in Sect. 3. As in the massive case, the denominator of a Feynman
integrand can easily be treated, whereas the numerator must be estimated in such
a way that UV- as well as IR-power counting conditions are taken into account
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(Sect. 5), and such that the corresponding estimates have a well defined cutoff
behavior. This behavior can be determined using the auxiliary theorem stated in
Sect. 4. Applying the auxiliary theorem and using the estimate of the numerator,
the proof of the power counting theorem is given in Sect. 6. Finally, the last two
sections are devoted to the proof of the auxiliary theorem.

2. IR-Degrees on the Lattice

Throughout this paper we will use the notations, definitions and statements of [1],
especially the function classes ^ m , ^ and ^c

m^c and # \ We shall use multi-indices
to simplify the notation. Set N o = Nu{0} = {0,1,2,...}. For /?eNo,weR" define

We now define an IR-degree for functions in ^, depending on variables u ("internal"
momenta), v9 q ("external" momenta) and the lattice spacing a.

Definition 2.1. 1. Let meZ and V(u, v,q;a)e^m of the form

V(u, v, q; a) = —F(ua, va, qa). (2-1)

For given q let su be the largest non-negative integer such that

—F(ua,va,qa)\ Ξ O i n l a n d a > 0, for all CGNS

0, \C\<SU. (2-2)
duc Ju = 0

Then the IR-degree of V with respect to u is defined by

V = su. (2-3)

2. Let VeΉ, V = £ Vi9 Vie
c€m. for some mf-eZ, mi φ mk for i Φ k. Then we define

iel

dqpύlυ V = min degr^ Vt. (2-4)
iel

An equivalent definition is the following. For VeΉ, su = degrιi|y V if and only
if

+ 1\ A->0, (2-5)

where B(u, v9 q;a)ψθ in u, v, a, for fixed q (B is a polynomial in u and C00 in v).
It is important to note that this IR-degree may depend on the external momenta

q. Following common use, we write all momentum variables which are not fixed
as subscript in degr, e.g. u,v in (2-3). If dcF(ua,va,qa)/duc\u = 0 = 0 in v and a for
all CGNQ, we set d e g r ^ F ^ + oo. If V(u,v,q;a)φO in u,v9a and independent of
u, then degr^ 7 = 0.

From the definition of an IR-degree, we easily get

Lemma 2.1. Let V1,...,Vpe
(£. Then

1. d e g r ^ f K i = min degr φ Vi9 (2-6)
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2. d e g r ^ Π F ^ f degrφ F ί ; (2-7)
i = 1 i = l

3. degr;),—jV^.degrύU.V—\l\, (2-8)
' ou '

dι

4. degrΊ —rK^degr Ί V. (2-9)

Next, we consider functions in the classes ^c

m and Ψ, i.e. functions in ^m and
^ whose continuum limits exist. Every Ve^c

m has an expansion for small lattice
spacing a of the form

V(u9 v9 q; a) = —F(ua9 υa9 qa) = P{u9 υ9 q) + R(u9 υ9 q; a),

where the continuum limit P of V is a homogeneous polynomial in u, υ, q and R
vanishes for a = 0. In general,

degr^P^degr^K, (2-10a)

where the IR-degree of a polynomial is defined in Appendix A. In particular, with
respect to all momentum variables u, v and q

άegruvq P = d e g r ^ V if P (w, v, q) ψ 0. (2-1 Ob)

In Sect. 5 we will state a general estimate on the remainder R which respects the
IR- and UV-properties of the function V and allows to determine the cutoff behavior
of Feynman integrals having R as the numerator of the integrand, by application
of an auxiliary theorem stated in Sect. 4, which is a generalization of the auxiliary
power counting theorem in [1] to diagrams with massless propagators.

The integrand of a Feynman integral on the lattice belongs to the function
class ^ [1]. For F e J F an IR-degree is defined as follows.

Definition 2.2. Let FeϊF,

EV \ V(u9v9q;μ9a)
F(u,υ9q,μ,a) = — -. (2-11)

C(u9 v, q; μ, a)

Then the IR-degree of F with respect to u is defined by

degru >FΞΞdegr^K- degree. (2-12)

Recall that the denominator in (2-11) is of the form

C - f l ^ + rf). μ?S0, ,2-na)

where the four-vectors lt Φ 0 are given by

d r w

li(u,v9q)= Σ bikvk+ X cikuk+ Σ dik<lk- (2-13b)
fc=l k = l fc=l
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The IR-degree of the denominator is already determined by the IR-degree of its
continuum limit:

w

0 if μf>0 or {bn,...,bid)Φ0 or £ dtt
fc=l

2 if μf=O and (fell,...,6w) = 0 and £

Note that

and for every

r ^ lim F(u, v, q; μ, a) ̂  degrw> F(μ, v9 q; μ, a). (2-15)

Finally, as a corollary of Lemma 2.1, we state

Lemma 2.2. LetF,Fl9...,Fpe^. Then

1. d e g r ^ f F ^ min degrφF / ? (2-16)
i l i l

2. degr^ΠF^fdegr^F,, (2-17)

3 ^ ^ 1 ? ^ ^ d e g r ^ f - I Ί , (2-18)

4. degr^^-j-F^degr^F. (2-19)

3. The Power Counting Theorem for Feynman Integrals with Massless Propagators

We consider

ϊ(q;μ,a)= f d*kv d*kmF{Kq,μ,a\ (3-1)
— π/a

where

fc,« μ, α) = K(fc, q; μ, a)/C(k, q;

(vanishing masses are allowed). Furthermore, let if be a natural set of four-
momenta containing lt ,...,/„ [1]. At first, we repeat the definition of UV-divergence
degrees [1] and then define IR-divergence degrees.

1. Let
u 1 = l i ι , . . . , u d = lid, v1 = ljι9...9 vm_d = ljm_d (3-2)
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be an arbitrary basis of ££ with respect to fc1, 1 ̂ d^m. By fixing vl9...9vm-d> one
defines a class H of affine subspaces of the space of integration m o m e n t a fc.
(u) = (ul9...,ud) is called the parametr izat ion of //, and (v) = (vl9...,vd) are
the complementary parameters of H. As in [1] , we define for ~" s ~

ΐ(q\ μ, a) = Ad + degr t ί F(k(u9 υ9 q)9 q; μ, a). (3-3)

The set of all such //, for all bases (3-2), is denoted by J ^ u γ (this is the set ̂  of
Zimmermann subspaces of [1]. Here we write Jf7 u v to distinguish this set of
subspaces from the set JfIR defined below).
2. Let Jί = {lilμt = 0; i = 1,..., n} ^ <£, For every basis (3-2) such that

ί,,...,ί,eJ (3-4)

and d §: 1, we define a subspace H as above. The set of all these H is denoted by
JfIR. Obviously, JfIR ^ J*fuv. For HeJ^lR we define the IR-divergence degree

degr^ /(̂ r; μ, a) = 4d + degr^ F(k(u, v, q\ q; μ, a). (3-5)

We now state the power counting theorem which applies to lattice Feynman
integrals with massless propagators.

Theorem 1. Power Counting Theorem. Consider the integral

I(q;μ,a)= j d4k1-"d4'kmF(k,q;μ,a\ (3-1)
— π/a

and suppose the integrand is of the form

V(k9q;μ9a)
F(k9q;μ9a) =

where VeΨ is (2π/a)-periodic in every component of fc,

Suppose, furthermore, the line momenta Zf are contained in a natural set 5£ of momenta
and assume that for every HeJ^lR

feμ,β)>0. (3-6)

Then the integral (3-1) is absolutely convergent for every a>0. If in addition, for
every //eJf u v we have

teμ,α)<0, (3-7)

the continuum limit of I(q',μ,a) exists absolutely and is given by

lhnT(q;μ,a)= f d^kγ^d"kj^% (3-8)
o E(k9q,μ)

1 cp. [1] or Sect. 4 below. u1,...,ud,v1,...,vm^deJέ?, and the Jacobian satisfies det[d(w,v)/dk~]
There is at least one basis of i f with respect to k
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where

P(k9q9μ) = lim V(k,q;μ9a)9
α->0

E(k9 q9 μ) = lim C(fc, q; μ9 a).
α->0

Note that vanishing masses are allowed, and that convergence is stated for
given (fixed) external momenta q. Furthermore, the integrand is always assumed
to be periodic. As in the massive case [1], if P ^ 0 , the set if' = {/1?...,/M} contains
a basis of <£ with respect to k (otherwise (3-8) would be UV-divergent). Hence, in
this case it is sufficient to consider if' instead of Sέ'. Note that

degrw lim F(u9 v9 q; μ9 a) ̂  degr^ F(u9 v9 q; μ, a) (3-9)

and
d e g r φ lim F(u9 υ9 q; μ9 a) ̂  d e g r ^ F(μ9 υ9 q; μ9 a). (3-10)

Hence, by (3-6), (3-7) and the power counting theorem of Lowenstein and
Zimmermann [2,3]2, (3-8) is absolutely convergent.

The idea of proof is quite similar to that of the power counting theorem for
Feynman integrals with massive propagators [1]. Again, it will be sufficient to
consider

ϊ(q;μ,a)= "f d*kv-d*km n ^ f (3-11)

where Vs^c

mQ for some m o eZ. Without loss of generality we also assume ^£ to be
of the form {ll9...,lN} for some N^.n, and that kl9...9km belong to if'.

In the first step of the proof, the integration domain of (3-12) is partitioned in
a way depending on the configuration of the line momenta Zf. It is distinguished
between lt in neighborhoods of the poles of propagators and outside of them. A
propagator can be estimated by its continuum limit or some power of the lattice
spacing α, respectively. Again, the numerator causes some technical problems, and
we need an estimation which respects UV- as well as IR-degrees. In the next section
we state an auxiliary theorem which describes the cutoff dependence of generalized
continuum Feynman integrals with zero-mass propagators. Then, in Sect. 5 it is
shown that the numerator of (3-11) admits an estimate such that this auxiliary
theorem applies to the integrals resulting from the partition of (3-11) explained
above.

4 A Power Counting Theorem for Generalized Continuum Feynman
Integrals with Zero-Mass Propagators

To formulate the auxiliary theorem, we will use the notations of the auxiliary power
counting theorem of [1]. For completeness, they will be repeated here.

Or by the auxiliary theorem below
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Let k = (kί9...,km) (loop momenta) and q = (qί,...,qM) (external momenta),
/ c ^ eR4, and let L denote the space of linear mappings /:R4m x R 4 M - + R 4 of the
form

(4-1)

m

K(k)=^aiki; flieR, i = l , . . . , m , (4-2)

M

7 = 1

Elements / 1 ? . . . , l s are called linearly independent with respect to k if their
homogeneous parts in k are linearly independent, {ί^. . j j c j c L i s called a
basis of Jί with respect to k if every / e ^ has a unique representation

(4-4)

where c^eR; i = 1,..., 5 and Q is linear. We define rankfc Jέ = s.

Let if c L be a finite subset

\ Σ A } (4"5a)

where

rank(C ί i 7 ) = m5

( C i l , . . . , C i M ) # 0 for all i = l , . . . , J V , (4-5b)

? # 9 if i # j ,

so that rankk if = m. Let Jί c if. We consider the behavior of the integral

for large λ. Here

Π ? 2 ' , Aί,2^0, π i e N = { l , 2 > . . . } , (4-7)

and PJ means the product over all /t e JΛ Note that vanishing masses are allowed.

The integration runs over all /ceR4m constrained by lf(k, q) ̂  λ2, ί = 1,..., N. The
numerator is of the form

Z(λ,k,q) = mini min | M 0 (/c,q)\'mmλ'Ptl\Ca(k, q)\ \ (4-8)
iel \ jeJi leKi J

where l,Ji,Ki are finite sets, paeNQ = {0,1,2,...}, and Mij9Ca are polynomials.
/ subscripts the set of all £f c ^ 0 (including ^ = 0), where

^ 0 = {/I.e^ | r t = 0}. (4-9)

In the following, a function which is of the form (4-8) will be called a nominator
function.
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Next, we define the sets 2tfuv and f̂IR as in Sect. 3, but instead of (3-4) we
now let lh,...,lide^0 for defining JfIR, and if is given by (4-5). Note that we do
not assume if to be natural here.

We now refine the notion of ordered sequences of Zimmermann subspaces as
defined in [1], Sect. 5.

Definition 4.1. Let
u(1),...,w(r), ι;(1),...,ί;(m"r) (4-10)

be an arbitrary basis of 5£ with respect to k. A sequence Hί,..., Ht of subspaces
in JΊ?UV is called ordered in u with respect to the basis (4-10) if

1. Hί9...9Htis ordered with respect to the basis (4-10), and

2. The parameters of every Ht are contained in (u ( 1 ),..., w(r)).

This notion will be very useful below when we define an "admissible" numerator
Z(λ,k9q). To this end, we first introduce sets °UX and ^ 2 defined as follows.

1. ύll1 is the set of all pairs {H9Sf) such that

a. , 0

b. The complementary parameters of H contain a basis of Sf with respect to k.

(4-12)

2. <%2 is the set of pairs (H, if) such that

a. H e ^ f I R , ^ £ ^ Ό

b. The parameters of H are contained in a basis of y with respect to k.
(4-13)

A set of two maps

«!->Z, (H9Sr)^>δ(H9£η, (4-14a)

and
η (4-14b)

is called a degree set. In connection with the following definition it generalizes the
notion of a UV-set as defined in [1].

We want to state the cutoff dependence of the integral (4-6). We assume that
the numerator Z(λ9k9q) is admissible with respect to a given degree set:

Definition 4.2. Suppose δ(H,^\ p(H,^) is a degree set. A nominator function
Z(λ, k, q) is then called admissible with respect to the degree set, if for every £f ^ ^ 0

there is an iel, so that for every basis (4-10) of i f with respect to fe, where u(1\..., u{r)

is a basis of ^ with respect to k, the following conditions hold.

1. Mij(k9 q) = Mij(u9 q) for every jeJi9 i.e. the polynomials Mtj depend only on the
basis of Sf and on the external momenta q3.

2. For every sequence Hί,..., Ht of subspaces of J-fIR which is ordered in u with

respect to the basis (4-10), there exists jeJh so that4

3 If this holds for one basis of ^ , it holds for any other basis of Sf also
4 For the definition of degru see Appendix A
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<?) for all 0 = l,...,ί. (4-15)

Here (xg) denotes the parameters of Hg and (xg, wg) = (u, v).
3. For every sequence Ki,..., Ks of subspaces of i f u v which is ordered in v with
respect to the basis (4-10), there is a leKi9 so that

^ ^ ) for all # = l,...,s, (4-16)

where (yg) denotes the parameters of Hg and (yg9zg) = (u,ι;).

The notion of an admissible numerator with respect to a given degree set
generalizes the idea of an ultraviolet set of [1]. It enables us to control the ultraviolet
as well as the infrared behavior of the integral (4-6).

We now define IR- and UV-divergence degrees for integrals of the form (4-6)
with a numerator Z(λ,k,q) which is admissible with respect to a given degree set
(4-14). For HeJ^υy, parametrized by (v) = (vl9...9vd)9 a. UV-divergence degree is
defined by

ω(H) = degrH Jλ = 4d + δ(H) - ctegϊ, E{k9 q, μ), (4-17)

). (4-18)

The maximum is over all £f with (H,&?)GW1. Furthermore, for a basis

ux = lh,..., ur = Zίr, w1 = lh,..., ww_r = lJn_r, (4-19)

we define for every HeJ4?1R, parametrized by (u) = (u1,...,ur), an IR-divergence
degree by

r(H) = degrH Jλ = 4r + p(H) - degrw|vv E(k(u, w, ̂ ), q, μ), (4-20)

). (4-21)

The minimum is over all if with (
The following theorem states the cutoff dependence of integrals (4-6) if a degree

set is given with respect to which the numerator Z(λ,k,q) is admissible.

Theorem 2. Auxiliary Theorem. Suppose the nominator function Z(λ,k,q) of (4-6)
is admissible with respect to a given degree set. Denote the corresponding divergence
degrees by ω{H\He^vy, and by r{H\ He^m. Suppose that for every HeJ^lR

r(H) > 0. (4-22)

Then the integral J* χ{q,μ) exists for every finite λ. Furthermore, there exist constants
K{μ9 q)>0 and c(μ9 q) > 0, so that for λ > K(μ9 q\

' 1 if max ω(H)<0

λ ~x logm λ if max ω(H) < 0 and all pu^ 1 (4-23)

λmsxHe^ίω{H)l j o g m χ j f m a χ ω ^ ^ Q
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The proof of the auxiliary theorem is postponed to Sects. 7 and 8.
We now state a corollary to the auxiliary theorem which will also be needed

later on. Let

p( π\

= ί d*kr d*km^p^γ (4-24)
E(k,q,μ)

where P(k,q) is a polynomial and E(k,q,μ) is given by (4-7). For such an integral
divergence degrees are defined as follows. Let jtfuv and J»fIR as above. For
HeJ^υγ

9 parametrized by (v) = (vl9...9υd) and with complementary parameters
(z) = (z1,..., zm_d), so that k = k(v, z, q\ we define a UV-divergence degree by

ω(H) = degrH fλ = Ad + degr φ P(k, q) - degr φ E(k, q, μ). (4-25)

An IR-divergence degree for HeJ4?m, parametrized by (u) = (ui,...,ur) and with
complementary parameters (w) = (w t,..., wm_r), so that k = k(u, w, q), is defined by

r(H) = degrH fλ = 4r + degru|vv P(fc, ̂ ) - degru|vv E(k, q9 μ). (4-26)

Corollary. Let

j J f J i m ,4-24)
μ ) f d k , Λ J .

Suppose that for every HeJfm

r(H) > 0. (4-27)

Then fλ(q,μ) converges for every finite λ9 and there exist constants K(μ,q) > 0 and
c(μ9 q) > 0, so that for λ>K(μ, q)

1 if maxω(#)<0

Γ ^ ^ m l o g m λ i f

 H^ωiH)^0-
 ( 4 " 2 8 )

This is a direct consequence of the auxiliary theorem and is proved in
Appendix B. Both the auxiliary theorem and its corollary will be used below to
determine the cutoff dependence of the integrals into which the lattice Feynman
integrals (3-12) are partitioned, as described at the end of Sect. 3.

5. Bounds on the Numerator of a Lattice Feynman Integrand

We now state an estimate for the numerator of a Feynman integrand (3-11) which
allows an application of the auxiliary theorem of Sect. 4. To this end, let S£ again
denote a natural set of line momenta and Jί c S£.

Define a degree set 3) as the set of the following two maps.

1. For every Hejeυy and every <f<^J(, set δ(H9^) = degr^F, where (v) is the
parametrization of H.
2. For every He2tfIR and every £f c Jt^ set p(H, Sf) = degr φ F, where (u) are the
parameters and (v) the complementary parameters of H.
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Theorem 3. Let V(k,q;a)e<^c

mofor some moeZ and (ka,qa) be bounded. Then V can
be estimated by

I V(k,q;a) - P(Kq)\ ^aPΣ Zb(k,q), (5-1)
beB

where B is a finite set and peN. For every beB,apZh(k,q) is a nominator
function which is admissible with respect to the degree set Q). Furthermore,
P{Kq) = lim V{k,q;a). For every ffeJfIR, the inequality

(5-2)

(5-3)

holds, and for every HeJf , we have

degr^P^degr^K,

where (u) denotes the parameters of H and (v) the complementary parameters.
Every function apZb is of the form (4-8) with λ replaced by a~ \ where all powers

of a are equal to p. If P(k,q) φθ,p can be chosen to be 1. If P(k,q) = 0, p is the
largest natural number such that lim V(k, q; a)/ap φ exists. Note that all the δ and

a-+0

p of the degree set 3) are independent of subsets Sf ^ Jί (cp. (3-4) and (4.12)f). The
δ are independent also of the external momenta q. However, the IR-degrees are
not so. The theorem looks like Theorem 3 in [1], the only difference being that
we are now able to control also the IR-behavior.

The proof of Theorem 3 is postponed to Appendix C. We now start to prove
the power counting theorem using this estimation and the auxiliary theorem.

6. Proof of the Power Counting Theorem

At first, the integration domain of (3-11) will be partitioned as indicated at the end
of Sect. 3,

ΐ(q;μ,a)= £ Σ*/,(

where for every J the sum over z is finite, and for every sector J,z = (z f eZ 4 | ieJ) 5

— π/a

(6-2)

Here, Θis the Heaviside step function, Θ(x) = 1 for x ^ 0 and Θ(x) = 0 for x < 0, and

0 if
2π

I Z
a

<—ε for some z e Z 4

a
(6-3)

1 otherwise,

and ε is a positive constant. If ε > 0 is small enough, for every J, z one can find a
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translation kj -» kj + (2π/a)δj9 j = 1,..., m, so that

/i-^/i + — z , for all ieJ. (6-4)

α
This is a direct consequence of the naturalness of line momenta ([1], Appendix D).
Hence

(6-5)
where

4m _ _ _ _

a a

Using Theorem 3, we write V(k, q; a) = P(k, q) + R(k, q; a) and ΐJχ = / ^ + ϊfz, where

Π μψ+rf
i = l \ a

and

i.-i«.-"-./!|SΓ I,^Dβ(ϊ-"• l))δβ ft) (M)

R(k,q;a) admits an estimate of the form

\R(Kq;a)\SaPΣZb(Kq% (6-9)
beB

where peN, 5 is a finite set, and for every beB the function apZb(k, q) is a nominator
function which is admissible with respect to the degree set 3J, defined at the
beginning of Sect. 5.

As an elementary property of the propagators, for small enough ε there are
constants α and y, so that

— T - 1 < . α ^ (6-10)

a2 + μ ί

for all || /; || < (π/α)ε, and

^ y - ^ ύya2 (6-11)

^ 2 "•" λ*ί
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whenever || lt — (2π/a)z || ̂  (π/a)ε for all zeZ4. Let h be the number of elements of
J. Using the bounds (6-10), (6-11), we get the estimates

^ ^ S (6-12)
1 1 \H ' /^i /
ieJ

and

I/?.(«;μ,α)| ^ Σ J3«(β,/i, αX (6-13a)
beB

where

r * ί ̂ Γ " ^ ! ^ . ( 6 " 1 3 b )
l l
ieJ

= |(fc 1,. . .,fcm)eR 4 w | IIOH ̂ f o r all IJE&X (6-14)

J { Λ 1 , . . . , f c m } c j S f , (6-15)

δ= max (πε,4π( l + l M j ) . (6-16)
i=i,...,m\ V 2 / /

To every integral in (6-12) or (6-13) we now apply the auxiliary theorem or its
corollary, respectively. All the integrals are of the form needed, λ being replaced
by δ/a and 5£ by JSfj. The corresponding sets of subspaces Jfyv and 2tfιf are
defined by basis of Se3 with respect to k. By (6-15), j f yv c jfu v and Jf ^ c ^ I R .

We first consider the integrals I{j\ Every integral in (6-13) satisfies the conditions
to apply the auxiliary theorem with the degree set

| K , and δ(H,Sη = degrύV (6-17)

for HeJtifψ with parametrization (u) = (w(1),..., u(r}) with respect to a basis (M, W) of
if j and for Reffiψ with parametrization (υ), respectively. Remember that the δ
and p are independent of the subsets £f c ^ # i n the notation (4-20), for every

, parametrized by (u) = (u(1\...,u(r)) and with complementary parameters

(6-18)

degΓ i ί Tίl(q9 μ, a) = 4r + p(H) - degrw|vv f ]
ieJ

where we have used (3-6). Hence, using the auxiliary theorem, all integrals in (6-13)
are convergent, for every finite lattice spacing a. Furthermore, for every i/e^f yv,
with parametrization (v) = (vl9...,vd)

degrHIjb!(q,&a) = U 4- δ(H) - degr^ΠC? + μf
ieJ

= [Ad + degr, V - degr, C] + degr, Π(/,? + μf)
iφj

<2(n-h), (6-19)
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where we have used (3-7), i.e.

degrH Ifz(q, μ, a) ̂ 2(n-h)-l for all HG^Y ( 6 . 2 0 )

Using the auxiliary theorem, there exist positive K and c, so that for all a < K'1,

a. if n - f t > 0 , Tij>)

z(q,μ,a)^c(a2)n~ha-[2in-h)~1]logma = calogma. (6-21)

b. if n - h = 0, 7^(4,μ,a) ^ ca\ogma (because of p ^ 1). (6-22)

This means that the remainder ΐfz does not contribute in the continuum limit. If
P(k, q) = 0, all ΐ°Jz vanish, and the proof of the power counting theorem is complete.

Thus, let us assume that P(k,q)φO. For every HeJ^ψ with parametrization
(u) = (u1,...,ur) (and complementary variables (w) = (wί,..., wm_r) with respect to
a basis (w,w) of ££3\

d e g r ^ P ^ d e g r ^ K (6-23)

Hence, in the notation of (4-26), using (3-6),

degrHT°Jz(q, μ, a) = 4r + degru|vv P(k9 q) - degrM|vvf](If + μf)

^ [4r + degr,|w 7 - degr,|vv C] + degrM|vv Π(/? + μf) > 0. (6-24)
iφj

Hence, by the corollary to the auxiliary theorem, T°Jz(q, μ, a) is absolutely convergent
for evey finite α > 0 . If in addition (3-7) holds, then for every He^Ύ with
parametrization (v) = (v1,..., vd\ (z) being the complementary parameters of H,

degrH Il(q, μ, a) = 4d + degro|z P(k, q) - degrφΠ(/,2 + μf)
ieJ

S L4d + degr, V- degr, C] + degr,Π(If + μf)< 2(n - h\ (6-25)
iφj

hence

degrH T°Jz(q, μ, a) ̂ 2(n-h)-l (6-26)

for every HeJ^ψ. Again applying the corollary to the auxiliary theorem, there
are constants K and c, so that for all a < 1/K,

a. if n - h > 0 , Γ?z((2,μ,α)^c(α2)"- ; ι α- [ 2 ( M - ή ) - 1 ] log m α = cαlogmα, (6-27)

b. if n - h = 0, 75Bte, μ, a) ̂  c. (6-28)

We thus see that the continuum limit of ΐ(q; μ, a) exists. As in the massive case,
by the naturalness of line momenta, there is only one sector which contributes in
this limit, given by J = {l,...,n} and z = 0. Using the dominated convergence
theorem of Lebesgue, we get

oo P(k ϋ)
lim/feμ,α)= J d*k,-ά*km „ l 'q> . (6-29)

Π('? + ft2)
1 = 1

This completely proves the power counting theorem for Feynman integrals with

massless propagators.
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7. A Lemma about IR-Behavior

To prove the auxiliary theorem we need a statement about the IR-behavior of
generalized continuum Feynman integrals. The integrals considered in this section
are of the general form

{ΊΛ)

where M l 5...,w reR4, iV — {lj(u)\j= l,...,w}, and the Z/s are linear combinations
of uγ,..., ur in such a way that ranku W = r. Without loss of generality we assume
the Ij to be mutually different. Ψ* is a subset of if, and for l^'V we assume Π/EN.
I is a finite set, and all Mt are polynomials in the components of uί9...,ur. The
integration domain consists of those u satisfying lf(u) ^ 1 for all lteiΓ.

A set <#IR of equivalence classes of affme subspaces of (u1,..., ur) is defined as
in Sect. 3 (with if for if, ^ for Jί and w instead of k). To make a statement about
the convergence of (7-1), we introduce the notion of an IR-set for the family of
polynomials Mt

5.

Definition 7.1. The set {p(H)\HeJ4flR} is called an infrared-set (IR-set), if

1. p(H)eZ for all
2. For any basis (x l 5 . . . ,x r ) of if with respect to u and any sequence Hl9...9Ht

of subspaces in JfIR which is ordered with respect to this basis, there is an ίel so that

d e g r ^ . M ^ p ^ ) for all j = l , . . . , ί , (7.2)

where (ZJ) are the parameters of Hj and (zj9Wj) = (x1,...,xr\ j = 1,...,t.

The integral (7-1) does not depend on external momenta. In (7-2), no momenta
are fixed (in the sense of Appendix A). For this reason we will omit the
complementary variables throughout this section (and only here) once a basis is
given, i.e. we write

degr,;.Mt ΞdegrZjlvVjM t .

Depending on an IR-set, we define divergence degrees of (7-1) for arbitrary HeJ^lR

as follows. Let

z 1 = l i ί 9 . . . 9 z s = l i s , w t = l h , . . . , w r _s = l U s (7-3)

be a basis of if with respect to u, where Z i l S...,Z i sG^. Then for HeJ^lR,
parametrized by (z) = (z1,...,zs), we define an IR-degree of (7-1) by

r(H) = 4s + p(H)- degrz [ M ( Φ > ^)))"J. (7-4)

Lemma 7.1. IR-Lemma. Assume that an IR-set is given. Let {r(H)\HeJ4?1R} be
the corresponding set of IR-divergence degrees. Suppose that for every HEJ4?IR,

r(H)>0. (7-5)

cp. the notion of a UV-set in [1]
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Then the integral

is convergent.
We now prove the lemma by induction on the number r of four-dimensional

integrations. The idea of proof is similar to that of the auxiliary power counting
theorem of [1]. The integration domain is decomposed into various parts and the
resulting section integrals are split appropriately with the aim to do one integration
in an elementary way and to apply the induction hypothesis to the other
integrations.

The case r = 0 is trivial. Hence let r ^ 1. For every £ = l,...,w we define a
sector Xξ a R 4 r as the set of those u satisfying

If(u)^l2

ξ(u)^l for all i = l , . . . , w . (7-6)

Next, we make a linear non-singular transformation

t ι= Σ (ΛthuP (^)o e R ; i,J = l,-..,r (7-7a)

so that

t± = lξ(u) and det(Aξ)=l. (7-7b)

Define ifrξ = W\{lξ) and irξ = rT\{lξ}. For every ξ and Sf c ^ we choose a basis

z 1 ? . . . ,z s , «!,..., t?Γ_s_! (7-8a)

of 7F^ with respect to ( ί 2 , . . . , ίr) such that zί,..., zs is a basis of ^ with respect to

( ί 2 , . . .Λ) Then ι;l5...,«,_,_!e1irξ\Sf and

u = u(z,υ,t1) = fξse(z, v, ίj) (7-8b)

is a linear function. Every /,-e^ has a (ξ, 5^-dependent) representation

/^ίi)= ictjzj + dfr. (7-9)

Let Jf r be the set of all HeJ^lR which are parametrized by a basis of ^ with
respect to (u1,..., MΓ). Set

Δ = min p(H). (7-10)

For every ξ, Sf c ^ ξ 5 let f ί x , . . . , Ht be an arbitrary, ordered sequence of spaces of

JUTIR, so that

a. for 7 = 1,..., t - 1, H} is parametrized by (kj) ^ ^ .
b. H f is parametrized by a basis (fcf) of f̂  ( 3 ίf) with respect to (wx,..., ur).

(7-11)

By assumption, for every such sequence there is an ίeJ, so that

M ; ^ p ( # 7 ) for all j=l,...,t. (7-12)
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The set of all these iel is denoted by I(ξ9£f).
We now give an appropriate estimation for the integral J (Lemma 7.2) which

allows us to apply the hypothesis of induction (Lemma 7.3).

Lemma 7.2. For any 0 < ε < 1, the integral (7-1) admits an estimate

f^ΣΣ Σ ί ^ l U i l Γ / £ U ί i ) > (7-13)

where Y(ξ, £f) are finite sets, η > — 4 and

tfint (f \ _ C JA- ' . . . Λ 4 _ /

min \Piy(v\t\yTiy(zf)\
4 f / J4 /

where t ^

^ / f ί φ ' , v\ t\)) ^ ε2 if liC-r
, (7-15)

and for every ξ, £f, u{zf, vf, t\) = fξ^{z\ υr, t\\ where fξse is defined in (7-8b). For every
ίel(ζ, £f) and every ye Y(ξ9 £P\ Piy and Tiy are polynomials, and for any affine sub space
of the (z')-variables, parametrized by (z) say, we have

degr2 Tiy(z') ^ degr, M.W, v', t\)). (7-16)

Proof. Applying the transformations (7-7) and (7-8) to f for every ξ and 9> and
noticing that

we get

where

[j Xξ= {(w1 ?...,tί r)GR4 r |/2(w)^ 1 for all /,-e

Λ

( 7 4 8 )

and

Here we have used (7-9) for every ^ G ^ . We now decompose the polynomials in
the numerator into linearly independent homogeneous polynomials Mia of the
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order α in u

Mi{u)=YjMia{u\ (7-19a)

and furthermore, every Mia is decomposed into linearly independent homogeneous
polynomials Tβ(z) in z,

MJμ) = ΣPΦ> h)Tβ{z\ Piaβ(v, tJφO (7-19b)
β

in such a way that the polynomials Piaβ for fixed i, α are linearly independent.
Lemma A.I in the Appendix states that this is always possible. Hence

M(u) = y^P (v t )T (z) (7-19c)
aβ i a β ' 1 β

Using the linear independence of the Mia for fixed i and Lemma A.I again, for
any affme subspace of the (z)-variables, parametrized by (z) say, we get

degrf Tβ(z) ^ degrf M ; ( φ , υ, tt))9 (7-20)

for every Tβ in (7-19c). Hence, for every ξ,£f,

(aι,βι)fora\\ielt2<ι / 2 <ε 2 ί 2

min

J 1 r—s—1

where the minimum has been restricted to I(ξ,^). Let rί = άQgvuMi(u) for every
iel(ξ, Sf\ By definition (7-10) of Δ9

rt-Δ^0. (7-22)

S u b s t i t u t i n g

{z1,...,zs) = (z'ί9...9z
f

sy\\tί\\, ( i ; 1 , . . . , ι ; r _ s _ 1 ) = ( ι ; /

1 , . . . , t ; ; _ s _ 1 ) | | ί 1 | | , (7-23)

a n d w r i t i n g t\ = ^ / H ̂  ||, we get

4 ' / 4 rΓ / 7 4 f II f II1* Γ
2 2 2 "A 1 —sψWAΨ

min WtΛYi-^Pdυ'A'ΛT Jz'M

Ί(l2(u(z' υ> t\)ψ ' ( ? " 2 4 )

where we have collected indices, and η = 4(r— 1) — άcgruY\(lj(u))nj + A. Choose
ψ

any He3tf?

r, parametrized by (w) = (w1,..., wb) say, such that ρ(H) = A. Then

η = 4(r — 1) — degr uY[(lj(u))nj + A7t4(b — \) — degrw γ\ (Ij fJ H- p(jF/) > — 4.

(7-25)

Because of (7-22), Lemma 7.2 is completely proved. •
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All what remains to show is the following

Lemma 7.3. There is an ε0 > 0 such that the following statement holds: For all
0 < ε < ε0, for all ξ,£f ^ Y°ξ and all yeY(ξ^) there exists a constant cξ^y, so that

/^W (7-26)

Combining this statement with Lemma 7.2, the IR-lemma follows directly.

Proof of Lemma 7.3. At first, note that

min IP i y(υ\ t\)Tiy(z')| ^ min | Tiy(z')|• m a x | P i y ( υ \ t \ ) \ . (7-27)
ξ

By II £'i II — 1> || t/f || ^ 1 for all i = 1,..., r — s — 1, the inner integrals in (7-14) can be
estimated by

const
— £ - • mm \Tiy(z)\9

ε ιei{ξ,y)

where L is a non-negative integer. Consequently, for an appropriate constant cξ^,

min |7yz ' ) |

It can easily be seen that for small enough ε > 0, the integral (7-28) vanishes
whenever one can find 1^9 so that di ^ 0 in the representation

1^',^)= X Cijz'j + d^. (7-29)
7 = 1

This follows from z'1,...,z
r

se&?. For, the set of z' satisfying zf ^ ε2 for all j = 1,..., s
and lf(z\ t\) ^ ε2 for some l^Sf is empty if dt Φ 0 and ε > 0 is small enough. More
precisely, let (x^,...,^) be a point of the integration domain of (7-28). Then, for
every lte^

7 = 1

where |c | = max ί>j |c ί i7 |, hence

ε ^ ^ ' ' for all 1^9*. (7-31)
1 + s | c |

If there is 1^9 with dt φ 0, set

Then the integration domain is empty. Consequently it is sufficient to discuss only
those se such that d{ = 0 for all l{e<f, i.e. l{ = lt(zf) for all X^eSf. In particular, all
integrals (7-28) are constant.

Finally we show that all conditions to apply the hypothesis of induction are
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satisfied by (7-28). Let

z™ = liί9...,zM=lia (7-32)

be a basis of £f with respect to (z') = (z\,..., z's) and let H1,..., Ht be a sequence
of classes of affine subspaces of (z') which is ordered with respect to this basis, i.e.

a. Hj is parametrized by (fc,.) g ^ 1 ) , . . . , z

( s ) } c ^ for j = 1,...,ί.

b. The (kj) contain the (X) for j > h. (7-33)

Every basis (7-32) can be completed with w = lξ and ι;l5 , t7r_s_ x of (7-8a) to a basis

/ ί l 5...,/ i s, w , ^ , . . . , ^ ^

of #^ with respect to (w) = (u1,..., ur\ u = fξy(z\ v, w) (cp. (7-8b)). To every i/y in
(7-33) we associate in this way an affine subspace of (u) which is parametrized by
(kj% and we associate a corresponding p(Hj)eZ. By construction oϊl(ξ,^) and by

degr^.Tiy(z') ^ degr^ M;(M(Z',U, W)); for all j=l,...,t and all ZG/

(Lemma 7.2), there is iel(ξ,£f)9 so that

f o r a 1 1 7=l,---,ί- (7-34)

Hence the given IR-set, restricted to subspaces H of the above form, is also one
with respect to the numerator of (7-28).

Let
x1 = lil9...,xp = lip9 y, = lkί9..., ys-p = lks_p (7-35)

be an arbitrary basis of Sf with respect to (z\,..., z's), so that zf = z'(x,y). Let H
be the affine subspace of (z'ί9...,z's) which is parametrized by xl9...9xp, and
y1,...,ys-p are held fixed. Then

Π$«(z',», w))Γ (7-36)

>0

by assumption. Hence the hypothesis of induction applies to the integrals (7-28),
and consequently they are convergent. This completes the proof of Lemma 7.3 and
of the IR-lemma. •

8. Proof of the Auxiliary Theorem

The idea of proof is rather simple. The integral (4-6) is divided into a sum of
integrations over appropriate sections. In every sector the numerator is estimated
by one argument of the outer minimum of (4-8). The resulting integrals are of a
form which allows application of Lemma 7.1 and the auxiliary power counting
theorem of [1], giving the desired cutoff dependence.

At first, Jλ is written as

Λ = Σ *ur> (8-1)
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where the sum goes over all subsets <f c y o = {/.eyΓ |μt = 0}, and

J^q9μ) = J fk^ ^j^f^, (8-2)

where we have written F = 6^0\^, and ε > 0 is a constant. The integration domain
is restricted to those fc satisfying lf(k,q)^ε2 for all ^ G ^ and lf(k,q)^ε2 for all
/fG^. For every 9> choose a basis

u1 = liι,...,ur = lir (8-3a)

of 5^ with respect to k and complete it by

υi = lh, . , υ m _ r = lJm_r (8-3b)

to a basis of if with respect to k. We write /f = ^(M,!;,^). Every ^ - E ^ has a
representation

'£=!/,. +ate), ί / ^ Σ Q A (8-4)

Without loss of generality let the Jacobian for fe -• u, v be equal to one. Then

V-dV T ^i-^^-rZJtr^
P>

ay- (8-5)

As in Sect._7 it can easily be seen that there is ε0 = εo(β, C,r) > 0, so that for
0̂ < ε < ε0 ? JPλse{q, μ) = 0 if Qj Φ 0 for some Ifiίf. In the following we assume that
Qj = 0 whenever ίjG^, so that ί7- = ί7 (w).

By assumption, the numerator Z(λ, k, q) is admissible with respect to the given
degree set. For any £f we take the iel of (4-8) which corresponds to £f by
Definition 4.2. Then

min/l"p"|Cίi(/c(M,ί;,<3f),<5f)|

(8-6)

To the inner integral we now apply the auxiliary power counting theorem of [1],
while the outer integral will be estimated by the IR-lemma.

Lemma 8.1. Set

A <e\y vrimλ~VilI Cu(k(u, v, q), q)\

Jty(q,u,μ)= " ^ ^d*Vί • • • d*υm.rjϊ ^ ^ ^^ + 2 ) M j .

(8-7)
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There exist Ky(μ9 q)>0 and cy(μ, q) > 0, so that for all (u x , . . . , u r )eR 4 r , satisfying
lf(u) S ε2for all l^Sf, we have

( 1

λ ~1 logm λ

if max i ί G^uvω(f/)<0

if maxH6^uv ω(H) < 0 and if all pu ^ 1 (8-8)

if

for all λ > Ky(μ, q), where the ultraviolet divergence degrees ω(H) are given by (4-17).

Proof. Let 01 be the set of all lieJf\£f which depend only on u and q. Then

<

and

f o r

for (8-9)

Hence without loss of generality we assume 01 = 0. For / ^ e ^ we have

(8-11)

for any η2 > 0. Consequently

min/l

min A~Pl/1 CίZ(fc(M, υ9 q), q)\

J Π (^(«^,
where c = c(ε) is a constant. Now let

Wi = ίfl, , wd = /id, zx = /^+ i,...,zm._ r_d - /Im_r (8-13)

be an arbitrary basis of <£\£f with respect to (v1,..., vm-r). Variable w and constant
z define a class /f of affine subspaces of (vx,..., t;m_Γ). The set of all such H, for all
bases (8-13), is denoted by Jf^v. Every basis (8-13) of Se\£f can be completed
to a basis of JS? with respect to k by adding MX , . . ., ur of (8-3a). In this way, every
HE J f ^ v is considered as a subspace of (k), where (z) and (M) are held fixed. This
means J f ^ v c ^ f u v . χ 0 every He^ψ we associate the corresponding δ(H,£f)
of the given degree set.

Every sequence / f 1 ? . . . , i ί s e J ^ v which is ordered with respect to the basis
(8-13) of S£\9> is a sequence of subspaces which is ordered in (w,z) with respect
to the basis (w, z, u) of if. Hence, by assumption, for every such sequence there
exists leKt so that

degr , C« - P i ί ^degr , for all 0 = l , . . . , s , (8-14)
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where (xg) are the parameters and (yg) are the complementary parameters of Hg with
respect to (8-13), i.e. (xg,yg) = (w,z). This means that the set {δ(H,^)\HeJe^γ}
is a UV-set for the numerator of (8-12) in the sense of [1] which is independent
of u. Furthermore, for any HeJt?ψ, parametrized by (x) = (x1,..., xe\ we have

(8-15)

because of δ(H9Sf)^δ(H), where ω(H) and δ(H) are given by (4-17) and (4-18),
respectively. Thus, all the conditions are met to apply the power counting theorem
of [1] to (8-12). Hence, there exist Ksf(μ,q)>0 and c^(μ,g)>0 6, so that for all
λ > K<r(μ, q)

ί
l if maxHe^uv ω(H) < 0

λ~1 logmλ if maxHG^uvω(H) < 0 and if all pu ^ 1, (8-16)
C(fl)] x ^ u v Cθ(H) ̂  0

1 if max^^uv ω(H) < 0

λ"x logm /I if maxHG^uv ω(#) < 0 and if all pu ^ 1.

. r a x ^ u v [ ω ( / / ) ] l o g m A if maxH e j ruvω(fl)^O (8-17)

•
Having determined the cutoff dependence of the inner integrals, we now turn

to the remaining integrations.

Lemma 8.2. The integral

min\ Mij(u9q)\

is convergent for every £f.
Combined with Lemma 8.1 this means that there are K(μ, q)>0 and c(μ, q) > 0,

so that

r 1 if max^^uv ω(H) < 0

j λ ~x logm λ if maxHeJfuv ω(H) < 0 and all pa ^ 1 (8-19)

[ g m A if

for all λ > K(μ, q\ which completes the proof of the auxiliary theorem.

u is bounded and {δ(H, Sf)} is independent of u, hence K^ and cy can be chosen to be independent of u
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Proof of Lemma 8.2. We use the IR-lemma of Sect. 7. Every integral (8-18) is of the
form (7-1), where Sf stand for TT = Y and J^ for / .

Let

z1 = liι,...,zs = lis, w1 = lis+i,...,wr_s- lir (8-20)

be a basis of £f with respect to (ul9...9ur). We define 34?1* as the set of all
classes H of affine subspaces of (uί,..., ur) which are given by constant w1,..., wr_s,
for arbitrary bases (8-20). Every such basis of £f can be completed with
ι;1,...,i;m_reJS?y?5' of (8-3b) to a basis of i f with respect to k. In this way, every
HeJti?1* can be identified with a subspace of (fc) and we can associate to H the
corresponding p(H,^).

Every sequence # ! , . . . , if t e J f £ which is ordered with respect to the basis
(8-20) of £f is a sequence of subspaces which is ordered in (z, w) with respect to
the basis (z,w,υ) of if. By assumption, there is a, jeJi9 so that

^ ) for all 0 = 1 , . . . . ί , (8-21)

where (xg) are the parameters and (yg) are the complementary parameters of Hg.
Hence, {P(H9S^)\HEJ^1^} is an IR-set for the numerator of (8-18) in the sense of
Definition 7.1. For every HeJf^, parametrized by (z) = (z l 5 . . . ,zs),

= 45 + p{H9 ̂ ) - degr2 Π W(u{z, t;))]"

>0

by assumption of the auxiliary theorem, where p (if) is given by (4-21). Consequently,
all conditions to apply the IR-lemma are satisfied, and Lemma 8.2 is proved. •

Conclusions

We have generalized the convergence theorem for Feynman integrals with a lattice
cutoff of [1] to lattice field theories with massless fields. Infrared power counting
conditions are sufficient for the convergence of diagrams with finite lattice cutoff.
If these conditions are supplemented by the ultraviolet power counting conditions
of [1], the continuum limit of a lattice Feynman integral exists and is equal to.the
formal limit, i.e. the integral over the continuum limit of the integrand. Apart from
the possibility of zero-mass propagators, the general assumptions on the structure
of the lattice integrand are the same as in the massive case [1]. It should be periodic
with the Brillouin zone in every loop momentum, the propagators should have
only one pole in the Brillouin zone, and the line momenta should be natural. While
the last condition can always be satisfied by an appropriate choice of the loop
momenta, the pole condition is a genuine restriction. In particular, the power
counting theorem does not apply to fermions with propagators having poles on
the boundary of the Brillouin zone. Such propagators would require stronger
assumptions to be made on the structure of Feynman integrands on the lattice,
in addition to the periodicity.
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In a forthcoming paper, following the ideas of Lowenstein and Zimmermann,
the power counting theorem will be used to construct a renormalization scheme
for a wide class of lattice field theories containing massless fields [6].

Appendix A. UV- and IR-Degrees for Polynomials

Let P be a polynomial in variables u, w and q. P can be written as

Σ w , 9 ) Mβ(iι), (A-l)

where Mα are linearly independent homogeneous polynomials and

6α(w> Φ Φ 0 in w (q fixed!).

The UV-degree of P with respect to u is defined by

degrM|vv P = max degr Mα, (A-2a)
α

and the IR-degree is defined by

degrM|vv P = min degr Mα, (A-2b)
α

where degr Mα is the homogeneity degree of Mα. Note that the degrees defined in
this way depend on the external momenta q. Sometimes for the UV-degree we will
use the shorthand notation

degru P(u, w, q) = degru|vvg P(u9 w, q).

In general,

degru|vv P(u9 w, q) g degru|w? P(w, w, ̂ )

and

degru|w P(M, W, ̂ ) ^ degru|vv, P(w, w, g).

For "exceptional" momenta q, the latter is a strict inequality. If P is the denominator
of a momentum space Feynman integrand, these momenta destroy the convergence
of the Feynman integral, hence they must be excluded.

We list the most important properties of degr and degr. Let F9Fί9...,Fr

be polynomials in M, W, q. Then

(A-3)

(A-4)

degr M | v v ΠF 7 = Σ d e g r ^ F , , (A-6)
j = l j=ί

^ m a x d e g r

M |w^ , (A-7)
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r

u|w Σ FJ ^ m i n degΓuiw^j ( A 8 )
j l j l

At two stages of this paper we need the following

Lemma A.I. Let P be a polynomial in variables u, υ. P can be written as

Q*(v), 6 α # 0 , (A-9)

where Ra are linearly independent homogeneous polynomials, so that all polynomials
gα for a with the same degr Ra are linearly independent.

Let u = f(ύ, ύ) be linear and homogeneous. Then

de&mRa(u)^de&alύvP(u,v) for all α. (A-10)

Proof. P can always be decomposed into linearly independent homogeneous
polynomials Mα(w):

«(v\ Qa(v)φ0.
a

For any β let
β = degr Mα i = = degr Man

with n maximal and

β α i , . . . , β α t , t^n

be linearly independent with t maximal, so that

t

Q«i = Σ cijQ*j f o r a 1 1 *with t < ι =n-

Then

Σ MΛj(u)Qaj(υ)= t R«Xu)Q«M
where

Raί(u) = MJu)+ t CjtMaj.
j=t+i

The Raι, i = 1,..., t are linearly independent and homogeneous of degree β. Doing
so for all β, the first part of the lemma follows.

Let u = f(u, u) be linear and homogeneous. Write every Rα in a partition (A-9) as

where Sβ are linearly independent homogeneous polynomials in u. Every Vαβ(ύ) is
homogeneous in u of degree degr#α — degr Sβ. Inserting this in (A-9) yields

The first sum is over all β for which α exists with Vαβ(ύ) φ 0. For every β

ΣQMvαβ(ύ)ψo,
α

because of the linear independence of the Qα for α having the same degr Rα. Hence
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degr g | ά Ra(u) ^ degru~|lίι; P(u9 υ) for all α. Π

Appendix B. Proof of the Corollary to the Auxiliary Theorem

To prove the corollary of Sect. 4, the integral β λ9 (4-24), will be estimated by a
finite sum of integrals of the form (4-6) to which the auxiliary theorem applies,
and such that the numerators of the integrands are admissible with respect to the
degree set δ9 consisting of all δ(H,&) = degr φ P,/feJf u v , and of all p{H9&) =
degrw|vv P, HetfIR (cp. (4-24)f). Note that the p and δ are independent of Sf £ ^ 0 .

We first mention the following fact. Let P(w, v, q) be a polynomial and

P(u,viq) = YjRg(u)Qg(v,q); Qg(v,q)ψ0 in v9 (B-l)

a decomposition of P into linearly independent homogeneous polynomials Rg in
u. Let

u' = Du-\- Eq, v' = Aυ + Bu + Cq (B-2)

be an arbitrary linear transformation, where A and D are invertible matrices. Then,
for every partition (ι/) = (ι;(1)

51;(2)), we get

r, ( 1 V2V Qg ̂  degr,,(i)|l?(2)tt/ P for all g. (B-3)

Using the linear independence of the Rg9 this follows directly from

ϊΌw]v<2)u>Rβ(u)Qβ(υ9q)

yi) |υ(2VP(u,i;^).

To prove the corollary, let first £f c ^ 0 be an arbitrary subset (cf. (4-9)). Let

ul9...,ur, vl9...,υm-r (B-4)

be a basis of <£ with respect to k such that MX , . . ., ur is a basis of ίf with respect
to fc. Then there exists a decomposition of the numerator P of (4-24) into linearly
independent homogeneous polynomials Rg,

(u,v,q\q) = ΣRg(u)Qg{v,q) with Qg(υ,q) φ 0 in D, (B-5)

so that for every partition (w) = (w(1), w(2))

degrud)|u(2)^g ^ degru(i)(M(2)ι;P for all geG. (B-6)

This is proved in Appendix A. A decomposition (B-5) is possible for every basis
(B-4) of i f with respect to k9 for fixed ίf ^ £f0. Hence, with an appropriate set J,

|P(fe^) |^minΣ \Rg{Kq)\>\Qg{Kq)\.
jeJ geGj

Writing G = ®jeJGj1 and setting for {gj)jeJeG:Rjg = Rgj, Qjβ = Q9j, we get

7 This notation is explained in Appendix B of refs. [1]



600 T. Reisz

geG jeJ

^Σ(mm\Rjg(k,q)\)Σ\Qjg(k,q)\
geG\ jeJ / jeJ

Y j ( j \ (B-7)
leX \ jeJ

where X = G®J and for l = (g9h)eX we have written Mβ = Rjg and Cι = Qhg.
Let

u'u...,u
f

r9 υ'l9...,v'm-r

be another basis of i f with respect to k such that u\,..., u'r is a basis of ^ . Such
a basis is related to (B-4) by a transformation of the form (B-2). Writing
(υf) = (v(1\ v(2)) and using (B-3), we have for all C, of (B-7),

y ^ Cι ^ degrp(Dli;(2)M/ P for all leX.

Furthermore, by construction, all Mβ of (B-7) depend on u' and q only, and one
can always find a jeJ, so that for each partition (uf) = (u{1\u(2)%

dQgru(Dlu(2)v Mβ ^ degru(i)|u(2)υ P for all / e l .

Until now, Sf is held fixed. Taking the minimum of (B-7) over all 9* ^ ^ 0 , we get

X f ^ Q ί f c ^ ί l g Σ Z ^ f c ^ ) , (B-8
iel leXi \ jeJτ J leY

where

Zι(Kq) = mm( \Cil(Kq)\'mm\Mijl(Kq)\ . (B-9)
ie/ \ jeJz /

/ is an appropriate finite set, Y = ®ieIXh and for (lt)ieIGY9 we have written
Mijι(k9q) = Mjlι(k9q)9 Cu(k9q) = Cι.(k9q). Every Zx is a nominator function which
is admissible with respect to the degree set S9 consisting of all δ(H,9) = degry | zP,
HG34?υγ ((v) being the parametrization of H and (z) are the complementary
parameters) and of all p(H,&?) = degrM|vvP,fίeJ(fIR (parametrized by (u) with
complementary parameters (w)). Note that all δ(H, £f) and p(iί, 5̂ ) are independent
of^^^o.

Using (B-8), we get

The divergence degrees (4-17) and (4-20) are given by (4-25) and (4-26), respectively.
Thus, all the conditions are met for the auxiliary theorem to apply to every integral
on the right-hand side of (B-10). This proves the corollary. •

Appendix C. Proof of the Numerator Bounds

In this appendix, Theorem 3 of Sect. 5 is proved. The proof is similar to that of
the corresponding statement of [1], and below iwo lemmas are taken over literally.
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However, we have to consider IR- and UV-degrees simultaneously. Consequently,
the proof is more tedious here.

For δ = (δli...,δn)eNn

0,deNid^n — 1 and multi-indices bt for i = l,...,n, let

otherwise,

and

f l ^ i I + ••* + I few I = δ1 — δr]+λ a n d

0 otherwise.

We state the preliminary

Lemma C.I. Let F e C 0 0 be of the form F(x1,..., x j , x feRm i, and ^^eNo = {0,1,2,...}
s u c h t h a t δt ^ δk if i < k, f o r all ί f k = 1 , . . . , n. S u p p o s e

j p , λ-+0; j = l , . . . , n . (C-l)

Let ίleN, d^n—l. Then there exist C00-functions Fbi...bn, so that

F{xl9...,xn)

(C-2)
where

Proof. By successive application of Lemma 6.1 of [1] to i7, we get

F ( x l 9 . . . , x n ) = Σ ^

where F ^ ^ . ^ ^ C 0 0 and

Applying Lemma 6.2 of [1] to Fhd+1...bn yields

Fbd+v.bn(xu...,xn)= X /2^(fo1,...,^)xb

1

1. 4^ί^F, i...,A + i... /,n(x 1,...,xJ,

(C-4)

where Fb ...fe eC 0 0. Inserting this into (C-3), the assertion follows. Π

From Lemma C.I, we derive a bound on a function Ve%?c

mo if ordered sequences
of subspaces in JfIR and J f u v with respect to a natural set ί£ of line momenta
are given.
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Lemma C.2. Let 9> c y and

u(1\...,u{r\ v{1\...,v(m-r) (C-5)

be a basis of <£ with respect to k such that u{1\...,w(r) is a basis of Sf with respect
to k. Let Hl9...,Ht be a sequence of subspaces of J fIR which is ordered in u with
respect to the basis (C-5). Denote the parameters of Hi by (zt) and the complementary
parameters by (zf). Furthermore, let Kί9...,Ks be a sequence of classes of affine
subspaces of J^υΎ which is ordered in υ with respect to (C-5). Denote the parameters
of Kt by (Wj ) and the complementary parameters by (wt).

Consider a function V(k,q;a)e(^c

mo for some moeZ and assume that (ka,qa) are
bounded. Then V admits an estimate of the form

\V(k,q;a)-P(k,q)\^ap £ f{bu...9bt^''^\'Σ\Qιt1...bt{Kq)\9 (C-6)

where
l * ; for all i=ί,...,t

otherwise. ( C ' 7 )

X is a finite set and peN is independent of the sequences and the basis. Qlbl...bt are
homogeneous polynomials, and P(k, q) = limα_0 V(k, q; a), satisfying

d e g r 7 j l Z j P ^ d e g r ^ , ^ V for all g=l,...9t,

deirWglWgP^άoiτ.gV for all g=l,...9s9

 ( C " 8 )

and

deirWglw_gQlbι . ^ d e g r ^ F + p, for al l g=l,...,s. (C-9)

N o t e t h a t for f(bί9...,bt)φ0
degr z ^/( fe 1 , . . . , fo ί )z^ . . z ? ^ d e g r f ^ F , g = l9...9t. (C-10)

The polynomials f(bx,..., bt)z\ι z\ι depend only on the basis of «9", i.e., they are
the same for all bases (C-5) with the same collection u{1\...,u(r) and arbitrary
v{1\...,v{m~r). The integer p can be chosen to be 1 if P(k,q) ψ 0. If P(k,q) = 0,p is
the largest natural number so that l i m ^ o V(k,q;a)/ap φ 0 exists.

Proof. 1. Write V(k,q;a) = F(ka,qa)/amo and Ff(x) = F(k(u,v,τ-q\τ q) for fixed q
and variable τ 8. We define variables (x) = (xί,..., xs + t +1) as follows

(wί) = (x1)

(w2) = (xux2)

(ws) = (xu...,xs)

(υ9τ) = (xl9...9xs+1) (C-ll)

(Zt) = ( X s + 2 5 — i x s + t + l)

\Z2 ) = \xs +1 •> Xs

We write τ instead of a to avoid misunderstandings
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For Hj, j = 1,..., ί, set (zj) = (xs+t+2-j,. ., x s + ί + J ("internal" momenta of Hj) and

(Zj) = Ui>'~>xs+t+i-j) ( "external" m o m e n t a ) , so t h a t (zj9Zj) = (xί9...9xs+t + ί ) .

Define r J + t + 1_7- = d e g r f , V for all j=l,...,t. Similarly, for Kj9j=l,...9s9 set

(Wj) = (xί9...,Xj)_and (w,.) = (x J.+ 1 , . . . , x s + f + 1 ) , so t h a t (w</,wJ.) = ( x i , . . . , X s + t + i ) .

Define r,-= m 0 — degr^ F for all 7 = 1, . . . ,5. T h e n , by definition of the IR- a n d

UV-degrees, rί ^ r2 ^ ••• ^ r s + ί , a n d

2. As in [ 1 ] , define for δeZ

PΊx x
1 a

^ (C-13)

G ( x 1 ? . . . , X s + ί + 1 ) = r ( X i j 5 X s + ί + i ) — •* m o v ^ i ' ' ^ s + r + i ) -

Let r o e N o be the largest integer such t h a t P'rΌ(xl9...9xs + t + 1)φ0 exists. T h e n

where fj = r,- for all j = 1 , . . . , s + t a n d

\r0 if m 0 < r0

+ 1 if m = v

a n d hence fo^f1 ^ ••• ^ r s + ί. W e n o w apply L e m m a C.I t o G with d = s+l9

G ( x l 5 . . . , x s + ί + 1 ) =

where

[0 otherwise,

I&! I H \-\bs + 1\ = f0-fs+1 and

0 otherwise,

and i\...6s+f+1

6C°° For bounded {ka,qa) and τ = l, using CVi) = (2 s + f+2-i) f° r

i = s + 2,. .s.+,fs + ί + 1, we get

w h e r e f{bl9...,bt) is defined in (C-9) a n d X is a finite set. Qιbl...bt a re p o l y n o m i a l s ,
satisfying

degr , β t t i . . Λ S r0 - rg = ( r 0 - m 0 ) + d e g r , K, ^ = 1 , . . . , s. (C-14)
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Finally, note that

1

Then

τV9 flf=l,...,ί,

r ^ , ^ P ^ m o - f g = degr^ V, g=l,...,s9

and

\V(k9q;a)-P(k,q)\=^\G(x1a9...9xa+t+1a)\τ=1

(C-15)

b1-bt ίeX

where p = f0 - m o e N . Π

Proof of Theorem 3. Using Lemma C.2, the proof of straightforward. We have to
show the validity of an estimate

I V(k, q; α) - P(k, q)\ ̂  «PΣZb(k> & ( C " 1 6 )

where every αpZb(k9q) is a nominator function which is admissible with respect to
the degree set 29 defined at the beginning of Sect. 5.

At first, let Sf £ Ji (cp. (3-4)) be a given subset and

u{ί\...,u{r\ v{1\...,v{m-r) (C-17)

a basis of j£? with respect to k so that u(1\..., uir) is a basis of ^ with respect to
k. Let Hl9...,HteJ^lR be a sequence which is ordered in u with respect to the
basis (C-17), and K1,...,KseJ^?υy a sequence which is ordered in v with respect
to (C-17). Using Lemma C.2, Ve^c

mo can be estimated by

I V(k9q;α)-P(k,q)\ ^αPΣ\Mj(u)\ £ \Qβ(Kq)l (C-18)
jeJ leX

where P(k, q) = limα^0 V(k, q; α\ peN is determined by the function V, and J, Jί are
finite sets. M ; and Qβ are homogeneous polynomials satisfying

degrz | z Mj ^ degrf | z F for all g = 1,..., t and for all jeJ,

where (zg) are the parameters of Hg and (zg9zg) = (u,v), and

degr i β j 7 ^ degr^ + p for all ^ = 1,..., 5 and for all je J, leX,

(wg) being the parameters of Kg and (wg9 wg) = (w, v).
We now make an estimate of the form (C-18)

a. For all sequences of subspaces of J f u v which are ordered in v.
b. For all bases (C-17) of J/f with fixed u{1\...,w(r), i.e. for given (w) we consider
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all possible choices of (v) such that (C-17) is a basis of if. Note that by such changes
of the basis the IR-degrees degi) lκ V do not change9.

We get

I V(k,q;a) - P(Kq)\ fg α * £ | M ^ ) | min \Qu(Kq)U
leY ieK

where Y, K are finite sets. For every basis (u, v) of i f with given (u) and every
sequence Kί9...,KseJίf?l}γ which is ordered in v with respect to this basis, there
is an ieK, so that the polynomials Qa satisfy

degrw ^ Qit ^ degr^ V + p for all g=l,...,s and for all leY.

(wg) are the parameters of Kg and (wg) the complementary parameters.
Next, we consider

a. All sequences of subspaces of JίfIR which are ordered in u,

b. All bases (C-17) such that ua\...,u{r) is an arbitrary basis of $f. By the

corresponding changes of a basis, the UV-degrees degr^ V do not change1 0.

We get

I V(Kq;a) - P(Kq)\^a?Σ min|Mjb(u,q)\ min\Clh(Kq)\, (C-19)
beB jeJ leKb

where B,J,Kb are finite sets and Mjb,Clb are polynomials. For every basis (C-17)
of i f such that u(1\...,w(r) is a basis of ^ , the polynomials M7 fc depend only on
u and the external momenta q. Furthermore, for every sequence H1,...,HteJ^?lR

which is ordered in u with respect to (C-17) there exists jeJ, so that

degrz u Mjb ^ degrf ^ V for all g = l,...9t and for all beB,

where (zg) are the parameters of Hg and (zg,zg) = (u,υ). For every sequence
iC 1,...,iC sGJfu v which is ordered in v with respect to (C-17) and for every beB
there is leKb9 so that

degr . Czz, ̂  degrΓv 7 + p for all g - 1,..., s.

9 A change of basis

is given by

where B is an invertible matrix.
1 0 We have

u'

v'

M(r) M ( l )

= U

= Au + Bv + Cq,

u' = Du + Eq

v' = υ,

u(r)

/(m-r)

where D is invertible. The change of the basis of y depends on the external momenta q, hence the
polynomials Mι are dependent on u and q
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(wg) are the parameters of Kg and (wg, wg) = (u,v). This means that, taking on the
right-hand side of (C-19) the minimum over all £f c J[, we get an estimate of the
form (C-16), where all functions apZb(k9q) are nominator functions which are
admissible with respect to the degree set 2. This proves Theorem 3.
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